
A Language-Independent Unsupervised Model
for Morphological Segmentation

Vera Demberg

Institute for Communicative and Collaborative Systems (ICCS)
University of Edinburgh

October 25, 2006

Vera Demberg (University of Edinburgh) Unsupervised Acquisition of Morphology October 25, 2006 1 / 28



Overview

1 Introduction

2 Previous Approaches

3 Original RePortS Algorithm

4 Modifications and Extensions

5 Evaluation

6 Limitations

7 Summary

Vera Demberg (University of Edinburgh) Unsupervised Acquisition of Morphology October 25, 2006 2 / 28



Introduction Motivation

Why analyse words morphologically?

Motivation
Decrease data sparseness
Smaller lexica
Relate words

Applications
Machine Translation
Speech Recognition
Text-to-Speech Systems
Information Retrieval
Question Answering

Vera Demberg (University of Edinburgh) Unsupervised Acquisition of Morphology October 25, 2006 3 / 28



Introduction Motivation

Why analyse words morphologically?

Motivation
Decrease data sparseness
Smaller lexica
Relate words

Applications
Machine Translation
Speech Recognition
Text-to-Speech Systems
Information Retrieval
Question Answering

Vera Demberg (University of Edinburgh) Unsupervised Acquisition of Morphology October 25, 2006 3 / 28



Introduction Motivation

Why use an unsupervised method?

Unsupervised vs. Rule-based
+ Less domain-dependent
+ Lower development cost
+ Good generalizability to new languages
– Quality
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Introduction Morphology

Types of Affixes

Prefixes
un-do, re-open
Suffixes
work, work-ing, work-ed, work-s
Infixes
sulat ‘write’, s-um-ulat ‘wrote’, s-in-ulat ‘was written’ (Tagalog)
Circumfixes
ge-mach-t ‘done’, ge-sproch-en ‘said’ (German)
Stem Variation

ablauting: sing, sang, sung
umlauting: Garten, Gärten
vowel harmony: ev – evler, kitap – kitaplar (Turkish)
deletion / insertion: care, caring; panic, panicked; travel, travelling
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Introduction Morphology

Morphological Processing Tasks

Segmentation
Trainingssprünge → Training+s+sprüng+e

Lemmatization
Trainingssprünge → Trainingssprung

Semantic relations
correlate: Sprünge – Sprungs – Sprung – Sprüngen

Automatic induction of affixational paradigms
{-s -ed -ing}
{-en -ung -te -t -e -end -est -et -st -ten -tet}
{-baren -lich -barer}
{-er -e -erei -t -ern}

Q: How to find and relate all affixes that signify e.g. past tense?
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Previous Approaches

Previous Approaches

Letter Successor Variety / Conditional Entropy
Harris [1955]; Hafer and Weiss [1974]; Saffran et al. [1996]; Bordag [2006];
Bernhard [2006]; Keshava and Pitler [2006]

Phonological Relationships between Related Words
Neuvel and Fulop [2002]; Schone and Jurafsky [2001, 2000]

Minimum Description Length
Goldsmith [2001]; Creutz and Lagus [2006]
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Previous Approaches

Typical Problems

Frequently co-occurring letter sequences
schw, qu, th

Over-segmentation
sw+ing, t+rain, t+own, t+weak, c+hair

Splitting at stem variations
Spr+ung, Spr+ünge, spr+ingen, spr+ang, spr+änge

Violation of morphotactic constraints
ed+ward, s+e+e+gang, t+röstung
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Previous Approaches

Language-dependency and Unsupervisedness

Constraints can lead to high performance gains
lengths of affixes and stems
properties of certain letters
structure of words

Development cost for new language
Modelling morphotactics
Underlying assumptions:
concatenative vs. non-concatenative morphology
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Original RePortS Algorithm

The original RePortS algorithm (Keshava and Pitler [2006])

Three steps:
1 Building up data structure
2 Finding affixes
3 Segmenting words
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Original RePortS Algorithm

Step 1: Data structure
(a) lexicon

toy lexicon:
...
aufmacht 90
aufmachst 30
vormache 110
vormachst 50
...

(b) forward tree
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Original RePortS Algorithm

Step 2: Finding affixes

word of form: “αABβ”, example: wor
︸︷︷︸

α

k
︸︷︷︸

A

i
︸︷︷︸

B

ng
︸︷︷︸

β

find suffix Bβ find prefix αA
1. αA in corpus 1. βB in corpus
2. Pf (A|α) ≈ 1 2. Pb(B|β) ≈ 1
3. Pf (B|αA) < 1 3. Pb(A|Bβ) < 1

Ranking algorithm
if (cond. satisfied)

score += 19;
else

score -= 1;

Language-specific assumptions:
all stems are valid words in the lexicon.
affixes occur at the beginning or end of words only.
affixation does not change stems.
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Original RePortS Algorithm

Step 3: Segmenting words
1: while length(stem) > length(word)/2 or no matching affixes do
2: bestP ⇐ 1
3: for all affix ∈ affixList do
4: if stem = substr.affix and Ptrans(substr , affix) < bestP then
5: bestP ⇐ Ptrans(substr , affix)
6: bestAffix ⇐ affix
7: end if
8: end for
9: stem ⇐ substr

10: store bestAffix
11: end while

Advantages and Problems of this simple approach:
+ most probable single affix given rest word is peeled off
– no context taken into account
– morphotactically impossible segmentations occur often
– cannot segment beyond an unknown morpheme
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Modifications and Extensions Identifying the Problem

Inhibitively low recall low for German / Turkish / Finnish

Stems are often no valid words and therefore not contained in corpus.
example: “abhol” German corpus:

abholst
abholen
abholt
abhole
Abholung

Why does it work in English?
Consider example of affixes ism, ance, ation:

English German
Catholic–Catholicism katholisch–Katholizismus–Katholik
accept–acceptance akzeptieren–Akzeptanz
adapt–adaptation adaptieren–Adaptation
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Modifications and Extensions Modifying Step 2

Acquire List of High Quality Stem Candidates

1 Create a list of candidate stems

studentenaus {schuß weise weis schusses schüsse schuss}
geschäftsflug {hafen zeugen häfen zeuge hafens verkehr verkehrs}
eingreif {truppe werte trupps mandat trupp kräfte verband ...}

+{en t e er est et st}
exekutier {t en ten te ung e ter er end est et st tet}
runtersch {lucken iebt ubsen icken aute}

2 Assess the stem candidates
accept all candidates with lexicon words only
rank by average frequency of non-lexicon words

3 Define threshold for ranked list
0.3 for German / English / Finnish, 0.6 for Turkish
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Modifications and Extensions Modifying Step 3

Context-sensitive segmentation

1 Generate all possible segmentations
locally most probable suffix not necessarily globally best solution
less under-segmentation if “transitional prob. < 1” condition
dropped

2 Heuristic pruning
remove all analyses that contain unknown segments
if there is at least one analysis with only known segments
disprefer short unknown segments

3 Ranking using language model
bi-gram model trained on simple segmentations (bootstrapping)
divide probabilities by # of segments to reduce bias towards
analyses with few segments
biased towards simple segmentation

Q: How to learn morphotactics? HMM? What units?
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Modifications and Extensions Stem Variation

Stem Variation Detection Method

1 Clustering

studentenaus {schuß weise weis schusses schüsse schuss}
geschäftsflug {hafen zeugen häfen zeuge hafens verkehr verkehrs}
eingreif {truppe werte trupps mandat trupp kräfte verband ...}

+{en t e er est et st}

2 Edit Distance
edit-dist(schuss – schüsse) = 3
pattern: u → ü..e
edit-dist(hafen – häfen) = 2
pattern: a → ä

3 Ranking
count frequencies of patterns with small edit distance.
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Modifications and Extensions Stem Variation

Stem Variation

freq. diff. examples
1682 a ä..e sack-säcke, brach-bräche, stark-stärke
344 a ä sahen-sähen, garten-gärten
321 u ü..e flug-flüge, bund-bünde
289 ä a..s verträge-vertrages, pässe-passes
189 o ö..e chor-chöre, strom-ströme, ?röhre-rohr
175 t en setzt-setzen, bringt-bringen
168 a u laden-luden, *damm-dumm
160 ß ss läßt-lässt, mißbrauch-missbrauch

[. . .]
136 a en firma-firmen, thema-themen

[. . .]
2 ß g *fließen-fliegen, *laßt-lagt
2 um o *studiums-studios
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Modifications and Extensions Stem Variation

Integration of Stem Variation Component

Future work:

Integrate stem variation information
affix acquisition
generate other forms using patterns
and see whether those are contained in dictionary
word segmentation
generate equivalence sets for transitional probabilities
lemmatization
identify semantically related words

Q: What is an efficient way to generate the stem variations?
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Evaluation Languages and Versions

Evaluation of effect of versions

Lang. alg.version F-Meas. Prec. Recall
Ger original 59.2% 71.1% 50.7%

stems 68.4% 68.1% 68.6%
n-gram seg. 68.9% 73.7% 64.6%

Eng original 76.8% 76.2% 77.4%
stems 67.6% 62.9% 73.1%
n-gram seg. 75.1% 74.4% 75.9%

Tur original 54.2% 72.9% 43.1%
stems 61.8% 65.9% 58.2%
n-gram seg. 64.2% 65.2% 63.3%

Fin original 47.1% 84.5% 32.6%
stems 56.6% 74.1% 45.8%
n-gram seg. 58.9% 76.1% 48.1%
max-split* 61.3% 66.3% 56.9%
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Evaluation Other Systems

Comparison to other systems (German)

morphology F-Meas. Prec. Recall
SMOR-disamb2 83.6% 87.1% 80.4%
ETI 79.5% 75.4% 84.1%
SMOR-disamb1 71.8% 95.4% 57.6%
RePortS-lm 68.8% 73.7% 64.6%
RePortS-stems 68.4% 68.1% 68.6%
Bernhard 63.5% 64.9% 62.1%
Bordag 61.4% 60.6% 62.3%
orig. RePortS 59.2% 71.1% 50.7%
Morfessor 1.0 52.6% 70.9% 41.8%
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Evaluation Evaluation on G2P task

How does morphological information help
grapheme-to-phoneme conversion?

Pronunciation of words is sensitive to morphological boundaries

English example: loophole
/"lu:f@Ul/ vs. /"lu:ph@Ul/
Sternanisöl
/"St@önPani:sPœ:l/ vs. /St@ö"na:nizŒl/
Röschen
/rŒS@n/ vs. /rœ:sç@n/
vertikal vs. vertickern
/v/ vs. /f/
Weihungen vs. Gen
/@/ vs. /e:/
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Evaluation Evaluation on G2P task

Morphological Systems for g2p conversion

morphology F-Measure PER AWT
CELEX 100% 2.64%
ETI 79.5% 2.78%
SMOR-disamb2 83.0% 3.00%
SMOR-disamb1 71.8% 3.28%
RePortS-lm 68.8% 3.45%
no morphology 3.63%
orig. RePortS 59.2% 3.83%
Bernhard 63.5% 3.88%
RePortS-stem 68.4% 3.98%
Morfessor 1.0 52.6% 4.10%
Bordag 64.1% 4.38%

Table: Evaluation on manually annotated CELEX and a grapheme-to-
phoneme conversion task using the Add-WordTree decision tree (Lucassen
and Mercer [1984]).
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Limitations

Limitations (1)

Typical errors:
Over-segmentation of short words

ab-st-e-ig-e vs. ab-steig-e ‘dismount’.

Under-segmentation of long words
Ab-ge-ordnet-e ‘deputy’ vs. Abgeordnet-en-haus-e ‘assembly
building’
Ab-blend-licht ‘dim light’ vs. Abblendlicht-e

Data sparseness in morphologically complex languages
segmentation step does not look beyond unknown segments
sparse trees
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Limitations

Limitations (2)

Inner-word affixes
only affixes that occur at the edges of words are found
→ run step again on stem candidates
(preliminary result: +2% f-score for Turkish)

Interleaving Prefixation and Suffixation Processes
currently totally independent
if related can cope with circumfixes
capture info from co-occurrence of prefixes and suffixes

Q: Can you think a better way to find inner-word affixes?
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Summary

Summary

I proposed:
Stem candidate generation step
Filter for segmentation
Method for detecting stem variation

I found:
Significant improvement in recall
Good performance on German, English, Turkish
Still low recall on Finnish
Only method that beats no-morph. baseline on German g2p task

Vera Demberg (University of Edinburgh) Unsupervised Acquisition of Morphology October 25, 2006 26 / 28



Summary

Questions?

Q: How to find and relate all affixes that signify e.g. past tense?

Q: How to learn morphotactics? HMM? What units?

Q: What is an efficient way to generate the stem variations?

Q: Can you think a better way to find inner-word affixes?

Q: Are the trees actually the kind of data structure we want?
(Inherent bias for prefixes and suffixes?)
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Summary
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