Index

SymbolsABCDEFHIKLMNOPQRSTUVWX

Symbols

(-)bound: 3.4.1 Lambda-Abstraction
-abstraction: 3.4.1 Lambda-Abstraction
-constellation: 10.1.4 Rule-like World Knowledge and Computational Nightmares
-conversion: 3.4.8 Alpha-Conversion
-equivalent: 5.2.10 Sidetrack: Predicates versus Functions
-equivalent: 3.4.8 Alpha-Conversion
-reduction: 3.4.2 Reducing Complex Expressions
-structure: 5.2.6 Describing Lambda-Structures

A

abstracted over: 3.4.1 Lambda-Abstraction
admissible: 10.7 Exercises
anaphoric pronoun: 11.1.1 Anaphoric Pronouns
antecedent: 7.1.3 A simple Logical System: Propositional Logic with Hilbert-Calculus
argument type: 3.4.4 [Sidetrack] Simply Typed Lambda-Calculus
assumption: 7.1.2 Calculi
atomic formula: 1.1.6 Building Formulae
axiom: 7.1.3 A simple Logical System: Propositional Logic with Hilbert-Calculus
axiomatic method: 7.1.4 Proofs in Hilbert Calculus

B

binding edge: 5.2.5 Formulas are trees!, 5.2.6 Describing Lambda-Structures
bound variable: 1.1.7 Subformulae, Free Variables

C

Calculemus!: 7.1.6 Sidetrack: Calculemus!
calculus: 7.1.2 Calculi
calculus ratiocinator: 7.1.6 Sidetrack: Calculemus!
chaining rule: 7.2.8 Sidetrack: Practical Enhancements for Tableaux
characteristic function: 3.4.4 [Sidetrack] Simply Typed Lambda-Calculus
Choice Rule: 6.2.1 The Choice Rule
closed: 7.2.1 Tableaux for Theorem Proving, 7.2.3 Analytical Tableaux: A more formal Account
combinatorial explosion: 5.1.8 The Problem with the Traditional Approaches
complete: 7.1.4 Proofs in Hilbert Calculus, 7.1.5 Properties of Calculi (Theoretical Logic)
computation tree: 8.1.5 An Example - first Steps
conclusion: 7.1.2 Calculi, 7.1.3 A simple Logical System: Propositional Logic with Hilbert-Calculus
confluence: 3.4.3 Using Lambdas
conjunctive expansion: 7.2.1 Tableaux for Theorem Proving
constant symbol: 1.1.1 Vocabularies
constraint graph: 5.2.6 Describing Lambda-Structures
constraint solving: 5.2.4 The Masterplan, 5.2.3 Underspecified Descriptions
contradiction-free: 9.1.3 Tableaux Branches and Herbrand Models
conversational implicature: 7.2.5 An Application: Conversational Maxims
conversational maxim: 7.2.5 An Application: Conversational Maxims
cooperative principle: 7.2.5 An Application: Conversational Maxims
Cooper storage: 5.1.7 Other Traditional Solutions
correct: 7.1.5 Properties of Calculi (Theoretical Logic), 7.1.4 Proofs in Hilbert Calculus

D

d-compositionality: 3.1.3 [Sidetrack] Compositional Semantics
decision procedure: 9.1.4 Tableaux generate Herbrand Models
deduction theorem: 1.2.7 An Example
derivability: 7.1.4 Proofs in Hilbert Calculus
derived rule: 7.2.8 Sidetrack: Practical Enhancements for Tableaux
describe: 5.2.8 Relating Constraint Graphs and Lambda-Structures
discourse: 9.1.4 Tableaux generate Herbrand Models, 10.7 Exercises
discourse referent: 11.2.1 A First Example
Discourse Representation Structure (DRS): 11.1.3 Another Puzzle
Discourse Representation Theory (DRT): 11.1.3 Another Puzzle
disjunctive: 7.2.2 Tableaux for Theorem Proving (continued)
Distribution Rule: 6.2.1 The Choice Rule
domain: 1.1.2 First-Order Models
dominance edge: 5.2.6 Describing Lambda-Structures
donkey sentence: 11.1.2 Donkey Sentences

E

Enumeration: 6.1.1 Satisfiability and Enumeration
exact model: 1.1.3 An Example Model, 1.1.4 Exact Models
existential: 10.5 Sidetrack: Derived Rules for the Existential Quantifier

F

fairness: 10.2.6 Subsequent Instantiations: Instantiate
finite model property: 9.1.4 Tableaux generate Herbrand Models
first-order formula: 1.1.5 First-Order Languages
first-order language: 1.1.5 First-Order Languages
first-order model: 1.1.2 First-Order Models, 1.1.2 First-Order Models, 1.1.1 Vocabularies
first order tableaux: 1.2.6 Valid Arguments
free variable: 1.1.7 Subformulae, Free Variables
functional application: 3.4.2 Reducing Complex Expressions

H

Herbrand base: 10.1.2 Extending our Calculus: The Universal Rule
Herbrand model: 9.1.3 Tableaux Branches and Herbrand Models

I

inference: 6.6 Exercises, Course Schedule
inference system: 7.1.2 Calculi
initial tableaux: 7.2.3 Analytical Tableaux: A more formal Account
instance: 7.1.4 Proofs in Hilbert Calculus
interpretation: 1.2.2 Interpretations and Variant Assignments
interpretation function: 1.1.2 First-Order Models
iterative-deepening: 10.2.3 Restricting the Application of the Universal Rule

K

Keller storage: 5.1.7 Other Traditional Solutions

L

lexical semantic: 9.1.1 Why Model Generation?
lingua universalis: 7.1.6 Sidetrack: Calculemus!
literal: 1.1.6 Building Formulae
logical constant: 10.6 Project: Adding Equality to our Calculus

M

Manner: 7.2.5 An Application: Conversational Maxims
matrix: 1.1.6 Building Formulae
meaning construction: Course Schedule
mental model: 9.1.1 Why Model Generation?
model generation: 9 [Sidetrack] Model Generation
model generation procedure: 9.1.2 Tableaux for Model Generation with PLNQ
modus ponens: 7.1.3 A simple Logical System: Propositional Logic with Hilbert-Calculus

N

name: 1.1.1 Vocabularies
negative: 7.2.3 Analytical Tableaux: A more formal Account
Nested Cooper storage: 5.1.7 Other Traditional Solutions
normal dominance constraint: 5.2.3 Underspecified Descriptions, 5.2.4 The Masterplan, 5.2.9 Sidetrack: Constraint Graphs - The True Story
normalization: 6.2.2 Normalization
normal model: 1.3.2 Semantics of Equality

O

open: 7.2.3 Analytical Tableaux: A more formal Account, 7.2.1 Tableaux for Theorem Proving

P

parent normalization: 6.2.2 Normalization
PLNQ: 7.2.4 Using Tableaux to test Truth Conditions
predicate symbol: 1.1.1 Vocabularies
premise: 7.1.3 A simple Logical System: Propositional Logic with Hilbert-Calculus
proof: 7.1.2 Calculi, 7.1.4 Proofs in Hilbert Calculus
proof from the assumptions in : 7.1.4 Proofs in Hilbert Calculus
proof theory: 1.2.6 Valid Arguments
provability: 7.1.4 Proofs in Hilbert Calculus, 7.1.4 Proofs in Hilbert Calculus
provable: 7.1.5 Properties of Calculi (Theoretical Logic), 7.1.4 Proofs in Hilbert Calculus, 7.1.5 Properties of Calculi (Theoretical Logic), 7.1.4 Proofs in Hilbert Calculus, 7.1.4 Proofs in Hilbert Calculus
provable from the assumptions in : 7.1.4 Proofs in Hilbert Calculus

Q

Quality: 7.2.5 An Application: Conversational Maxims
quantifier store: 5.1.7 Other Traditional Solutions
quantifying in: 5.1.4 The Fifth Reading, 5.1.5 Montague's Approach to the Scope Problem
Quantity: 7.2.5 An Application: Conversational Maxims

R

redundancy elimination: 6.2.2 Normalization
refutation proof: 7.2.3 Analytical Tableaux: A more formal Account
Relation: 7.2.5 An Application: Conversational Maxims
relation symbol: 1.1.1 Vocabularies
result type: 3.4.4 [Sidetrack] Simply Typed Lambda-Calculus

S

s-compositionality: 3.1.3 [Sidetrack] Compositional Semantics
Satisfiability: 6.1.1 Satisfiability and Enumeration
saturated: 7.2.3 Analytical Tableaux: A more formal Account
scope: 1.1.6 Building Formulae
scope ambiguity: 5.1.1 What Are Scope Ambiguities?
semi-decidable: Consequences for Theorem Proving
sentence: 1.1.7 Subformulae, Free Variables
signature: 1.1.1 Vocabularies
signed: 7.2.3 Analytical Tableaux: A more formal Account, 7.2.1 Tableaux for Theorem Proving
simply typed -calculus: 3.4.4 [Sidetrack] Simply Typed Lambda-Calculus
skolem constant: 10.1.3 The Existential Rule
solution: 5.2.8 Relating Constraint Graphs and Lambda-Structures
solved form: 6.1.4 Defining Solved Forms
sound: 7.1.5 Properties of Calculi (Theoretical Logic), 7.1.4 Proofs in Hilbert Calculus
specification: 2.1.4 Representing Models
subformula: 1.1.7 Subformulae, Free Variables
subordination: 11.2.3 Syntax of DRSs and DRS-Conditions
succedent: 7.1.3 A simple Logical System: Propositional Logic with Hilbert-Calculus
syncategorematically: 4.4.2 The Lexicon, 4.4.3 ``Special'' Words
syntactic structure: 3.1.2 Being Systematic (II)

T

tableaux proof: 7.2.3 Analytical Tableaux: A more formal Account
tableaux refutation: 7.2.3 Analytical Tableaux: A more formal Account
term: 1.1.6 Building Formulae
test calculus: 7.2.3 Analytical Tableaux: A more formal Account
theorem: 7.1.4 Proofs in Hilbert Calculus
true in a model: 1.2.3 The Satisfaction Definition, 1.2.4 Truth in a Model

U

universal: 10.5 Sidetrack: Derived Rules for the Existential Quantifier

V

valid: 7.1.5 Properties of Calculi (Theoretical Logic), 7.1.5 Properties of Calculi (Theoretical Logic), 7.1.4 Proofs in Hilbert Calculus, 7.1.4 Proofs in Hilbert Calculus
valid argument: 1.2.6 Valid Arguments
valid formula: 1.2.5 Validities
validity: 7.1.4 Proofs in Hilbert Calculus
valid sentence: 1.2.5 Validities
variant: 1.2.2 Interpretations and Variant Assignments
vocabulary: 1.1.1 Vocabularies

W

well-formed formula: 1.1.6 Building Formulae
well-typed: 3.4.4 [Sidetrack] Simply Typed Lambda-Calculus
witness: 10.1.3 The Existential Rule
world knowledge: 9.3 Wrapping it up (Model Generation)

X

x-variant: 1.2.2 Interpretations and Variant Assignments

Aljoscha Burchardt, Stephan Walter, Alexander Koller, Michael Kohlhase, Patrick Blackburn and Johan Bos
Version 1.2.5 (20030212)