Trade-off between incrementality and accuracy Seminar on Incremental Processing

Benjamin Weitz

June 30, 2011

Kato et al.

Summary

Outline

Kato et al.

Summary

Introduction

Kato et al.

Summary

Introduction

Incremental Dialogue Systems:

• fast(er)

- fast(er)
- sometimes wrong decisions

- fast(er)
- sometimes wrong decisions \Rightarrow revisions

- fast(er)
- \bullet sometimes wrong decisions \Rightarrow revisions
- components depend on each other

Incremental Dialogue Systems:

- fast(er)
- $\bullet\,$ sometimes wrong decisions $\Rightarrow\,$ revisions
- components depend on each other

Idea: decrease incrementality a bit to reduce revisions

Incremental Dialogue Systems:

- fast(er)
- sometimes wrong decisions \Rightarrow revisions
- components depend on each other

Idea: decrease incrementality a bit to reduce revisions

• Baumann et. al: Automatic Speech Recognition

Incremental Dialogue Systems:

- fast(er)
- $\bullet \ \text{sometimes wrong decisions} \Rightarrow \text{revisions}$
- components depend on each other

Idea: decrease incrementality a bit to reduce revisions

- Baumann et. al: Automatic Speech Recognition
- Kato et. al: Parsing

Kato et al.

Summary

Kato et al.

Summary

Baumann et al.

• Define measures to evaluate incremental ASR-Systems

- Define measures to evaluate incremental ASR-Systems
- Evaluate an existing system with these measures

Kato et al.

Summary

- Define measures to evaluate incremental ASR-Systems
- Evaluate an existing system with these measures
- Use the measures to improve ASR

Kato et al.

Summary

- Define measures to evaluate incremental ASR-Systems
- Evaluate an existing system with these measures
- Use the measures to improve ASR
- Conclusions

Kato et al.

Summary

- Define measures to evaluate incremental ASR-Systems
- Evaluate an existing system with these measures
- Use the measures to improve ASR
- Conclusions

Kato et al.

Summary

Definitions

Hypothesis at time t: $hyp_t = w_{hyp_t}$

Kato et al.

Summary

Definitions

Hypothesis at time t: $hyp_t = w_{hyp_t}$

How to evaluate the quality of hyp_t ?

use **actually spoken input** as gold standard

use **final hypothesis of ASR** as gold standard

Kato et al.

Summary

Definitions

Hypothesis at time t: $hyp_t = w_{hyp_t}$

How to evaluate the quality of hyp_t ?

use **actually spoken input** as gold standard

use **final hypothesis of ASR** as gold standard

Kato et al.

Summary

Definitions

Hypothesis at time t: $hyp_t = w_{hyp_t}$

How to evaluate the quality of hyp_t ?

use **actually spoken input** as gold standard use **final hypothesis of ASR** as gold standard

Why?

more meaningful:

- relates partial hypothesis to what can be expected from ASR
- correct interpretation might never be recognized

Kato et al.

Summary

Relative Correctness

w_{gold}: final, non incremental hypothesis

Kato et al.

Summary

Relative Correctness

```
w_{gold}: final, non incremental hypothesis
```

Relative Correctness

Kato et al.

Summary

Relative Correctness

w_{gold} : final, non incremental hypothesis

Relative Correctness

w_{gold}	sil	(e	Z	zwei			drei		•••		
time:	0 1 3	2 3	4	5	67	8	9	10	11	12	
w_{hyp_1}	sil									1	
w_{hyp_2}	sil										
w_{hyp_3}	sil										
w_{hyp_4}	sil	an									
w_{hyp_5}	sil	ei	n	j							
w_{hyp_6}	sil	Ē	ins	-	1						
w_{hyp_7}	sil	eiı	ns	z١	vei						
w_{hyp_8}	sil	E	ins	-	Zw	ar					
w_{hyp_9}	sil	eins			Z	zwei					
$w_{hyp_{10}}$	sil	eins			Ľ	zwei					
$w_{hyp_{11}}$	sil	eins			Z	zwei		sil			
$w_{hyp_{12}}$	sil	eins			Z	zwei		dr	ei	j	
÷	1 1		' T	ı NE	$\frac{\Box}{r}$	1		'F	1	1	
			,	. 1.	v_{zw}	ci	r r 1	* zw	es		

Kato et al.

Summary

Relative Correctness

w_{gold} : final, non incremental hypothesis

Relative Correctness

Kato et al.

Summary

Relative Correctness

w_{gold} : final, non incremental hypothesis

Relative Correctness

Kato et al.

Summary

Relative Correctness

w_{gold} : final, non incremental hypothesis

Relative Correctness

Kato et al.

Summary

Relative Correctness

```
w_{gold}: final, non incremental hypothesis
```

Relative Correctness

 w_{hyp_t} is relatively correct, iff $w_{hyp_t} = w_{gold_t}$

Prefix Correctness

 w_{hyp_t} is prefix-correct, iff w_{hyp_t} is a prefix of w_{gold_t}

Kato et al.

Summary

Relative Correctness

w_{gold} : final, non incremental hypothesis

Relative Correctness

 w_{hyp_t} is relatively correct, iff $w_{hyp_t} = w_{gold_t}$

Prefix Correctness

 w_{hyp_t} is prefix-correct, iff w_{hyp_t} is a prefix of w_{gold_t}

Edit Overhead

Three ways for hyp_{t+1} to differ from hyp_t :

- extension
- revokation
- revision

Edit Overhead

Three ways for hyp_{t+1} to differ from hyp_t :

- extension
- revokation
- revision

- \bullet add message: \oplus
- *revoke* message: ⊖

Edit Overhead

Three ways for hyp_{t+1} to differ from hyp_t :

- extension: \oplus
- revokation
- revision

- \bullet add message: \oplus
- revoke message: \ominus

Edit Overhead

Three ways for hyp_{t+1} to differ from hyp_t :

- \bullet extension: \oplus
- \bullet revokation: \ominus
- revision

- \bullet add message: \oplus
- revoke message: \ominus

Edit Overhead

Three ways for hyp_{t+1} to differ from hyp_t :

- extension: \oplus
- \bullet revokation: \ominus
- revision: \ominus , \oplus

- \bullet add message: \oplus
- *revoke* message: ⊖

Kato et al.

Summary

Edit Overhead

Kato et al.

Summary

Edit Overhead

Kato et al.

Summary

Edit Overhead

Perfect ASR-System: 1 extension for each word
Kato et al.

Summary

Edit Overhead

Perfect ASR-System: 1 extension for each word

Edit Overhead (EO)

rate of spurious edits

Kato et al.

Summary

Kato et al.

Summary

Kato et al.

Summary

Kato et al.

Summary

Kato et al.

Summary

Timing Measures

Word First Correct Response (WFC)

The first time a word appears in the correct position

Kato et al.

Summary

Timing Measures

Word First Correct Response (WFC)

The first time a word appears in the correct position

w_{gold}	sil	eins			z	zwei		dre	ei)	•
time:	0 1 3	2 3	4	5	6 7	8	9	10 1	11 1	2	
w_{hyp_1}	sil										
w_{hyp_2}	sil										
w_{hyp_3}	sil										
w_{hyp_4}	sil	an	ן								
w_{hyp_5}	sil	ei	n	j							
w_{hyp_6}	sil		ins	_							
w_{hyp_7}	sil	ei	ns	Żzv	vei						
w_{hyp_8}	sil	C.	ins	_	zw	ar					
$w_{hyp_{\mathbf{q}}}$	sil	Ċ	eins	-	z	wei					
$w_{hyp_{10}}$	sil	C.	ins	_		zw	ei				
$w_{hyp_{11}}$	sil	Ľ	ins	_	Z	wei	Ľ.	sil	1		
$w_{hyp_{12}}$	sil	Ċ	ins	_	Z	wei	Ì	dre	ei	j	
÷	1 1		i T		\mathcal{Q}_{a}	1		T.	i	i	
			v	$V \Gamma$	\cup_{zw}	4 I	w F	I zwei			

Kato et al.

Summary

Timing Measures

Word First Correct Response (WFC)

The first time a word appears in the correct position

w_{gold}	sil	eins	zwe	i drei	
time:	0 1 3	2 3 4 5	5678	9 10 11	12
w_{hyp_1}	sil				
w_{hyp_2}	sil				
w_{hyp_3}	sil				
w_{hyp_4}	sil	an			
w_{hyp_5}	sil	ein			
w_{hyp_6}	sil	eins			
w_{hyp_7}	sil	eins	zwei		
w_{hyp_8}	sil	eins	zwar		
w_{hyp_9}	sil	eins	zwe		
$w_{hyp_{10}}$	sil	eins	ZW	/ei	
$w_{hyp_{11}}$	sil	eins	zwe	i <i>sil</i>	
$w_{hyp_{12}}$	sil	eins	zwe	i drei	
÷		יייי	VFC	WFF	'
			a C zuci	1 1 1 20VCS	

 $WFC_{zwei} = 7$

Kato et al.

Summary

Timing Measures

Word First Correct Response (WFC)

The first time a word appears in the correct position

Word First Final Response (WFF)

The time a hypothesis remains stable / doesn't change anymore

Kato et al.

Summary

Timing Measures

Word First Correct Response (WFC)

The first time a word appears in the correct position

Word First Final Response (WFF)

The time a hypothesis remains stable / doesn't change anymore

w_{gold}	sil	eins			Z	we	ei 🛛	dr	ei		
time:	0 1 2	2 3	4	5	6 7	7 8	3 9	10	11	12	
w_{hyp_1}	sil									1	
w_{hyp_2}	sil										
w_{hyp_3}	sil										
w_{hyp_4}	sil	an	ך								
w_{hyp_5}	sil	ei	n	j							
w_{hyp_6}	sil	e	ins	-							
w_{hyp_7}	sil	eir	ıs	Ζv	vei						
w_{hyp_8}	sil	e	ins	-	zw	ar					
w_{hyp_9}	sil	e	ins		Z	we	i				
$w_{hyp_{10}}$	sil	e	ins			z٧	/ei				
$w_{hyp_{11}}$	sil	e	ins		Z	we	i	sil			
$w_{hyp_{12}}$	sil	e	ins		Z	we	i	dı	ei	ב	
÷			' Ţ	' VF	C	ei I	WI	FF			

Kato et al.

Summary

Timing Measures

Word First Correct Response (WFC)

The first time a word appears in the correct position

Word First Final Response (WFF)

The time a hypothesis remains stable / doesn't change anymore

w_{gold}	sil	ei	ns		zwe	ei 🛛	drei]
time:	0 1 2	2 3	45	6	78	8 9	10 11	12
w_{hyp_1}	sil							
w_{hyp_2}	sil							
w_{hyp_3}	sil							
w_{hyp_4}	sil	an						
w_{hyp_5}	sil	eir						
w_{hyp_6}	sil	ei	ns					
w_{hyp_7}	sil	ein	s i	zwei	j			
w_{hyp_8}	sil	ei	ns	z١	var			
w_{hyp_9}	sil	ei	ns		zwe	ei		
$w_{hyp_{10}}$	sil	ei	ns	T	zv	vei	1	
$w_{hyp_{11}}$	sil	ei	ns		zwe	i.	sil	
$w_{hyp_{12}}$	sil	ei	ns	Ţ	zwe	i	drei	
÷	1 1		1 1 147	EC.	J		i i T	1
			VV.	$r \phi_z$	wei	VV I	I zwei	

 $WFF_{zwei} = 9$

Kato et al.

Summary

Timing Measures

Word First Correct Response (WFC)

The first time a word appears in the correct position

Word First Final Response (WFF)

The time a hypothesis remains stable / doesn't change anymore

Correction Time (CT)

CT = WFF - WFC

Kato et al.

Summary

Timing Measures

Word First Correct Response (WFC)

The first time a word appears in the correct position

Word First Final Response (WFF)

The time a hypothesis remains stable / doesn't change anymore

Correction Time (CT)

CT = WFF - WFC

$w_{\scriptscriptstyle gold}$	sil	eins		zwei		drei	
time:	0 1 3	2 3 4	56	78	8 9	10 11	12
w_{hyp_1}	sil						
w_{hyp_2}	sil						
w_{hyp_3}	sil	()					
w_{hyp_4}	sil	an					
w_{hyp_5}	sil	ein	j				
w_{hyp_6}	sil	eins					
w_{hyp_7}	sil	eins	zwe	ei.			
w_{hyp_8}	sil	eins	Z	war			
w_{hyp_9}	sil	eins	Ţ	zwe	i		
$w_{hyp_{10}}$	sil	eins	#	zv	vei		
$w_{hyp_{11}}$	sil	eins		zwe	ei Ì	sil 🛛	
$w_{hyp_{12}}$	sil	eins	Ì	zwe	i (drei	
÷		''''''''''	VFC	۲.	WF	F.	ı
		,		zuci		- zwes	

Kato et al.

Summary

Timing Measures

Word First Correct Response (WFC)

The first time a word appears in the correct position

Word First Final Response (WFF)

The time a hypothesis remains stable / doesn't change anymore

Correction Time (CT)

CT = WFF - WFC

w_{gold}	sil	eins		zwe	ei 🛛	drei]
time:	0 1 2	2 3 4	5 6	78	8 9	10 11	12
w_{hyp_1}	sil						
w_{hyp_2}	sil						
w_{hyp_3}	sil						
w_{hyp_4}	sil	an					
w_{hyp_5}	sil	ein]				
w_{hyp_6}	sil	eins	\square				
w_{hyp_7}	sil	eins	zw	ei			
w_{hyp_8}	sil	eins		zwar			
w_{hyp_9}	sil	eins	Ì	zwe	ei		
$w_{hyp_{10}}$	sil	eins	\neg	zv	vei	ן ב	
$w_{hyp_{11}}$	sil	eins		zwe	i).	sil	
$w_{hyp_{12}}$	sil	eins	Ţ	zwe	i	drei	
÷			WFC		WF	F	·
				wwest.		19900	

 $CT_{zwei} = 9 - 7 = 2$

- Define measures to evaluate incremental ASR-Systems
- Evaluate an existing system with these measures
- Use the measures to improve ASR
- Conclusions

Kato et al.

Summary

Setup and Data

- continious speech framework Sphinx-4
- acoustic model
 - German
 - instructions in a puzzle domain
- trigram language model
- test data
 - 85 recodings
 - two speakers
 - sentence similar to training sentences

Kato et al.

Summary

SER	68.2%
WER	18.8%
r-correct	30.9%
p-correct	53.1%
edit overhead	90.5%
mean word duration	0.378 s
WFC	mean: 0.276 s
WFF	mean: 0.004 s
immediately correct	58.6%

Kato et al.

Summary

Measurements

SER	68.2%
WER	18.8%
r-correct	30.9%
p-correct	53.1%
edit overhead	90.5%
mean word duration	0.378 s
WFC	mean: 0.276 s
WFF	mean: 0.004 s
immediately correct	58.6%

• rather low correctness

Kato et al.

Summary

SER	68.2%
WER	18.8%
r-correct	30.9%
p-correct	53.1%
edit overhead	90.5%
mean word duration	0.378 s
WFC	mean: 0.276 s
WFF	mean: 0.004 s
immediately correct	58.6%

- rather low correctness
- very high edit overhead!

Kato et al.

Summary

SER	68.2%
WER	18.8%
r-correct	30.9%
p-correct	53.1%
edit overhead	90.5%
mean word duration	0.378 s
WFC	mean: 0.276 s
WFF	mean: 0.004 s
immediately correct	58.6%

- rather low correctness
- very high edit overhead!
- information available after $\frac{3}{4}$ have been spoken

Kato et al.

Summary

SER	68.2%
WER	18.8%
r-correct	30.9%
p-correct	53.1%
edit overhead	90.5%
mean word duration	0.378 s
WFC	mean: 0.276 s
WFF	mean: 0.004 s
immediately correct	58.6%

- rather low correctness
- very high edit overhead!
- information available after $\frac{3}{4}$ have been spoken
- word becomes final when it has ended

Kato et al.

Summary

SER	68.2%
WER	18.8%
r-correct	30.9%
p-correct	53.1%
edit overhead	90.5%
mean word duration	0.378 s
WFC	mean: 0.276 s
WFF	mean: 0.004 s
immediately correct	58.6%

- rather low correctness
- very high edit overhead!
- information available after $\frac{3}{4}$ have been spoken
- word becomes final when it has ended

Kato et al.

Summary

Measurements

58.6% immediately correct

Kato et al.

Summary

Measurements

58.6% immediately correct

90% correct after a correction time of 320 ms

Kato et al.

Summary

Measurements

58.6% immediately correct

90% correct after a correction time of 320 ms

95% correct after a correction time of 550 ms

Kato et al.

Summary

Independency of the measures?

Are the measures independent of specific settings?

- vary LM/AM-weight
- vary audio quality by adding white noise

Kato et al.

Summary

Independency of the measures?

Are the measures independent of specific settings?

- vary LM/AM-weight
- vary audio quality by adding white noise

- Define measures to evaluate incremental ASR-Systems
- Evaluate an existing system with these measures
- Use the measures to improve ASR
- Conclusions

Kato et al.

Summary

Which improvements?

main goal: improve edit overhead

- reduce amount of wrong hypotheses
- still as quick as possible

Kato et al.

Summary

Right Context

allow larger right context of size Δ :

- at time t: take into account output of ASR until $t \Delta$ only
- $hyp_{t-\Delta}$ has a lookahead up to t

Kato et al.

Summary

Right Context

allow larger right context of size Δ :

- at time t: take into account output of ASR until $t \Delta$ only
- $hyp_{t-\Delta}$ has a lookahead up to t
- \Rightarrow reduction of edit overhead

Kato et al.

Summary

Right Context

allow larger right context of size Δ :

- at time t: take into account output of ASR until $t \Delta$ only
- $hyp_{t-\Delta}$ has a lookahead up to t
- \Rightarrow reduction of edit overhead
- \Rightarrow hypothesis lags behind the gold standard
 - WFC increases by Δ
 - effects on correctness, because w_{gold_t} may contain more words

Kato et al.

Summary

Right Context

allow larger right context of size Δ :

- at time t: take into account output of ASR until $t \Delta$ only
- $hyp_{t-\Delta}$ has a lookahead up to t
- \Rightarrow reduction of edit overhead
- \Rightarrow hypothesis lags behind the gold standard
 - WFC increases by Δ
 - effects on correctness, because w_{gold_t} may contain more words

Fair R-Correctness

 w_{hyp_t} is fairly r-correct, iff $w_{hyp_{t-\Delta}} = w_{gold_{t-\Delta}}$

Kato et al.

Summary

Right Context

correctness and EO improve with more right context

Kato et al.

Summary

Right Context

correctness and EO improve with more right context

timing measures increase with larger right context

Kato et al.

Summary

Right Context

correctness and EO improve with more right context

timing measures increase with larger right context

percentage of immediately correct hypotheses increases: 90% @ 580 ms 98% @ 1060 ms
Kato et al.

Summary

Message Smoothing

edit message must be result of N consecutive hypotheses before commitment

Kato et al.

Summary

Message Smoothing

edit message must be result of N consecutive hypotheses before commitment

N = 2:

Kato et al.

Summary

Message Smoothing

edit message must be result of N consecutive hypotheses before commitment

N = 2:

• *an, ein* and *zwar* would never be committed

w_{gold}	sil	6	eins		Z	Γ	drei				
time:	0 1 2	2 3	4	5	6 7	8	9	10	11	12	
w_{hyp_1}	sil										
w_{hyp_2}	sil										
w_{hyp_3}	sil										
w_{hyp_4}	sil	an									
w_{hyp_5}	sil	ei	n	j							
w_{hyp_6}	sil	e	eins	-							
w_{hyp_7}	sil	eii	ns	Ζv	vei						
w_{hyp_8}	sil	€	eins	-	zw	ar					
w_{hyp_9}	sil	Ē	eins	-	Ż	wei					
$w_{hyp_{10}}$	sil	e	eins	-	Ľ	zwe	ei	ב			
$w_{hyp_{11}}$	sil	e	ins		Z	wei	1	sil)		
$w_{hyp_{12}}$	sil	Ē	ins		Z	zwei		dre	ei	ב	
÷				' NF	r	. v	↓ VF	F		1	
					~ zwe	s /		- zwc	8		

Kato et al.

Summary

Message Smoothing

edit message must be result of *N* consecutive hypotheses before commitment

N = 2:

- *an, ein* and *zwar* would never be committed
- only 3 edit messages

Kato et al.

Summary

Message Smoothing

edit overhead falls rapidly: 50% after 110 ms 10% after 320 ms

smoothing in s (scale shows larger smoothings towards the left)

Kato et al.

Summary

Message Smoothing

edit overhead falls rapidly: 50% after 110 ms 10% after 320 ms decreasing (strict and fair)

r-correctness

Kato et al.

Summary

Message Smoothing

edit overhead falls rapidly: 50% after 110 ms 10% after 320 ms decreasing (strict and fair)

r-correctness

increasing timing measures

- Define measures to evaluate incremental ASR-Systems
- Evaluate an existing system with these measures
- Use the measures to improve ASR
- Conclusions

Kato et al.

Summary

Conclusions

goal: improve edit overhead

Kato et al.

Summary

Conclusions

goal: improve edit overhead

Right Context

improvements with larger delays, increasing correctness

Message Smoothing

improvements with shorter delays, decreasing correctness

Kato et al.

Summary

Conclusions

goal: improve edit overhead

Right Context

improvements with larger delays, increasing correctness

Message Smoothing

improvements with shorter delays, decreasing correctness

could be combined to yield a good effect

Kato et al.

Summary

Kato et al.

Summary

Kato et. al

• ITAG: incremental-parsing-oriented tree adjoining grammar

- ITAG: incremental-parsing-oriented tree adjoining grammar
- PITAG: probabilistic ITAG

- ITAG: incremental-parsing-oriented tree adjoining grammar
- PITAG: probabilistic ITAG
- Validity of Partial Parse Trees

- ITAG: incremental-parsing-oriented tree adjoining grammar
- PITAG: probabilistic ITAG
- Validity of Partial Parse Trees
- Experimental Results and Conclusions

- ITAG: incremental-parsing-oriented tree adjoining grammar
- PITAG: probabilistic ITAG
- Validity of Partial Parse Trees
- Experimental Results and Conclusions

Kato et al.

Summary

Elementary Trees

Initial Trees

must be *leftmost-expanded*:

Initial Trees

must be *leftmost-expanded*:

1. $[t]_X$

t: terminal symbol

X: nonterminal symbol

Kato et al.

Х

t

Summary

Elementary Trees

Initial Trees

must be *leftmost-expanded*:

- 1. $[t]_X$
 - t: terminal symbol
 - X: nonterminal symbol

Auxiliary Trees

 $[X^* \sigma X_1 \cdots X_k]_X$ σ : leftmost expanded tree X, X_1, \dots, X_k : nonterminal symbols

Summary

$$[X^* \sigma X_1 \cdots X_k]_X$$

 σ : leftmost expanded tree
 X, X_1, \dots, X_k : nonterminal symbols

Kato et al.

Summary

Introduction

Baumann et al.

Kato et al.

Summary

Kato et al.

Summary

Operations

Substitution

replaces a leftmost nonterminal leaf of a partial parse tree σ with an initial tree α having the same nonterminal symbol at its root

 s_{α} : substituting α $s_{\alpha}(\sigma)$: result of applying s_{α} to σ

Kato et al.

Summary

Operations

Substitution

replaces a leftmost nonterminal leaf of a partial parse tree σ with an initial tree α having the same nonterminal symbol at its root

```
s_{lpha}: substituting lpha
s_{lpha}(\sigma): result of applying s_{lpha} to \sigma
```


Kato et al.

Summary

Operations

Substitution

replaces a leftmost nonterminal leaf of a partial parse tree σ with an initial tree α having the same nonterminal symbol at its root

```
s_{lpha}: substituting lpha
s_{lpha}(\sigma): result of applying s_{lpha} to \sigma
```


Kato et al.

Summary

Operations

Substitution

replaces a leftmost nonterminal leaf of a partial parse tree σ with an initial tree α having the same nonterminal symbol at its root

```
s_{lpha}: substituting lpha
s_{lpha}(\sigma): result of applying s_{lpha} to \sigma
```


Kato et al.

Summary

Operations

Adjunction

```
splits a partial parse tree \sigma at a nonterminal node having no
nonterminal leaf and inserts an auxiliary tree \beta having the
same nonterminal symbol at its root
a_{\beta}: adjoining \beta
```

```
a_{\beta}(\sigma): result of applying a_{\beta} to \sigma
```

Kato et al.

Summary

Operations

Adjunction

splits a partial parse tree σ at a nonterminal node having no nonterminal leaf and inserts an auxiliary tree β having the same nonterminal symbol at its root a_{β} : adjoining β

 $a_{\beta}(\sigma)$: result of applying a_{β} to σ

Kato et al.

Summary

Operations

Adjunction

splits a partial parse tree σ at a nonterminal node having no nonterminal leaf and inserts an auxiliary tree β having the same nonterminal symbol at its root a_{β} : adjoining β

 $a_{\beta}(\sigma)$: result of applying a_{β} to σ

Kato et al.

Summary

Operations

Adjunction

splits a partial parse tree σ at a nonterminal node having no nonterminal leaf and inserts an auxiliary tree β having the same nonterminal symbol at its root a_{β} : adjoining β

 $a_{\beta}(\sigma)$: result of applying a_{β} to σ

Introduction

Baumann et al.

Kato et al.

Summary

Parsing with ITAG

at *i*-th word *w_i*:

Parsing with ITAG

at *i*-th word *w_i*:

combine (substitution, adjunction) elementary trees for w_i with partial parse trees for w₁ ··· w_{i-1}
Parsing with ITAG

at *i*-th word w_i:

combine (substitution, adjunction) elementary trees for w_i with partial parse trees for w₁ ··· w_{i-1}

 \Rightarrow partial parse trees for $w_1 \cdots w_i$

Introduction

Kato et al.

Summary

Example

S

Kato et al.

Summary

Kato et al.

Summary

Kato et al.

Summary

Kato et al.

Summary

Kato et al.

word	#	partial parse tree
	1	8
Ι	2	$[[[I]_{prp}]_{np}vp]_s$
found	3	$[[[I]_{prp}]_{np}[[found]_{vb}np]_{vp}]_s$
	4	$[[[I]_{prp}]_{np}[[found]_{vb}np \ adjp]_{vp}]_s$
	5	$[[[I]_{prp}]_{np}[[found]_{vb}]_{vp}]_s$
a	6	$[[[I]_{prp}]_{np}[[found]_{vb}[[a]_{dt}nn]_{np}]_{vp}]_s$
	7	$[[[I]_{prp}]_{np}[[found]_{vb}[[a]_{dt}jj nn]_{np}]_{vp}]_{s}$
	8	$[[[I]_{prp}]_{np}[[found]_{vb}[[a]_{dt}nn]_{np}adjp]_{vp}]_s$
	9	$[[[I]_{prp}]_{np}[[found]_{vb}[[a]_{dt}jj \ nn]_{np}adjp]_{vp}]_s$
dime	10	$[[[I]_{prp}]_{np}[[found]_{vb}[[a]_{dt}[dime]_{nn}]_{np}]_{vp}]_s$
	11	$[[[I]_{prp}]_{np}[[found]_{vb}[[a]_{dt}[dime]_{nn}]_{np}adjp]_{vp}]_s$
in	12	$[[[I]_{prp}]_{np}[[[found]_{vb}[[a]_{dt}[dime]_{nn}]_{np}]_{vp}[[in]_{in}np]_{pp}]_{vp}]_{s}$
	13	$[[[I]_{prp}]_{np}[[found]_{vb}[[[a]_{dt}[dime]_{nn}]_{np}[[in]_{in}np]_{pp}]_{np}]_{vp}]_{s}$
the	14	$[[[I]_{prp}]_{np}[[[found]_{vb}[[a]_{dt}[dime]_{nn}]_{np}]_{vp}[[in]_{in}[[the]_{dt}nn]_{np}]_{vp}]_{s}$
	15	$[[[I]_{prp}]_{np}[[[found]_{vb}[[a]_{dt}[dime]_{nn}]_{np}]_{vp}[[in]_{in}[[the]_{dt}jj\ nn]_{np}]_{vp}]_{vp}]_{s}$
	16	$[[[I]_{prp}]_{np}[[found]_{vb}[[[a]_{dt}[dime]_{nn}]_{np}[[in]_{in}[[the]_{dt}nn]_{np}]_{pp}]_{np}]_{vp}]_{s}$
	17	$[[[I]_{prp}]_{np}[[found]_{vb}[[[a]_{dt}[dime]_{nn}]_{np}[[in]_{in}[[the]_{dt}jj nn]_{np}]_{pp}]_{np}]_{vp}]_{s}$
wood	18	$[[[I]_{prp}]_{np}[[[found]_{vb}[[a]_{dt}[dime]_{nn}]_{np}]_{vp}[[in]_{in}[[the]_{dt}[wood]_{nn}]_{np}]_{vp}]_{vp}]_{s}$
	19	$[[[I]_{prp}]_{np}[[found]_{vb}[[[a]_{dt}[dime]_{nn}]_{np}[[in]_{in}[[the]_{dt}[wood]_{nn}]_{np}]_{pp}]_{np}]_{vp}]_{s}$

Kato et al.

Example

word	#	partial parse tree	
	1	s	
Ι	2	$[[[I]_{prp}]_{np}vp]_s$	
found	3	$[[I]_{prp}]_{np}[[found]_{vb}np]_{vp}]_s$	
	4	$[[[I]_{prp}]_{np}[[found]_{vb}np \ adjp]_{vp}]_s$	
	5	$[[[I]_{prp}]_{np}[[found]_{vb}]_{vp}]_s$	
а	6	$[[[I]_{prp}]_{np}[[found]_{vb}[[a]_{dt}nn]_{np}]_{vp}]_s$	
	7	$[[[I]_{prp}]_{np}[[found]_{vb}[[a]_{dt}jj \ nn]_{np}]_{vp}]_s$	
	8	$[[[I]_{prp}]_{np}[[found]_{vb}[[a]_{dt}nn]_{np}adjp]_{vp}]_s$	
	9	$[[[I]_{prp}]_{np}[[found]_{vb}[[a]_{dt}jj nn]_{np}adjp]_{vp}]_{s}$	
dime	10	$[[[I]_{prp}]_{np}[[found]_{vb}[[a]_{dt}[dime]_{nn}]_{np}]_{vp}]_s$	
	11	$[[[I]_{prp}]_{np}[[found]_{vb}[[a]_{dt}[dime]_{nn}]_{np}adjp]_{vp}]_s$	
in	12	$[[[I]_{prp}]_{np}[[[found]_{vb}[[a]_{dt}[dime]_{nn}]_{np}]_{vp}[[in]_{in}np]_{pp}]_{vp}]_{s}$	
	13	$[[[I]_{prp}]_{np}[[found]_{vb}[[[a]_{dt}[dime]_{nn}]_{np}[[in]_{in}np]_{pp}]_{np}]_{vp}]_{s}$	
the	14	$[[[I]_{prp}]_{np}[[[found]_{vb}[[a]_{dt}[dime]_{nn}]_{np}]_{vp}[[in]_{in}[[the]_{dt}nn]_{np}]_{pp}]_{vp}]_{s}$	
	15	$[[[I]_{prp}]_{np}[[[found]_{vb}[[a]_{dt}[dime]_{nn}]_{np}]_{vp}[[in]_{in}[[the]_{dt}jj \ nn]_{np}]_{vp}]_{s}$	
	16	$[[[I]_{prp}]_{np}[[found]_{vb}[[[a]_{dt}[dime]_{nn}]_{np}[[in]_{in}[[the]_{dt}nn]_{np}]_{pp}]_{np}]_{vp}]_{s}$	
	17	$[[[I]_{prp}]_{np}[[found]_{vb}[[[a]_{dt}[dime]_{nn}]_{np}[[in]_{in}[[the]_{dt}jj\ nn]_{np}]_{pp}]_{np}]_{vp}]_{s}$	
wood	18	$[[[I]_{prp}]_{np}[[[found]_{vb}[[a]_{dt}[dime]_{nn}]_{np}]_{vp}[[in]_{in}[[the]_{dt}[wood]_{nn}]_{np}]_{pp}]_{vp}]_{s}$	
	19	$[[[I]_{prp}]_{np}[[found]_{vb}[[[a]_{dt}[dime]_{nn}]_{np}[[in]_{in}[[the]_{dt}[wood]_{nn}]_{np}]_{pp}]_{np}]_{vp}]_{s}$	

constructing parse trees of initial fragments for every word input possible!

Introduction

Baumann et al.

Kato et al.

Summary

Tree Construction

How to get the elementary trees?

Introduction

Baumann et al.

Kato et al.

Summary

Tree Construction

How to get the elementary trees?

• Extraction from a treebank!

Kato et. al

- ITAG: incremental-parsing-oriented tree adjoining grammar
- PITAG: probabilistic ITAG
- Validity of Partial Parse Trees
- Experimental Results and Conclusions

Kato et al.

Summary

Probabilities

probabilities for events combining an elementary tree and another tree by **substitution and adjunction**

Kato et al.

Summary

Probabilities

probabilities for events combining an elementary tree and another tree by **substitution and adjunction**

lpha: initial tree with root symbol X

Probability of substituting lpha

 $P(s_{\alpha}) = \frac{|s_{\alpha}| \text{ in the treebank}}{|\text{substitutions using other initial trees with root X| in the treebank}}$

Kato et al.

Summary

Probabilities

probabilities for events combining an elementary tree and another tree by **substitution and adjunction**

lpha: initial tree with root symbol X

Probability of substituting α

 $P(s_{\alpha}) = \frac{|s_{\alpha}| \text{ in the treebank}}{|\text{substitutions using other initial trees with root X}| \text{ in the treebank}}$

β : auxiliary tree with root symbol X

Probability of adjoining β				
$P(a_eta)=rac{ a_eta $ in the treebank}{ X in the treebank				

probability of a parse-tree:

• product of probabilities of operations used for construction

probability of a parse-tree:

• product of probabilities of operations used for construction

S

operation	probability
s_{α_1}	1.0
s_{α_2}	0.7
s_{α_5}	0.3
s_{α_7}	0.5

probability of a parse-tree:

• product of probabilities of operations used for construction

operation	probability
s_{α_1}	1.0
s_{α_2}	0.7
s_{α_5}	0.3
s_{α_7}	0.5

1.0

Kato et al.

Summary

Probabilities

probability of a parse-tree:

• product of probabilities of operations used for construction

operation	probability
s_{α_1}	1.0
s_{α_2}	0.7
s_{α_5}	0.3
s_{α_7}	0.5

 $1.0\,\times\,0.7$

Kato et al.

Summary

Probabilities

probability of a parse-tree:

• product of probabilities of operations used for construction

 $1.0\,\times\,0.7\,\times\,0.3$

Kato et al.

Summary

Probabilities

probability of a parse-tree:

• product of probabilities of operations used for construction

 $1.0\,\times\,0.7\,\times\,0.3\,\times\,0.5$

probability of a parse-tree:

• product of probabilities of operations used for construction

 $1.0 \times 0.7 \times 0.3 \times 0.5 = 0.105$

Parsing with PITAG

Improve efficiency by:

- discard tree with lower probability when there are parse trees with same possible operations
- only keep n-best partial parse-trees

Kato et. al

- ITAG: incremental-parsing-oriented tree adjoining grammar
- PITAG: probabilistic ITAG
- Validity of Partial Parse Trees
- Experimental Results and Conclusions

Definitions

 σ, τ : partial parse trees

Subsumption

 σ subsumes τ , iff τ can be constructed by applying substitutionand adjunction-operations to σ and every parse tree subsumes itself

Definitions

 σ, τ : partial parse trees

Subsumption

 σ subsumes τ , iff τ can be constructed by applying substitutionand adjunction-operations to σ and every parse tree subsumes itself

Validity

a partial parse tree is valid for an input sentence, **iff** it subsumes the correct parse tree for the input sentence

Kato et al.

Summary

Kato et al.

Summary

Kato et al.

Summary

Kato et al.

Summary

Kato et al.

Summary

Evaluating Validity

validity for a partial parse tree depends on the rest of the sentence

Kato et al.

Summary

Evaluating Validity

validity for a partial parse tree depends on the rest of the sentence $\Rightarrow dynamically$ varies for every input word

Summary

Evaluating Validity

validity for a partial parse tree depends on the rest of the sentence \Rightarrow dynamically varies for every input word

 σ : partial parse tree for initial fragment $w_1 \cdots w_i (i \leq j)$

Conditional Validity of partial parse tree σ $V(\sigma|w_1 \cdots w_j) = \frac{\sum (\text{Probabilities of partial parse trees at } w_j \text{ subsumed by } \sigma)}{\sum (\text{Probabilities of partial parse trees constructed at } w_j)}$

Evaluating Validity

validity for a partial parse tree depends on the rest of the sentence $\Rightarrow dynamically \ varies$ for every input word

 σ : partial parse tree for initial fragment $w_1 \cdots w_i (i \leq j)$

Conditional Validity of partial parse tree σ $V(\sigma|w_1 \cdots w_j) = \frac{\sum (\text{Probabilities of partial parse trees at } w_j \text{ subsumed by } \sigma)}{\sum (\text{Probabilities of partial parse trees constructed at } w_j)}$

example: later

Summary

Introduction

Baumann et al.

Kato et al.

Summary

Output Partial Parse Trees

delay output until validity is high enough:

Introduction

Baumann et al.

Kato et al.

Summary

Output Partial Parse Trees

delay output until validity is high enough:

Parse Tree to be returned

Parse Tree with the longest initial fragment whose validity is greater than threshold $\boldsymbol{\theta}$

heta: threshold between 0 and 1

Kato et al.

Summary

word	#	partial parse tree
	1	8
Ι	2	$[[[I]_{prp}]_{np}vp]_s$
found	3	$[[[I]_{prp}]_{np}[[found]_{vb}np]_{vp}]_s$
	4	$[[[I]_{prp}]_{np}[[found]_{vb}np \ adjp]_{vp}]_s$
	5	$[[[I]_{prp}]_{np}[[found]_{vb}]_{vp}]_s$
a	6	$[[[I]_{prp}]_{np}[[found]_{vb}[[a]_{dt}nn]_{np}]_{vp}]_s$
	7	$[[[I]_{prp}]_{np}[[found]_{vb}[[a]_{dt}jj nn]_{np}]_{vp}]_{s}$
	8	$[[[I]_{prp}]_{np}[[found]_{vb}[[a]_{dt}nn]_{np}adjp]_{vp}]_{s}$
	9	$[[[I]_{prp}]_{np}[[found]_{vb}[[a]_{dt}jj nn]_{np}adjp]_{vp}]_s$
dime	10	$[[[I]_{prp}]_{np}[[found]_{vb}[[a]_{dt}[dime]_{nn}]_{np}]_{vp}]_s$
	11	$[[[I]_{prp}]_{np}[[found]_{vb}[[a]_{dt}[dime]_{nn}]_{np}adjp]_{vp}]_s$
in	12	$[[[I]_{prp}]_{np}[[[found]_{vb}[[a]_{dt}[dime]_{nn}]_{np}]_{vp}[[in]_{in}np]_{pp}]_{vp}]_{s}$
	13	$[[[I]_{prp}]_{np}[[found]_{vb}[[[a]_{dt}[dime]_{nn}]_{np}[[in]_{in}np]_{pp}]_{np}]_{vp}]_{s}$
the	14	$[[[I]_{prp}]_{np}[[[found]_{vb}[[a]_{dt}[dime]_{nn}]_{np}]_{vp}[[in]_{in}[[the]_{dt}nn]_{np}]_{vp}]_{s}$
	15	$[[[I]_{prp}]_{np}[[[found]_{vb}[[a]_{dt}[dime]_{nn}]_{np}]_{vp}[[in]_{in}[[the]_{dt}jj\ nn]_{np}]_{pp}]_{vp}]_{s}$
	16	$[[[I]_{prp}]_{np}[[found]_{vb}[[[a]_{dt}[dime]_{nn}]_{np}[[in]_{in}[[the]_{dt}nn]_{np}]_{pp}]_{np}]_{vp}]_{s}$
	17	$[[[I]_{prp}]_{np}[[found]_{vb}[[[a]_{dt}[dime]_{nn}]_{np}[[in]_{in}[[the]_{dt}jj nn]_{np}]_{pp}]_{np}]_{vp}]_{s}$
wood	18	$[[[I]_{prp}]_{np}[[[found]_{vb}[[a]_{dt}[dime]_{nn}]_{np}]_{vp}[[in]_{in}[[the]_{dt}[wood]_{nn}]_{np}]_{vp}]_{vp}]_{s}$
	19	$[[[I]_{prp}]_{np}[[found]_{vb}[[[a]_{dt}[dime]_{nn}]_{np}[[in]_{in}[[the]_{dt}[wood]_{nn}]_{np}]_{pp}]_{np}]_{vp}]_{s}$
Introduction

Kato et al.

Summary

Example

Introduction

Kato et al.

Summary

Example

Parse Tree	Probability
#3	0.7
#4	0.1
#5	0.2
#6	0.21
#7	0.14
#8	0.03
#9	0.02

Introduction

Kato et al.

Summary

Example

Parse Tree	Probability
#3	0.7
#4	0.1
#5	0.2
#6	0.21
#7	0.14
#8	0.03
#9	0.02

 $\theta = 0.8$

Introduction

Kato et al.

Summary

Example

I found a dime in the wood	Parse Tree	Probability
$#1 \longrightarrow #2 \longrightarrow #3 \longrightarrow #6 \longrightarrow #10 \longrightarrow #12 \longrightarrow #14 \longrightarrow #18$	#3	0.7
	#4	0.1
#7 +#15	#5	0.2
	#6	0.21
$\sqrt{#4} \longrightarrow #8 \longrightarrow #11 \qquad \sqrt{#13} \longrightarrow #16 \longrightarrow #19$	#7	0.14
↓ [#] 9 [#] 17	#8	0.03
	#9	0.02
#5 \longrightarrow subsumption relation		ı
	$\theta =$	0.8

$$V(\sigma | w_1 \cdots w_j) = rac{\sum (Probabilities of parse trees at w_j subsumed by \sigma)}{\sum (Probabilities of partial parse trees constructed at w_j)}$$

Introduction

Kato et al.

Summary

Example

I found a dime in the wood	Parse Tree	Probability
$#1 \longrightarrow #2 \longrightarrow #3 \longrightarrow #6 \longrightarrow #10 \longrightarrow #12 \longrightarrow #14 \longrightarrow #18$	#3	0.7
	#4	0.1
#7 +#15	#5	0.2
	#6	0.21
$\sqrt{4}$ #4 \rightarrow #8 \rightarrow #11 $\sqrt{4}$ #13 \rightarrow #16 \rightarrow #19	#7	0.14
\ \ #9 #17	#8	0.03
	#9	0.02
#5 \longrightarrow subsumption relation		
	$\theta =$	0.8

When will #3 (valid) be output?

Introduction

Kato et al.

Summary

Example

I found a dime in the wood	Parse Tree	Probability
$#1 \longrightarrow #2 \longrightarrow #3 \longrightarrow #6 \longrightarrow #10 \longrightarrow #12 \longrightarrow #14 \longrightarrow #18$	#3	0.7
	#4	0.1
#7 +#15	#5	0.2
	#6	0.21
$\sqrt{4}$ #4 \rightarrow #8 \rightarrow #11 $\sqrt{4}$ #13 \rightarrow #16 \rightarrow #19	#7	0.14
\ \ #9 #17	#8	0.03
	#9	0.02
#5 \longrightarrow subsumption relation		
	$\theta =$	0.8

$$V(\sigma|w_1\cdots w_j) = rac{\sum (\mathsf{Probabilities of parse trees at }w_j \text{ subsumed by }\sigma)}{\sum (\mathsf{Probabilities of partial parse trees constructed at }w_j)}$$

When will #3 (valid) be output? "I found":

Introduction

Kato et al.

Summary

Example

I found a dime in the wood	Parse Tree	Probability
$#1 \longrightarrow #2 \longrightarrow #3 \longrightarrow #6 \longrightarrow #10 \longrightarrow #12 \longrightarrow #14 \longrightarrow #18$	#3	0.7
	#4	0.1
#7 +#15	#5	0.2
	#6	0.21
$\sqrt{4}$ #4 \rightarrow #8 \rightarrow #11 $\sqrt{4}$ #13 \rightarrow #16 \rightarrow #19	#7	0.14
\ \ #9 #17	#8	0.03
	#9	0.02
#5 \longrightarrow subsumption relation		,
	$\theta =$	0.8

 $V(\sigma|w_1\cdots w_j) = \frac{\sum (\text{Probabilities of parse trees at } w_j \text{ subsumed by } \sigma)}{\sum (\text{Probabilities of partial parse trees constructed at } w_j)}$

When will #3 (valid) be output? "I found": $V(#3, | found) = \frac{P(#3)}{P(#3)+P(#4)+P(#5)}$

Introduction

Kato et al.

Summary

Example

I found a dime in the wood	Parse Tree	Probability
$#1 \longrightarrow #2 \longrightarrow #3 \longrightarrow #6 \longrightarrow #10 \longrightarrow #12 \longrightarrow #14 \longrightarrow #18$	#3	0.7
	#4	0.1
#7 +#15	#5	0.2
	#6	0.21
$4 \xrightarrow{\#4} \longrightarrow \#8 \longrightarrow \#11$ $4 \xrightarrow{\#13} \longrightarrow \#16 \longrightarrow \#19$	#7	0.14
\ \ #9 #17	#8	0.03
	#9	0.02
#5 subsumption relation		
	$\theta =$	0.8

When will #3 (valid) be output? "I found": $V(#3, | found) = \frac{P(#3)}{P(#3)+P(#4)+P(#5)}$

Introduction

Kato et al.

Summary

Example

I found a dime in the wood	Parse Tree	Probability
$#1 \longrightarrow #2 \longrightarrow #3 \longrightarrow #6 \longrightarrow #10 \longrightarrow #12 \longrightarrow #14 \longrightarrow #18$	#3	0.7
	#4	0.1
#7 \ #15	#5	0.2
	#6	0.21
$\sqrt{#4} \longrightarrow #8 \longrightarrow #11 \qquad \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	#7	0.14
\ \ #9 #17	#8	0.03
	#9	0.02
#5 \longrightarrow subsumption relation		,
	$\theta =$	0.8

 $V(\sigma|w_1\cdots w_j) = rac{\sum (\mathsf{Probabilities of parse trees at }w_j \text{ subsumed by }\sigma)}{\sum (\mathsf{Probabilities of partial parse trees constructed at }w_j)}$

When will #3 (valid) be output? "I found": $V(\#3, | \text{found}) = \frac{P(\#3)}{P(\#3)+P(\#4)+P(\#5)} = \frac{0.7}{0.7+0.1+0.2} = 0.7$

Introduction

Kato et al.

Summary

Example

I found a dime in the wood	Parse Tree	Probability
$#1 \longrightarrow #2 \longrightarrow #3 \longrightarrow #6 \longrightarrow #10 \longrightarrow #12 \longrightarrow #14 \longrightarrow #18$	#3	0.7
	#4	0.1
#7 +#15	#5	0.2
	#6	0.21
$\sqrt{#4} \longrightarrow #8 \longrightarrow #11 \qquad \sqrt{#13} \longrightarrow #16 \longrightarrow #19$	#7	0.14
↓ [#] 9 [#] 17	#8	0.03
	#9	0.02
#5 \longrightarrow subsumption relation		,
	$\theta =$	0.8

 $V(\sigma | w_1 \cdots w_j) = rac{\sum (\text{Probabilities of parse trees at } w_j \text{ subsumed by } \sigma)}{\sum (\text{Probabilities of partial parse trees constructed at } w_j)}$

When will #3 (valid) be output? "I found": $V(\#3, | \text{found}) = \frac{P(\#3)}{P(\#3)+P(\#4)+P(\#5)} = \frac{0.7}{0.7+0.1+0.2} = 0.7 < \theta$

Introduction

Kato et al.

Summary

Example

I found a dime in the wood	Parse Tree	Probability
$#1 \longrightarrow #2 \longrightarrow #3 \longrightarrow #6 \longrightarrow #10 \longrightarrow #12 \longrightarrow #14 \longrightarrow #18$	#3	0.7
	#4	0.1
#7 +#15	#5	0.2
	#6	0.21
$\sqrt{4}$ #4 \rightarrow #8 \rightarrow #11 $\sqrt{4}$ #13 \rightarrow #16 \rightarrow #19	#7	0.14
↓ [#] 9 [#] 17	#8	0.03
	#9	0.02
#5 \longrightarrow subsumption relation		
	$\theta =$	0.8

$$V(\sigma|w_1\cdots w_j) = rac{\sum (Probabilities of parse trees at w_j subsumed by \sigma)}{\sum (Probabilities of partial parse trees constructed at w_j)}$$

When will #3 (valid) be output? "I found a":

Introduction

Kato et al.

Summary

Example

I found a dime in the wood	Parse Tree	Probability
$#1 \longrightarrow #2 \longrightarrow #3 \longrightarrow #6 \longrightarrow #10 \longrightarrow #12 \longrightarrow #14 \longrightarrow #18$	#3	0.7
	#4	0.1
#7 +#15	#5	0.2
	#6	0.21
$\sqrt{#4} \longrightarrow #8 \longrightarrow #11 \qquad \sqrt{#13} \longrightarrow #16 \longrightarrow #19$	#7	0.14
\ \ #9 #17	#8	0.03
	#9	0.02
#5 \longrightarrow subsumption relation		,
	$\theta =$	0.8

 $V(\sigma|w_1\cdots w_j) = \frac{\sum (\text{Probabilities of parse trees at } w_j \text{ subsumed by } \sigma)}{\sum (\text{Probabilities of partial parse trees constructed at } w_j)}$

When will #3 (valid) be output? "I found a": $V(\#3, | \text{ found a}) = \frac{P(\#6) + P(\#7)}{P(\#6) + P(\#7) + P(\#8) + P(\#9)}$

Introduction

Kato et al.

Summary

Example

I found a dime in the wood	Parse Tree	Probability
$#1 \longrightarrow #2 \longrightarrow #3 \longrightarrow #6 \longrightarrow #10 \longrightarrow #12 \longrightarrow #14 \longrightarrow #18$	#3	0.7
	#4	0.1
#7 +#15	#5	0.2
	#6	0.21
$\sqrt{44} \longrightarrow \frac{1}{18} \longrightarrow \frac{1}{11} \sqrt{413} \longrightarrow \frac{1}{110} \sqrt{419}$	#7	0.14
#9	#8	0.03
	#9	0.02
#5 \longrightarrow subsumption relation		
	$\theta =$	0.8

When will #3 (valid) be output? "I found a": $V(\#3, | \text{ found a}) = \frac{P(\#6) + P(\#7)}{P(\#6) + P(\#7) + P(\#8) + P(\#9)}$

Introduction

Kato et al.

Summary

Example

I found a dime in the wood	Parse Tree	Probability	
$#1 \longrightarrow #2 \longrightarrow #3 \longrightarrow #6 \longrightarrow #10 \longrightarrow #12 \longrightarrow #14 \longrightarrow #18$	#3	0.7	
	#4	0.1	
#7 +#15	#5	0.2	
	#6	0.21	
$\sqrt{#4} \longrightarrow #8 \longrightarrow #11 \qquad \sqrt{#13} \longrightarrow #16 \longrightarrow #19$	#7	0.14	
↓ [#] 9 [#] 17	#8	0.03	
	#9	0.02	
#5 \longrightarrow subsumption relation		· · · · · · · · · · · · · · · · · · ·	
	heta=0.8		

 $V(\sigma|w_1\cdots w_j) = rac{\sum (\mathsf{Probabilities of parse trees at }w_j \text{ subsumed by }\sigma)}{\sum (\mathsf{Probabilities of partial parse trees constructed at }w_j)}$

When will #3 (valid) be output? "I found a": $V(#3, I \text{ found a}) = \frac{P(\#6) + P(\#7)}{P(\#6) + P(\#7) + P(\#8) + P(\#9)} = 0.875$

Introduction

Kato et al.

Summary

Example

I found a dime in the wood	Parse Tree	Probability	
$#1 \longrightarrow #2 \longrightarrow #3 \longrightarrow #6 \longrightarrow #10 \longrightarrow #12 \longrightarrow #14 \longrightarrow #18$	#3	0.7	
	#4	0.1	
#7 +#15	#5	0.2	
	#6	0.21	
$\sqrt{#4} \longrightarrow #8 \longrightarrow #11 \qquad \sqrt{#13} \longrightarrow #16 \longrightarrow #19$	#7	0.14	
↓ [#] 9 [#] 17	#8	0.03	
	#9	0.02	
#5 \longrightarrow subsumption relation		,	
	heta=0.8		

 $V(\sigma | w_1 \cdots w_j) = rac{\sum (Probabilities of parse trees at w_j subsumed by \sigma)}{\sum (Probabilities of partial parse trees constructed at w_j)}$

When will #3 (valid) be output? "I found a": $V(#3, I \text{ found a}) = \frac{P(\#6)+P(\#7)}{P(\#6)+P(\#7)+P(\#8)+P(\#9)} = 0.875 \ge \theta$

Kato et. al

- ITAG: incremental-parsing-oriented tree adjoining grammar
- PITAG: probabilistic ITAG
- Validity of Partial Parse Trees
- Experimental Results and Conclusions

Kato et al.

Summary

Experimental Setup

- parser implemented in Lisp
- input: POS-Sequences
- elementary trees extracted from Penn Treebank
- only used correctly parsed sentences

Kato et al.

Summary

Measures

Degree of delay at j-th word

 $D(j,s) = j - |\text{output parse tree at } w_j|$

 $s = w_1 \cdots w_n$: Input sentence

Kato et al.

Summary

Measures

Degree	of	delay	at	j-th	word
--------	----	-------	----	------	------

 $D(j,s) = j - |\text{output parse tree at } w_j|$

 $s = w_1 \cdots w_n$: Input sentence

Precision

percentage of valid partial parse trees in the output

Kato et al.

Summary

 D_{ave}

6.4

2.9

2.2

1.8

1.3

0.9

0.0

Results and Conclusions

delay(number of words)

Kato et al.

Summary

Results and Conclusions

delay(number of words)

higher threshold

Kato et al.

Summary

Results and Conclusions

delay(number of words)

higher threshold \Rightarrow higher precision, greater delays

Kato et al.

Summary

Results and Conclusions

delay(number of words)

 $\begin{array}{l} \mbox{higher threshold} \\ \Rightarrow \mbox{ higher precision, greater delays} \\ \Rightarrow \mbox{ trade-off between precision and delay} \end{array}$

Kato et al.

Summary

Summary

Baumann et. al

use right context and message smoothing to reduce/avoid wrong hypotheses in incremental ASR Summary

Baumann et al.

Kato et al.

Summary

Baumann et. al

use right context and message smoothing to reduce/avoid wrong hypotheses in incremental ASR

Kato et. al

use PITAG to reduce/avoid wrong hypotheses in incremental parsing

Kato et al.

Summary

Summary

Baumann et. al

use right context and message smoothing to reduce/avoid wrong hypotheses in incremental ASR

Kato et. al

use PITAG to reduce/avoid wrong hypotheses in incremental parsing

delay of output

Kato et al.

Summary

Summary

Baumann et. al

use right context and message smoothing to reduce/avoid wrong hypotheses in incremental ASR

Kato et. al

use PITAG to reduce/avoid wrong hypotheses in incremental parsing

delay of output ⇒ Trade-off between incrementality/speed and output quality (revisions) Introduction

Baumann et al.

Kato et al.

Summary

Thank you!

Thanks for your attention!

References

- Timo Baumann, Michaela Atterer, and David Schlangen. Assessing and Improving the Performance of Speech Recognition for Incremental Systems. In Proceedings of NAACL-HLT 2009, Boulder, USA, June 2009.
- Yoshihide Kato, Shigeki Matsubara, and Yasuyoshi Inagaki. Stochastically evaluating the validity of partial parse trees in incremental parsing.
 In Proceedings of the ACL Workshop Incremental Parsing: Bringing Engineering and Cognition Together, pages 9–15,
 - Barcelona, Spain, July 2004. Association for Computational Linguistics.