- (
-)bound: 3.4.1 Lambda-Abstraction 
-abstraction: 3.4.1 Lambda-Abstraction
-constellation: 10.1.4 Rule-like World Knowledge and Computational Nightmares
-conversion: 3.4.8 Alpha-Conversion
-equivalent: 5.2.10 Sidetrack: Predicates versus Functions
-equivalent: 3.4.8 Alpha-Conversion
-reduction: 3.4.2 Reducing Complex Expressions
-structure: 5.2.6 Describing Lambda-Structures
- abstracted over: 3.4.1 Lambda-Abstraction
 
- admissible: 10.7 Exercises
 
- anaphoric pronoun: 11.1.1 Anaphoric Pronouns
 
- antecedent: 7.1.3 A simple Logical System: Propositional Logic with Hilbert-Calculus
 
- argument type: 3.4.4 [Sidetrack] Simply Typed Lambda-Calculus
 
- assumption: 7.1.2 Calculi
 
- atomic formula: 1.1.6 Building Formulae
 
- axiom: 7.1.3 A simple Logical System: Propositional Logic with Hilbert-Calculus
 
- axiomatic method: 7.1.4 Proofs in Hilbert Calculus
 
- binding edge: 5.2.5 Formulas are trees!, 5.2.6 Describing Lambda-Structures
 
- bound variable: 1.1.7 Subformulae, Free Variables
 
- Calculemus!: 7.1.6 Sidetrack: Calculemus!
 
- calculus: 7.1.2 Calculi
 
- calculus ratiocinator: 7.1.6 Sidetrack: Calculemus!
 
- chaining rule: 7.2.8 Sidetrack: Practical Enhancements for Tableaux
 
- characteristic function: 3.4.4 [Sidetrack] Simply Typed Lambda-Calculus
 
- Choice Rule: 6.2.1 The Choice Rule
 
- closed: 7.2.1 Tableaux for Theorem Proving, 7.2.3 Analytical Tableaux: A more formal Account
 
- combinatorial explosion: 5.1.8 The Problem with the Traditional Approaches
 
- complete: 7.1.4 Proofs in Hilbert Calculus, 7.1.5 Properties of Calculi (Theoretical Logic)
 
- computation tree: 8.1.5 An Example - first Steps
 
- conclusion: 7.1.2 Calculi, 7.1.3 A simple Logical System: Propositional Logic with Hilbert-Calculus
 
- confluence: 3.4.3 Using Lambdas
 
- conjunctive expansion: 7.2.1 Tableaux for Theorem Proving
 
- constant symbol: 1.1.1 Vocabularies
 
- constraint graph: 5.2.6 Describing Lambda-Structures
 
- constraint solving: 5.2.4 The Masterplan, 5.2.3 Underspecified Descriptions
 
- contradiction-free: 9.1.3 Tableaux Branches and Herbrand Models
 
- conversational implicature: 7.2.5 An Application: Conversational Maxims
 
- conversational maxim: 7.2.5 An Application: Conversational Maxims
 
- cooperative principle: 7.2.5 An Application: Conversational Maxims
 
- Cooper storage: 5.1.7 Other Traditional Solutions
 
- correct: 7.1.5 Properties of Calculi (Theoretical Logic), 7.1.4 Proofs in Hilbert Calculus
 
- d-compositionality: 3.1.3 [Sidetrack] Compositional Semantics
 
- decision procedure: 9.1.4 Tableaux generate Herbrand Models
 
- deduction theorem: 1.2.7 An Example
 
- derivability: 7.1.4 Proofs in Hilbert Calculus
 
- derived rule: 7.2.8 Sidetrack: Practical Enhancements for Tableaux
 
- describe: 5.2.8 Relating Constraint Graphs and Lambda-Structures
 
- discourse: 9.1.4 Tableaux generate Herbrand Models, 10.7 Exercises
 
- discourse referent: 11.2.1 A First Example
 
- Discourse Representation Structure (DRS): 11.1.3 Another Puzzle
 
- Discourse Representation Theory (DRT): 11.1.3 Another Puzzle
 
- disjunctive: 7.2.2 Tableaux for Theorem Proving (continued)
 
- Distribution Rule: 6.2.1 The Choice Rule
 
- domain: 1.1.2 First-Order Models
 
- dominance edge: 5.2.6 Describing Lambda-Structures
 
- donkey sentence: 11.1.2 Donkey Sentences
 
- Enumeration: 6.1.1 Satisfiability and Enumeration
 
- exact model: 1.1.3 An Example Model, 1.1.4 Exact Models
 
- existential: 10.5 Sidetrack: Derived Rules for the Existential Quantifier
 
- fairness: 10.2.6 Subsequent Instantiations: Instantiate
 
- finite model property: 9.1.4 Tableaux generate Herbrand Models
 
- first-order formula: 1.1.5 First-Order Languages
 
- first-order language: 1.1.5 First-Order Languages
 
- first-order model: 1.1.2 First-Order Models, 1.1.2 First-Order Models, 1.1.1 Vocabularies
 
- first order tableaux: 1.2.6 Valid Arguments
 
- free variable: 1.1.7 Subformulae, Free Variables
 
- functional application: 3.4.2 Reducing Complex Expressions
 
- Herbrand base: 10.1.2 Extending our Calculus: The Universal Rule
 
- Herbrand model: 9.1.3 Tableaux Branches and Herbrand Models
 
- inference: 6.6 Exercises, Course Schedule 
 
- inference system: 7.1.2 Calculi
 
- initial tableaux: 7.2.3 Analytical Tableaux: A more formal Account
 
- instance: 7.1.4 Proofs in Hilbert Calculus
 
- interpretation: 1.2.2 Interpretations and Variant Assignments
 
- interpretation function: 1.1.2 First-Order Models
 
- iterative-deepening: 10.2.3 Restricting the Application of the Universal Rule
 
- Keller storage: 5.1.7 Other Traditional Solutions
 
- lexical semantic: 9.1.1 Why Model Generation?
 
- lingua universalis: 7.1.6 Sidetrack: Calculemus!
 
- literal: 1.1.6 Building Formulae
 
- logical constant: 10.6 Project: Adding Equality to our Calculus
 
- Manner: 7.2.5 An Application: Conversational Maxims
 
- matrix: 1.1.6 Building Formulae
 
- meaning construction: Course Schedule 
 
- mental model: 9.1.1 Why Model Generation?
 
- model generation: 9 [Sidetrack] Model Generation
 
- model generation procedure: 9.1.2 Tableaux for Model Generation with PLNQ
 
- modus ponens: 7.1.3 A simple Logical System: Propositional Logic with Hilbert-Calculus
 
- name: 1.1.1 Vocabularies
 
- negative: 7.2.3 Analytical Tableaux: A more formal Account
 
- Nested Cooper storage: 5.1.7 Other Traditional Solutions
 
- normal dominance constraint: 5.2.3 Underspecified Descriptions, 5.2.4 The Masterplan, 5.2.9 Sidetrack: Constraint Graphs - The True Story
 
- normalization: 6.2.2 Normalization
 
- normal model: 1.3.2 Semantics of Equality
 
- open: 7.2.3 Analytical Tableaux: A more formal Account, 7.2.1 Tableaux for Theorem Proving
 
- parent normalization: 6.2.2 Normalization
 
- PLNQ: 7.2.4 Using Tableaux to test Truth Conditions
 
- predicate symbol: 1.1.1 Vocabularies
 
- premise: 7.1.3 A simple Logical System: Propositional Logic with Hilbert-Calculus
 
- proof: 7.1.2 Calculi, 7.1.4 Proofs in Hilbert Calculus
 
- proof from the assumptions in 
: 7.1.4 Proofs in Hilbert Calculus 
- proof theory: 1.2.6 Valid Arguments
 
- provability: 7.1.4 Proofs in Hilbert Calculus, 7.1.4 Proofs in Hilbert Calculus
 
- provable: 7.1.5 Properties of Calculi (Theoretical Logic), 7.1.4 Proofs in Hilbert Calculus, 7.1.5 Properties of Calculi (Theoretical Logic), 7.1.4 Proofs in Hilbert Calculus, 7.1.4 Proofs in Hilbert Calculus
 
- provable from the assumptions in 
: 7.1.4 Proofs in Hilbert Calculus 
- Quality: 7.2.5 An Application: Conversational Maxims
 
- quantifier store: 5.1.7 Other Traditional Solutions
 
- quantifying in: 5.1.4 The Fifth Reading, 5.1.5  Montague's Approach to the Scope Problem
 
- Quantity: 7.2.5 An Application: Conversational Maxims
 
- redundancy elimination: 6.2.2 Normalization
 
- refutation proof: 7.2.3 Analytical Tableaux: A more formal Account
 
- Relation: 7.2.5 An Application: Conversational Maxims
 
- relation symbol: 1.1.1 Vocabularies
 
- result type: 3.4.4 [Sidetrack] Simply Typed Lambda-Calculus
 
- s-compositionality: 3.1.3 [Sidetrack] Compositional Semantics
 
- Satisfiability: 6.1.1 Satisfiability and Enumeration
 
- saturated: 7.2.3 Analytical Tableaux: A more formal Account
 
- scope: 1.1.6 Building Formulae
 
- scope ambiguity: 5.1.1 What Are Scope Ambiguities?
 
- semi-decidable: Consequences for Theorem Proving
 
- sentence: 1.1.7 Subformulae, Free Variables
 
- signature: 1.1.1 Vocabularies
 
- signed: 7.2.3 Analytical Tableaux: A more formal Account, 7.2.1 Tableaux for Theorem Proving
 
- simply typed 
-calculus: 3.4.4 [Sidetrack] Simply Typed Lambda-Calculus 
- skolem constant: 10.1.3 The Existential Rule
 
- solution: 5.2.8 Relating Constraint Graphs and Lambda-Structures
 
- solved form: 6.1.4 Defining Solved Forms
 
- sound: 7.1.5 Properties of Calculi (Theoretical Logic), 7.1.4 Proofs in Hilbert Calculus
 
- specification: 2.1.4 Representing Models
 
- subformula: 1.1.7 Subformulae, Free Variables
 
- subordination: 11.2.3 Syntax of DRSs and DRS-Conditions
 
- succedent: 7.1.3 A simple Logical System: Propositional Logic with Hilbert-Calculus
 
- syncategorematically: 4.4.2 The Lexicon, 4.4.3 ``Special'' Words
 
- syntactic structure: 3.1.2 Being Systematic (II)
 
- tableaux proof: 7.2.3 Analytical Tableaux: A more formal Account
 
- tableaux refutation: 7.2.3 Analytical Tableaux: A more formal Account
 
- term: 1.1.6 Building Formulae
 
- test calculus: 7.2.3 Analytical Tableaux: A more formal Account
 
- theorem: 7.1.4 Proofs in Hilbert Calculus
 
- true in a model: 1.2.3 The Satisfaction Definition, 1.2.4 Truth in a Model
 
- universal: 10.5 Sidetrack: Derived Rules for the Existential Quantifier
 
- valid: 7.1.5 Properties of Calculi (Theoretical Logic), 7.1.5 Properties of Calculi (Theoretical Logic), 7.1.4 Proofs in Hilbert Calculus, 7.1.4 Proofs in Hilbert Calculus
 
- valid argument: 1.2.6 Valid Arguments
 
- valid formula: 1.2.5 Validities
 
- validity: 7.1.4 Proofs in Hilbert Calculus
 
- valid sentence: 1.2.5 Validities
 
- variant: 1.2.2 Interpretations and Variant Assignments
 
- vocabulary: 1.1.1 Vocabularies
 
- well-formed formula: 1.1.6 Building Formulae
 
- well-typed: 3.4.4 [Sidetrack] Simply Typed Lambda-Calculus
 
- witness: 10.1.3 The Existential Rule
 
- world knowledge: 9.3 Wrapping it up (Model Generation)
 
- x-variant: 1.2.2 Interpretations and Variant Assignments
 
Aljoscha Burchardt, Stephan Walter, Alexander Koller, Michael Kohlhase, Patrick Blackburn and Johan Bos
Version 1.2.5 (20030212)