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Abstract
The aim of this thesis is to design and implement a cognitively plausible theory

of sentence processing which incorporates a mechanism for modeling a prediction

and verification process in human language understanding, and to evaluate the validity

of this model on specific psycholinguistic phenomena as wellas on broad-coverage,

naturally occurring text.

Modeling prediction is a timely and relevant contribution to the field because recent

experimental evidence suggests that humans predict upcoming structure or lexemes

during sentence processing. However, none of the current sentence processing theo-

ries capture prediction explicitly. This thesis proposes anovel model of incremental

sentence processing that offers an explicit prediction andverification mechanism.

In evaluating the proposed model, this thesis also makes a methodological con-

tribution. The design and evaluation of current sentence processing theories are usu-

ally based exclusively on experimental results from individual psycholinguistic exper-

iments on specific linguistic structures. However, a theoryof language processing in

humans should not only work in an experimentally designed environment, but should

also have explanatory power for naturally occurring language.

This thesis first shows that the Dundee corpus, an eye-tracking corpus of newspaper

text, constitutes a valuable additional resource for testing sentence processing theories.

I demonstrate that a benchmark processing effect (the subject/object relative clause

asymmetry) can be detected in this data set (Chapter 4). I then evaluate two existing

theories of sentence processing, Surprisal and DependencyLocality Theory (DLT),

on the full Dundee corpus. This constitutes the first broad-coverage comparison of

sentence processing theories on naturalistic text. I find that both theories can explain

some of the variance in the eye-movement data, and that they capture different aspects

of sentence processing (Chapter 5).

In Chapter 6, I propose a new theory of sentence processing, which explicitly mod-

els prediction and verification processes, and aims to unifythe complementary aspects

of Surprisal and DLT. The proposed theory implements key cognitive concepts such

as incrementality, full connectedness, and memory decay. The underlying grammar

formalism is a strictly incremental version of Tree-adjoining Grammar (TAG), Psy-

cholinguistically motivated TAG (PLTAG), which is introduced in Chapter 7. I then

describe how the Penn Treebank can be converted into PLTAG format and define an

incremental, fully connected broad-coverage parsing algorithm with associated prob-

ability model for PLTAG. Evaluation of the PLTAG model showsthat it achieves the
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broad coverage required for testing a psycholinguistic theory on naturalistic data. On

the standardized Penn Treebank test set, it approaches the performance of incremental

TAG parsers without prediction (Chapter 8).

Chapter 9 evaluates the psycholinguistic aspects of the proposed theory by testing

it both on a on a selection of established sentence processing phenomena and on the

Dundee eye-tracking corpus. The proposed theory can account for a larger range of

psycholinguistic case studies than previous theories, andis a significant positive pre-

dictor of reading times on broad-coverage text. I show that it can explain a larger

proportion of the variance in reading times than either DLT integration cost or Sur-

prisal.
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Chapter 1

Introduction

This chapter presents the motivation for evaluating sentence processing models on

broad-coverage, naturally occurring text and motivates the development of a new

model of human sentence processing. It also summarizes the central claims put for-

ward in this thesis and gives an overview of its structure.

1.1 Central Claims

Recent evidence from psycholinguistic experiments suggest that humans predict up-

coming structure or lexemes during sentence processing. However, none of the current

sentence processing theories model prediction explicitly. The aim of this thesis is to

design and implement a cognitively plausible theory of sentence processing which con-

tains a mechanism for modelling syntactic prediction and verification as processes in

language understanding.

The thesis puts forward the three claims. The first claim is that evaluation of psy-

cholinguistic theories on broad-coverage data can be a valid additional resource to

traditional lab experiments, and that it can provide insights which cannot be obtained

from the data acquired in a traditional lab experiment setting.

The second claim is that two previous theories of sentence processing, Surprisal

and Dependency Locality Theory explain different aspects of sentence processing.

The third claim in this thesis is that the explicit modellingof prediction and veri-

fication is cognitively plausible and provides a framework for combining the different

aspects of DLT and Surprisal.

1



2 Chapter 1. Introduction

1.2 Motivation

This section motivates the questions addressed and methodsused in this thesis.

1.2.1 Evaluation on Naturally Occurring Text

Theories for syntactic processing are usually inspired by observations from very spe-

cific structures, such as garden path sentences, relative clauses, verb-final construc-

tions, centre-embedding, ambiguous PP-attachment, idiomprocessing, case ambigu-

ity, direct object vs. sentence complement ambiguity, etc., and often rather extreme

versions of these structures are used to find reliable effects. It is possible that effects

observed in carefully controlled lab experiments are rare or absent in naturalistic data

such as those found in corpora.

In order for a theory to claim that it is a theory of syntactic processing in humans,

it should not only be able to explain the pathologies in humanprocessing, but also

processing facilitation and behaviour on a wide variety of structures. Theories should

be evaluated on material that humans encounter in their daily lives and not exclusively

on unnatural special cases, such as garden paths or difficultconstructions that push the

boundaries of what humans can process. An important question to ask at this stage is

therefore whether the existing theories scale up to naturally occurring, contextualised

text, and whether syntactic structures have any measurableinfluence on such contex-

tualised reading.

Many theories are partial – they were only specified for a subset of what happens

in natural language. Applying them to “real” text makes it necessary to complete

these theories. Applying sentence processing theories to corpus data helps to assess

performance and detect weaknesses, incompleteness and failures of existing theories.

Ultimately, theories and computational models of them could be used not only for

theoretical insights about sentence processing in humans,but could also be employed

in NLP applications.

¿From a corpus, a range of standard eye-tracking measures can be computed just

like for experimental materials, but the results hold for naturalistic, contextualised text,

rather than for isolated example sentences manually constructed by psycholinguists.
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1.2.2 Computational Modelling as a Method

Computational modelling (i.e., implementing theories) isan important methodology

in psycholinguistic research. Modelling helps to make manyaspects explicit, which

otherwise risk to remain underspecified in theories. It allows to observe the effect of

assumptions on the global theoretic framework and understand their implications (for

example the implications of controversial notions, such asstrict incrementality).

Constructing an implementable computational model poses many design questions,

which in turn can lead to well-motivated psycholinguistic experiments aiming to an-

swer these questions. Examples from our work are questions addressing the grain size

of predictions, whether a main verb should always be predicted, or whether arguments

and modifiers should be predicted.

A fully specified model can be used to generate new predictions for unexplored

structures which can then be tested in an experimental setting (or on the naturalistic

corpus data, of course), and can then provide new insights for refining the model or

falsifying assumptions that the model makes.

1.2.3 Why a new Theory of Sentence Processing?

The theory proposed in this thesis differs from existing theories in that it contains an

explicit mechanism for prediction and verification. It furthermore assumes that the

parsing process is strictly incremental, such that all words in an analysis are always

connected under a single node.

Recent experimental evidence for prediction comes from (Kamide et al., 2003;

van Berkum et al., 2005; Staub and Clifton, 2006). Modellingprediction and a cor-

responding verification mechanism can advance our understanding of how they inter-

act with other properties of human sentence processing and how they are reflected in

experimental findings. For example, the present work shows that prediction becomes

inherently necessary under the assumption of a strictly incremental parsing process.

Finally, current theories of sentence processing can only explain some of the phe-

nomena found in psycholinguistic experiments. Therefore,drawing from those the-

ories and designing a theory that can extend the coverage of previous theories to a

wider range of phenomena will constitute an advance in our understanding of human

language processing.
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1.2.4 Why Focus on Syntax?

The focus of this thesis is on sentence structure. However, processing difficulty is

triggered by many other aspects of language understanding,such as lexical access to

words, semantic anomalies or discourse. This thesis does not claim that syntax plays a

bigger role in processing than the other components. In fact, we expect that low-level

effects and artefacts during reading (oculomotor problems, saccade planning, fixation

positions of words, shapes and orthographic lengths of words etc.) account for the

bulk of the variance in the eye movement record. Current models of reading such

as EZ-reader (Reichle et al., 2009) and SWIFT (Engbert et al., 2005) mainly focus on

low-level processes, although Cloze probabilities have recently been included into one

of the models as a higher-level linguistic predictor to explain regressions during read-

ing (Reichle et al., 2009). However, these models do not allow much introspection or

theoretical illumination with respect to understanding how human sentence processing

works: Cloze probabilities are a rather coarse measure, anddo not disentangle syntac-

tic from lexical or semantic effects. Therefore, it is interesting to investigate whether

we can find reading effects of higher-level linguistic processes such as syntax, seman-

tics and discourse using more fine-grained models. Syntax isalso well-understood

both theoretically and in NLP, and thus provides a good starting point for modelling

(rather than semantics or discourse, which usually requiresome syntactic structure to

calculate their representations on).

1.2.5 Relevance

Relevance of this work stems from two aspects. On the one hand, we want to achieve

a better understanding of how sentence comprehension worksin humans. On the other

hand, knowing about what causes processing difficulty for humans can be exploited in

human-computer interaction to assess understandability or generate easily understand-

able text.

The goal of this thesis is not only to build a model that works well in terms of

making predictions that correlate with reading time data, but also in particular to build a

cognitively plausible model. The model proposed here is cognitively plausible in that it

models memory and decay, and draws on concepts from psycholinguistic experiments

such as incrementality and prediction.

Possible applications for such a system would be spoken dialogue systems, user

adaptation in text generation, e-learning systems or readability checkers. In spoken
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dialogue systems, knowing about the processing difficulty ahuman will incur when

hearing or reading a specific sentence could be used to automatically choose among

a number of possible ways to formulate the information that is to be conveyed to the

user. In addition, deciding on dialogue turn length can be difficult in spoken dialogue

systems with elaborated information presentation strategies, (e.g. Demberg and Moore

(2006)). A system that knows how difficult a sentence (or paragraph) is could be used

to automatically identify the optimal length of a dialogue turn. In a more general

context, such a system could be used for choosing the optimallevel of difficulty in text

generation for a specific group of users (children vs. elderly people vs. adults).

In e-learning (especially foreign language learning), it is even more crucial to

choose sentences with an appropriate level of difficulty forthe learner, and one way to

do this is to measure syntactic difficulty (in addition to choosing an appropriate vocab-

ulary). Furthermore, a “readability checker”, similar to aspell-checker, could point out

to the author bits in text that contain very complex and difficult to understand syntactic

structures.

Another field of applications would emerge if it could be shown that computer

programs also have more difficulty processing text that is difficult for humans (one

example for this is PP-attachment). Then special strategies could be used to handle bits

of text that would be difficult to translate, or we might assign answers from difficult

text a lower confidence score in question answering.

1.3 Overview of the Thesis

Chapter 2 provides background information about eye-tracking as a measure of hu-

man language processing difficulty. This background is important for understanding

the analysis of our main source of data, the Dundee eye-tracking corpus, and the meth-

ods used for analysis of this data set (Chapter 3), as well as for the evaluation of models

of human processing difficulty (Chapters 4, 5 and 9). Secondly, it positions the the-

ory put forward in this thesis with respect to other sentenceprocessing theories. The

detailed description of two theories, dependency localitytheory (DLT, Gibson (2000))

and Surprisal (Hale, 2001) provides background for understanding the evaluation of

these theories in Chapters 4 and 5, and the design of our theory of explicit prediction,

proposed in Chapter 6.
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Chapter 3 analyses the properties of the eye-movement information inthe Dundee

Corpus, a collection of newspaper articles (ca. 50,000 words) for which the eye-

movement record of 10 subjects is available. The analysis relates the characteristics of

the eye-movement record in the Dundee Corpus to reading characteristics reported in

other eye-tracking experiments.

The second part of Chapter 3 explains mixed effects models, and discusses how

they can be applied to the Dundee Corpus data.

Chapter 4 represents a proof of concept that broad-coverage data, such as the news-

paper texts from the Dundee corpus, can be used as a resource for evaluating theories

of sentence processing. We focus on a very specific and reasonably frequent structure,

relative clauses. The relative clause asymmetry (object relative clauses are more diffi-

cult to process than subject relative clauses) (King and Just, 1991) is a well-established

effect. Being able to show that this asymmetry does not only exist in experimental test

settings but can also be found in natural language data indicates that broad-coverage

texts such as the Dundee corpus can be used as a complementaryresource for testing

theories, in addition to experimental test suites. It thus motivates our broad-coverage

evaluation of sentence processing theories in Chapters 5 and 9.

Chapter 5 evaluates two previous theories of sentence processing, Dependency Lo-

cality Theory (DLT) and Surprisal on the broad-coverage data of the Dundee Corpus.

To our knowledge, this is the first time that theories of sentence processing have been

tested on broad-coverage data. We gain insights about the previous theories’ abilities

to scale to broad-coverage text and find that in particular, DLT integration cost is not

defined on a sufficiently general level to account for generalprocessing difficulty.

Another central finding is the fact that Surprisal and DLT integration cost are un-

correlated, both for arbitrary words in the corpus, and for verbs (for which DLT makes

the bulk of its predictions). This result suggests that a complete theory of sentence

processing complexity needs to include two mechanisms: a backward-looking one as

proposed by DLT, and a forward-looking one as proposed by Surprisal. The analysis

thus sets the ground for the development of our own theory (Chapter 6).

Chapter 6 proposes a theory of sentence processing that is designed tobe cognitively

plausible by implementing fundamental aspects of human sentence processing, such as

incrementality and prediction followed by a verification process, and is general enough
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for modelling broad-coverage naturally occurring data. The theory also draws from

what we learnt from the evaluation of Surprisal and Dependency Locality Theory on

the Dundee Corpus. It consists of a parsing process, from which sentence processing

difficulty is derived.

The second part of the chapter evaluates five grammar formalisms with respect to

their suitability as a basis for implementing the suggestedsentence processing theory,

and concludes that an incremental version of Tree-Adjoining Grammar (TAG) would

satisfy requirements best.

Chapter 7 defines a variant of the Tree-Adjoining Grammar formalism (TAG), called

Psycholinguistically Motivated TAG (PLTAG) and relates itto standard TAG. The for-

malism allows for incremental, fully connected derivationof a sentence, and contains

explicit mechanisms for prediction and verification.

Chapter 8 explains the development of a strictly incremental, predictive parser for

PLTAG. This chapter first describes the conversion of the Penn Treebank into PLTAG

format and the induction of a PLTAG lexicon based on the converted PLTAG tree bank.

It then defines an incremental parsing algorithm and a probability model for PLTAG.

The parser is evaluated on the Penn Treebank.

The last part of the chapter contains the formalisation of the Linking Theory, which

connects the parsing process to processing difficulty predictions generated by the sen-

tence processing theory proposed in Chapter 6.

Chapter 9 evaluates our theory of sentence processing with explicit prediction on

data from a range of psycholinguistic case studies and showsthat our theory can ex-

plain both locality and surprisal effects, which other theories are not able to explain

simultaneously. The theory proposed in this thesis is thus more generally applicable

than previous theories. Secondly, we evaluate the theory onthe broad-coverage, natu-

rally occurring text from the Dundee Corpus and show that ourtheory is a significant

predictor of reading times, and that it can explain a larger amount of the variance than

either Surprisal or DLT can. Finally, our sentence processing theory is compared to

the alternative sentence processing theories that were outlined in Section 2.2.

Chapter 10 summarizes the main contributions made by this thesis, and gives an

outlook on future work.





Chapter 2

Background

This chapter discusses reading times as a measure for processing difficulty in human

sentence processing. It outlines the characteristics of reading and factors that influence

reading, as well as giving an overview of methods for acquiring reading data, such as

eye-tracking. In the second section, previous models of human sentence processing

are presented.

These basics about reading, eye-tracking and models of human sentence process-

ing are relevant background for presentation of the Dundee corpus data set and the

methodological discussion concerning linear mixed-effects models in Chapter 3, as

well as the experiments in Chapters 4, 5 and 9.

2.1 Reading Times as a Measure of Human Sentence

Processing

While the high-level goal of my work is to investigate the relationship between syntac-

tic structures and processing difficulty, this thesis dealsonly with processing difficulty

in as far as can be derived from reading times. The principal idea is that reading takes

longer at difficult regions in the text, because words are fixated for longer (e.g. it has

been found that infrequent words which are arguably more difficult to access lexically,

take longer to read than frequent words of the same length), or because parts of a

sentence have to be read again. Longer reading times also correlate with e.g. naming

latency, another measure that is thought to correlate with difficulty, but which is not

specific to reading.

The nature of the relation between language processing and reading is generally

9



10 Chapter 2. Background

believed to be some more or less strong version of the “eye-mind link” hypothesis

which states that people always look at the word they are currently processing. Some

people argue against a strong “eye-mind link”, saying that reading is a fairly automatic

process that proceeds at a very steady speed and is only influenced by low-level visual

and oculomotor factors. In this view, syntactic processes only influence the steady

reading flow when there is a “total processing breakdown” as in the case of garden

paths. In this work, it is assumed that more subtle syntacticprocessing difficulties can

also influence reading times, and can thus be measured in the form of longer reading

times and refixations on the words. This work evaluates theories of sentence process-

ing difficulty using linear regressions with reading times as a response variable. This

can be interpreted as a strong eye-mind link: syntactic processing difficulty for a word

is used as a predictor for reading times at that exact word (however, note that some

measures of reading times that aggregate several fixations can possibly partially allevi-

ate the problem). A strict eye-mind link is probably too strong of an assumption, and

should be relaxed in future work by integrating the predictions for sentence processing

difficulty with a model of eye-movements in reading, see Chapter 10, Section 10.2.6.

A challenge that one faces when using reading times as a correlate of syntactic

processing difficulty is that reading times are influenced bya large number of variables.

It is difficult to factor out which part of the variation observed in reading times can be

attributed to syntactic processing.

Alternative ways of researching processing difficulty are based on grammaticality

or plausibility judgements, completion studies (Cloze measure), brain imaging (for

example using EEG or fMRI) and visual world studies. An example for grammaticality

judgements is the study ofgarden path sentences. A famous example for a garden

path sentence isThe horse raced past the barn fell. At encountering the wordfell, the

most likely analysis of the sentence is incompatible with the continuationfell, and a

much less likely analysis must be chosen for the prefix (corresponding to the sentence

The horse that was raced past the barn fell). Garden path sentences illustrate very

severe processing difficulty that leads to the total break-down of the analysis process

and sometimes can mean that the correct analysis cannot be found, and a grammatical

sentence is judged as ungrammatical.

Completion studies are often used in pre-tests to assess whether items have sim-

ilar probabilities or are similarly easy or difficulty to predict. In a completion study,

participants are given a sentence which lacks one or more words and are asked to fill

those words in. The Cloze Probability of a word is then the proportion of times that a
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particular word was chosen by participants.

During brain imaging studies, language is presented as either text or speech, and

participant’s neural activity is measured. Examples for well-established effects include

the N400 and P600 effects observed in EEG studies. N400 effects have been shown

to occur at semantic anomalies (Brown and Hagoort, 1993; vanBerkum et al., 1999a)

while the P600 effect has been shown to occur at unexpected events, and has often

been linked to syntactic problems (Kaan et al., 2000).

A more recent method are visual world studies where people listen to sentences

while looking at pictures. The pictures participants fixatecan be interpreted as reflect-

ing how participants interpret an ambiguous sentence, or how they expect a sentence

to continue.

Limitations of Reading Experiments

Reading can only ever capture a limited amount of information about language pro-

cessing, since it’s a learnt skill and has only been acquiredby humans a short time

ago (as seen on the evolutionary scale of things). It is different from hearing speech

sounds in that a reader can read at his own pace, whereas orally presented words are

perceived at a predefined speed. While a reader can go back to passages that he did

not understand properly, this is not possible in speech. Thespeech signal is usually

more noisy on the one hand, but also richer because it contains prosodic information

that can be used for disambiguation.

2.1.1 Characteristics of Human Reading

When reading, the eye does not move over the text smoothly butin quick jumps. The

time while the gaze travels is called a saccade, and usually takes about 25 to 60 mil-

liseconds. During a saccade, no information is taken in: it has been found that people

do not even notice light flashes that occur during a saccade. Asaccade is usually 7-8

letters far and is assumed to be planned in advance, because fixations very rarely land

on punctuation marks, spaces or highly predictable function words, but rather on long

words and in the middle of those, where high information density can be expected. The

eye also does not move steadily forward in the text, but takesa step backwards roughly

every 10 saccades. These backward saccades are also called regressions. The intervals

when the eye rests still on a certain point are called fixations. A fixation usually takes

200 to 250 milliseconds.
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Figure 2.1 shows an example of a trace of human eye-movementsduring reading,

which were recorded with an eye-tracker. The fixations are marked by blobs on the

words, and saccades are shown as fine lines. The small numbersnext to the blobs

indicate the fixation time in milliseconds. One can observe in this example of reading,

how function words likethe, or, andreceived no or fewer fixations than content words.

Figure 2.1: Trace of human eye-movements whilst reading recorded with an eye-tracker.

When fixating, information from a window of about 20 characters is taken into

account: 3-4 characters to the left and 15 characters to the right. One can also differ-

entiate between the foveal region (about 2◦ from the fixation point), from which most

of the information is extracted and the parafoveal region (about 5◦ from the fixation

point). This data was obtained from studies where part of thetext is dynamically ob-

scured, depending on the subject’s fixation point, such thatthe subject can only see

a certain part of the text. Obscuring the foveal region has been found to slow down

reading considerably, but reading is still possible because enough information can be

taken from the parafoveal region (Rayner and Bertera, 1979). Also, it has been shown

that obscuring the parafoveal and further away regions slows down reading although

subjects are not able to pin down what causes their reading difficulty.

2.1.2 Factors that Influence Reading Times

Saccade lengths, fixation durations and refixation probabilities in reading are influ-

enced by a number of factors, such as letter recognition (fonts, sizes), oculomotor

errors (saccade planning errors), word length and frequency effects, fixation landing

position and launch distance, syntactic difficulties and effects on the semantic and dis-

course level, (for a review see Rayner, 1998). When analysing reading times, those

of the factors that we are not directly interested in have to be filtered out, in order to

obtain the residual variance which cannot be explained by these low-level factors, but

potentially by those factors which we are interested in.

The factors that are known to impact reading times are:
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• Fonts and sizes

Fonts are not usually a problem in experimental settings because they will nor-

mally be the same for the whole experiment and therefore not represent a poten-

tially confounding factor.

• Beginning or end of sentence or line

At the end of a line, a long saccade to the beginning of the nextline has to be

programmed, which may be a more difficult process and hence take more time

than programming a short saccade. At the beginning of the line, the saccade

target might have been slightly missed, which may lead to a longer fixation, or

quick correcting saccade.

• Frequency effects

Frequency has been found to be an important element in lexical access, with

frequent words being read faster than infrequent ones.

• Age of acquisition / familiarity

Lexical access speeds have also been shown to depend on familiarity with the

word (familiar words are read faster), or the age of acquisition: words that were

learnt at an earlier age are faster to access than words learnt at a later age. Of

course, frequency, familiarity and age of acquisition are strongly correlated, as

readers are more familiar with frequent words and have likely acquired them

earlier.

• Word length effects

Length effects are commonly found in reading, with short words being read

faster than long words. The length-effects interact with frequency effects (fre-

quent words are usually shorter), age of acquisition (longer or more complicated

words are acquired later) or morphological complexity (morphologically com-

plex words are generally longer than simplex words).

• Launch distance

Vitu et al. (2001); Kennedy et al. (2003) showed that launch distance is also an

important contributing factor to fixation duration. The longer the launch dis-

tance, the longer the expected fixation.

• Fixation landing position

The landing position of the fixation within the word has also been shown to have
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an important influence on reading times. Typically, words are fixated longest

when the saccade lands towards the middle of the word (optimal viewing posi-

tion). This may seem counter-intuitive as it should be faster to decode a word if

viewing acuity is good on most letters of the word, and is hence referred to as

the IOVP (inverted optimal viewing position) effect (Vitu et al., 2001).

• Word position within the sentence

It is sometimes argued that people speed up their pace of reading as the sen-

tence goes on, meaning that words later on in the sentence canbe expected to be

processed faster than words at the beginning of a sentence.

• Morphological effects (more or less complex words)

Potentially decomposable words (likekeyhole) take longer to read than words

that are not potentially decomposable but have the same length and frequency.

• Syntactic difficulties

Words that are syntactically unexpected take longer to read.

• Semantic difficulties

Semantically mismatching words also take longer to read than words that fit in

well semantically.

• Spill-over effects

If the previous word was difficult to process, longer processing times can also be

expected on the current word. This is called a spill-over effect.

• Secondary tasks / concentration / depth of processing

Finally, interfering tasks or lack of concentration can also influence reading time.

2.1.3 Modelling low-level reading processing

A considerable proportion of the reading times can be attributed to low-level processes

for identifying a word and accessing its meaning, which occur before the word is inte-

grated into a larger semantic context.

There are three main approaches among models of eye movements in reading that

make different assumptions about the relation between the reading process and the

actual fixation position in the text. The one type of models (also known as sequen-

tial attention shifts (SAS) models) assumes a fairly close relation between the fixated
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words and attention. In this framework, fixation on a particular word means that this

word is being processed (with some interference to its directly neighbouring words

due to motoric latencies). In such models, the duration and location of a fixation are

computed during the reading process and are calculated fromcues in the text. The

EZ-Reader system is an example for such a model (Reichle et al., 2006). Recently, the

EZ-Reader model was also extended to accommodate a component for higher-level

linguistic processing, which takes Cloze probabilities asan estimate for syntactic and

semantic processing (Reichle et al., 2009).

The second type of model (Guidance by attentional gradients(GAG)) implements a

looser relation between attention and fixations, and assumes an underlying mechanism

that determines a certain pace and step-width at which the eyes move. An example for

this second kind of model is the SWIFT system (Engbert et al.,2005). In SWIFT, the

target of a saccade is determined by a stochastic process that is influenced by a word’s

activation. This activation is dependent on visual and linguistic properties of the words

(such as frequency), as well as the eccentricity of the word (how far it is from the

current fixation). Fixation duration in SWIFT is modulated by the “inhibition” process

which can redirect or inhibit a saccade if lexical access difficulty is encountered.

The third type of model (primary oculomotor control (POC)) mainly models ocu-

lomotor processes and doesn’t take into account any linguistic processes for mod-

ulating the basic low-level visual information (such as word length). The SERIF

model (McDonald et al., 2005) is an implemented example of such a non-linguistic

approach. One of the main contributions of the SERIF model isthe implementation of

an anatomic constraint: the foveal split.

All current implemented models of eye-movement in reading focus on oculomotor

and lexical access effects, and largely ignore syntactic and semantic processing. A

natural way to extend these models would thus be to add more linguistic components.

However, such an integration is outside the scope of this thesis. Instead, linear regres-

sion models are used to test whether syntactic predictors can account for some of the

variance in reading data above and beyond simple low-level oculomotor processes and

visual properties of words, which are explained by current models of eye-movements

in reading. Two ways of integrating low-level predictions were considered in for this

thesis: using the reading time predictions of an existing model as a predictor in the

regression model, vs. including the raw values of factors known to influence reading

(word length and frequency, launch distance, fixation landing position etc.) as sepa-

rate predictors. When evaluating the SERIF model predictions on the Dundee Cor-
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pus, a regression model that contained all of the raw factorsexplained a significantly

larger amount of the variance in the reading times than the average predictions from

the trained SERIF model (to obtain these, the SERIF model wasused to simulate the

eye-movements of 10 readers on the Dundee Corpus. The simulated reading times

were then used as predictors for the real reading times in theregression on the cor-

pus). Given these results, all of the models reported in thiswork use the single direct

influencing factors as predictors instead of predictions from a low-level reading model.

2.1.4 Experimental Methods for the Acquisition of Reading D ata

Information about human reading times on test sentences in an experiment can be ob-

tained with different methods. The most common ones are self-paced reading, rapid

serial visual presentation and eye-tracking. While rapid serial visual presentation and

self-paced reading give the experimenter more control overwhat exactly the experi-

mental subject is perceiving (e.g. by blocking words together into phrases which are

presented at the same time, and not allowing the subject to goback in the sentence),

eye-tracking provides a more natural setting for reading.

2.1.4.1 Self-Paced Reading

In self-paced reading (SPR), text is presented in chunks, and the subject has to indicate

by pressing a key when they want to go on the next word (or chunk). It has been argued

that it is better not to present single words, but larger units, e.g. constituents, because

many words (in particular function words) are skipped in natural reading.

There are several ways of conducting self-paced reading studies: words (or con-

stituents) can be presented in the middle of the screen one-by-one, or the whole sen-

tence can be presented with dashes (keeping word length and spaces) and only sequen-

tially revealing a subset of the words at a time.

Major differences between self-paced reading and eye-tracking are that the subject

cannot go back to previous parts of the sentence in SPR, but has to keep everything

in memory, and don’t have parafoveal preview of upcoming words. This might cause

reading to be unnatural and lead to artefacts (Bartek et al.,2007), and might cause

results from SPR and eye-tracking studies to lead to different results. Finally, SPR has

been found to be slower than normal reading, and might thus have different properties

(e.g. some processes may occur on the word instead of on the spill-over region), and

the additional task of pressing a button might also influencereading behaviour.
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2.1.4.2 Eye-tracking

During eye-tracking, the eye-movements are recorded with cameras (often attached to

the subject’s head) that track the pupils and are calibratedto the screen. The text is

presented on a screen, showing one or more lines of text at a time. Eye-tracking has

been used in psycholinguistic research since the 70s. Data from eye-tracking studies

can help to detect more subtle processing difficulties that are not as obvious as garden

paths, and to perform more accurate measurements, e.g. on a word-by-word basis.

Processing difficulty manifests itself in longer gaze-durations or re-inspection of parts

of the sentence.

The raw data from eye-movement recordings (as shown in Figure 2.1) can be anal-

ysed in different ways in order to capture different aspectsof processing (e.g. for early

processes such as lexical access vs. later processes such assemantic interpretation).

Figure 2.2 shows an example of how the eye travelled through the sentence, and ex-

plains different eye-tracking measures at the example of the word himself. Single

fixation measures include first fixation time and second fixation time (not shown in

Figure 2.2, but corresponds to only fixation 6). The other fixation measures are mul-

tiple fixation measures. Here, “early” measures are often distinguished from “late”

measures. An example for an early measure is first pass time (also called gaze dura-

tion), which adds up all fixations from first entering a regionto first leaving it. Another

early measure is the regression path time, which in the example figure would corre-

spond to points 5, 6, 7 and 8. Examples for late measures are second pass time, and

total reading time, which is defined as the sum of all fixationson the critical region. A

region’s skipping rate is the percentage of trials where thefirst-pass time is zero.
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The pilot embarrassed John and put himself in a very awkward situation.

gaze duration = 5+6
Total time = 5+6+8+10
Second pass time = 8+10

First fixation time = 5

Skipping rate: e.g. put

Figure 2.2: Measures for Eye-tracking.
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2.1.4.3 Other methods for reading research

Methods used in psycholinguistic research for investigating lexical access and word

identification processes are for examplerapid serial visual presentationwhere words

are presented at a high rate of up to 1000 words per minute. Thedisadvantage of

this method is that it is also unnatural and has problems similar to self-paced reading.

Another method is to make the subjectread aloudwhile recording eye-movement to

measure the distance between fixation and pronounced word and record reading errors

and recovery strategies.

Further tasks that primarily test for lexical access are thenaming task, where the

time between presentation of a word and the onset of the pronunciation of the word is

measured, thelexical decision task, where participants have to tell whether a string is a

valid word or not, and thesemantic categorisation taskthat assesses how long it takes

the participant to retrieve the semantics of a word.

2.2 Models of Human Sentence Processing

Low-level reading processes cannot explain all of the variance in the eye-movement

data, and it has been shown that some of the reading time effects are due to high level

syntactic or semantic processing difficulties. This thesisfocuses on explaining the

variance in the reading time data which cannot be explained by the low-level processes.

A number of theories have been proposed to account for processing difficulty ef-

fects that are due to syntax and semantics. Ambiguity has often been looked at as a

primary source of syntactic processing difficulty, especially in garden path sentences,

where ambiguity causes the parser to re-analyse a sentence and thus leads to processing

delays. However, ambiguous structures have also been shownto sometimes facilitate

reading (van Gompel et al., 2005), at least if the ambiguity remains unresolved. On

the other hand, increased processing difficulty has also been observed in completely

unambiguous structures. For these cases, the cause of processing difficulty is usually

attributed to complexity, or unexpected syntactic or semantic events.

Sentence processing theories can roughly be categorised into theories explaining

processing difficulty through ambiguity, and ones explaining difficulty based on com-

plexity. Ambiguity has been argued to lead to difficulty either through competition

arising between alternative analyses (competition-basedmodels), through unexpected

events, i.e. when the previously most likely analysis becomes improbable or impos-
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sible given evidence from new input (reanalysis theories, frequency-based theories,

Surprisal, transitional probabilities) or when ambiguityis reduced due to a word pro-

viding a lot of information as to how the sentence will continue (Entropy). Process-

ing difficulty has been linked to sentence complexity through a large number of open

dependencies that need to be remembered and later retrieved(Dependency Locality

Theory, Memory and Activation).

2.2.1 Early approaches

The earliest approaches to explaining processing difficulty primarily focused on diffi-

culty caused by ambiguity. Such early models defined a set of cognitively motivated

constraints to decide which structures should be preferredover others.

The earliest approach to modelling human parsing was via serial models. In garden

path sentences, such a model would explain delays through extensive backtracking and

trying to match parses to the input.

Marcus (1980) assumed that human parsing was serial and suggested fixed con-

straints, such as a restricted length context window to predict the existence of garden

path sentences. According to this theory, easy re-analysisis only possible if the change

in interpretation affects the last x words only. Ambiguities that are due to an earlier

word lead to garden paths sentences. However, many argued against this theory by

showing that there are both garden path sentences that generate ambiguities within

such a window and sentences where the ambiguous point is further away but that do

not lead to garden paths (see for example (Jurafsky, 1996)).

As an alternative to serial models, parallel parsing modelswere developed based

on experimental evidence suggesting that lexical items andidioms are accessed in par-

allel (Swinney and Cutler, 1979). In parallel models, multiple interpretations (both

structural and lexical) are maintained simultaneously. The first constraint-based par-

allel parsing models were non-probabilistic and assumed the existence of a number

of constraints. The function of these constraints is to rankthe alternative parses for

a sentence, such that some structures would be predicted to be preferred over others.

Very strongly dis-preferred structures are pruned in this model, in order to provide

a mechanism to account for garden path sentences. The most important constraints

used in serial non-probabilistic models are based on locality preferences (e.g. Right

Association (Kimball, 1973), Local Association (Frazier and Fodor, 1978), Late Clo-

sure (Frazier, 1978), Final Arguments (Ford et al., 1982), the Graded Distance Effect
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(Schubert, 1984), Attach Low and Parallel (Hobbs and Bear, 1990) and the Recency

Preference (Gibson, 1991)).

2.2.2 Dependency Locality Theory

Dependency Locality Theory (DLT), suggested by Gibson (1998), explains processing

difficulty independent of ambiguity. Instead, processing difficulty in DLT is caused

by the cost of the computational resources consumed by the processor. Two distinct

cost components can be distinguished: (i)integration costassociated with integrating

new input into the structures already built at a given stage in the computation, and

(ii) memory costinvolved in the storage of parts of the input that may be used in pars-

ing later parts of an input. In our implementation (see Chapters 4 and 5), we will

focus on integration cost, as “reasonable first approximations of comprehension times

can be obtained from the integrations costs alone, as long asthe linguistic memory

storage used is not excessive at these integration points” (Gibson, 1998, p. 19f). This

is a safe assumption for our studies, as we use corpora of carefully edited newspa-

per text, which are unlikely to incur excessive storage costs (in contrast to artificially

constructed experimental materials). Gibson defines integration cost as follows:

(1) Linguistic Integration Cost

The integration cost associated with integrating a new input head h2 with a

head h1 that is part of the current structure for the input consists of two parts:

(1) a cost dependent on the complexity of the integration (e.g. constructing a

new discourse referent); plus (2) a distance-based cost: a monotone increasing

function I(n) energy units (EUs) of the number of new discourse referents that

have been processed since h1 was last highly activated. For simplicity, it is

assumed that I(n) = n EUs. (Gibson, 1998, p.12f)

According to this definition, integration cost is dependenton two factors. First, the type

of element to be integrated matters: new discourse referents (e.g., indefinite NPs) are

assumed to involve a higher integration cost than old/established discourse referents,

identified by pronouns. Second, integration cost is sensitive to the distance between

the head being integrated and the head it attaches to, where distance is calculated in

terms of intervening discourse referents.

As an example, consider the subject vs. object relative clause example in Figure

2.3. At the embedded verbattackedin the subject relative clause, two integrations take
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place: the gap generated by the relative pronounwhoneeds to be integrated with the

verb. The cost for this is I(0), as zero new discourse referents have been processed

since the gap was encountered. In addition, the embedded verb attackedneeds to

be integrated with its preceding subject. Again, this is a free integration since no

discourse referent occurs between the verb and the subject NP. However, there is a cost

for building a new discourse referent (the embedded verb itself1), leading to a cost

of I(1). The total cost atattackedis therefore I(1). This is illustrated in Figure 2.3,

which depicts the dependencies that are built, and the integration costs per word that

are incurred.

            x                  x                  x             x                  x

The reporter who   the senator attacked admitted  the   error.
          x                           x           x               x                x
 I(0)   I(1)  I(1) I(0)    I(0) I(1)+I(2)   I(0)  I(1)Integ. Cost

Integ. Cost
Disc.ref.

Disc.ref.

The reporter who attacked the senator admitted  the   error.

SRC:

ORC:

I(1)+I(3)

 I(0)  I(1) I(0) I(1) I(0) I(1) I(1)I(0)I(1)+I(3)

Figure 2.3: An example of integration cost computations: subject relative clauses (SRC)

vs. object relative clauses (ORC), with word-by-word mark-up for discourse referent and

integration costs. The links between the words represent syntactic dependencies.

At the verbattackedin the object relative clause, three structural integrations take

place: (1) integration with the subject NPthe senator: no integration costs occur since

no new discourse referents occurs inbetween the verb and theNP, (2) an empty cat-

egory for the relative pronoun is integrated, but again, theintegration is local and no

costs occur, (3) the object position empty category is co-indexed with the preceding

relative pronounwho. There is an integration cost of I(2) for this step due to the two

discourse referents,attackedand the senatorwhich occurs in between. In addition,

there is a cost of I(1) for constructing the discourse referent atattacked, which leads to

a total integration cost of I(1) + I(2) at the embedded word ofthe object relative clause.

So overall, DLT predicts that the verb of an object relative clause is more difficult to

process than that of a subject relative clause. Note that Gibson assumes that the inte-

1DLT assumes that verbs introduce event discourse referents.
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gration cost function is identity, i.e., I(n) = n. However, other functions are possible

here; we will return to this issue in our implementation of integration cost in Chapter

5, Section 5.3.2.

For assessing the second component, memory cost (also referred to as storage cost),

it is necessary to determine the subcategorizations of a word in order to count how

many open dependencies need to be maintained at each point intime. There is a

cost for storing in memory each open dependency, which is modulated by how many

discourse referents were introduced since the occurrence of the dependent.

Integration costs and memory cost interact through the concept of energy units,

memory unitsandtime units. There is only a limited number of energy units available

at each point in time, so working memory resources can be usedup by having to

remember many dependencies (thus using up lots of memory units), in which case there

will be less resources for actual integrations (as measuredusing integration cost), in

turn causing them to take more time. The relationship between energy units, memory

units and time units was formalised asEU = MU ∗TU. In the case of ambiguity,

analyses that require fewer energy units are preferred.

DLT has been shown to account for a range of linguistic effects including the

SRC/ORC processing difficulty asymmetry, difficulty of centre embeddings, cases of

processing breakdown, filler-gap dependencies, heavy NP shift and extraposition.

2.2.3 Frequency-based Theories

Frequencies have been found to be an important correlator for processing difficulty and

reading time. Reading times are in general longer on infrequent words than they are on

frequently occurring words. Frequency effects do arguablynot only occur for lexical

access but also for syntactic processing: If a sentence is ambiguous, humans have been

found to process the more frequent analysis faster and to display processing difficulty

if the infrequent analysis turns out to be correct.

Jurafsky (1996) first proposed to use probabilistic contextfree grammars (PCFGs)

to estimate probabilities of alternative analyses and usedthe probabilities to explain

garden path sentences: Only the most probable parses (according to the PCFG) would

be kept in memory. The improbable ones were pruned using beamsearch, which dis-

cards highly improbable analyses. For interpretations that were pruned, the parser

would have to backtrack, which explains the processing difficulty for garden path sen-

tences.
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Crocker and Brants (2000) argue that PCFGs can be used to do broad-coverage

parsing better than models that only take into account single manually defined con-

straints, as the early approaches did.

A question that arises in the construction of probability-based models is how to

combine probabilities from different sources, such as probabilities from parsing, n-

grams and valency. Narayanan and Jurafsky (2002) use a belief network with proba-

bilities from a range of different sources. A belief networkis more powerful than a

PCFG but it is harder to justify the contributing factors andtheir relationship to one-

another.

2.2.4 Surprisal

An alternative measure of syntactic complexity has been proposed by Hale (2001) in

the form of Surprisal. Surprisal assumes a parallel parser,which builds structures in-

crementally, i.e., it constructs all possible syntactic analyses compatible with the input

string on a word-by-word basis.2 Intuitively, Surprisal measures the change in proba-

bility mass as structural predictions are proven wrong whena new word is processed.

If the new word invalidates predictions with a large probability mass (high Surprisal),

then high processing complexity is predicted, corresponding to increased reading time.

If the new word only invalidates predictions with a small probability mass (low Sur-

prisal), then we expect low processing complexity and reduced reading time.

Technically, Surprisal can be defined using the conditionalprobability

P(T|w1 · · ·wk), i.e., the probability of a treeT given the sentence prefixw1 · · ·wk. This

is the probability thatT is the correct tree, given that the string of wordw1 to wordwk

has been encountered. Surprisal is then defined as the changein the conditional proba-

bility distribution fromwk to wk+1. As Levy (2008) shows, this can be formalised using

the Kullback-Leibler divergence (relative entropy). The Kullback-Leibler divergence

between two probability distributionsP andQ is defined as:

D(P||Q) = ∑
i

P(i) log
P(i)
Q(i)

(2.1)

The Surprisal at encountering wordwk+1 then corresponds to the Kullback-Leibler

divergence betweenP(T|w1 · · ·wk+1), i.e., the probability distribution of all syntactic

2While Surprisal is compatible with a fully parallel parser,it does not necessarily require one. It is
possible to compute the probabilities of a limited set of analyses and then use these to track changes in
the probability distribution. In fact, the (Roark, 2001a) parser used in this paper performs beam-search,
i.e., does not compute all possible analyses, and thus we reply on such a limited-parallelism version of
Surprisal.
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trees that are consistent with wordsw1 · · ·wk+1, andP(T|w1 · · ·wk), the probability

distribution of the trees that are compatible with the prefixw1 · · ·wk:

Sk+1 = ∑
T

P(T|w1 · · ·wk+1) log
P(T|w1 · · ·wk+1)

P(T|w1 · · ·wk)
(2.2)

This expression can be simplified using the following fact:

P(T|w1 · · ·wk) =
P(T,w1 · · ·wk)

P(w1 · · ·wk)
=

P(T)

P(w1 · · ·wk)
(2.3)

This equation holds because we know that each tree inT contains the words

w1 · · ·wk, thereforeP(T,w1 · · ·wk) = P(T). We can now substitute Equation (2.3)

into Equation (2.2). We can then simplify the definition of Surprisal using the fact

∑T
P(T)

P(w1···wk+1)
= 1 (the probabilities of all syntactic trees given a particular prefix sum

up to 1), and performing some straightforward logarithmic transformations:

Sk+1 = ∑
T

P(T)

P(w1 · · ·wk+1)
· log

P(T)
P(w1···wk+1)

P(T)
P(w1···wk)

= 1 · log
P(w1 · · ·wk)

P(w1 · · ·wk+1)
(2.4)

= − log
P(w1 · · ·wk+1)

P(w1 · · ·wk)
= − logP(wk+1|w1 · · ·wk)

This derivation shows that the SurprisalSk+1 at wordwk+1 corresponds to the negative

logarithm of the conditional probability ofwk+1 given the sentential contextw1 · · ·wk.

This is an important simplification, as it means that Surprisal can be computed without

making representational assumptions (i.e., the syntactictreeT does not figure in the

definition of Surprisal). In practice this means that a number of ways of computing

Surprisal are possible, utilising either simple probabilistic models of language (such as

n-gram models) or more sophisticated ones, such as probabilistic context-free gram-

mars (PCFGs).

Surprisal can be reformulated in terms of theprefix probabilitiesof wordswk and

wk+1, which can be obtained easily from a PCFG. The prefix probability of a wordwk

is obtained by summing the probabilities of all treesT that span fromw1 to wk:

P(w1 · · ·wk) = ∑
T

P(T,w1 · · ·wk) (2.5)

The formulation in Equation (2.4) is therefore equivalent to a formulation that uses

prefix probabilities:

Sk+1 = − log
P(w1 · · ·wk+1)

P(w1 · · ·wk)
= log∑

T
P(T,w1 · · ·wk)− log∑

T
P(T,w1 · · ·wk+1) (2.6)
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SurprisalSk+1 at wordwk+1 thus corresponds to the difference between the logarithm

of the prefix probabilities of wordwk andwk+1. We give an example that illustrates

how prefix probabilities can be computed using a PCFG. In a PCFG, each context-free

grammar rule is annotated with its probability, as in Figure2.4. The rule probabilities

are then used to calculate the prefix probability of a word.

For example, ifwk+1 is the wordwho in the example in Figure 2.4, then the prefix

probability∑T P(T,w1 · · ·wk+1) is the sum over the probabilities of all possible trees

that include the prefixw1 · · ·wk+1, where each tree probability is computed as the prod-

uct of all the rules that are needed to build the tree (Figure 2.4 shows only one such

tree).

S

NP

NP

DT

The

NN

reporter

SBAR

WHNP

WP

who

S

· · ·

VP

· · ·

Example Rule Rule probability

The reporter who . . . S→ VP NP p = 0.6

The reporter who . . . NP→ NP SBAR p = 0.004

The reporter NP→ DT NN p = 0.5

The DT→ the p = 0.7

reporter NN→ reporter p = 0.0002

who . . . SBAR→ WHNP S p = 0.12

who WHNP→ WP p = 0.2

who WP→ who p = 0.8

Figure 2.4: Example derivation of prefix The reporter who and rules from a probabilis-

tic context free grammar (PCFG) that would be needed in order to calculate its prefix

probability.
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Levy (2008) evaluated Surprisal on a range of syntactic processing difficulty phe-

nomena and found that it can correctly account for anti-locality effects in German,

facilitating ambiguity and subject preference in German, but that it cannot account

for locality effects found in English relative clauses, digging-in effects or local coher-

ence effects (see Section 9.1 for a discussion and overview of these psycholinguistic

effects).

2.2.5 Transitional Probabilities

Recently, it has also been shown that information about the sequential context of a word

can influence reading times. In particular, McDonald and Shillcock (2003b) present

data extracted from an eye-tracking corpus (a smaller corpus than the Dundee corpus

used here) that show that forward and backward transitionalprobabilities are predictive

of first fixation and gaze durations: the higher the transitional probability, the shorter

the fixation time.

By forward transitional probabilityMcDonald and Shillcock (2003b) refer to the

conditional probability of a word given the previous wordP(wk|wk−1). This captures

the predictability of the current word given a one-word context. For example, the

probability of the wordin given that the previous word wasinterestedis higher than

the probability ofin if the last word wasdog. Thebackward transitional probabilityis

the conditional probability of a word given the next wordP(wk|wk+1). This provides

an estimate of how predictable the current word is given the next word, e.g., of how

probable it is to seeinterestedor dogcurrently, given the next word isin. A possible

interpretation of why material that is further away in the text can benefit the current

word and lead to shorter reading times for words with high backward transitional prob-

abilities are preview effects and backward saccades. Thesecorpus results are backed

up by results demonstrating the role of forward transitional probabilities in controlled

reading experiments (McDonald and Shillcock (2003a); but see Frisson et al. (2005),

who equate transitional probability and Cloze predictability and do not find any effects

of transitional probability).

It is interesting to note that the forward transitional probability P(wk|wk−1) is a

simple form of Surprisal, viz., one that takes into account only the previous word

wk−1, rather than the whole prefixw1 · · ·wk−1 (see Equation (2.4)). Another differ-

ence is that forward transitional probabilities are estimated using word bigrams, while

Surprisal is typically estimated using syntactically generated probabilities, based on
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Equations (2.5) and (2.6). We will return to this issue in thecontext of our discussion

of Surprisal in the Dundee Corpus in our chapter about broad-coverage evaluation of

Surprisal in Section 5.5.

2.2.6 Entropy

Another suggestion for measuring difficulty in processing sentences based on the

changes in probability distributions of analyses when processing a sentence isEntropy

(Hale, 2003, 2006) which quantifies the uncertainty about the rest of the sentence.

The entropy of the probability distribution over the set of all possible sentencesS

with lengthn is defined as

H = − ∑
wn

1∈S

P(wn
1) log(P(wn

1)).

When words are processed, these distributions change (as there are many sentences

in the set of all possible sentences that are not compatible with the seen input). The

entropy at a wordi is therefore

H(i) = − ∑
wn

1∈S

P(wn
i+1|wi

1) log(P(wn
i+1|wi

1)).

The reduction in entropy through processing the next word isthen

∆H(i +1) = H(i)−H(i +1).

Positive∆H correspond to a decrease in entropy, hence meaning that the current

word has diminished our uncertainty about how the sentence is going to continue.

Non-negative∆H are used to predict reading times at each word.

Hale (2006) showed that entropy can explain linguistic phenomena such as the

accessibility hierarchy. Recently, entropy as a measure ofprocessing difficulty has

been evaluated as a broad coverage model (Roark et al., 2009;Frank, 2010), showing

that it can be a significant positive predictor of reading times.

2.2.7 Competition-Based Models

Competition-based models focus on processing difficulty caused by ambiguity. The

main idea in competition models (McRae et al., 1998) is that alternatives compete

against one another (in terms of frequency, structure etc.)until one of the alterna-

tives reaches criterion. The system then settles on one analysis. If this analysis turns
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out to be incorrect, the system has to “change its mind” lateron; i.e. switch to a com-

peting analysis. This switching to an alternative analysismanifests itself as a garden

path effect. The competition process also takes up time and processing resources: peo-

ple are assumed to read more slowly if there are two closely concurrent alternatives

than when one is very plausible and one very implausible (this is quite similar to an

entropy-based approach).

An interesting finding in (van Gompel et al., 2005; Traxler etal., 1998) is the fact

that there can be a processing advantage if a sentence is ambiguous with respect to

e.g. PP-attachment, so that the ambiguous sentence can be processed faster than the

unambiguous sentence. This finding does not fit with some of the common assump-

tions in human sentence processing, such as that processingdifficulty would be caused

by resolving ambiguities. In particular, finding that the ambiguous case is less difficult

to process seems to provide evidence against competition-based models.

However, Green and Mitchell (2006) argued that facilitation on ambiguous struc-

tures can be explained by an averaging effect where difficulty does not occur due to

competition but only due to backtracking (i.e. when the system has to change its mind

and switch to an alternative analysis). Across different participants, different initial in-

terpretations were adopted and always cause some of the people to re-analyse, whereas

in ambiguous structures, everybody can keep their initial analysis and average reading

times are therefore shorter.

Competition-based models can be divided into short-lasting competition models

and long-lasting competition models (van Gompel et al., 2005). Long-lasting compe-

tition models claim that competing syntactic analyses are kept in parallel throughout

an ambiguous region until some disambiguating element is encountered. Short-lasting

competition models assume that there are initially alternative analyses which are acti-

vated in parallel, but one of them rapidly wins and receives much more activation than

its alternative, which causes this one analysis to be adopted sometimes even before the

disambiguating region is reached.

Tabor et al.’s (1997)Visitation Set Gravitation(VSG) model makes use of dynam-

ical systems theory, and also derives processing difficultyfrom competition between

analyses. It is implemented as a simple recurrent network and a “gravitation module”

which clusters similar states in the network. These clustered states correspond to the

different competing analyses of a sentence. Processing difficulty is then predicted to

be proportional to the time the gravitation module needs to gravitate on one cluster,

i.e. decide on a particular analysis. Furthermore, difficulty occurs when new evidence
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means that a different cluster becomes more prominent (Tabor and Tanenhaus, 2001).

VSG can explain thematic expectations, competition effects and the main clause bias

in contrast with reduced relative clauses.

2.2.8 Memory and Activation

Lewis and Vasishth (2005) proposed a model of sentence processing that uses the cog-

nitive architecture ACT-R. This is attractive, in that ACT-R implements cognitively

plausible mechanisms, in particular working memory architecture, and has also been

used to model a large range of other cognitive processes.

The memory and activation model explains many of the established processing

phenomena through memory retrieval effects. The underlying mechanisms of mem-

ory retrieval are rehearsal, spreading activation and decay. Their implementation uses

left-corner parsing to determine top-down predictions about what types of words or

structures are needed to build a sentence, simultaneously with bottom-up evidence for

what words are encountered in the input. When a word is retrieved from memory,

its activation is boosted (this explains e.g. lexical frequency effects: items that are re-

trieved very often have higher activation), at the same timethere is a steady activation

decay according to the power law of forgetting which is applied to all of the items in

memory.

The model accounts for locality effects (like the English SRC/ORC asymmetry and

centre embedding) through decay and resulting lower activation of words that need to

be retrieved for integration after seeing a lot of intervening material. It can also account

for some anti-locality effects through activation of the head through intervening argu-

ments. Furthermore, the theory can explain interference effect (retrieval is hindered by

activation of similar items) and storage load effects (if more items need to be stored,

there are also more interference effects at retrieval).

2.3 Summary and Conclusions

The first part of this chapter has provided background for measures of sentence pro-

cessing difficulty, discussing in particular reading timesas a correlate for processing

difficulty. In a comparison of alternative methods of gathering reading time data, this

chapter has argued that eye-tracking is the most naturalistic method among them. Eye-

tracking measures are used for a range of evaluations in Chapters 4, 5 and 9.
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The second part of this chapter discussed existing theoriesof sentence processing.

Out of these theories, Surprisal and DLT integration cost are most relevant for this the-

sis (in particular for Chapters 4 and 5) and are therefore explained in detail. Surprisal

and DLT belong to different categories of sentence processing theories: Surprisal ex-

plains processing difficulty through unexpected events, while DLT predicts processing

difficulty when many dependencies need to be stored in memorysimultaneously, and

when long distance dependents have to be retrieved from memory for integration.
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Data and Analysis Methods

The first section of this chapter describes the properties ofa large eye-tracking cor-

pus, the Dundee Corpus, which is the data resource used for the regression analyses

described in Chapters 4, 5 and 9. We show that all of the standard reading effects can

be found in the Dundee Corpus data and point out some ways in which the naturally

occurring text differs from experimental items. The studies reported in this thesis rep-

resent the first time that such a collection of naturally-occurring text has been used

to evaluate models of higher-level linguistic processes such as syntactic processing

difficulty.

The second part of the chapter discusses linear mixed-effects regression models,

which are going to be used as a method of evaluating sentence processing models, in

Chapters 4, 5 and 9. All of the experiments and statistical analyses presented here and

in the following chapters were computed using R, an open source programming lan-

guage and environment for statistical computing (R Development Core Team, 2007).

3.1 The Dundee Corpus

The Dundee Corpus (Kennedy and Pynte, 2005) contains English and French news-

paper articles, which are each annotated with the eye-movement data. This section

focuses on the properties of the English portion of the Dundee Corpus (the French

subcorpus was not used in this work). The English corpus contains 20 approximately

equally long articles fromThe Independentnewspaper. In total, it consists of 51,502

tokens1 and 9,776 types. The texts were split into 40 five-line screens for presenta-

1The token number refers to tokens as tokenized in the Dundee Corpus for presentation to the par-
ticipants, i.e., punctuation marks are attached to the words. If words and punctuation marks are counted

31



32 Chapter 3. Data and Analysis Methods

tion to the readers during eye-tracking. It is annotated with the eye-movement records

of 10 English native speakers, who each read the whole corpus, and answered a set

of comprehension questions after each text. These eye-tracking data were acquired

using a Dr. Boise eye-tracker, which recorded the movementsof the right eye with a

sampling rate of 1 ms and a spatial accuracy of 0.25 characters.

Before carrying out our analyses, we excluded all cases in which the word was

the first or last one of the line, and also all cases where the word was followed by a

any kind of punctuation. This eliminates any wrap-up effects that might occur at line

breaks or at the end of sentences. Furthermore, we excluded all words that were in

a region of four or more adjacent words that had not been fixated, since such regions

were either not read by the participant or subject to data loss due to tracking errors.

This left us with 385,467 words.

In the first part of this section, distributions of the reading measures in the Dundee

Corpus are shown and problems with the data, as well as particularities of the corpus

are discussed. The second subsection looks at the distributions of non-syntactic ocu-

lomotor and lexical explanatory variables in the corpus, and shows the typical reading

effects like the IOVP effect2, the length and the frequency effect. Finally, the third sub-

section shows the distribution of a number of syntactic explanatory variables that were

tested in this thesis. More sophisticated analyses and regression models are described

in later chapters.

3.1.1 Distributions of Reading Measures

The reading measures described in this section are first fixation duration, first pass

duration and total reading time. We focus on these measures here because these eye-

tracking measures are also reported during later experiments, as they seemed most

informative – first fixation duration and first pass duration are early measures and of-

ten assumed to show lower-level effects and fast higher-level effects, while total read-

ing time is a later measure and is thought to reflect higher-level linguistic processing,

which we are primarily interested in in this work. Furthermore, skipping, refixation

probabilities and regression probabilities are discussed. Finally, the problems of track

loss, which is quite common in the Dundee corpus, and inter-subject variability are ad-

dressed. Subject variability is particularly important here, because the Dundee corpus

was only read by 10 subjects, which is a rather small number when compared to exper-

separately, then there are a bit more than 56k words in the corpus.
2For a definition of the effect please see Section 3.1.2.2.
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imental settings or other corpora that were used for investigating reading behaviour,

such as the Potsdam Sentence Corpus (Kliegl et al., 2006), which was read by more

than 250 subjects.

3.1.1.1 First Fixation Duration, First Pass Duration and To tal Reading Time

We start by inspecting the distribution of first fixation, first pass and total reading times

in the Dundee Corpus. Figure 3.1 shows three histograms for first fixation durations,

Figure 3.2 shows the equivalent histograms for first pass durations and Figure 3.3 for

total reading times.

Firstly, we can see in the top subfigures of Figures 3.1 to 3.3 that many of the data

points have a reading time value of 0. These words were skipped during reading. If

we included these values into our regressions, they would cause non-normality and

heavily influence the regression estimations. The problem with these cases stems from

the fact that there is no smooth distribution of shorter and shorter reading times until

they equal zero. Furthermore, it may be questionable, whether the meaning of skipping

a word would be the same as fixating it for an incredibly short time. Therefore, all the

regression models in this thesis are only run on fixated words; skipping can be dealt

with in separate, logistic regression models.

Inspecting the middle subfigure of Figures 3.1 to 3.3, it becomes clear that the data

is not exactly normally distributed: the plotted normal distribution does not fit the data

very well (with the most severe mismatch for total reading times). The empirical data

is skew, with a long tail to the right because fixation durations or reaction time can

become very long, but never shorter than zero. Furthermore,there is a sudden cut-

off at the left tail at about 60ms, which is due to internal settings of the eye-tracker.

Fixation shorter than 60ms are regarded as microsaccades ormeasurement errors and

therefore aggregated with the previous or following saccade. This non-normality of

reading times however comes it no surprise: It is already well-known from the lit-

erature that reading times (and all other kinds of reaction times) are usually skew to

the right (Ratcliff, 1979, p. 447). Non-normality can potentially cause problems in

regression models that assume normal distribution of the response variable.

One way of dealing with non-normal distributions is to transform the data, for

example by using log-transformed reading times. The log-transformed first fixation

durations, first pass durations and total reading times are fitted much better by the nor-

mal distributions, see bottom plots in Figures 3.1 to 3.3. The other solution is to change

assumptions and not use the normal distribution (but e.g. the gamma distribution) in
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regressions. Centre plots in Figures 3.1 to 3.3 show that thegamma distribution (in-

dicated by the dashed red line) fits the data much better than the normal distribution.

Note that the normal and gamma distribution almost completely overlap for the log

transformed reading times, suggesting that it would be unnecessary to use the gamma

distribution if reading times are log transformed. We can also make the same argument

more formally: In the literature (Coolican, 2004, p. 292), acommon rule of thumb for

deciding whether a distribution seriously differs from thenormal distribution is by

checking whether the skew of a distribution is significantlydifferent from 0. The skew

of a distribution is calculated asskew=
∑y−ȳ

n

(
√

s2)
3 wheren is the number of data points and

√
s2 is the standard deviation. The skew is then tested for significance of being differ-

ent from 0 by dividing it by its standard error. The skew of first fixation times is 1.37,

which corresponds to t-value 3.17 and is significantly different from zero. On the other

hand, the skew of log-transformed first fixation times is−0.66, with t-value−1.5 and

is thus not significantly different from 0. This indicates that log transformed reading

times would not violate the assumption of a normally distributed response variable in

a regression model. We will return to this issue in more detail in Section 3.2.

¿From the plots in Figures 3.1 to 3.3, it is also evident that tails become heav-

ier and heavier from first pass to total reading time. This is due to the aggregation

of multiple fixations. As we will discuss in Section 3.2, the variance in the reading

time data therefore also increases with larger means. This phenomenon is known as

heteroscedasticity.
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Figure 3.1: Distribution of First Fixation Durations
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Distribution of First Pass Durations

First Pass Durations

F
re

qu
en

cy

0 200 400 600 800 1000

0
50

00
0

10
00

00
15

00
00

20
00

00

normal distribution
gamma distribution

Distribution of non−zero First Pass Duration

First Pass Durations

F
re

qu
en

cy

0 200 400 600 800 1000

0
50

00
10

00
0

15
00

0

normal distribution
gamma distribution

Distribution of log non−zero First Pass Duration

log First Pass Durations

F
re

qu
en

cy

3 4 5 6 7

0
50

00
10

00
0

20
00

0
30

00
0

normal distribution
gamma distribution

Figure 3.2: Distribution of First Pass Durations



3.1. The Dundee Corpus 37
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3.1.1.2 Skipping, Refixations and Regressions

Skipping probability is 45% for first pass reading in the Dundee corpus. This rate is

higher than previously reported – figures in the literature talk about a bit more than one

third of the words being skipped in first pass reading (Brysbaert and Vitu, 1998). This

difference can possibly be attributed to the newspaper texttype, and possibly the eye-

tracker and post-processing. Figure 3.4 shows a histogram of the number of fixations.

Fixating exactly once is the most frequent event, with the probability of more fixations

dropping quickly (the distribution is log-linear). Refixations as shown in the left-hand

diagram comprise both multiple fixations on the same word during a single pass and

regressions back onto a word.
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Figure 3.4: Distribution of Number of Fixations per Word and Number of Regressions

onto a Word.

The probability of regressions out from a word in the Dundee Corpus is similar

to the rates that have been previously reported in the literature, where people found

that about 10% of saccades were directed to the left. In the Dundee Corpus, we find

backward saccades in about 12.5% of all fixations, but these comprise leftward sac-

cades that stay within the same word. The proportion of regressions leaving the word

to the left is 10.8%, which corresponds to previously reported rates. This regression

rate means that about 5% of all words (which are not at the end or beginning of a line)

are the target of a regression, which corresponds to 8.3% of all fixated words. Figure
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3.5 shows a histogram of regressions. The scale is log-linear, this means that most

words are not source of a regression, about 22,000 words are the source of exactly one

regression, 781 are the source of two regressions etc.
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Figure 3.5: Distribution of Number of Regressions out per Word

3.1.1.3 Track Loss

The rate of track losses is unfortunately quite high in the corpus. We define a track

loss as a sequence of four adjacent words that are not fixated.Out of the approx. half

a million tracked words (50,000 words× 10 participants), 7.3% of the data points

are invalid due to track loss. Regions of track loss are excluded from all regression

analyses and statistics calculated for this thesis, since the large proportion of track loss

risks to distort the data substantially, in particular for estimating skipping and refixation

probabilities.

3.1.1.4 Inter-subject Variability

One disadvantage of the Dundee Corpus is that it was only readby 10 subjects. Figure

3.6 shows six box-and-whisker diagrams that display the differences in reading be-

haviour of the 10 subjects. The plots in the first column show the mean and variation

in first fixation duration, first pass duration and total reading time for the 10 subjects;

the second column shows a zoomed-in version of the corresponding plots in the first

column. All of these plots refer to fixated words only. The height of the boxes in-

dicates the first and third quartile of the data points. The length of the whiskers are
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calculated from the inter-quartile-range (IRQ), which is the difference between the

first and the third quartile. The whiskers are then defined as reaching 1.5×IRQ from

the lower quartile and 1.5×IRQ from the upper quartile. Any points outside this span

are traditionally regarded as outliers.

There is a substantial amount of variation both within and between subjects:

Within-subject variance is evident through the large number of “outliers”, i.e. points

that are above or below the whiskers. Between-subject variance can be better seen in

the zoomed-in versions of the plots in the right-hand column, the notches around the

mean are quite tight and only partially overlap, which meansthat the subjects have

different reading behaviours. (If the notches of two plots do not overlap this is strong

evidence that the two medians differ (Chambers et al., 1983,p. 62).) For example, we

can see from Figure 3.6 that subject “sg” exhibits more variation in first fixation dura-

tions than the other subjects, and subjects “sg” and “sc” have shortest fixation times,

while the fixation times of subject “sb” are longest among theparticipants.

See also the left-hand side of Figure 3.7 for differences in participants’ average

skipping probability per word, number of fixations per word and the probability that

a word in the corpus is the source of a regressions. The right-hand side figures depict

first pass launch distances3 (all data points and zoomed in around the means). We can

see that subject “sg” (the one with short fixation times) skips words least often (only 3

out of 10 words are skipped) and has the highest fixation and regression rates (above

1 in 10 words) among the participants, while “se” skips 45% ofwords, and has a low

fixation and regression rate. Reader “sa” and “se” make the longest saccades, which

corresponds to the finding that they have the smallest numberof average fixations on a

word and largest skipping probabilities.

The observed differences in reading behaviours between subjects are expected. In

practice, this illustrates why it is important in our studies to model subjects as a random

effect in regression models.

3All launch distances have negative values, because only those from first pass reading are shown,
which by definition only count as first pass if there has not yetbeen a fixation to the right of the word.
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Figure 3.6: Variation in Reading Times across the 10 participants who read the Dundee

Corpus.
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Dundee Corpus.
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3.1.2 Distributions for Low-Level Variables

The distribution of low-level variables which we discuss inthis section follows the

expected distributions which have also been found for othereye-tracking experiments.

3.1.2.1 Fixation Landing Position and Launch Distance

Figure 3.8 shows the distributions of fixation landing positions and launch distances in

the corpus. The plotted fixation landing positions are not normalised for word length

here, hence the strong skew. The small bar at landing position −1 is due to the fact

that this plot shows landing positions on words and not on what’s called an object in

the terminology of the corpus: An object is a word plus its punctuation. Thus, it can

happen that the fixation lands e.g. on quotes before a word, but since there is no space

in-between the word and the punctuation, they are counted asone object, leading to

possible negative fixation positions for words.

Launch distance is the distance from the current landing position to the preceding

one. Launch distances have a peak at about−8 characters, which is the median launch

distance for most subjects (see Figure 3.7). The unexpectedly high number of launch

distances with length zero is an artefact in the data: the first fixation on a new screen is

assigned launch distance 0 in the Dundee Corpus. The distribution of launch distances

furthermore also exhibits a skew to the left. This can be explained by the fact that

words toward the beginning of the line cannot possibly have launch distances beyond

the number of characters between them and the beginning of the line.
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in the Dundee Corpus.
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3.1.2.2 The IOVP effect

A well-known effect is the inverse optimal viewing position(IOVP) effect (Vitu et al.,

2001), which refers to the fact that fixations at the beginning or end of a word are

shorter than fixations on the middle of a word. In the Dundee Corpus, we also find clear

evidence of the IOVP effect, i.e. that fixation durations arelonger when the fixation

lands at the middle of a word. Figure 3.9 plots the fixation durations against the landing

positions, conditioned on the length of the word, that is allwords with a certain length

are grouped together. For example, the plot in the first column of the third row in the

figure shows fixation durations for all words of length 8 (the bottom left plot shows

all words of length 1, the one on its right all words of length 2and so on). Fixation

durations were longer when the fixation landed on the 4th or 5th character of the word

than when they landed on the first or last character of the word. This pattern is pretty

stable for words up to length 13. After that, the pattern becomes less regular due to the

low number of observations.

Interestingly, variance seems to be pretty much constant across the fixation posi-

tions, thus not supporting the hypothesis that the IOVP effect would be an artefact

due to fixations on the beginning and end of a word being eithervery long (because it

is difficult to see the word) or very short because of immediate refixations to a more

optimal position, which was proposed by Engbert et al. (2005).

3.1.2.3 Word Length

Word length is an established influencing factor of fixation durations. The longer the

word, the longer the fixations, and the smaller the probability that a word is skipped.

The distribution of word lengths in the Dundee corpus is shown in the first plot in

Figure 3.10. The plot below it shows the average numbers of fixations for the different

word lengths. The number of fixations increases linearly with word length. Skipping

probability decreases exponentially with increasing wordlength, as depicted in the

bottom left plot. Words with more than 15 characters are virtually never skipped; and

even for words with more than 6 letters, skipping probability falls below 10%. The

plots in the right column of Figure 3.10 show the main effect of word length on reading

time. There is a almost no effect in first fixation times, and a very large effect in first

pass reading time and total reading time, which can be explained by the linear increase

of refixation probability with increasing length. The plotsalso show that variance in

fixation durations increases substantially with word length.
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Figure 3.10: The influence of word length.
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3.1.2.4 Word Frequency

The frequency of a word also has a strong influence on fixation durations. The more

frequent a word, the shorter the fixation durations. In this work, we use frequency

estimates from the British National Corpus (BNC), after stripping off punctuation.

Their distribution is shown in the first histogram in Figure 3.11. The distribution is

zipfian and follows expectations: there are some very frequent words, many frequent

words and a long tail of infrequent words. Note the unexpectedly high number of

words with log10 frequency per million words smaller than−0.5, which we are going

to have a closer look at below.

The second histogram in Figure 3.11 shows the distribution of the frequency of

words in the corpus based on frequencies in the Dundee corpusitself, it can thus be

regarded as a local text frequency. Importantly, this distribution looks very different

from the BNC-based estimate, hugely overestimating the proportion of rare words.

Therefore it is important to estimate frequencies from a larger resource.
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Figure 3.11: The distributions of frequency estimated from the British National Corpus

and the Dundee Corpus itself. Log word frequencies in from the BNC were normalised

for occurrences in a million and log transformed with log10. The local frequencies are

also log10 transformed, but are scaled for number of occurrences against total number

of words in the corpus.

Coming back to the unexpectedly high number of very rare words in the left sub-

figure of Figure 3.11, there are two possible explanations for the large number of very

infrequent words. Firstly, some of the words in this class may have been assigned
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inappropriately low frequencies. This can for example be the case for numbers and

compounds. A second possibility is that these are words which are specific to the top-

ics of the text that they occur in, for example if the newspaper article talks about some

very rare species of animal, or used some acronyms that are introduced in the text and

would not occur in the BNC. The first case is a more severe problem, as the second

problem could be fixed by also using local text frequency as a predictor in regressions.

Figure 3.12 gives some insight into the first problem category. In the top left hand

plot, we can see that the variation in word length is very large for words in the lowest

frequency bin. We would normally expect a monotone relationship between word

length and word frequency, with frequent words being shorter than infrequent words.

Similarly, infrequent words from the most infrequent classshould be skipped least

often and receive most fixations. But this is not the case, as the second and third plot

in the left column show. So let’s try what happens if we exclude from the analysis

all words that contain digits, special symbols (like ‘$’, hyphens) or contain several

capital letters. The variation in word length of rare words decreases considerably, and

both skipping probability and fixation numbers become monotonous functions, with

the rare words skipped least often and fixated (and regressedto) most often (see plots

in the right column of Figure 3.12).

As can be seen in plots 3.13(a) and (b), leaving these data points out also has the

corresponding effect on the distribution of reading times.When average fixation dura-

tions are plotted for each word frequency class, rare words on average receive shorter

fixations than would be expected given their frequency (see top row plots in subfigures

(a) and (b) of Figure 3.13). This effect is removed when wordswith digits or special

characters and abbreviations are removed from the data set.The question is then how

to handle these data points. On the one hand, they could be left in and possibly be

explained by an interaction between word frequency and wordlength. The other solu-

tion is to either leave them out of the regression analyses, or to change their frequency

assignment. For instance, a psycholinguistic reason for changing the frequency as-

signment of digits would be that they are probably considered as a class of signs in the

human processor and therefore should be annotated with their class frequency. Com-

pounds with hyphens on the other hand should not be annotatedwith the frequency

for the whole compound, as there is evidence in the literature on compound reading

that the reading durations of compounds are primarily dependent on the frequency of

the first part of the compound (Juhasz et al. (2003)). The studies reported in this thesis

exclude words that contain digits, special characters or several upper case letters.
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Figure 3.12: The first column shows word length distributions, skipping probability and

numbers of fixation on a word for words of different frequency classes. The second

column matches the plots from the first column, but the data set of the second column

excludes all words with symbols that are not characters, such as numbers, punctuation,

compounds with a hyphen or special signs.
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Figure 3.13: The distributions of reading times for different word frequencies. Plots in

the first row show distributions the complete data set, while plots in the second row

exclude all words containing digits, special symbols or several capital letters. The plots

in the second column zoom in on the region around the median durations of the data

from the corresponding left column plots.
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Figures 3.13(a) and (b) also show the main effect of frequency on the reading mea-

sures, which confirms the expectation that more frequent words are read faster than

less frequent ones, in particular when only considering words which contain nothing

but characters and no special signs.

3.1.2.5 Transitional Probabilities

The forward transitional probability of a word is the conditional probability of word

wn given wordwn−1. We estimated these probabilities from the BNC using the CMU-

Cambridge Statistical Language Modelling Toolkit (Clarkson and Rosenfeld, 1997).

Transitional probabilities have been shown to influence fixation durations. There are

two reasons for why forward transitional probabilities canbe expected to influence

reading: the first reason is rather low-level, saying that two words with high transitional

probability look visually familiar and are therefore easy to read because they often

occur together. The second reason is that these word bigramsactually capture the

predictability of a word given the last word, and thus also capture some of the linguistic

structure.

The first plot of Figure 3.14 shows the distribution of log forward transitional

probabilities (FTP) in the corpus. FTPs were estimated fromthe BNC, after strip-

ping any punctuation (his makes the distribution much smoother and helps to alleviate

data sparseness problems). The top right plot shows how FTPsare correlated with

the number of fixations on a word. The relationship is log-linear with the number of

fixations increasing the less predictable a word is given theprevious word. The main

effect of transitional probabilities can be read from the bottom four plots in Figure

3.14, indicating that reading times are the longer for less predictable words.

It is also informative to look at the interaction between unigram frequencies and

forward transitional probabilities, shown in Figure 3.15.The relationship is very strong

and mainly linear, with words with higher frequency also having high transitional prob-

abilities. An exception is the cloud of points with transitional probabilities between 0

and−2.5, where the corresponding unigram probabilities seem to bedistributed all

over the place, instead of having high frequencies. In particular, almost all words with

a unigram probability smaller than zero seem to be in this cloud. These are cases where

the current word has not been seen (or has not been seen often often enough; there’s

a frequency cut-off of 65,000 words for the vocabulary size)in the corpus. For such

cases, smoothing (i.e. some of the probability mass is takenaway from observed events

and reserved for unseen events) is applied: we use the transitional probability of see-
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Figure 3.14: Distribution of forward transitional probabilities in the corpus and their main

effect on reading measures.
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Figure 3.15: This plot shows the correlation between log frequencies and log transitional

probabilities for the Dundee Corpus.

ing a generic “unknown” word given the previous word (estimated from replacing rare

words in the training corpus by a label “unknown”). With thispractice, the probability

of seeing an unknown word following the word “Mr” is for example much more likely

than seeing an unknown word following “but”. There are of course also cases where

both the current and the previous word are unknown. The smoothed log probability for

these cases is−1.05 (again, this was estimated from the training corpus by replacing

rare words with the “unknown” label); in the plot this corresponds to the right hand

dotted line at−1.05 that is parallel to the y-axis.

The horizontal line of points at frequency−1 corresponds to unknown words, since

they are assigned this value as their smoothed probability.These words still have dif-

ferent FTPs because even when a cut-off occurs in the unigramfrequency estimation,

it may not be below the cut-off threshold for the bigram estimation. Commonly occur-

ring examples for such cases are the estimation of digits following the wordaround.

Finally, the horizontal clusters of dots with identical frequencies between log frequency

values of 5 and 6 are due to multiple occurrences of common words, whose transitional

probability differs according to their context.

We also calculated backward transitional probabilities (BTP) from the BNC. BTPs

estimate the probability of the current word given the following word. The idea here

is that backward transitional probabilities are thought tocapture preview effects. The

distribution is much more peaked than the distribution for forward transitional prob-
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Figure 3.16: Distribution of backward transitional probabilities in the corpus and their

main effect on reading measures.

abilities, but shows similar behaviour, with the number of fixations increasing log-

linearly with decreasing transitional probability, and both first fixation durations and

total reading times decreasing with increasing transitional probability. Overall, the

backward transitional probability effect seems to be smaller than the forward transi-

tional probability effect (see Figure 3.16).
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3.1.3 Distribution of Explanatory Variables for Syntactic Process-

ing

This section gives a brief overview of the distribution of the higher-level explanatory

variables in the corpus. There are no full regressions in this section, so effects may be

disguised or covered by other factors.

3.1.3.1 Surprisal

Surprisal was proposed by Hale (2001) as a measure of syntactic sentence processing

difficulty. The Surprisal of a word in a sentential context corresponds to the probability

mass of the analyses that are not consistent with the new word. For a detailed descrip-

tion of Surprisal, see Section 2.2.4 in Chapter 2. Two different versions of Surprisal

were analysed: lexical Surprisal and structural (or unlexicalized) Surprisal. lexical

Surprisal takes into account the probabilities of the grammar rules for non-terminals as

well as the probabilities for terminals, i.e. the probabilities of a word given a POS-tag.

It therefore also captures aspects quite similar to word frequency. Structural Surprisal

on the other hand only takes into account the probabilities of the rules involving non-

terminals.

Lexical Surprisal The top right-hand plot in Figure 3.17 shows a histogram for lex-

ical Surprisal as calculated using the Roark parser. The distribution is similar to the

one for forward transitional probability (but mirrored because Surprisal uses negative

log values). Furthermore, there seems to be a correlation between lexicalized Sur-

prisal and reading measures: More surprising words are fixated more often, and are

fixated for longer according to both first fixation duration, first pass duration (the latter

is not shown in Figure 3.17) and total reading time. However,this effect might be con-

founded with simple lexical frequencies. Therefore, it is necessary to run a multiple

regression in order to factor out these effects, and find out whether Surprisal values

contribute anything to explaining the data above and beyondsimple frequencies.

Structural Surprisal Figures 3.18 and 3.19 show the distribution of two versions of

structural Surprisal from the Roark parser, and their correlation with reading measures.

The data in Figure 3.18 is calculated the same way as lexical Surprisal, but the lexical

probabilities are subtracted, in order to eliminate lexical frequency effects. There still

seems to be a positive correlation between reading measuresand Surprisal, since the
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Figure 3.17: The distribution and main effect on reading measures of lexical Surprisal

as calculated using the Roark parser.
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Figure 3.18: The distribution and main effect on reading measures of structural Sur-

prisal as calculated using the Roark parser, calculating lexicalized probabilities and

subtracting lexical probabilities.
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Figure 3.19: The distribution and main effect on reading measures of structural Sur-

prisal as calculated using the Roark parser, calculation based on POS tag sequences.
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regression lines have a positive gradient.

However, there is no visible effect for the second version ofstructural Surprisal.

This second version differs from the first version in that theprobabilities are estimated

from POS-tag sequences. This means that all information about subcategorization

frames is ignored. This second version seems to capture lessof an effect, if anything,

the regression line in the bottom right plot from Figure 3.19seems to be descending,

which would mean that words would be read faster when they were more surprising.

Note though that little can be derived from such a simple correlation, since none of the

potentially confounding effects have been filtered out.

In our regression models, structural Surprisal using the first method turned out to be

a better predictor of reading times, which is why all future mentions of structural sur-

prisal in this thesis refer to the first version. This result is corroborated by Roark et al.

(2009), who, on a different corpus, found an effect of structural Surprisal using the first

method, but no effect using the second method.

3.1.3.2 Dependency Locality Theory

Another theory for processing difficulty, Dependency Locality Theory (DLT), was pro-

posed by Gibson (1998, 2000). A central notion in DLT isintegration cost, a distance-

based measure of the amount of processing effort required when the head of a phrase

is integrated with its syntactic dependents. Please refer to Chapter 2, Section 2.2.2 for

a detailed account of DLT and its two components, integration cost and storage cost.

Note that in our analysis here, we only show plots for integration cost, because we only

use this component in later experiments. The cause for this is partially that in Gibson

(1998), only the integration cost component is used as an approximation to DLT, and

partially that we did not find storage cost to be a significant predictor of reading times.

The distribution for integration costs is shown in Figure 3.20. It looks quite dif-

ferent from the Surprisal distributions: There is a large number of words with an in-

tegration cost equal to 1, and the number of words with higherintegration cost drops

log-linearly. There is no clear correlation with the numberof fixations, but a positive

gradient for the regression line for first fixation durations. Again, these results have to

be analysed more carefully while taking into account potentially confounding factors.
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Figure 3.20: The distribution and correlation with reading measures of DLT integration

cost based on the dependency parses from the MINIPAR parser.
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3.1.4 Discussion

The main function of this section was to provide an overview of the characteristics of

the Dundee Corpus and introduce the main factors that are known to influence read-

ing times. We saw that the low-level factors behave as we would expect after what

we know from other eye-tracking studies, with typical distributions for launch dis-

tances and landing positions in a word, the IOVP effect and with longer word length

and lower frequency corresponding to longer reading times.An important observa-

tion from analysing frequencies was the influence of digits and acronyms. Such data

points do not usually occur in eye-tracking experiments since experimental materials

are usually purpose-designed and there is no reason for including such items. While

we could see quite strong correlations between the low-level variables and reading

times, such correlations were not as strong for the higher-level syntactic predictors.

This can be considered as a first indication that the explanatory power of syntactic

effects on reading time in naturally occurring data is not asstrong as the influences

from more low-level variables. Because reading times are influenced by many factors,

some of which have a large impact on fixation durations, it is important to account for

these low-level effects before trying to find correlations between more subtle or com-

plex effects and reading times. The following section will discuss linear mixed-effects

models for analysing the Dundee corpus and finding out whether the variables we are

interested in have any explanatory power for the reading times.

3.2 Method: Mixed-Effects Models

There are two types of mixed effects models which we will discuss here: hierarchi-

cal linear mixed effects models (Pinheiro and Bates, 2000),as well as mixed effects

models with crossed random effects (Baayen et al., 2008). Both are a generalisation

of linear regression that allows the inclusion of random factors (such as participants

or items) as well as fixed factors, hence the name “mixed” effect models. The fixed

factors can be discrete (such as whether the previous word was fixated) or continuous

(such as word frequency).

This section first motivates the use of mixed-effects modelsin this work, and then

discusses which specifications within mixed effects modelsshould be used to model

the data best.
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3.2.1 Regression Analysis

In general, regression analysis refers to modelling a response variabley (in our case,

the fixation durations) as a function of one or more explanatory variablesx1..xn (in our

case, length, frequency, landing position, Surprisal value, etc.). In the regression, an

intercepti and one regression coefficientβ1..βn for each of the explanatory variables

is estimated such that the best possible fit with the responsevariable is achieved. The

remaining unexplained variance in the response variable isthe errorε.

y = i +β1 ·x1+β2 ·x2+ · · ·+ ε

Once the intercept and regression coefficients for the explanatory variables have

been estimated, one can be interested in the size of the error, the inverse of which tells

us how much of the data (i.e. which proportion of the variancein the reading times)

can be explained by the explanatory variables. We are here however mainly interested

in whether the explanatory variables we are focusing on (i.e. the syntactic predictors)

are able to explain any of the data above and beyond what can beexplained by the

more low-level explanatory variables. That is, we are looking at whether a regression

coefficient that is found during the regression process is significantly different from

zero, and whether it has the expected polarity (which tells us whether the relationship

between the explanatory variable and the response variableare changing proportionally

or anti-proportionally).

Assumptions for standard regression analyses include:

1. The response variable is normally distributed.

2. The variance of the error is constant across observations(homoscedasticity).

3. The independent variables are error-free.

4. The predictors are linearly independent, i.e. it must notbe possible to express

any predictor as a linear combination of the others.

5. The errors are uncorrelated, that is, the variance-covariance matrix of the errors

is diagonal and each non-zero element is the variance of the error.

Not all of these basic assumptions are fulfilled by the raw reading time data. We

will therefore discuss problematic aspects in the next sections. First, we will look at

how a more normal distribution of the response variable can be achieved. We will
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see that the models suffer a little bit from heteroscedasticity, but that this problem

seems much less of an issue once the distribution of the response variable is close to

a normal distribution. Regarding these two assumptions, Jacqmin-Gadda et al. (2007)

argue that mixed effects models are quite robust to violations of these assumptions.

The third assumption, error-freeness of the independent variables, i.e. that the values

for length, frequency, Surprisal etc. are correct, is not necessarily true either. For some

of the variables, like length, this is trivial, but frequency estimations depend on the

corpus used and the estimates of processing difficulty such as Surprisal depend on

parses from an automatic parser, which will be incorrect a sizable proportion of the

time. However, we can’t do anything against this problem – all the estimates are as

good as possible given our tools. In addition, not all predictors are necessarily linearly

independent of one another. This holds in particular for themore complex syntactic

explanatory variables which may also capture more low-level effects and therefore not

be independent of them. This problem, and how to deal with it,will be discussed in

Section 3.2.3. Finally, we will review different ways of constructing the regression

model, and discuss model selection and outlier removal.

3.2.2 Normal Distribution of the Response Variable

As seen in Figures 3.1 to 3.3, the response variable, readingtime, is not exactly nor-

mally distributed but skew to the right. This non-normalityviolates the first assump-

tion underlying the regression model. A more normal distribution of data points can be

achieved by excluding all data points with zero fixation duration and log-transforming

the reading times.

For the Dundee corpus, the skipping rate is approximately 45% for first fixations

(i.e. 45% of the words are not fixated at first pass reading), and 35% of the words are

never fixated. This means that zero reading times make up a considerable amount of

the data, and therefore have an important influence on regression coefficients. If not

treated separately, these data points increase residual variance in reading time regres-

sions immensely. If one wants to include all data points intoan analysis, it would be

better to use the number of fixations as a response variable, or simply a flag, indicating

whether a word has been fixated or not, and use a logistic regression model.

One way to try to overcome the problems that are due to non-normality of the

reading time data is to use mathematically transformed reading times instead of raw

reading times in the regression. Logarithmically transformed reading times are more
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similar to a normal distribution than the raw values for manyreading time data sets.

For an example, recall Figures 3.1 to 3.3: the histograms show that the reading time

data for all three reading time measures discussed here fit a normal distribution better

when they are logarithmically transformed.

Figures 3.21 a) and b) show the error plots for raw and logarithmically transformed

models for regressing total reading times. In the log model,heteroscedasticity occurs

much less than in the raw reading times model (this can be seenfrom the shapes of the

dots in the first plot of the two figures: While the residuals become larger as fitted val-

ues increase in the plot of raw reading times, there is no suchpattern in the log reading

times plot). In the quantile-quantile plots (bottom left plots of the two subfigures) we

can see that the deviation from the linear line became much smaller (i.e. the data is less

skew).

All of these arguments support the use of log-transformed reading times in regres-

sion models. A disadvantage with this practice is however that model results may be

harder to interpret when the values of the response variableare transformed, which is

harder to justify given claims that mixed-effects models are robust with respect to vio-

lation of normality. Due to this inconclusiveness, we always ran regressions with both

the raw and the logarithmically transformed values. Generally, these models lead to

the same conclusions. We will therefore report results withthe raw reading time data,

for the sake of interpretability. In the literature, peopleoften use raw reading times

and do not transform them logarithmically (logarithmic transformation of explanatory

variables like transitional probabilities or frequencies, however, is very common). It

seems to be generally assumed that transforming the readingtime values would not

have a significant effect on the regression outcome.

Alternatively, the regression model can be specified to assume a different distribu-

tion, which reflects the distribution of the data better. In the case of reading time data,

the gamma distribution would be a good fit, see centre subfigures in Figures 3.1 to 3.3.

However, running the regression models specifying the gamma distribution was not

possible for technical reasons4.

4A practical problem occurred when trying to run regressionsfor a gamma-distributed response
variable using R: it seems like there is a bug in the lmer function of the lme4 package that occurs when
specifying the Gamma family. The regression exits with the error ”mu[i] must be positive”. This error
has been observed by other researchers for this case as well,and reported to developers, but it has not
been fixed as of beginning of August 2010. Alternative implementations of mixed-effect modelling for
gamma distributed data is the glm function, which however does not allow the use of random effects,
and the GenStat package, which turns out to be too slow to be used with large data sets like the one of
interest for the work reported here.
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(a) Model plot for raw reading times.
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(b) Model plot for log reading times.

Figure 3.21: Model inspection with raw vs. log reading times as the response variable.
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3.2.3 Correlation of Explanatory Variables

The underlying mathematical assumptions of regression models include that the ex-

planatory variables be independent (assumption 4). That is, they should not capture

the same effect and hence explain the same part of the variance. However, by the

nature of some of our explanatory variables, this is not the case. For example, word

frequency, forward transitional probability, and lexicalSurprisal all depend on the fre-

quency of a word and therefore capture partly overlapping aspects. Similarly, frequent

words are usually short, while infrequent words tend to be longer etc. Therefore, it is

important to determine whether there is a statistically significant correlation between

different predictors. Table 3.1 shows that there are indeedstrong correlations between

the related predictors.

word freq word prev land launch forw backw lexic ulex

length no freq pos dist trans trans surpr surpr

w-freq -0.70

w-number 0.03 -0.03

prev-freq 0.07 -0.07 0.00

land pos 0.51 0.18 -0.00 -0.06

launch dist -0.03 0.01 0.00 -0.00 -0.00

forw.trans -0.56 0.67 -0.01 -0.04 0.13 0.01

back.trans -0.56 0.67 -0.01 -0.03 0.15 0.01 0.67

lex surpris 0.51 -0.61 0.02 0.01 -0.13 -0.00-0.68 -0.54

ulex surpr -0.04 0.05 -0.02 -0.17 0.02 -0.00 -0.10 0.040.35

integ cost 0.21 -0.28 0.03 0.03 -0.06 0.00 -0.22 -0.28 0.18 -0.07

Table 3.1: Correlations (according to Pearson test) between explanatory variables in

the data set. Values are highlighted for correlations larger than 0.3.

Large correlations between predictors can cause large correlations between the

estimated fixed effects. Such collinearity between fixed effects can lead to unstable

results, where a coefficient estimate jumps around, i.e. it has a positive value in one

model, but a negative one in a very similar model with the collinear predictor removed.

Furthermore, significance estimates can be inflated. This means that coefficients and

significances cannot be trusted for predictors which have large correlations with other

predictors.

Strategies for removing collinearity in the model include centring predictors and
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residualizing predictors against the ones they are correlated with, or expressing pre-

dictors differently. For example, the correlation betweenlanding position on the word

and word length is so strong because the length of the word strongly limits the values

that landing position can possibly take on. Alternatively,the landing position can be

expressed with respect to the word length, for example as theratio landing position
word length . Given

what we know about the IOVP effect, it also makes sense to assume a non-linear rela-

tionship between landing position and reading time. In fact, squared landing position

values lead to a much better model fit, and make sense theoretically, as they model

the shape of the IOVP effect. Correlation between the squared relative word landing

position and word length is reduced to -0.25.

Baayen et al. (2008) also recommends running a kappa test on the predictors. If

there is too much collinearity, the matrix of predictors could become singular, which

would mean that the parameter estimation would be impossible. The kappa test de-

termines the condition number, which estimates the degree to which the matrix is sin-

gular, meaning that there exists a potentially harmful degree of collinearity between

predictors. If we run the kappa test on the variables which according to Table 3.1

show substantial correlation (word length, frequency, lexical Surprisal, structural Sur-

prisal, forward transitional probability and backward transitional probability), we find

that the condition number comes out ask = 15.18. As a guideline, Baayen suggests

that a condition number between 0 and 6 suggests no collinearity, around 15 suggests

medium collinearity and a condition number above 30 indicates potentially harmful

collinearity.

The correlations between our predictors are hence slightlytoo high, so we will ex-

plore whether we can reduce them by residualizing. We residualize by running a linear

regression between the predictor we want to residualize andthe predictors that it is

correlated with. If we residualize word length against wordfrequency, forward transi-

tional probabilities against frequency, backward transitional probabilities against both

frequency and forward transitional probabilities, and lexical Surprisal against word

frequency, forward transitional probabilities and structural Surprisal, correlations be-

tween the resulting residualized predictors are removed, see Table 3.2.

Residualization of predictors however changes the interpretation of coefficients in

the regression model: the model is for example not estimating the effect of word length

on reading times, but the part of the word length effect that is independent of word

frequency.

Finally, it is also important to keep in mind that we do not necessarily have to re-
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residual residual residual residual

word word forward backward lexical

length frequency trans prob trans prob surprisal

word frequency 0.01

resid forward tp -0.16 -0.03

resid backward tp -0.11 -0.02 0.04

resid lex surpris 0.11 0.05 -0.03 -0.11

structural surprisal 0.00 0.05 -0.19 0.08 -0.00

Table 3.2: Correlations (according to Pearson test) between residualized explanatory

variables.

move collinearity between variables which we are not interested in. As long as they

are not correlated with the variables that we are interestedin, they will not change the

coefficient and significance estimates of the predictor of interest. If we are only inter-

ested in a subset of the predictors, a safe and conservative method is to first estimate

a model including all variables that we are not interested in, and run a second model

with the residuals from the first model as the response variable. This way, there are

no possible correlation effects between explanatory variables in the first and second

model.

3.2.4 Dealing with Repeated Measures

Repeated measures refer to situations where measurements are collected under the

same conditions multiple times. For our data, each subject read the whole corpus, and

thus provided many data points. It can therefore be expectedthat the measurements

taken from the same subject are related in some way, thus violating the assumption

that errors are independent. Indeed, we have shown in Section 3.1.1.4 that the length

of fixation durations, saccade sizes etc. depend on the subject, and that some subjects

show stronger effects of some characteristics of the words than others.

Lorch and Myers (1990) compare three ways of dealing with repeated measures

data. The first method simply averages over subjects so that there is just one data point

for each item. This is also done in the traditional quasi-F testing where regressions

are both run on the aggregated subject data points and on aggregated item data points.

Effects are then only accepted to be significant if significance is reached in both tests.

Lorch and Myers (1990) argue that averaging over subjects isnot good practice for
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regressing reading times: When subjects are averaged out, the variability associated

with subjects is eliminated, and subjects are in fact treated as a fixed effect. Also, pa-

rameters such as landing position and launch distance have been shown to significantly

influence reading times but are not available when subjects are averaged out. When us-

ing this method, Type 1 errors5 get inflated. However, the mathematical problem of a

non-normally-distributed response variable is less relevant in this case, because the av-

eraging of the reading times causes the data to be more similar to a normal distribution

(cf. Figure 3.22, as opposed to the more skewed distributionin Figure 3.3). Therefore,

the models based on this data could be argued to be mathematically more reliable. A

disadvantage of averaging over subjects is that we lose somepredictors specific to the

actual reading of that text by a specific human.

Figure 3.22: The distribution of total reading times when averaged across subjects.

Figure 3.23 shows other ways of model inspection for the regression with averaged

subjects. The upper two plots show the distribution of residuals against fitted values.

Ideally, there should be no pattern in the data, in particular, the data points should

not lie within a triangular shape. The bottom left subfigure shows a quantile-quantile

plot. If the points deviate from the straight line, this means that the data is skew (in

the case of reading time data, it is skew to the right, and we therefore see a deviation

from the linear line towards the top). Finally, the last subfigure in Figure 3.23 shows

the leverage of the data points. From this plot one can read the influence of specific

data points on the parameter estimates. The most influentialpoints are those that have

5A Type 1 error is committed if we reject the null hypothesis when it is true, and Type 2 error is
committed if we accept the null hypothesis when it is false.
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Figure 3.23: Error plot for regression of averaged total reading times.

a large Cook’s distance. When a point is very influential, oneshould try leaving this

point out of the model to see whether the estimates change substantially or not. We’ll

get back to outlier removal in the next section.

An alternative method is to run the regressions on the individual observations and to

include the subject variable into the regression (effectively treating it as a fixed effect).

But, as Lorch and Myers (1990) point out, this method also leads to inflated Type 1

error (although to a lesser extent than when averaging over subjects). Lorch and Myers

(1990) therefore recommend to run separate regressions foreach subject. However,

Richter (2006) pointed out that there are some problems withthe separate regressions

method, because the data set is split up into subsets and is thus less reliable because

of smaller data set size. Furthermore, variabilities of theseparate regression estimates

are not taken into account when running the t-test on the regression coefficients, which

can also lead to biased results. Richter (2006) instead recommends to use hierarchical

linear models.

In hierarchical mixed effects models, all data points are entered into the same re-

gression equation, which has two (or more) layers. Participants were entered as a sep-

arate level from the items in the model, following Richter’s(2006) recommendations

for the treatment of reading time data (this is a generalisation of an approach initially

proposed by Lorch and Myers (1990)). However, such a design might be slightly better
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suited for situations where the nesting between random effects is inherent in the data,

e.g. in some experiment where children would be nested underschools, which would

in turn be nested under cities.

Mixed effect models with crossed subject and item random effects, as explained in

Baayen et al. (2008) have recently become the new standard inthe field. The differ-

ence between these models and hierarchical models is that hierarchical models assume

a nesting between subjects and items effects, whereas Baayen’s models “cross” sub-

jects and items effects. In such mixed effects models with crossed random effects,

separate intercepts and slopes are estimated for each item and each subject, if neces-

sary (i.e. the model can of course be simplified if slopes do not help to explain the

data). This means that the model can then determine whether e.g. there is a significant

effect of word length on reading time which is common to all subjects, i.e. the random

slopes give the model a way to adapt estimates to each subject, thus allowing for a

situation where one subject’s reading times are effected more strongly by word length

than another subject’s reading times. This work makes use ofthe lmer implementa-

tion of mixed effects models, which is part of the lme4 package (Baayen et al., 2008;

Bates and Sarkar, 2007).

For our data, random effects under item were not estimated for several reasons.

Firstly, estimating a separate intercept and slopes for each item (i.e. for each word

in the corpus) is very likely to massively over-fit the data. Each word was only read

by 10 subjects, and many of these data points are not present in the model due to

track loss and skipping. Therefore, there simply aren’t enough data points for sensibly

estimating an intercept and slopes under item. Furthermore, the Dundee Corpus is

different from typical psycholinguistic materials in thatsentences were not constructed

to test a specific effect. Therefore, the text in the Dundee Corpus corresponds more

to a representative sample of the English language than typical experimental materials

do. Finally, it is in practice not possible to include randomintercepts and slopes for

both subjects and items on our large data set because of memory restrictions, non-

convergence of the model and extensively long run times. In particular, the model

cannot estimate more than two slopes under subject if even just the intercept for item is

included. We consider the slopes under subject to have a better theoretically motivated

explanatory (and less over-fitting) effect on the data, and therefore include slopes under

subject instead of random effects under item in the regression analyses reported in this

thesis.

Compared to traditional quasi-F statistic analysis, mixedeffects models are more
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robust and conservative, which is why they should be preferred. However, for very

small data sets, the quasi-F test can be more powerful, i.e. detect an effect more eas-

ily than a mixed effects model. This thesis analyses a very large data set, and thus

focuses on the use of mixed effects models. Estimating random slopes for each sub-

ject makes model estimation very slow, and can lead to non-convergence or the model

running out of memory if there is a large number of predictorsand interactions, which

are also included in the model as random effects. We found that it is too computation-

ally expensive on the Dundee data set to include interactions as random slopes under

subjects.

3.2.5 Outlier Removal

Outliers are points that are very atypical compared to the rest of the data. The problem

with them is that they can have a strong influence on model estimations and lead to

exaggerated or wrong estimates that don’t reflect the patterns in the rest of the data

set. We remove all data points that have too high leverage. Leverage is estimated as

the difference in model estimations with and without each ofthe data points, called

the difference in fits (dffits). When there’s a large difference in estimations by just

removing a single point, there is reason to consider that point as an outlier. Consider

for example the plot in Figure 3.24 which plots the difference in fits for each point of a

model for the Dundee Corpus. Baayen (2008) suggests to scalethese differences in fit

and then use a cutoff at 2.5 or 3 for removing points with high leverage, which is what

we did for all regression models presented in this thesis.

3.2.6 Model Selection

Model selection refers to the process of choosing the model that best explains the data,

i.e. choosing among the explanatory variables those that make a significant contribu-

tion to explaining the variance seen in the response variable.

A complete model would include all explanatory variables, all multi-way interac-

tions between them6 and all random slopes of explanatory variables under all random

effects, including also random slopes for interactions.

One method to get to the model that best explains the data is tostep-by-step remove

6Interactions between variables are when one variable modulates the effect of another explanatory
variable. For example, we might find that beyond the main effects of word length and word frequency,
frequency effects are stronger for short words than for longwords.
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Figure 3.24: Leverage of all data points for a model of low-level predictors on the

Dundee Corpus data.

from the complete model all predictors that do not significantly improve model fit,

starting with multi-way interactions and ending with the main predictors. Here, it is

important not to remove any main effect that is also a component in an interaction.

Alternatively, one can use additive model building, starting with an empty model and

step-by-step adding predictors if they improve model fit significantly.

Different versions of models can thereby be compared by calculating the log like-

lihood, degrees of freedom, Bayesian Information Criterion (BIC) and the Akaike In-

formation Criterion (AIC) for each of the models.χ2 is used to decide whether one

model is significantly different from the other. The BIC and AIC scores combine both

model fit and degrees of freedom of the model to calculate scores, with BIC penalising

additional degrees of freedom more strongly than AIC. A model with more predictors

will usually always fit the data better than one with less predictors, therefore, it has to

be determined whether it is worthwhile to include the predictor, given the amount of

the gain in model fit. So larger log likelihood is better than lower log likelihood scores,

fewer degrees of freedom are better than many degrees of freedom, and lower AIC and

BIC scores are better than higher ones. If two models are not significantly different,

the one with fewer degrees of freedom is to be chosen, and if they are significantly

different, the one with lower AIC (usually also coinciding with lower BIC) is chosen.

A mixed strategy for model selection was used, because it is impossible to estimate

the complete model for our data set due to failing convergence and excessively long

run times. For the models reported in this thesis, we startedwith a model including
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all predictors as main effects, then added all possible binary interactions (but no other

multi-way interactions) and all slopes under subject (we tested the model building

also the other way around, adding slopes first and then interactions, but got identical

results). Then any main factors that did not significantly contribute to the model were

removed step-by-step (except, of course, for those main factors that are part of an

significantly contributing interaction or slope). The finalmodel contains only main

effects, interactions and slopes that were significant contributors to the model.

3.2.7 Discussion

This section provided background about multiple linear regression models with fixed

and random effects. We have discussed how to avoid violatingassumptions of re-

gression models by changing the distribution of the response variable and removing

correlation between explanatory variables, and have motivated decisions of how these

issues are dealt with in this thesis. Automatic methods for removing outliers from

the analysis have also been motivated and discussed. Furthermore, we have given an

overview of how to deal with repeated measures and concludedthat a model with a

by-subject random intercept and by-subject slopes are the best solution for our data.

We would like to take the last point up again for reflection. Inthe sections showing

the distributions of fixation durations in the Dundee Corpus, and the discussion about

the assumed normal distribution of the data, we have concluded that skipped words

should be excluded from the data. This does however mean thatshort and frequent

words, which are often skipped, are more difficult from the point of view of the model

than they would be if skipping was factored in. It seems worthwhile bearing in mind

that the difficulty of a word is also reflected in the skipping rate. As we have said, it is

not possible to include the raw skipped values in the regression, and averaging across

subjects, which would take care of the problem of combining fixation durations and

skipped words, was ruled out based on argumentation in (Lorch and Myers, 1990).

There is no obvious perfect solution to this problem. In fact, the problem seems

to lie at a deeper level: we should not try to directly fit difficulty estimates to reading

times. Instead, there is an intermediary step which which weare missing: a model

which translates processing difficulty into reading times,accounting for skipping of

short frequent words even if they are unexpected, and spill-over effects on following

words. Explanatory power of the explanatory variables would most likely be improved

a lot this way. However, such a model is outside the scope of this PhD thesis.
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3.3 Conclusions

This chapter has discussed the data set used for the experiments in this PhD, the

Dundee Corpus, and the method for analysing it, linear mixed-effects models. We

were able to show that the reading characteristics observedin the Dundee Corpus data

are in line with previous findings. The data needs some more cleaning up than would

be the case in a typical lab experiment due to the materials not being controlled and

containing e.g. numbers, abbreviations and special characters.

The regression models reported in Chapters 4, 5 and 9.2 follow practices concern-

ing residualization of explanatory variables, repeated measures treatment, outlier re-

moval and model selection as discussed in the second part of this chapter. While we

ran models on both log-transformed and raw reading times forall regression analyses

conducted in this work, this thesis will usually report models on raw reading times, as

results were equivalent, but raw reading times are easier tointerpret.





Chapter 4

Case Study: Processing Difficulty in

Naturally Occurring Relative Clauses

The goal in this chapter is to provide a proof of concept for using the Dundee corpus

as a resource for evaluating theories for syntactic processing. It focuses on a very

specific and relatively frequent structure, which has been investigated and discussed

extensively in the literature, (e.g., King and Just, 1991):relative clauses. Being able to

find the well-established results in the corpus is a good indication that it is possible to

use the Dundee corpus as a complementary resource for testing theories, in addition to

experimental test suites.

Early results of the work reported in this chapter were presented at CUNY 2007

and published at CogSci (Demberg and Keller, 2007).

4.1 Empirical Findings in Relative Clause Processing

Experimental results show that English subject relative clauses (SRCs) as in (1-a) are

easier to process than object relative clauses (ORCs) as in (1-b). Experimentally, this

difficulty is evidenced by the fact that reading times on region R1 in the SRC are lower

than reading times for the corresponding region R2 in the ORC(King and Just, 1991),

see Figure 4.1 for the original experimental results, obtained via self-paced reading.

The SRC / ORC effect has also been found in a range of other studies to be a reliable

effect in English (Gordon et al., 2001; Traxler et al., 2002)as well as other languages

(Mak et al., 2002; Friederici et al., 1998). In recent work, Staub (2010) has shown

that object relative clauses cause larger difficulty than subject relative clauses both on

the embedded verb region (attackedin sentences from Example (1)) and on the NP

77
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region in the relative clause (the senator). In this experiment, we however focus on the

embedded verb region only.

(1) a. The reporter who[attacked]R1 the senator admitted the error.

b. The reporter who the senator[attacked]R2 admitted the error.
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Figure 4.1: Results from the relative clause self-paced reading time experiment by

King and Just (1991).

The size of the effect has been shown to also depend on factorsrelated to the

ORC noun phrase, e.g. animacy, semantic similarity to otherentities in the context and

topicality (Gennari and MacDonald, 2008; Gordon et al., 2004; Traxler et al., 2005;

Reali and Christiansen, 2007).

The difference in processing difficulty on the embedded verbregion in subject

vs. object relative clauses cannot be explained by lexical factors (as the words in the

two conditions are exactly the same) or higher syntactic ambiguity in the ORC con-

dition (in fact, there is less ambiguity at the ORC embedded verb than at the SRC

embedded verb). Findings such as these are explained by processing theories that

capture the complexity involved in computing the syntacticdependencies between the

words in a sentence. The most prominent such theory is Dependency Locality Theory

(DLT), proposed by Gibson (1998, 2000) and explained in moredetail in Section 2.2.2.

DLT not only captures the SRC / ORC asymmetry while taking into account a notion

of topicality (by counting discourse referents but not personal pronouns for calculat-

ing integration cost), but also accounts for a wide range of other complexity results,

including processing overload phenomena such as centre embedding and cross-serial

dependencies.
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While DLT has been validated against a large range of experimental results, it has

not been shown previous to this work that it can also successfully model complexity

phenomena in naturally occurring text. Here we aim to test DLT’s predictions on

naturally occurring subject and object relative clauses rather than for isolated example

sentences manually constructed by psycholinguists.

4.2 Experiment on RC Embedded Verb

4.2.1 Materials

For our data analysis, we used relative clauses from the Dundee Corpus

(Kennedy and Pynte, 2005), see Section 3.1 for a detailed presentation and discussion

of the corpus. We extracted all relative clauses headed bywho, whom, which, where,

that, and by PPs such asfor which, and manually checked all sentences for whether

they were indeed instances of relative clauses. We ended up with 502 relative clauses

which we manually annotated for the position of the relativeclause verbal region and

the integration cost incurred at the RC verb. In relative clauses with auxiliaries or

modals, we extracted the main verb of the relative clause, because this is where in-

tegration cost occurs according to DLT. In the case of predicative constructions, we

extracted the inflected form of the predicative verbbe1. The data contains about 25%

object relative clauses and 75% subject relative clauses.

Reading times were computed for the different measures (first fixation time, first

pass time, total reading time), as well as the total number offixations in regions R1 and

R2 for each item and subject. Linear mixed effects models using the reading measures

as a dependent variable included only data points with fixation duration> 0 in the

model, due to the reasons discussed in Section 3.1.1. There were 3046 data points for

the total reading time analysis, 2608 data points for first fixation duration and first pass

duration and 4056 data points in the regression estimating number of fixations.

4.2.2 Regression Procedure

The predictor we are most interested in for the study of processing difficulty in rela-

tive clauses is DLT integration cost (for a definition, see Section 2.2.2). However, as

discussed in Section 2.1.2, it is well-known that reading times in eye-tracking data are

1Regression results turned out to be equivalent with and without these predicative items. These
forms were often cliticised (who’ll, he’s) and were therefore unlikely to receive any fixation).
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influenced not only by high-level, syntactic variables but also by a number of low-level

variables that have to do with the physiology of reading, andlower level linguistic pro-

cessing effects such as lexical access etc. In this study, weincluded the predictors

listed in Table 4.1. All of these predictors were centred (i.e. the mean for a factor was

subtracted from each value) to reduce collinearity.

predictor value range description

INTEGRATIONCOST -1.44 – 5.56 manually annotated integration cost

RELATIVE CLAUSETYPE SRC, ORC

RELATIVE PRONOUN that, who(m),

which, where,

PREP which

relativizer of the relative clause;PREP which

summarizes prepositions followed bywhich,

such asof which

RELATIVIZERTYPE WHNP, WHPP,

WHADVP

alternative coding for RELATIVE PRONOUN

that groupsthat, which, who(m)in WHNP

BIGRAMPROBABILITY -3.3 – 2.74 logarithmic; estimated from the BNC

LEXICAL SURPRISAL -7.4 – 13.6 estimated from Roark (2001a)

STRUCTURALSURPRISAL -2.1 – 9.3 estimated from Roark (2001a)

WORDLENGTH -3.29 – 6.7 in characters

SENTENCEPOSITION -15.6 – 45.4 the position of the word within the sentence

(counted in words)

WORDFREQUENCY -3.6 – 1.9 logarithmic, estimated from the BNC

PREVFIX yes, no the flag marking whether the previous word

had been fixated

FREQOFPREV -5.3 – 1.1 the frequency of the previous word to model

spill-over effects

LAUNCHDISTANCE -2.0 – 8.7 difference from current to previous landing po-

sition in letters

LANDINGPOSITION 0.00003 – 0.5 squared word landing position relative to word

length to model the IOVP effect

Table 4.1: Predictors for the linear mixed effects models for reading times on the RC

verb, and their value ranges after centring. Frequency estimates are per million words.

For each of the continuous dependent variables (total reading time, first fixation du-

ration, first pass duration), we ran separate mixed effect linear regressions that included

the independent variables, interactions and random slopesunder subject, as described

in Section 3.2. Final models were determined using the modelselection techniques

explained in Section 3.2.6.
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4.3 Results

4.3.1 Total Reading Time

The distribution of total reading times in the embedded verbregion turned out to be

very skew, and significantly different from the normal distribution, while log trans-

formed reading times were not significantly different from anormal distribution. We

therefore ran all models on the log transformed reading times.

The final model for log transformed total reading times includes INTEGRA-

TIONCOST, FREQUENCY, WORDLENGTH, FREQOFPREV, LAUNCHDISTANCE,

LANDINGPOSITION as main fixed effect, an interaction between word length and land-

ing position WORDLENGTH:LANDINGPOSITION and a random intercept and random

slope for FREQUENCY under SUBJECT.

Random slopes under item did not improve the model. As pointed out before, this is

potentially due to over-fitting. According to the Bayesian information criterion (BIC),

models including random slopes under item were consistently rated worse than models

not including random slopes under item. Furthermore, adding two or more random

slopes under item at the same time would lead to non-convergence of the model.

We removed outliers from the model by identifying points with large leverage, as

explained in Section 3.2.5. The results for fixed effects of the final model are shown

in Table 4.2. Centring the predictors lead to a big reductionin correlation for some

variables – compare correlations between fixed effects before and after centring in

Table 4.3. To make sure that the remaining correlations werenot influencing our factor

of interest, INTEGRATIONCOST, we fitted a model including all other factors and then

ran a regression of INTEGRATIONCOST on the residuals. Regression coefficient and

significance level on residuals were exactly identical withthe main model ones, so we

conclude that the remaining level of collinearity does not affect model interpretation

regarding INTEGRATIONCOST.

The main effect of relative clause type did not significantlyimprove the model,

and was thus removed from the final model. However, integration cost, which has

previously been shown to correctly predict the difficulty incurred in relative clauses,

and can be regarded as a more fine-grained measure than simpleSRC / ORC flags,

significantly improves model fit and reaches significance as apositive predictor for

total reading times: the model adjusts its estimation of total reading time upwards for

items with higher integration costs. Random slopes for integration costs under subject

and item did not improve model fit and therefore were not included in the final model.
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Predictor Coefficient Significance

(INTERCEPT) 5.43 ***

INTEGRATIONCOST 0.01 *

WORDLENGTH 0.03 ***

WORDFREQUENCY -0.07 ***

FREQOFPREV 0.01

LANDINGPOSITION -0.19 **

LAUNCHDISTANCE -0.01 ***

WORDLENGTH:LANDINGPOSITION -0.12 ***
.p < 0.1, *p < 0.05, ** p < 0.01, *** p < 0.001

Table 4.2: Log-transformed total reading times for the embedded verb in relative clauses

– coefficients and their significance levels for a reduced model based on a complete

model including main effects, two-way interactions and slopes for both items and sub-

jects.

(Intr) IntegCost Length Freq LDist Surpr LandPos

raw predictors:

INTEGCOST -0.234

LENGTH -0.437 -0.081

FREQ -0.712 -0.032 0.307

FREQOFPREV -0.504 0.304 -0.103 -0.040

LANDPOS -0.141 0.057 0.452 -0.069 0.004

LAUNCHDIST 0.143 -0.011 0.077 0.031 0.019 0.002

LENGTH:LANDPOS 0.092 -0.062 -0.421 0.076 0.021 -0.938 0.012

centred predictors:

INTEGCOST -0.004

LENGTH -0.069 -0.079

FREQ -0.259 -0.030 0.307

FREQOFPREV -0.032 0.303 -0.102 -0.040

LANDPOS -0.235 -0.018 0.058 0.024 0.071

LAUNCHDIST -0.008 -0.011 0.079 0.031 0.020 0.031

LENGTH:LANDPOS 0.007 -0.061 -0.420 0.076 0.02- -0.246 0.013

Table 4.3: Correlations between fixed effects of the fitted model (i.e. these are not the

correlations between explanatory variables) for raw and centred versions of predictors.
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Integration costs are significantly higher for ORCs (mean= 2.39) in our data than

for SRCs (mean= 1.18; t = 19, p < .0001). From this, we conclude that we can find

the SRC / ORC asymmetry effect in corpus data, when measuringit with the more

fine-grained integration cost measure rather than just the SRC / ORC flag.

The results of a regression model using non-transformed reading times are very

similar to the results from the model with log-transformed reading times, but some

significance values are slightly different. As the non-transformed reading time model

is easier to interpret, the next section will explain what the model estimations mean

using the non-transformed model, as shown in Table 4.4.

Predictor Coefficient Significance

(INTERCEPT) 262.54 ***

INTEGRATIONCOST 4.44 .

NPTYPE=PRON -11.51 *

WORDLENGTH 8.53 ***

WORDFREQUENCY -19.57 ***

FREQOFPREV 2.65

LANDINGPOSITION -63.60 **

LAUNCHDISTANCE -2.78 ***

WORDLENGTH:LANDINGPOSITION -34.14 ***
* p < 0.05, ** p < 0.01, *** p < 0.001

Table 4.4: Total reading times (not log transformed) for the embedded verb in relative

clauses.

During model estimation, the estimation algorithm of the model tries to weigh

each predictor such that the best fit with the dependent variable (here, the total reading

times) is obtained when adding up all weighed predictors. Let us now go through

how the reading time for a word is estimated given the values of the predictors and

the model estimates. The intercept is 262.54 (see Table 4.4), which means that a verb

has a predicted base reading time of 262.54 ms. One would thenadd 4.44 times the

(centred) integration cost at the verb in ms, add 8.53 times the (centred) word length

in ms and subtract 19.57 ms for each log frequency unit of the word. The launch

distance is the distance in letters between the current fixation and the previous fixation.

Hence, when the eye moves to the right, the launch distance has a negative value. The

negative coefficient for launch distance thus means that a longer launch distance leads
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to longer reading times (2.78 ms for each letter-distance).The squared relative landing

position value (fixation positions at the edge of a word have alarger value than fixation

positions toward the middle of the word) is multiplied by 63.60 and subtracted from

reading times. The large value for landing position is caused by the fact that landing

position is calculated relative to word length, then centred and then squared, so values

only range from 0 to 0.5, while most other factors have a larger range – for an overview

of the distribution of the explanatory variables, see Chapter 3.1. Finally, the interaction

between word length and landing position is added to the reading time estimations as

the product of centred word length, squared relative landing position and the coefficient

-34.14. This means that the IOVP effect is stronger for long words. Neither lexical nor

structural Surprisal came out as a significant predictor on this data set.

The model also contains an intercept and a slope for frequency under subjects. The

random intercept under subject means that the model estimates a different base reading

time for each subject – some people are faster readers who canbe expected to spend

less time on a word on average than others. Fitting a frequency random effect under

subject means that for each subject, we allow for a slightly different effect of word

frequency, which means that the model estimates in how far each subject is affected by

differences in word frequency. Rare words might slow down some readers more than

others.

4.3.2 Early measures

The distribution of early measures is not as skew as the distribution of total reading

times, we are therefore going to report models that use raw reading times as the re-

sponse variable.

The model for first fixation duration was determined in the same way as de-

scribed for the total reading time model. The final model contains the predictors

WORDLENGTH, PREVFIX , WORDFREQUENCY, SENTENCEPOSITION, LANDING-

POSITION, LAUNCHDISTANCE and an interaction between, again, the length of a word

and the relative landing position of the first fixation on it. Only WORDLENGTH turned

out to significantly improve the model when added as a random slope under item.

Again, centred versions of all explanatory variables were used to remove collinearity,

and data points with atypically high leverage were removed from the final model. The

resulting model is shown in Table 4.5.

In first pass times, there was no significant effect for frequency of the last word, but
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Predictor Coefficient Significance

(INTERCEPT) 247.75 ***

INTEGRATIONCOST 9.00 *

WORDLENGTH 9.63 ***

WORDFREQUENCY -7.09 .

PREVFIX -41.88 ***

LAUNCH DISTANCE -1.18

SENTENCEPOSITION -1.13 *
* p < 0.05, ** p < 0.01, *** p < 0.001

Table 4.5: Final model of first pass durations for the embedded verb in relative clauses

– coefficients and their significance levels.

instead an effect of whether the last word had been fixated (PREVFIX ). Furthermore,

we did not find an effect of any interactions, or landing position in first pass times.

INTEGRATIONCOST came out as a significant positive predictor of reading timesin

first pass reading times, confirming the effect seen on total reading times. Results for

log transformed reading times as a response variable yielded the same results. There

was no significant effect of either structural or lexical Surprisal.

On first fixation times, there is no significant effect of integration cost, but it re-

mains in the model as a random effect under subject which significantly improves the

model. The lack of a main effect of integration cost in first fixation times is not surpris-

ing, given that related work has usually only found a reliable effect of relative clause

type on late measures such as total reading time, but not on first fixation time, which

is a very early measure. Significant predictors for first fixation times included only

low-level explanatory variables. Again, model fit was not improved by adding lexical

or structural Surprisal as a predictor of first fixation times.

Regression Model for Number of Fixations In the above regression analyses, data

points where no fixation had taken place within the definitionof the dependent reading

time variable were not included in the analyses. In a last analysis, I therefore tested

whether relative clause type is predictive of how often the embedded verb region is

fixated during reading. We therefore ran another model with dependent variable NUM-

BEROFFIXATIONS and the usual predictors, except those that are indirect indicators of

the number of fixations, such as LAUNCHDISTANCE and LANDINGPOSITION.

The model resulting from model selection is not very interesting. Only word length
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and frequency came out as reliable predictors for the numberof fixations on a word

(as expected, long words are more likely to be fixated than short ones, and frequent

words are fixated less often than infrequent ones). In addition, skipping probabilities

are almost identical for subject and object relative clauses: they amount to about 36%

for first pass skipping (i.e., the word is skipped before a word to the right is fixated)

and 25% for total skipping (i.e., the word is never fixated).

4.4 Discussion

As expected, a significant proportion of the data is explained by low-level factors such

as word length, the frequency of a word and oculomotor-related effects such as fixation

landing position and launch distance. We were not able to findany significant effect

of lexical or structural Surprisal on the critical region. Apossible explanation for this

lack of effect is that Surprisal has been argued to make incorrect predictions for the

embedded verb of English relative clauses, predicting thata verb in the ORC condition

should be easier to read than a verb in the SRC condition. Given this expectation of

Surprisal not being a good predictor for reading times in relative clauses, it is maybe

not astonishing that no significant effect was found in this experiment.

DLT integration cost however has been argued to correctly model the SRC/ORC

asymmetry, and we did find a significant effect of DLT integration cost in total reading

times and first pass times. This effect cannot easily be explained away by e.g. spill-

over effects, as predictors relating to the difficulty of thepreceding word such as the

frequency of the previous word and whether it had been fixated, were included in

the models as explanatory variables, but did not cause the integration cost effect to

go away. We did not find a statistically significant effect of integration cost in first

fixation durations, which indicates that the effect must be driven also by refixations on

the critical region.

The results presented here provide evidence for processingdifferences between

subject and object relative clauses in naturally occurringsentences in context. While

no main effect of the binary distinction SRC / ORC was found, this chapter has argued

that the statistically significant positive integration cost effect is a more fine-grained

measure of the processing difficulty differences in subjectand object relative clauses.

We showed that integration cost at the embedded verb of an object relative clause is

significantly higher than at the embedded verb of a subject relative clause, and that

higher integration costs lead to longer reading times, which in turn reflect larger pro-
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cessing difficulty. The integration cost effect occurred ontotal reading times and first

pass times, but not first fixation times, which is in line with previous results experi-

mental results on SRC / ORC processing from the literature. Our finding that the more

fine-grained measure of integration cost, which takes into accoun aspects of topicality,

was a far better predictor of reading times than a simple SRC /ORC flag, seems also

very compatible with recent findings of reduced object relative clause difficulty for

object relative clauses in context, see Section 4.4.1.

Having replicated well-established experimental findingson the difference in pro-

cessing difficulty between subject and object relative clauses in English, the Dundee

Corpus seems to be a valid and valuable resource for testing theories of sentence pro-

cessing in addition to traditional controlled experiments.

4.4.1 Related Work on Contextualised Relative Clause Proce ssing

Since we first ran initial experiments on relative clauses inthe Dundee Corpus, some

other groups of researchers have also published work addressing the question of

whether the traditional relative clause findings hold for contextualised text or is an

artefact of the single-sentence presentation in experimental designs.

Mak et al. (2008) argued that the processing difficulty observed in object relative

clauses is due to wrong topicality when the relative clausesare presented without a

suitable context. They argue that in naturally occurring text, unlike experimental sen-

tences, object relative clauses are chosen to fit the topic structure of the discourse,

and that difficulty occurs when violating this topic structure, as is the case with ob-

ject relative clauses presented without context in experiments. Mak et al. found that

the processing of object relative clauses was greatly facilitated if they were licensed

by the preceding discourse structure. This finding fits with the formulation of DLT

integration costs in that integration costs are calculatedin terms of how many new dis-

course elements intervened between an argument and its head. If the NP in an object

relative clause was the discourse topic, the NP is usually a personal pronoun and thus

does not cause any integration cost. Similarly, Reali and Christiansen (2007) showed

that relative clauses in naturally occurring text often have a relative pronoun as the

noun phrase, and that processing such frequently-occurring patterns of ORCs is eas-

ier than the object relative clauses used in psycholinguistic experiments, that typically

have a full noun phrase. In his 2007 CUNY poster, Roland et al.(2007) argued sim-

ilarly that the difference in processing difficulty betweensubject and object relative
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clauses is due to experimental design and disappears when relative clauses are pre-

sented in context. These findings are seemingly in contrast to our publication at CogSci

(Demberg and Keller, 2007), where we did find a significant ORCdifficulty effect for

relative clauses in context. Douglas Roland has since extracted relative clauses from

the Dundee Corpus and argued that our findings are due to a single outlier (Roland,

2008) and failure to use a random slope for relative clause type under item (Roland,

2009). We were not able to replicate Roland’s null-results by removing the outlier

sentence from our data, presumably due to the fact that Roland had extracted a slightly

different set of sentences from the corpus.

All challenges put forward by Roland have been addressed in the analyses reported

in this chapter: we have checked all automatically extracted relative clauses by hand,

to make sure they are all indeed relative clauses, and guarantee that critical regions are

annotated correctly2. Furthermore, we have added prepositional and adverbial (where)

relative clauses to increase the amount of data points available for the object relative

clause case. Any data points with large leverage are removedfrom the data set as

outliers, and we included slopes for random effects of subject where they improve

model fit. Concerning random slopes under item however, we found that model fit

and number of data points per item indicate that including random slopes under item

would lead to problems of over-fitting the data. We find that even if we include it, such

a slope neither improved model fit (p ≈ 0.99), nor does it change the outcome of the

integration cost main effect.

4.5 Conclusions

We were able to show that the integration cost component of Dependency Locality

Theory ((DLT) Gibson, 1998, 2000), correctly predicts differences in processing com-

plexity for subject and object relative clauses. The complexity effect was tested on the

embedded verb of the relative clause and lead to elevated reading times in the ORC

condition.

When an early version of this experiment was first published,this was the first

time a theory of sentence processing had been tested on data from an eye-tracking

corpus. Since, other researchers have started using the Dundee Corpus and the Potsdam

Sentence Corpus (which is a collection of sentences rather than a corpus of naturally

occurring text) for similar studies.

2Big thanks to Frank Keller and Roger Levy for helping me with this chore!
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While this chapter has only dealt with one construction (relative clauses), we be-

lieve that our corpus-based approach constitutes an important new methodology for

evaluating models of sentence processing. Such models werepreviously tested exclu-

sively on data obtained for isolated, manually constructedsentences in controlled lab

experiments. The validity of the models can be enhanced considerable if we are able to

show that they scale up to model reading data from an eye-tracking corpus of naturally

occurring text. This task is tackled in the next Chapter of this thesis, where DLT and

Surprisal are tested on the complete data of the Dundee Corpus.





Chapter 5

Broad Coverage Evaluation of DLT and

Surprisal

This chapter evaluates two previous theories of sentence processing, DLT and Sur-

prisal, on the Dundee Corpus. Experiments on relative clauses in the last chapter

showed that a well-known effect, the SRC/ORC asymmetry can be observed also on

naturally occurring relative clauses from the Dundee corpus, and that DLT integration

cost correctly predicts the data, while Surprisal did not. Here, we want to extend the

comparative evaluation of integration cost and Surprisal to the full range of construc-

tions in the Dundee Corpus. The main question we want to answer is whether these

two prominent theories of sentence processing, which have been shown to successfully

model a range psycholinguistic effects, also predict processing difficulty on naturally

occurring text.

This chapter reports four experiments. The first experimentevaluates integration

cost on the whole data set, and the second experiment analyses integration cost in

more detail on the types of words where the bulk of the predictions are made: nouns

and verbs. The third experiment evaluates two versions of Surprisal, lexical Surprisal

and structural Surprisal on the whole data set. The last experiment presents a compar-

ative analysis of Surprisal and DLT integration cost as predictors added to the same

baseline model. In the last part of the chapter, implications from these experiments are

discussed.

The material described in the chapter was presented at AMLaP2007 and published

in Cognition (Demberg and Keller, 2008a).

91
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5.1 Motivation

As described in Section 2.2, a number of different theories of syntactic processing

complexity exist. However, this study will focus on DLT and Surprisal, as these two

approaches are maximally different from each other. In particular, they make com-

plementary assumptions about the source of processing complexity. DLT’s integration

cost captures the cost incurred when a head has to be integrated with the dependents

that precede it, see Section 2.2.2. Surprisal, on the other hand, accounts for the cost

that results when the current word is not predicted by the preceding context, see Sec-

tion 2.2.4. Therefore, integration cost can be regarded as abackward looking cost (past

material has to be held in memory and integrated), while Surprisal is a forward-looking

cost (syntactic predictions have to be discarded if they areno longer compatible with

the current word). This observation leads to a general empirical prediction, viz., that

integration cost and Surprisal should be uncorrelated, andshould account for comple-

mentary aspects of reading time data. The present study willtest this prediction.

While DLT and Surprisal have been evaluated against a range of experimental re-

sults, so far nobroad coverageevaluation of theories of syntactic processing com-

plexity has been carried out. Existing studies rely on lab experiments, which have

the advantage of giving the experimenter full control over the experimental setup and

the materials, and are of established reliability and validity. However, this approach

also has its drawbacks. It typically involves the presentation of artificially constructed

sentences containing a narrow range of syntactic structures. Also, the same structures

occur many times in a given experiment, raising the possibility of habituation effects or

the development of strategies in participants. The sentences to be tested are often pre-

sented in isolation, i.e., without an appropriate textual context, potentially leading to

behaviour that is different from normal reading. Finally, only a small number of items

can be tested in the typical psycholinguistic experiment. DLT and Surprisal effects

have successfully been obtained in such a experimental settings, but these method-

ological limitations leave open the possibility that the effects are rare or absent when

arbitrary words in large amounts of naturalistic, contextualised text are considered.

The aim of the study presented in this chapter is to address this problem and pro-

vide a broad coverage evaluation of DLT and Surprisal on the Dundee Corpus, a large

collection of newspaper text for which the eye-movement record of 10 participants is

available, see Chapter 3.1. From this corpus, a range of eye-tracking measures can

be computed, which can then be evaluated against the predictions of theories of syn-
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tactic processing complexity. Such broad coverage studiesyield results that hold for

naturalistic, contextualised text, rather than for isolated example sentences artificially

constructed by psycholinguists. Chapter 4 showed how individual phenomena, such

as the subject/object relative clause asymmetry can be detected in naturally occurring

text. The aim of the broad-coverage evaluation presented inthis chapter is to show that

corpus studies can also be used to systematically test theories of syntactic processing

complexity. Such studies provide a source of evidence that corroborates experimen-

tal results, but also yields new theoretical insights, as itmakes it possible to evaluate

multiple theoretical predictors against each other on a large, standardised data set.

5.2 Predictors of Processing Difficulty

In this study, we are primarily interested in how far two existing theories, DLT (see

Section 2.2.2) and Surprisal (see Section 2.2.4), can account for the reading times in

broad-coverage text. We implemented the integration cost component of DLT, based on

the dependency parses from the MINIPAR parser (Lin, 1998), and calculated Surprisal

based on the Roark parser (Roark, 2001a). We then automatically calculated difficulty

predictions by the two theories for each word in the Dundee Corpus.

Reading times in eye-tracking data are influenced not only byhigh-level, syntactic

variables but also by a number of low-level variables, both linguistic ones and oculo-

motor ones, as discussed in Section 2.1.2. Together with variation between readers,

these low-level variables account for a sizable proportionof the variance in the eye-

movement record. It has also been shown that information about the sequential context

of a word can influence reading times. In particular, McDonald and Shillcock (2003b)

present data extracted from an eye-tracking corpus (a smaller corpus than the Dundee

Corpus used here) that show that forward and backward transitional probabilities are

predictive of first fixation and first pass durations: the higher the transitional prob-

ability, the shorter the fixation time. For a more detailed explanation of transitional

probabilities, please refer to Section 2.2.5.

In this study, we are interested primarily in syntactic processing effects such as the

ones captured by DLT integration cost and Surprisal. We therefore need to make sure

that these metrics account for variance in the eye-movementrecord that is not captured

by the low-level linguistic and oculomotor variables. Technically, this can be achieved

by running mixed effects models which include both the low-level and the high-level

variables as predictors, as well as partitioning out subject variance, see Section 5.3.1.2.
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5.3 Experiment 1: Integration Cost

The aim of this experiment is to provide a broad-coverage test of Gibson’s DLT by in-

vestigating whether integration cost is a significant predictor of eye-tracking measures

obtained on a corpus of naturally occurring, contextualised text.

5.3.1 Method

5.3.1.1 Data

For our data analysis, we used the English portion of the Dundee Corpus

(Kennedy and Pynte, 2005), whose characteristics have beendescribed in Chapter 3.1.

Before carrying out our analyses, we excluded all cases in which the word was the first

or last one of the line, and also all cases where the word was followed by a any kind of

punctuation. This eliminates wrap-up effects that occur atline breaks or at the end of

sentences. Furthermore, we excluded all words that were in aregion of four or more

adjacent words that had not been fixated, since such regions were either not read by

the participant or subject to data loss due to tracking errors, and all strings including

digits, special symbols or several upper case letters. Thisleft us with≈ 383k data

points, of which about 240k were fixated at least once, and of which about 200k were

fixated during first-pass reading.

5.3.1.2 Statistical Analysis

The statistical analyses in this chapter were carried out using linear mixed effects mod-

els (Pinheiro and Bates, 2000). These models can be thought of as a generalisation of

linear regression that allows the inclusion of random factors (such as participants or

items) as well as fixed factors. The fixed factors can be discrete (such as whether

the previous word was fixated) or continuous (such as word frequency). The models

reported here include a random intercept and slopes under SUBJECT, as suggested in

Baayen et al. (2008), see Section 3.2. However, intercept and slopes for ITEM were not

included in the models, as there are too big risks of over-fitting the model: there are no

repeated items in the sense of a psycholinguistic experiment. Each item (i.e. word in

the corpus) was only read by 10 subjects, and in many cases less than 10 data points

are available to the regression model due to track loss and skipping. Hence, an analysis

including random effects by item does not seem applicable inthis setting; refer back

to Section 3.2.4 for a more complete discussion.
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A separate mixed effects model was computed for each of the three dependent

variables (first fixation duration, first pass duration, and total reading time), including

low-level explanatory variables as well as transitional probabilities and integration cost

as predictors. Minimal models were obtained following the model reduction methods

outlined in Section 3.2.6.

In the remainder of the chapter, we will give the coefficientsand significance levels

for those predictors that remain in the minimal model. All ofthese coefficients are

statistically significant, with the possible exception of main effects, which are only

removed from the minimal model if there is no significant interaction that depends on

them.

5.3.1.3 Implementation

Non-syntactic Predictors The non-syntactic predictors used were word length in

characters (WORDLENGTH), word position in the sentence (SENTENCEPOSITION),

whether the previous word was fixated (PREVIOUSWORDFIXATED ), the distance

between the previous fixation and the current fixation (LAUNCHDISTANCE), and

the square of the position of the character on which the eye lands in the word,

relative to word length (LANDINGPOSITION). The square of the centred rel-

ative word landing position was used to model the IOVP effect, see Section

3.1.2.2. These values can be read off directly from the Dundee Corpus (with

the exception of SENTENCEPOSITION which we calculated after automatically

determining sentence boundaries for the Dundee Corpus text). The predictors

logarithmic word frequency (WORDFREQUENCY), logarithmic word frequency of

the previous word (PREVIOUSWORDFREQUENCY), forward transitional probabil-

ity (FORWARDTRANSITIONALPROBABILITY ), and backward transitional probabil-

ity (BACKWARDTRANSITIONALPROBABILITY ) need to be estimated from a training

corpus. We used the British National Corpus (BNC) (Burnard,1995) and estimated

unigram and bigram probabilities using the CMU-Cambridge Language Modelling

Toolkit (Clarkson and Rosenfeld, 1997). For the bigram model, many of the bigrams

from the Dundee Corpus were not observed in the BNC training data. To avoid having

to assign a bigram zero probability just because it did not occur in the training data,

we smoothed the bigram probabilities, i.e., some of the probability mass of the seen

events was redistributed to unseen events. We used the Witten-Bell smoothing method

(Witten and Bell, 1991), which is predefined in the CMU Toolkit. For a more detailed

discussion of estimating word frequencies, see Section 3.1.2.4.
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Integration Cost It is not feasible to manually compute values for the predictor in-

tegration cost (INTEGRATIONCOST) for the whole Dundee Corpus, given its size. We

therefore relied on automatic methods which can handle a large amount of data (but

are potentially error-prone). We parsed the corpus with an automatic parser and im-

plemented a function that uses these parses to assign integration cost values to the

words in the corpus. The parser used was MINIPAR (Lin, 1998),a broad-coverage

dependency parser for English. MINIPAR is efficient and has good accuracy: an eval-

uation with the SUSANNE corpus (Sampson, 1995) shows that itachieves about 89%

precision and 79% recall on dependencies (Lin, 1998). A dependency parser was cho-

sen because the dependency relationships that it returns are exactly what we need to

calculate integration costs (see Figure 2.3 for an example).

A practical issue was that tokenization in the Dundee corpusis often different from

the tokenization used by the parsers. Therefore, it is necessary to realign the parsed

text with the Dundee corpus segmentation. If a word in the Dundee corpus corresponds

to multiple words in the parsed version, we have to combine the theories’ predictions

for those two words into a single prediction for that token, or split up the Dundee token

into two bits. We here decided to combine the predictions fortwo different words into

a single value and use the Dundee corpus tokenization. Integration costs of two words

that were just one token in the Dundee Corpus were combined bysimple addition,

because the relevant quantity is the combined integration cost of the two components,

which means that e.g. averaging would not be an appropriate measure.

In our implementation, integration costs are composed of the cost of (a) construct-

ing a discourse referent and (b) the number of discourse referents that occur between

a head and its dependent, excluding the head and the dependent themselves. This re-

quires discourse referents to be identified in the corpus; weused the approximation

that all words that have a nominal or verbal part of speech arediscourse referents. Us-

ing part of speech tags assigned by the parser also allows us to differentiate between

auxiliaries, modals and full verbs, and to automatically identify nouns that are parts

of compound nouns. It is important to note that two versions of integration cost exist

in the literature: one based on Gibson’s (2000) DLT, and the earlier version based on

Gibson’s (1998) syntactic prediction locality theory, a predecessor of DLT. The differ-

ence between the two versions concerns nouns; here, we assume the Gibson (2000)

version of integration cost (though we conducted some experiments with the 1998 ver-

sion, see Section 5.4.3). DLT has later been extended and revised to provide a more

extensive account of noun phrases (e.g., Warren and Gibson (2002)), but this revised
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version of DLT has not been formalised, and thus would be hardto implement without

making additional assumptions.

We evaluated our integration cost implementation using a short text that had been

hand-annotated with integration cost values by Asaf Bachrach. The text was also

used in e.g. (Roark et al., 2009). This evaluation gives us anestimate of how well

our automatic annotation tool performs. We found that the integration cost values as-

signed automatically to the 764 words in the evaluation textwere correct 83% of the

time. Further analysis revealed that the automatically assigned integration cost values

were significantly correlated with the manually assigned ones (Pearson’sr = 0.697,

p < 0.001). This result needs to be regarded as a lower bound. Unlike the Dundee

Corpus, the evaluation text was not a newspaper text. Rather, it was a manually con-

structed story created in order to contain sentences with high integration cost. The

sentences in the evaluation text are often long and complicated, and therefore hard to

analyse with our automatic tool. Mean integration cost in the evaluation text was 0.7,

while in the Dundee Corpus it was 0.55.

5.3.2 Results

In Experiments 1 and 2, we will only consider results for firstpass durations in detail.

The results for first fixation durations and total times are broadly similar, and will

only be discussed briefly. We will return to this in Experiment 3, which provides a

comparison of the results for the three eye-tracking measures for a model that contains

all the predictors used in this chapter (see Section 5.5.3).

Table 5.1 shows the coefficients and significance levels obtained when running lin-

ear mixed effects models on first pass durations extracted from the Dundee Corpus.

The models includes all the non-syntactic predictors and integration cost, and were

computed over all words in the corpus, as well as significant interactions. Collinear-

ity analysis by inspection of correlations between fixed effects after fitting the model

showed that bigram forward transitional probability was correlated with unigram word

frequency, and that backward transitional probability wascorrelated with forward tran-

sitional probability and unigram frequency. We therefore residualized forward transi-

tional probability by calculating the residuals of forwardtransitional probability in a

regression against word frequency, and residualized backward transitional probabil-

ity by regressing against both word frequency and forward transitional probabilities.

There is also some collinearity between word length and wordfrequency, and between
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the frequency of the last word and the flag for fixating it. As these variables are not

of direct interest in our study, and don’t strongly correlate with any of our predictors

of interest, we did not attempt to remove this collinearity,as it shouldn’t affect our

conclusions. For a full correlation table between fixed effects for the model in Table

5.1, see Table 5.2. We also removed outliers, as discussed inSection 3.2.5. We ran

the model both with just a random intercept under subjects and with the full range

of random slopes (all main predictors) under subject. The results were equivalent in

terms of coefficients for the main effects. Significance values tended to be a bit lower

for the model including random slopes under subject, but allremained strongly sig-

nificant at p < 0.001 with the exception of residual forward transitional probability

which did not reach significance any more. We here report the model without random

slopes, because the model with random slopes showed high collinearities between pre-

dictors, even if these predictors had been residualized before or are not significantly

correlated at all. Furthermore, there were very strong correlations between a number

of fixed effects (r < 0.8). Confidence in the results of the simpler model rests on the

fact that main effects remained unchanged with respect to the model that includes ran-

dom slopes. Collinearity can lead to inflation of coefficients and significance values,

and to unstable results with coefficients jumping between e.g. positive and negative

values. Therefore, a model with high collinearity cannot beinterpreted reliably. On

the other hand, collinearity must not bother us as long as it does not affect the pre-

dictors we’re interested in. Therefore, we conducted a second analysis, which can be

regarded as very conservative: A model including slopes under subject was first fit-

ted for all predictors except the one we are interested in. Then, a model with just the

predictor of interest, i.e. just INTEGRATIONCOST and a slope of INTEGRATIONCOST

under subject was fitted on the residuals of the first model. This way, it is guaranteed

that the fixed effect of the predictor of interest is not correlated with any of the other

predictors. Results of this model, which confirmed the significant negative effect of

integration cost, are reported in Section 5.6.

Our findings confirm many effects also found by other researchers. Table 5.1 shows

an intercept of approximately 243 ms. This can be regarded asthe base reading time of

an average word, to which the value for each predictor multiplied by the coefficient for

that predictor is added to obtain the predicted reading timefor that word. For example,

the coefficient of WORDLENGTH is approximately 8 ms. As the predictor was centred,

this means that for a word which is one letter longer than average, an additional 8ms

is added to the estimate. The fact that the coefficient of WORDLENGTH is positive
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means that longer words have longer reading times, a basic finding in the reading liter-

ature. We furthermore observed a negative coefficient for logarithmic word frequency

(WORDFREQUENCY), which means that more frequent words are read faster than less

frequent words.

The variable PREVIOUSWORDFREQUENCY was included in the analysis to ac-

count for possible spill-over effects, where a previous difficult word causes longer

reading times on the current word. Indeed, we found that the log-frequency of the

previous word was a significant negative predictor of reading time: if the previous

word is rare, reading times are expected to be longer on the current word. We also

find that the presence of a fixation on the previous word (PREVIOUSWORDFIXATED )

reduces reading time on the current word by 35 ms, i.e., fixation time is longer when

the previous word was skipped. There is also an effect of squared relative landing

position (LANDINGPOSITION), whose negative coefficient indicates that reading time

decreases if the word is fixated near the beginning or the end –thus reflecting the

IOVP effect. Furthermore, we observe a small effect for LAUNCHDISTANCE. A

smaller value of launch distance reflects a longer launch distance from the left. This

is associated with longer reading times, as reflected in the negative coefficient, thus

following expectations. It has been claimed that readers speed up while they move

through a sentence (Ferreira and Henderson, 1993). Our datasupport this finding: we

obtain a small negative coefficient for the position of the word within the sentence

(SENTENCEPOSITION), which means later words are read faster.

For residual forward transitional probability (FORWARDTRANSITIONAL-

PROBABILITY ), we observed a negative coefficient. This is a bit harder to

interpret, due to the fact that it doesn’t relate to the transitional probabilities

directly, but just to the part of the transitional probability which cannot be ex-

plained by unigram frequencies. When this transitional probability that goes

beyond simple frequency is high, reading times are shortened, as reflected by

the negative coefficient. This facilitation predicted by forward transitional prob-

abilities is in line with McDonald and Shillcock’s (2003b) results. However,

McDonald and Shillcock (2003b) also find a negative coefficient for backward

transitional probability, while in our data residual backward transitional probability

(BACKWARDTRANSITIONALPROBABILITY ) shows a small positive coefficient,

which means that words which have a higher backward transitional probability (which

can not be explained by unigram frequency or forward transitional probability) are

predicted to lead to slightly longer reading times.
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Predictor Coefficient Significance

(INTERCEPT) 241.83 ***

WORDLENGTH 8.22 ***

WORDFREQUENCY -13.00 ***

PREVIOUSWORDFREQUENCY -6.24 ***

PREVIOUSWORDFIXATED -35.54 ***

LANDINGPOSITION -18.20 ***

LAUNCHDISTANCE -0.70 ***

SENTENCEPOSITION -0.24 ***

FORWARDTRANSITIONALPROBABILITY -1.97 ***

BACKWARDTRANSITIONALPROBABILITY 1.03 ***

INTEGRATIONCOST -1.58 ***

WORDLENGTH:WORDFREQUENCY -2.93 ***

WORDLENGTH:LANDINGPOSITION -18.64 ***
* p < 0.05, ** p < 0.01, *** p < 0.001

Table 5.1: First pass durations for all words in the Dundee Corpus: coefficients and

their significance levels for a model that includes all predictors as main effects and all

binary interactions, minimised using the AIC.

While the coefficients for the non-syntactic predictors have plausible interpreta-

tions that are consistent with the previous literature on reading, the result for the in-

tegration cost predictor (INTEGRATIONCOST) is disappointing: we obtained a signif-

icant negative coefficient, which means that higher integration cost leads to shorter

reading time, contrary to the prediction of DLT.

The same significant predictors were obtained when we ran mixed effects models

for first fixation duration and in total reading times (we omitthe tables here), with

one exception: for first fixations, there was no effect of wordlength and no effect of

integration cost.

One potential explanation for the lack of an effect of integration cost may be the fact

that (following Gibson), we assumed identity as our integration cost function, i.e., I(n)

= n. It is possible that there is a logarithmic relationship between integration cost and

reading time (e.g., similar to that between frequency and reading time). We tested this

by re-running the analysis reported in Table 5.1 with the integration cost function I(n)

= log(n+1). However, again a significant negative coefficient for INTEGRATIONCOST
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(Intr) Len Frq Frq-P Fix-P Dist LPos SPos FTP BTP IC L:Frq

Len 0.003

Frq 0.005 0.453

Frq-P -0.018 -0.088 0.047

Fix-P -0.031 -0.086 0.018 0.423

LPos -0.020 0.126 -0.006 -0.062 -0.283

Dist 0.010 0.069 0.033 -0.129 -0.405 0.198

SPos -0.001 -0.005 0.010 0.005 0.036 -0.036 -0.012

FTP 0.004 0.235 0.157 -0.003 0.021 -0.026 0.006 -0.014

BTP 0.003 0.138 0.118 -0.016 0.008 0.013 -0.013 -0.010 0.011

IC -0.002 -0.027 0.190 -0.009 -0.002 -0.007 0.003 -0.031 0.036 0.117

Len:Frq 0.016 0.594 0.020 -0.073 -0.023 -0.017 -0.003 0.0080.243 0.128 -0.057

Len:Lpos 0.004 -0.436 0.085 0.003 -0.128 0.116 0.131 -0.011-0.003 0.001 -0.020 -0.235

Table 5.2: Table of correlations between fixed effects (this is different from correlations

between explanatory variables, which are reported in Table 5.7) for first pass durations

for all words in the Dundee Corpus.

was obtained (though model fit improved slightly).

The model also contains two interactions: between word length and word fre-

quency, and between word length and quadratic relative wordlanding position. The

negative coefficient for the word length – frequency interaction means that words that

are both long and frequent have slightly faster reading time, and correspondingly short

infrequent words would have longer reading times than predicted by just word length

and frequency alone. The negative coefficient for the word length – landing position

interaction means that the IOVP effect is more extreme for long words: when a word is

long and is fixated at the very beginning or end of the word, reading times are predicted

to be shorter.

When we fitted mixed models for first fixation times and total times, we again

found the same pattern of results as for first pass time, with the exception that the

INTEGRATIONCOST effect was not significant in first fixations.

5.3.3 Discussion

In this experiment, we fitted mixed effects models on the reading times for all words in

the Dundee Corpus, and found that integration cost is a significant negative predictor

of reading time, i.e., that higher integration cost values correspond to shorter reading

times, contrary to the prediction of DLT. This result can be explained by the fact that
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DLT only provides a partial definition of syntactic processing complexity: integration

costs are only assigned to nouns and verbs. All other words have an integration cost

of zero, while there are very few nouns or verbs with an integration cost of zero (only

non-head nouns in compounds).

We therefore further investigated the relationship between reading time and inte-

gration cost. We re-ran the mixed effects model in Table 5.1 on all words in the corpus

and included integration cost as a factor, i.e., as a discrete predictor. When the DLT

predictions are entered into the regression as categoricalvalues, separate coefficients

are estimated for each integration cost value.

These separate coefficients allow us to assess the influence of words with an inte-

gration cost of zero: the negative overall coefficient for integration cost as a continuous

variable may be due to the fact that words with integration cost 0 are problematic, be-

cause not all of them may be covered by the theory. Therefore it is interesting to

see whether there is an overall positive trend for words thatare assigned an integra-

tion cost. Figure 5.1 plots integration cost values againsttheir model coefficients and

shows a general trend of higher integration cost values corresponding to larger coeffi-

cients (i.e., increased reading times), as predicted by DLT. The figure also shows that

the coefficients for integration cost values one to nine are negative, i.e., the reading

times for words with these integration cost values is shorter than the reading time for

words with zero integration cost (which the model takes as the base value and assigns

a coefficient of zero). This finding indicates that words withintegration cost 0 can still

generate difficulty, but that this difficulty is not capturedby DLT, which only makes

predictions for nouns and verbs. This result also means thatthe current coverage of

DLT is clearly not sufficient for naturally occurring text. Most words in the corpus

have integration cost values between zero and nine. In fact,the largest influence on the

regression coefficient comes from words with integration cost 0 (approx. 125,000 fix-

ated words) and integration cost 1 (approx. 84,000 fixated words). This explains why

we found an overall negative coefficient of integration costin Table 5.1 (where INTE-

GRATIONCOST was entered as a continuous predictor), even though higher integration

cost values generally correspond to higher reading times inFigure 5.1.

As Figure 5.1 shows, the coefficient estimate for words with zero integration cost is

higher than those of words with slightly higher integrationcost. Since DLT tradition-

ally only makes predictions for verbs and nouns, it would be interesting to find out at

what other word types a similar cost might be incurred. To test whether some types of

words take longer to read than others after factoring out lowlevel effects, we computed
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Figure 5.1: Coefficients for the factor integration cost in a mixed effects model on the

words in the Dundee Corpus.

residual reading times on the Dundee Corpus by building a mixed effects model that

contains all the non-syntactic predictors, and subtractedthe reading times predicted by

this model for the observed reading times. We analysed thesedata by partitioning them

according to the words’ parts of speech (POS). We found that adjectives, prepositions,

sentence adjectives, and expletives have mean residual reading times larger than zero,

which means they are read more slowly than would be expected according to word

length, frequency, and the other non-syntactic predictors. The data therefore suggests

that it could be interesting to extend DLT in a way that makes it possible to also assign

an integration cost to those word categories.

5.4 Experiment 2: Integration Cost for Verbs and

Nouns

In Experiment 1, a negative coefficient for integration costwas obtained when fitting a

mixed effects model to predict reading times for all words inthe Dundee Corpus. We

concluded that this finding is due to the fact that DLT does notmake integration cost

predictions for words other than verbs and nouns. In the present experiment, we will

explore this link further by providing a detailed analysis of integration costs for nouns

and verbs.
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5.4.1 Method

Data, statistical analysis, and implementation used were the same as in Experiment 1.

5.4.2 Results

Again, we will focus on results for first pass durations.

Nouns We first fitted a mixed effects model for the first pass durations for all the

nouns in the Dundee Corpus (49,761 data points for the early measures, 57,569 data

points for total durations) that included all predictors asmain effects and all binary

interactions, as well as intercepts and slopes under SUBJECT, minimised using the

AIC. Integration cost was not a significant, positive predictor of reading time in this

model.

When the data set was restricted further, viz., to nouns withnon-zero integration

cost (45,038 and 51,613 data points respectively), a significant, positive coefficient for

integration cost was obtained. Furthermore, we found that model fit improves slightly

when using the logarithmic integration cost function I(n) =log(n + 1) compared to

when using a linear one. We further investigated why the effect of integration cost

on nouns was only present if nouns with zero integration costwere excluded. This is

particularly puzzling as it is rare that nouns receive an integration cost of zero; there

is only way for this to happen in the corpus: the first word of noun-noun compounds

and pronouns. We re-ran the model in Table 5.3, but included pronouns (an additional

4,840 data points for the early measures, 6,108 data points for total durations), despite

their integration cost of zero. Again, a significant, positive coefficient of integration

cost was obtained. First parts of compounds were relativelyfrequent in the Dundee

corpus: there were 7,121 data points for total durations and6,118 data points for the

early measures; a large proportion of these cases consistedof proper names (such

people’s names or titles). We believe that these first parts of compound nouns must be

responsible for the wrong integration cost estimations.

The coefficients of the model including nouns with integration cost greater than

zero and pronouns are listed in Table 5.3. The significant positive coefficient for inte-

gration cost in this model means that nouns with higher integration cost take longer to

read. As there seemed to be some collinearity between integration costs and frequency

for nouns, we residualized integration cost. This did not change either the size or sig-

nificance of the effect. The reported model also excluded outliers by automatically
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Predictor Coefficient Significance

(INTERCEPT) 263.19 ***

WORDLENGTH 10.78 ***

WORDFREQUENCY -16.64 ***

PREVIOUSWORDFREQUENCY -8.38 ***

PREVIOUSWORDFIXATED -47.25 ***

LAUNCHDISTANCE -0.35 *

LANDINGPOSITION -27.57 ***

SENTENCEPOSITION -0.17 ***

FORWARDTRANSITIONALPROBABILITY -1.97 ***

BACKWARDTRANSITIONALPROBABILITY 3.26 ***

log(INTEGRATIONCOST) 7.12 ***

WORDLENGTH:WORDFREQUENCY -4.90 ***

WORDLENGTH:LANDINGPOSITION -15.43 ***
* p < 0.05, ** p < 0.01, *** p < 0.001

Table 5.3: First pass durations for nouns (with non-zero integration cost), and personal

pronouns in the Dundee Corpus: coefficients and their significance levels for a model

that includes all predictors as main effects and binary interaction, minimised using AIC.

excluding all data points with high leverage from the model.

We fitted mixed models for first fixation durations and total times, and found

the same set of significant predictors, with the following exceptions: for first fixa-

tions, there was no significant effect of WORDLENGTH, and the effect of INTEGRA-

TIONCOST was small, and there were no significant interactions. However, we did find

a significant positive effect for integration cost in the total times analysis.

Verbs Just as for nouns, we fitted a mixed effects model for the first pass durations

for all the verbs in the Dundee Corpus (the model again included all main effects

and all binary interactions). No significant, positive coefficient for integration cost

was obtained in this model. We re-ran the model with verbs that exhibit a non-zero

integration cost, and with a logarithmic instead of a linearintegration cost function.

Again, integration cost was not a significant, positive predictor of reading time.

We then fitted a model that included the part of speech of the verb as a predictor.

The rationale behind this is that verb reading time may differ by part of speech, e.g.,

inflected verbs are read more slowly than infinitives. This model only included verbs
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with non-zero integration costs and used a logarithmic integration cost function. We

found that this time, integration cost was a significant, positive predictor of reading

time (though the size of the coefficient was smaller than for nouns).

In order to further investigate the integration cost effectthat we found for verbs,

we computed residual reading times for this data set. On the residuals, we then fitted a

model that includes a predictor that indicates the part of speech of the dependent that

is integrated at a given verb (or sequence of parts of speech if multiple dependents are

integrated). The coefficients in this model indicate which dependents lead to higher

or lower integration costs, see Table 5.4. We observe that, as predicted by DLT, the

integration of nouns (parts of speech NN, NNP, NNS) or adverbs (part of speech RB)

leads to longer reading times, unless there is also an auxiliary (AUX) that occurs before

the verb. The auxiliary thus seems to facilitate integration of nouns at the verb.

5.4.3 Discussion

In Experiment 1, we saw that DLT integration cost does not constitute a broad-coverage

theory of syntactic complexity, in the sense that integration cost failed to emerge as a

significant, positive predictor of reading time on the wholeof the Dundee Corpus. We

hypothesised that this is due to the fact that DLT only makes partial integration cost

predictions, viz., for nouns and verbs only. In the present experiment, we investigated

this further by analysing the performance of DLT on verbs andnouns in more detail.

We showed that integration cost is a significant, positive predictor of reading time

on nouns with a non-zero integration cost, and thus supportsthe hypotheses in DLT.

However, this result reflects only effects on a small amount of the data: In its standard

form (Gibson, 2000), DLT does not make very interesting predictions for nouns. Most

nouns have an integration cost of 1, because a discourse referent is built. The only

cases in which nouns can receive an integration cost greaterthan 1 are in constructions

such asrequest for permission, wherepermissionis analysed as the head of the NP,

genitive constructions likethe Nation’s criminals, and copula constructions. In the

latter, nouns are considered to be the head of the phrase and integrate the verbbe.

This means that the integration cost for the noun depends on the number of discourse

referents intervening between the noun andbe.

We also investigated the two cases in which DLT assigns an integration cost of zero

to nouns. The first case is pronouns, which DLT assumes to constitute old discourse

referents, not incurring a cost. We extended our model by including pronouns (as
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Dependents Coefficient Significance N

PRP-AUX-NN -81.45 ** 15

PRP-AUX -76.24 ** 13

NNP-AUX-AUX -62.41 ** 21

RP -62.34 * 12

NNP-AUX -59.52 * 17

PRP-MD -56.44 * 17

NNS-AUX-AUX -35.65 * 57

NNS-MD-AUX -30.75 ** 110

PRP-AUX-PRP-AUX -29.72 *** 184

NN-MD-AUX -25.35 ** 153

PRP-AUX -22.64 *** 700

PRP-AUX-RB -21.75 * 133

AUXG -20.26 * 121

NNP-AUX -19.05 ** 301

TO-PRP -16.97 *** 723

NNP 12.01 ** 1372

NN-RB 22.26 * 127

AUX-NNP 66.11 * 15

VBP 67.69 * 10

RB 75.88 ** 15

NN-NNS 76.43 *** 25

PRP-MD-PRP-MD-JJ 105.4 * 65

Table 5.4: First pass durations for verbs (with non-zero integration cost) in the Dundee

Corpus: coefficients for the verbal dependents and their significance levels for a model

fitted on residual reading times. Abbreviations in the table refer to part of speech tags

used by the Penn Treebank annotation: AUX: auxiliary, PRP: personal pronoun, NN:

singular or mass noun, NNP: proper noun, singular, RP: particle, MD: modal, NNS:

plural noun, RB: adverb, AUXG: auxiliary present participle, TO: preposition to, JJ:

adjective, VBP: non-third person singular present verb.
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the only nouns with zero integration cost), and still found that integration cost was a

significant, positive predictor, which provides evidence for the DLT assumption that

pronouns carry zero integration cost. The second case of zero integration cost is noun-

noun compounds, for which DLT assumes that the first noun incurs no integration

cost. However, when we fitted a model on all nouns (including the ones with zero

integration cost), we failed to obtain a significant coefficient for integration cost. This

indicates that the DLT assumption of cost-freeness for the first noun of a noun-noun

compounds is incorrect. Rather, we have to assume that a discourse referent is already

being established when the first noun in the compound is encountered, i.e., this noun

should incur a non-zero cost.

At this point, it becomes important which version of DLT is used to compute in-

tegration cost values. In contrast to the Gibson (2000) version used in this thesis, the

Gibson (1998) version of DLT assigns higher integration costs to nouns that occur after

their head noun. In order to test how crucial this assumptionis, we implemented the

1998 version and conducted the same experiments as with the 2000 version, but this

failed to yield an improved fit on our data set.

For either version, we observed that DLT only makes a restricted range of predic-

tions for nouns: with few exceptions, all head nouns are assigned an integration cost of

1. Arguably, this limits the power of the theory in explaining reading time data for noun

phrases in a corpus, which are often complex. This problem could be addressed by ex-

tending DLT along the lines suggested by Warren and Gibson (2002). They provided

evidence that processing complexity at the verb varies withthe referential properties of

the NP to be integrated, as expressed by the NP’s position on the Givenness Hierarchy

(Gundel et al., 1993). Warren and Gibson (2002) find that complexity increases from

pronouns to names to definite NPs to indefinite NPs and therefore suggest that a con-

tinuous integration cost metric needs to be developed that takes the givenness status of

the integrated NP into account. This would result in a wider range of integration cost

values for the nouns in the Dundee Corpus, potentially making it possible to explain

more variance in the reading time record.

In addition to looking at nouns, we also investigated the relationship between read-

ing times and integration cost for verbs and were able to showthat integration cost is a

significant positive predictor of verb reading times. This result was only obtained for

a model that includes the parts of speech of the verbs as an additional predictor. This

indicates that integration cost can predict processing difficulty for verbs, but that this

effect is variable across parts of speech.
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As verb integration cost is at the heart of DLT (which predicts only limited varia-

tion in noun integration cost, see above), we investigated this result further. We fitted a

model on the residual reading times that included the parts of speech of the dependents

to be integrated at the verb as a predictor. This analysis revealed the following pat-

tern (see Table 5.4): positive coefficients were obtained for the integration of nominal

dependents (indicating that this integration leads to increase reading time), while nega-

tive coefficients were obtained for the integration of auxiliaries (which means that this

integration decreases reading time). This result has an interesting implication for DLT.

On the one hand it confirms the DLT assumption that an integration cost is incurred

at the verb when nominal dependents are integrated. On the other hand, it shows that

this does not extend to cases where an auxiliary precedes themain verb. A possible

explanation is that the relevant integration cost is not incurred at the main verb, but at

the auxiliary itself, which integrates nominal dependentsand thus incurs a non-zero in-

tegration cost (DLT assumes that auxiliaries are cost-free). When the auxiliary is then

integrated with the main verb, it facilitates integration (hence the negative coefficient),

as the main work of the integration of the nominal dependentshas already happened

at the auxiliary. Note that this assumption is compatible with syntactic theories such

as Head-driven Phrase Structure Grammar (Pollard and Sag, 1994), which assume that

auxiliaries inherit the subcategorization frame of the main verb, and that dependents

are unified (integrated) into the subcategorization frame at the auxiliary. In this context,

it is interesting to note that Warren and Gibson (2002) founda reading time effect for

auxiliaries. Auxiliaries following definite NPs were read more slowly than auxiliaries

following pronouns. This result in consistent with our findings in the Dundee Corpus,

i.e., that auxiliaries, and not just main verbs, show integration cost effects. However,

Warren and Gibson (2002) interpret their finding as a spillover effect. Clearly, more

experimental work would be needed to test the effect of auxiliaries on reading times

on the main verb, and integration effects on auxiliaries.

5.5 Experiment 3: Surprisal

Experiments 1 and 2 indicate that there is evidence that DLT integration cost is a pre-

dictor of reading time in the Dundee Corpus. However, DLT cannot be regarded as a

broad coverage model, as we found integration cost effects only when the our model

was limited to verbs and certain nouns. The present experiment has the aim of eval-

uating Surprisal as an alternative model of syntactic processing complexity. Unlike
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DLT, Surprisal is designed to make predictions for all wordsin a corpus, on the basis

of a probabilistic grammar. We will test two versions of Surprisal (lexical and struc-

tural), and compare them against non-syntactic probabilistic predictors of reading time

(forward and backward transitional probability).

5.5.1 Method

Data and statistical analysis were the same as in Experiments 1 and 2. For calculating

the Surprisal values for the words in our corpus, we parsed the Dundee Corpus with

an incremental parser which returns a prefix probability foreach word in the corpus,

i.e., the probability in Equation (2.5) from the Section 2.2.4, here repeated as equation

(5.1) for convenience:

P(w1 · · ·wk) = ∑
T

P(T,w1 · · ·wk) (5.1)

Sk+1 = − log
P(w1 · · ·wk+1)

P(w1 · · ·wk)
= log∑

T
P(T,w1 · · ·wk)− log∑

T
P(T,w1 · · ·wk+1) (5.2)

We can then use Equation (2.6), here repeated as Equation (5.2) to obtain the Sur-

prisal value for a wordwk+1: we subtract the logarithmic prefix probability forwk+1

from the logarithmic prefix probability forwk. The parser used was Roark’s (2001a)

incremental top-down parser. This is a probabilistic parser trained on Sections 2 – 21 of

the Penn Treebank (Marcus et al., 1993), a corpus of English text from the Wall Street

Journal which has been manually annotated with phrase structure trees. The parser

achieves a broad coverage of English text and has a precisionand recall of 85.7% for

labelled brackets (Roark, 2001a). As the Dundee Corpus alsoconsists of newspaper

text, we expect a similar performance on the Dundee Corpus.

Again, there was a mismatch between tokenization of the parser and the Dundee

Corpus. Just as for integration cost, we decided to combine Surprisal predictions by

addition. Surprisal captures the amount of probability mass of analyses that are not

compatible with the current input given the prefix. Two wordswhich are one token

in the Dundee corpus (likewe’ll) carry the same information as two separate adjacent

tokens (weand’ll , and thus rule out the same structures, such that the Surprisal of we’ll

is exactly the same as the Surprisal ofweplus the Surprisal of’ll (see Equation (5.3)).

Sk+1+Sk+2 = − logP(wk+1|w1 · · ·wk)+− logP(wk+2|w1 · · ·wk+1) (5.3)
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= − logP(w1 · · ·wk+1)

P(w1 · · ·wk)
− logP(w1 · · ·wk+2)

P(w1 · · ·wk+1)

= − logP(w1 · · ·wk+1)+ logP(w1 · · ·wk)−
logP(w1 · · ·wk+2)+ logP(w1 · · ·wk+1)

= logP(w1 · · ·wk)− logP(w1 · · ·wk+2)

= − log
P(w1 · · ·wk+2)

P(w1 · · ·wk)

= − logP(wk+1,wk+2|w1 · · ·wk)

= Sk+1,k+2

Surprisal was estimated in two different ways. The first version was fully lexical-

ized, i.e., it takes into account the exact words of a string when calculating structural

and lexical probabilities. This lexicalized version was obtained using the default con-

figuration of the Roark parser. The second version was not lexicalized, i.e., it only

used the structural probabilities. This structural model (also described in (Roark et al.,

2009)) does not take into account word frequency or the probability of a word being

assigned a specific POS tag (i.e., there are no lexical rules of typeV → wrote). This

structural version of Surprisal helps us to factor out frequency effects.

5.5.2 Results

Table 5.5 shows the coefficients and significance levels obtained when running a mixed

effects model on first pass durations in the Dundee Corpus. Asin Experiment 1, this

model was computed over all words in the corpus, and includedall non-linguistic

predictors as well as lexical Surprisal (LEXICAL SURPRISAL), structural Surprisal

(STRUCTURALSURPRISAL), and forward and backward transitional probability.

Table 5.5 shows that structural Surprisal is a significant, positive predictors of read-

ing time (high Surprisal leads to longer reading time). The coefficient for STRUC-

TURALSURPRISAL is small, but this has to be interpreted in the context of the range

of this predictor: the values for structural Surprisal range from 0 to 16, with a mean

Surprisal of 2.4.

Residualized lexical Surprisal (LEXICAL SURPRISAL) has a negative coefficient in

Table 5.5, which means that the proportion of lexical Surprisal which is not captured

in either unigram frequency of a word, transitional probability or structural Surprisal

made incorrect predictions of reading times: larger residual lexical Surprisal is equated

to faster reading by the regression model. The same effect was also found in a model

without structural surprisal, where lexical surprisal wasonly residualized with respect
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to unigram frequencies and forward transitional probabilities. Residualized forward

transitional probability (i.e. the part of forward transitional probability that cannot be

explained by simple word frequencies) was a significant negative predictor of reading

time (higher probability means lower reading time), thus satisfying expectations. As

detailed in Section 5.2, forward transitional probabilitycan be regarded as a simple

form of Surprisal that only takes into account the immediatecontext (the preceding

word). Residual backward transitional probability has a positive coefficient.

We fitted mixed effects models for total times, which also showed a positive effect

of structural Surprisal and a negative effect of residualized lexical Surprisal. Structural

Surprisal has a larger coefficient in the total time model.

In the first fixation model, the interaction between word length and frequency did

not come out as a significant predictor of reading times. Furthermore, WORDLENGTH,

BACKWARDTRANSITIONALPROBABILITY and STRUCTURALSURPRISAL were not

significant predictors for first fixation times. On the other hand, FORWARDTRANSI-

TIONAL PROBABILITY was attributed a larger negative coefficient in the first fixation

model.

The same models were also fitted with random slopes (including one each for lex-

ical and structural Surprisal) under subject. Results were, as in Experiment 1, very

similar, with significance values generally being a bit lower for all predictors, and

similar high correlations. Section 5.6 reports models including random slopes under

subject for all three reading measures, where the correlation problem is solved.

5.5.3 Discussion

This experiment showed that Surprisal can function as a broad-coverage model of syn-

tactic processing complexity: we found that structural Surprisal was a significant, pos-

itive predictor of reading time on arbitrary words in the Dundee Corpus. This sets

Surprisal apart from integration cost, which does not make predictions for all words in

the corpus, and for which we only obtained significant effects on verbs and nouns.

We failed to find a corresponding effect for lexical Surprisal. This indicates that

forward transitional probability and structural Surprisal taken together are better pre-

dictors of reading times in the Dundee Corpus than lexical Surprisal, which combines

these two components. Forward transitional probability can be regarded as a simple

approximation of Surprisal (see Section 5.2), and our results indicate that this approxi-

mation is sufficient, at least when it comes to predicting thereading times in the corpus.
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Predictor Coefficient Significance

(INTERCEPT) 241.96 ***

WORDLENGTH 8.40 ***

WORDFREQUENCY -12.49 ***

PREVIOUSWORDFIXATED -35.55 ***

FREQOFPREV -6.12 ***

LANDINGPOSITION -18.22 **

LAUNCHDISTANCE -0.70 ***

SENTENCEPOSITION -0.24 ***

FORWARDTRANSITIONALPROBABILITY -1.73 ***

BACKWARDTRANSITIONALPROBABILITY 1.00 ***

STRUCTURALSURPRISAL 0.49 ***

LEXICAL SURPRISAL -0.63 ***

WORDLENGTH:WORDFREQUENCY -2.87 ***

WORDLENGTH:LANDINGPOSITION -18.78 ***
* p < 0.05, ** p < 0.01, *** p < 0.001

Table 5.5: First pass durations for all words in the Dundee Corpus: coefficients and

their significance levels for a model that includes all predictors as main effects, and all

binary interaction, minimised using the AIC.

Structural Surprisal, on the other hand, takes structural probabilities into account,

but disregards lexical probabilities, and therefore is a significant predictor of reading

time, even if forward transitional probability is also entered into the model. We con-

clude that structural Surprisal is able to explain a component in the reading time data

that neither transitional probabilities, nor any of the other non-syntactic predictors can

explain. This is evidence for Hale’s (2001) and Levy’s (2008) hypothesis that the in-

cremental disconfirmation of syntactic hypotheses by the parser can explain processing

complexity.

Our Surprisal results are corroborated by a number of later pieces of work.

Ferrara Boston et al. (2008) found that structural Surprisal is a significant predictor

of reading times on the Potsdam Sentence Corpus. The PotsdamSentence Corpus

differs in a number of ways from the Dundee corpus: it uses a different language

(German) and it consists of unconnected sentences, which were manually constructed

for experimental purposes, rather than taken from naturally occurring text. Also, it
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is smaller in terms of items (144 sentences), but larger in terms of participants (272

participants) than the Dundee corpus. It is therefore encouraging that our results

are consistent with Ferrara Boston et al.’s (2008), in spiteof these corpus differences.

Ferrara Boston et al. (2008) did not test lexical Surprisal or integration cost on their

data set, but they compared two versions of structural Surprisal, estimated either using

a context-free grammar (i.e., in the same way as in the present study), or using a de-

pendency grammar. In both cases, the Surprisal estimates were a significant predictor

of reading times. Furthermore, Roark et al. (2009) also found that structural Surprisal

calculated by the same parser as used in this thesis correctly predicts reading times on

the Bachrach corpus. Additionally, Frank (2009) found a significant positive effect of

structural Surprisal on the Dundee corpus, both using the Roark parser and using an

SRN. Both of Frank’s models were trained on POS-tag sequences.

5.6 Experiment 4: A Comparative Model of DLT and

Surprisal

5.6.1 Method

To give a comparative overview of the syntactic predictors discussed in this chapter

and to address issues of collinearity in models including random slopes, we fitted a

baseline mixed effects model that includes only the predictors which are not of interest,

their interactions and random slopes under subject, and then fitted separate models

for the three predictors we are interested in, integration cost, lexical and structural

Surprisal, on the residuals of the baseline model. The advantage of this method is

that all predictors are fitted on the exact same data, and thatthere are no possible

effects of collinearity on the effects we’re interested in.Furthermore, we do not need

to separately residualize syntactic predictors against other correlated predictors.

5.6.2 Results

The results for the baseline model as well as the models on itsresiduals are given in

Table 5.6. We will start by discussing the columns for first pass times, which showed

that integration cost, structural Surprisal and lexical Surprisal are all significant pre-

dictors of reading time. However, the coefficient of INTEGRATIONCOST was negative,

confirming that integration cost is not a broad-coverage predictor of reading time (as
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First Fix First Pass Total Time

Predictor Coef Sig Coef Sig Coef Sig

(INTERCEPT) 205.50 *** 241.18 *** 254.07 ***

WORDLENGTH 0.71 * 8.11 7.36 ***

WORDFREQUENCY -6.33 *** -12.34 *** -15.80 ***

PREVIOUSWORDFREQUENCY -3.11 -6.19 * -6.35 ***

PREVIOUSWORDFIXATED -10.95 *** -33.66 * -35.60 ***

LAUNCHDISTANCE -1.63 *** -0.75 -0.86

LANDINGPOSITION 8.31 *** -18.00 -21.39 ***

SENTENCEPOSITION -0.05 ** -0.24 *** -0.28 ***

FORWARDTRANSITIONALPROB -1.59 *** -1.97 -2.77 ***

BACKWARDTRANSITIONALPROB 0.71 * 1.18 1.36 **

WORDLENGTH:WORDFREQUENCY -1.15 *** -3.06 *** -4.15 ***

WORDLENGTH:LANDINGPOSITION rem – -19.21 *** -18.59 ***

INTEGRATIONCOST -0.18 -1.72 *** -2.82 ***

LEXICAL SURPRISAL -0.04 -0.15 * -0.16

STRUCTURALSURPRISAL 0.11 0.56 ** 1.21 ***
* p < 0.05, ** p < 0.01, *** p < 0.001

Table 5.6: Coefficients and significance levels for models of first fixation times, first pass

durations, and total reading times for all words in the Dundee Corpus. The models

include all predictors that are not of primary interest, interactions between them, and

their slopes under subject. Predictors of interest and their random slopes under subject

were run in separate models on the residuals of the basic model. Predictors marked

“rem” were removed from the regression as they did not significantly reduce the AIC.

shown in Experiment 1). Furthermore, LEXICAL SURPRISAL has a small negative co-

efficient, meaning that words with higher lexical Surprisalshow longer reading times,

which is not what is expected according to Surprisal theory (but in line with the finding

of Experiment 3). Note however, that the negative effect, after outlier removal, was not

significant for total reading times. Finally, STRUCTURALSURPRISAL is confirmed as

a significant positive predictor of first pass reading times.

Turning to the results for first fixation times (see Table 5.6), we again found a

significant negative effect of forward transitional probability, and a small positive effect

of backward transitional probability. The interaction between word length and landing
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INTEGRATION WORD LEXICAL STRUCT. FORWTRANS

COST FREQ SURPRIS SURPRIS PROB

WORDFREQUENCY -0.25

LEXICAL SURPRIS 0.17 -0.57

STRUCT.SURPRIS -0.07 0.04 0.36

FORWTRANSPROB -0.20 0.62 -0.66 -0.10

BACKTRANSPROB -0.26 0.62 -0.53 0.04 0.68

Table 5.7: Correlation coefficients (Pearson’s r) between the predictors, for fixated

words (N = 237,163).

position was removed from the model, as it did not improve model fit, and word length

turned out to be a much smaller, just marginally significant predictor. None of the

syntactic predictors significantly improved model fit.

The results for total reading times (see also Table 5.6) largely replicated the results

for first pass times; again integration cost, and structuralSurprisal were significant pre-

dictors. However, the effect of lexical Surprisal (which had wrong polarity anyway)

failed to reach significance. The coefficient for integration cost was negative, also

replicating the findings for first pass times. Note that LAUNCHDISTANCE and LAND-

INGPOSITION only reflect data from the first fixation on the word. We tried toremove

it from the model for this reason, but model fit got significantly worse as a result, so

we decided to leave it in.

5.6.3 Discussion

Results for regression on residuals for the sentence processing measures shows that the

effects found are very stable also under this conservative way of measuring. Estimating

each of the syntactic predictors on the residuals of the samebaseline model also brings

up the question of how similar the predictors integration cost, structural Surprisal and

lexical Surprisal are to each other. Do they capture overlapping parts of the variance in

the data or not? Would one predictor explain away the others?To address this issue,

we computed correlations between integration cost and the different incarnations of

Surprisal (lexical and structural Surprisal, forward and backward transitional probabil-

ities), and word frequency. The result is given in Table 5.7;all correlations are statis-

tically significant except for the pair WORDFREQUENCY–STRUCTURALSURPRISAL

(even small correlations are significant due to the large number of observations).
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As expected, forward and backward transitional probability are highly correlated.

Furthermore, the lexicalized measures (lexical Surprisaland transitional probabilities)

are highly correlated with word frequency. The high correlation between lexical Sur-

prisal and forward transitional probability confirms the intuition that these two mea-

sures are in fact both incarnations of Surprisal, but of a different level of granularity.

On the other hand, structural Surprisal is not significantlycorrelated with the other

measures, including word frequency (though there is a weak correlation with lexical

Surprisal). This confirms that structural Surprisal reallycaptures structural probabil-

ity effects, without taking lexical probabilities into account. Crucially, Table 5.7 also

shows that integration cost is orthogonal to Surprisal and the other frequency-based

predictors: there is no strong correlation between INTEGRATIONCOST and any of the

other predictors. This finding holds even if we compute correlations only for the verbs

in the Dundee Corpus (not shown in the table): the correlation between integration cost

and structural Surprisal is approximately 0.05 for verbs, while the correlation between

integration cost and lexical Surprisal is approximately 0.01 for verbs. This confirms

that integration cost and Surprisal are orthogonal: if there was a relationship between

them, it should manifest itself on verbs, as verbs are the words with the largest variation

in integration cost (compared to nouns, which mostly have anintegration cost of one,

and the other words, which have an integration cost of zero; see also Section 5.4.3).

The lack of correlation taken together with the fact that significant effects are found

both for Surprisal and DLT integration cost is supporting evidence for our hypothesis

that both DLT and Surprisal capture relevant aspects of processing difficulty, but that

these aspects are complementary. This result suggests thata complete theory of sen-

tence processing complexity needs to include two mechanisms: a backward-looking

one as proposed by DLT, and a forward-looking one as proposedby Surprisal. When

a new word is processed it incurs two types of processing cost: the cost of integrating

previous material with the new word, and the cost of discarding alternative syntactic

predictions that are not compatible with the new word. The first type of cost cor-

responds to locality effects that have been observed extensively in the literature (see

Gibson, 1998). The second type of cost corresponds to anti-locality effects which have

been reported recently (Konieczny, 2000; Vasishth and Lewis, 2006). In order to cap-

ture both types of cost (and yield broad-coverage results onan eye-tracking corpus),

it is necessary to develop a unified model that encompasses both the prediction of up-

coming material and the subsequent verification and integration processes, as the one

described in the later chapters of this thesis.
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5.7 General Discussion

An important point to consider in this evaluation is the factthat the predictions of both

DLT and Surprisal depend on the grammar formalism that they are operating on. In

DLT, syntactic structures (head–dependent relations) determine the amount of integra-

tion cost that is incurred by a given sequence of words. Whilethere are many clear

cases of what constitutes the head, the dependent and the relation between them can

be subject to debate in the linguistic literature. We assumehere that the dependency

structures output by MINIPAR forms the basis of the integration cost computations

(see Section 5.3.1.3). MINIPAR uses one particular codification of dependency gram-

mar (Sampson, 1995), and it is therefore conceivable that our results would change if

we computed integration cost using a parser that makes a different set of representa-

tional assumptions.

It is important to note that Surprisal also requires representational assumptions.

The definition of Surprisal in Equation (2.4) does not mention syntactic structures ex-

plicitly. However, in order to compute the conditional probability in this equation,

prefix probabilities have to be obtained, which requires summing over all possible

analyses of a string. The number and type of these analyses will differ between gram-

matical frameworks, which entails that representational assumptions do play a role for

Surprisal. In this work, we only investigated the predictions of one type of syntactic

representations, viz., those of Roark’s (2001a) parser, which generates Penn Treebank-

style structures. It is possible that other syntactic models will yield different Surprisal

estimates and fit the reading time data more closely, or modeldifferent aspects of the

data. (This has been investigated by Ferrara Boston et al. (2008), who compare depen-

dency and phrase-structure versions of Surprisal.)

Apart from its theoretical contribution, this chapter alsomakes a methodological

contribution to the field. To the best of our knowledge, the work described here was the

first time that theories of sentence processing have been tested on broad-coverage data

extracted from an eye-tracking corpus. Since the method of evaluation on eye-tracking

corpora has subsequently been adopted by a number of people in the research com-

munity (Ferrara Boston et al., 2008; Frank, 2009; Wu et al., 2010). We believe that the

corpus-based approach presented here constitutes an important new method for evalu-

ating models of sentence processing. Such models are currently tested exclusively on

data obtained for isolated, artificially constructed sentences in controlled lab experi-

ments. The validity of the models can be enhanced considerably if we are able to show
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that they scale up to model reading data from an eye-trackingcorpus, which contains

naturally occurring, contextualised sentences. Furthermore, the use of eye-tracking

corpora has the advantage of convenience and flexibility: itmakes it possible to study

arbitrary syntactic constructions, provided that they occur sufficiently frequently in the

corpus. There is no need to run a new experiment for every construction or every

hypothesis to be investigated.

While the corpus-based approach has great potential, thereare limitations as well.

The fact that naturally occurring sentences are used means that it is much more diffi-

cult to control for confounding factors. We have attempted to include all potentially

confounding factors as co-variates in mixed effects models, thus controlling for the

influence of these factors. However, it is possible that there are some confounds that

we have failed to identify, and therefore they could introduce artefacts in our models.

In an experimental setting, the experimenter will often construct materials so that they

are matched across conditions, i.e., the sentences only differ in the aspects that the

experimenter wants to manipulate, an are identical in all other ways. This reduces the

possibility that there are confounding factors that have not been taken into account.

Another limitation of the corpus-based approach is data sparseness. No corpus can be

so big that it contains all syntactic structures that an experimenter might want to get

data on. For example, if we want to investigate prepositional phrase attachment, then

there is a good chance that there are enough relevant sentences in the Dundee Cor-

pus. If we want to investigate doubly nested relative clauses, on the other hand, then

probably there are not enough tokens. This situation is evenworse if we want to study

structures that are ungrammatical or cause serious processing disruption. These proba-

bly do not occur in the corpus at all. To summarise, experimental data and corpus data

have complementary strengths and weaknesses, and should beused in conjunction to

maximise the evidence for or against a given theoretical position.

5.8 Conclusions

In this chapter, two theories of syntactic processing complexity were evaluated against

reading time data extracted from a large eye-tracking corpus: Gibson’s (1998; 2000)

Dependency Locality Theory (DLT) and Hale’s (2001) Surprisal. The goal of the study

was to investigate whether the two theories provide accurate predictions for arbitrary

words in naturalistic, contextualised text (as opposed to artificially constructed experi-

mental materials, presented out of context and repeated many times).
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We found that DLT’s integration cost was not able to provide reading time predic-

tions for the Dundee corpus as a whole. This was largely due tothe fact that DLT

only assigns integration cost values to verbs and nouns; this means that the majority

of words in the corpus have an integration cost of zero. However, we were able to

show that integration cost is a significant predictor of reading time if the verbs and

nouns in the corpus are analysed separately. When we tested DLT predictions against

the verbs in the Dundee corpus, we found evidence that the integration cost definition

for auxiliaries needs to be revised: verbs that integrate anauxiliary and a nominal de-

pendent exhibit a reduced difficulty compared to verbs that only integrate a nominal

dependent. For nouns, we found that compounds need to be investigated further – our

data suggests that integration cost might already occur at the first noun component in

a compound, and not just at the head as current theories wouldassume.

In the second part of this chapter, we evaluated the predictions of Hale’s (2001)

Surprisal measure on the Dundee corpus. We computed Surprisal in two ways: lexical

Surprisal was estimated using a probabilistic parser that utilises lexical (word-based)

probabilities as well as structural (rule-based) probabilities. We found that only struc-

tural Surprisal was a significant positive predictor of reading times. This result shows

that structural Surprisal is a good candidate for a broad-coverage model of syntac-

tic processing complexity; it generates accurate numerical predictions for all types of

words in the corpus, not just for nouns and verbs, as integration cost does.

Our findings regarding lexical Surprisal indicate that a fully lexicalized parsing

model does not offer an advantage over a structural one. However, this does not mean

that there is no role for lexical information in modelling reading times. The experi-

mental literature offers broad evidence for the fact that sentence processing relies on

lexical information, such as subcategorization frame frequencies (e.g., Garnsey et al.

(1997); Trueswell et al. (1993)) and thematic role preferences (e.g., Garnsey et al.

(1997); Pickering et al. (2000)). Recent probabilistic models of human sentence pro-

cessing have attempted to integrate such information with the structural probabilities

generated by a parser (Narayanan and Jurafsky, 2002; Padó,2007). It seems likely that

these models (which are effectively structural model augmented with a limited form

of lexical information) would yield a more accurate accountof reading times in the

Dundee Corpus.

A central finding of the last experiment was the fact that Surprisal and integration

cost are uncorrelated, both for arbitrary words in the corpus, and for verbs (for which

DLT makes the bulk of its predictions). This result suggeststhat a complete theory
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of sentence processing complexity needs to include two mechanisms: a backward-

looking one as proposed by DLT, and a forward-looking one as proposed by Surprisal.

The next chapter of this thesis proposes a way to combine these aspects, while also

observing the psycholinguistically motivated mechanismsof incrementality and pre-

diction in human sentence processing.





Chapter 6

A Theory of Explicit Predictions

This chapter proposes a new theory of human sentence processing which explicitly

models prediction during language comprehension.

The first part of this chapter explains the theory’s underlying assumptions, incre-

mentality, full connectedness, prediction and verification. The theory is conceptualised

as a ranked parallel processor and aims to make predictions that cover all types of

words. The theory furthermore provides a natural way of accounting for both a for-

ward and a backward looking process, which bear similarities to surprisal and integra-

tion cost. Section 6.2 outlines the linking theory, which derives processing difficulty

predictions from the parsing process. Section 6.3 discusses which of the existing gram-

mar formalisms can be used or adapted most easily to model theassumptions made by

the theory, in order to be used as a basis for a parser which canautomatically generate

syntactic analyses that follow the outlined assumptions.

Parts of this chapter have been first presented at CUNY 2008, AMLaP 2008 and

TAG+9 2008.

6.1 Fundamental Assumptions and Properties

The fundamental assumptions of the proposed theory are strictly incremental process-

ing with full connectivity, prediction in combination witha verification mechanism,

and ranked parallel processing.

123



124 Chapter 6. A Theory of Explicit Predictions

6.1.1 Incrementality

There are different interpretations of what “incremental processing” on the syntax level

means. The most general interpretation is that it involves left-to-right processing on

a word by word basis. But then the question arises, how “complete” that processing

has to be – are the syntactic relations between the all processed words fully specified

even if final evidence for dependencies can be expected to only occur later on in the

sentence? In the less strict interpretation of incrementalprocessing, words can be

partially connected and these partial structures stored ona stack until further evidence

for how to connect them is encountered. The strongest form ofincrementality, which

we will refer to asstrict incrementalityor full connectednessentails that all words

which have been preceived so far are connected under the samesyntactic root node,

which means that all relations have been specified completely (of course, competing

analyses can exist in parallel).

In this section, we will review evidence for full connectedness. First, we summarise

the discussion in the literature, which took place in the early 90’s, about incremental

interpretation and the relationship of syntax and semantics, also known as thestrict

competence hypothesis. We then review empirical results from psycholinguistic re-

search about the degree of incrementality in human sentenceprocessing.

6.1.1.1 Incremental Interpretation and Strict Competence

One of the most fundamental questions in the design of a theory of syntactic process-

ing concerns the relationship between syntactic processing and semantic processing,

because many psycholinguistic experiments observe onlyincremental interpretation,

which means that thesemanticsof the partial sentence has been composed based on the

words that have been perceived at a certain point. Claims about syntax are based on c-

command relations, as in (Sturt and Lombardo, 2005), role assignment (Kamide et al.,

2003), pre-head garden pathing in head final languages (Aoshima et al., 2004) or co-

reference and binding (Aoshima et al., 2007; Yoshida et al.,2009), see below.

In the literature, there is an extensive discussion of whether it is necessary to as-

sume syntactic connectedness in order to achieve incremental interpretation. Steedman

(2000) argues for thestrict competence hypothesiswhich essentially means that only

syntactic constituents can receive an interpretation, on the grounds that it would be

necessary to assume a more complex design of the human processing system if it had

separate mechanisms for dealing with incomplete structures. Note however that the no-
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tion of constituents is more general in Steedman’s work thanin most standard linguis-

tic definitions. It refers to constituents licensed by Combinatory Categorial Grammar

(CCG), where each syntactic constituent can be directly linked to a semantic interpre-

tation.

On the other hand, Shieber and Johnson (1993) argue that evena bottom-up parser

where syntactic structure has not yet been connected, can besufficient for incremen-

tal interpretation. They showed this using Synchronous Tree Adjoining-Grammar

(STAG) as a formalism, which constructs syntactic and semantic analyses simultane-

ously. However, in order to produce the necessary information to create the semantic

relationships not yet expressed in the syntax, additional machinery is needed.

A simpler model requires the syntactic relationships to be established in order for

the semantic ones to be made, hence tightly coupling the syntactic and semantic pro-

cessing, as e.g. in CCG. In this thesis, we assume the simplerrelationship, where all

observed incremental interpretation is based on connectedsyntactic structures.

6.1.1.2 Experimental Evidence Supporting Incrementality with Full Connected-

ness

Recent evidence from psycholinguistic research suggests that language comprehension

is largelyincremental, i.e., that comprehenders build an interpretation of a sentence on

a word-by-word basis. This is a fact that any cognitively motivated model of language

understanding should capture. Full connectedness is a stronger claim. It means that

all words must be connected into a syntactic structure at anypoint in the incremental

processing of a sentence. Evidence for full connectedness comes from findings such

as the one presented by Sturt and Lombardo (2005), see Example (1).

(1) a. The pilot embarrassed John and put himself in an awkward situation.

b. The pilot embarrassed Mary and put herself in an awkward situation.

c. The pilot embarrassed John and put him in an awkward situation.

d. The pilot embarrassed Mary and put her in an awkward situation.

The experimental items are constructed in order to test for agender default mismatch

effect in condition (1-b), where the pronoun herself refersback tothe pilot. If peo-

ple have connected all parts of the syntactic structure completely at this point, the

c-command relation between thepilot and the pronoun should be established. In the

experiment, the gender mismatch effect occurs directly when the reflexive pronoun
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is encountered (and not just at the end of the sentence), suggesting that the syntactic

c-command relation link must have been created at the point of processingherself.

Conditions (1-c) and (1-d) were included to rule out a structurally-blind strategy for

connecting the pronoun, in which the pronoun would be connected to the first noun in

the sequence.

More evidence for connectedness comes from visual world studies like the one by

Kamide et al. (2003). In their study, participants listenedto sentences like the ones

shown in Example (2) while looking at a visual scene that included four objects, three

of which were in a transitive relationship (e.g. a cabbage, ahare and a fox with respect

to the ”eat” relation), and a distractor object. They found that people would gaze at

the cabbage upon hearing a sentence like (2-a) before actually hearing the second noun

phrase, and would respectively gaze at the fox in sentences like (2-b). This means that

people were anticipating the correct relationship betweenthe hare and the eating event.

One can therefore conclude that role assignment has been achieved at the point when

the verb (frisst in example sentences (2)) is processed. If we assume that thesyntactic

relations have to be established before role assignment canbe performed, the evidence

from these experiments suggests full connectedness at the verb.

(2) a. Der Hase frisst gleich den Kohl.

The Hare-nom will eat soon the cabbage-acc.

b. Den Hasen frisst gleich der Fuchs.

The Hare-acc will eat soon the fox-nom.

Evidence from experiments on Japanese furthermore indicates that humans build

compositional structures by connecting NPs in a grammatically constrained fashion in

advance of encountering the verb, which is the head of the sentence and establishes the

connection between the NPs (Aoshima et al., 2007).

Further evidence comes also from an English eye-tracking experiment

(Sturt and Yoshida, 2008). In (3-c) the negative element c-commands and thus licenses

use of the wordever later on in the sentence. This is not the case for sentences like

(3-a), where processing difficulty can thus be expected at the point where the mismatch

is detected. Reading times are indeed found to be longer for the wordeverin condition

(3-a). This indicates that the structural relations necessary for computing the scope of

negation in sentences like (3) were available early during the processing of the relative

clause, in particular before its verbal head had been processed. Thus, the modifiers

everor nevermust have been immediately incorporated into the structure.
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(3) a. Tony doesn’t believe it, but Vanity Fair is a film which Iever really want

to see.

b. Tony doesn’t believe it, but Vanity Fair is a film which I never really want

to see.

c. Tony doesn’t believe that Vanity Fair is a film which I ever really want to

see.

d. Tony doesn’t believe that Vanity Fair is a film which I neverreally want to

see.

How easily the all words can be connected at each point in timeunder one root in

practical parsing depends strongly on the grammar formalism used. We will review

the ability of different established grammar formalisms tobe used for incremental

parsing in Section 6.3.

6.1.1.3 Experimental Results Challenging Strict Incremen tality

While the above phenomena provide evidence for a strong degree of connectedness,

there are also findings from other studies that suggest that sentence processing is not

fully incremental, or at least that the valid prefix property, meaning that only analyses

that are compatible with the interpretation so far are followed, is not always observed

by humans. Local coherence effectsare often interpreted as evidence that humans

adopt a locally coherent interpretation of a parse, or experience interference effects

by locally coherent structures which are however not compatible with the incremental

interpretation.

Tabor et al. (2004) showed that participants are slower to read object-modifying

reduced relative clauses (RCs) like the one shown in Example(4), when the RC verb

is part-of-speech ambiguous than when the verbs POS tag is unambiguous.

(4) The coach smiled at the player tossed a frisbee by ...

In the example sentence, the wordtossedcould be a simple past form or a past partici-

ple form. If the ambiguous wordtossedis replaced by a word that is unambiguously

a past participle, such asthrown, the sentence becomes significantly less difficult. See

Section 9.1.6 for a more detailed discussion of the study. This result is problematic for

any fully incremental framework because the main-verb interpretation is incompatible

with the global context and should thus be ignored by the processor, and hence not in-

fluence reading times. Local coherence effects have been successfully modelled using
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a bottom-up CCG parser (Morgan et al., 2010) which does however not implement full

connectedness.

A different account was proposed by Gibson (2006), who suggests that difficulty

arises because the top-down global syntactic analysis conflicts with the bottom-up part-

of-speech disambiguation, which are being done at the same time. These two analyses

would compete and cause conflicts if they do not match. He suggested a formalisa-

tion of the difficulty as inversely proportional to context-independent probability of

the POS-tag given the word multiplied by the smoothed syntactic expectations. This

explanation does not necessarily require building up a representation for the locally

coherent string, and could still be reconcilable with incremental processing (and the

valid prefix property). Bicknell et al. (2008) tested this hypothesis on the Dundee Cor-

pus, and found supportive evidence for processing difficulty arising from conflicting

global interpretation vs. POS tag bottom-up analyses.

Other psycholinguistic effects that can be interpreted as evidence against full con-

nectedness, and in favour of keeping unconnected structures around for later inter-

pretation are reported in (Frazier and Clifton, 1996; Traxler, 2007; Swets et al., 2008).

These studies suggest that modifiers like relative clauses are only attached when nec-

essary. In order to account for these kinds of local coherence effects within an incre-

mental framework, it seems necessary to assume that people sometimes remember the

interpretation of a prefix imperfectly.

6.1.1.4 Discussion

The theory proposed in this work assumes full connectednessdespite the indication of

the existence of local coherence effects (which may find other explanations that may

be compatible with incrementality, such as imperfect memory or interference from pre-

syntactic processes). Connectedness provides a natural and elegant way of explaining

why humans predict upcoming linguistic material (see Section 6.1.2 for a discussion

of evidence of prediction): predictions are needed in orderto maintain fully connected

structures. Another challenge is the difficulty of arguing for a specific degree of con-

nectedness, in particular since each study only makes claims about connectedness at a

specific word in a specific construction. The theory proposedhere therefore assumes

the most simple and extreme interpretation of incrementality, full connectedness.
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6.1.2 Prediction

“Prediction” here refers to the process of forming expectations about upcoming input.

Evidence for prediction mainly refers to short-lived predictions affecting only the next

couple of words. The plausibility of prediction in sentencecomprehension has been

discussed with respect to what the benefits of prediction would be, given that making

predictions must also be related to some cognitive effort. This section first summarises

the discussion in the literature of the relationship between prediction and integration,

and then presents recent experimental evidence for prediction.

6.1.2.1 Prediction vs. Integration

Facilitatory effects have been observed for highly predictable words, which are read

faster. However, for many of the experiments, it can also be argued that this facilitatory

effect stems from easier integration of predictable words with the context.

People have therefore asked the question, whether a prediction process can be mo-

tivated – how would predictions help language comprehension? If they don’t, why

assume this additional mechanism? Some have argued that making predictions seems

like a waste of a lot of processing effort, given that input isgoing to come up soon any-

way: making predictions would unnecessarily take processing resources away from

processing current input. Arguments that promiscuous prediction is computation-

ally inefficient have for example been made by Charniak (1986); Singer et al. (1994);

Jackendoff (2003); Marslen-Wilson and Welsh (1978).

On the other hand, several groups of researchers have arguedfor the existence

of prediction in sentence processing, and have pointed out that benefits of generating

predictions during comprehension are more rapid comprehension, and robust interpre-

tation of ambiguous or noisy input (Pickering and Garrod, 2007). They argue that the

language production system is used during comprehension togenerate these predic-

tions.

Evidence from word naming studies, where the task was to namea word that re-

flected the expected predictions (also referred to as forward inferences) of a short

text, indicates that predictions are very short-lived, as facilitatory effects were only

found directly after the sentence which was supposed to trigger the predictive in-

ference (Keefe and McDaniel, 1993) but not when additional materials or a pause

had intervened between the trigger sentence and the naming task (Potts et al., 1988;

Singer and Ferreira, 1983). Recent evidence for predictiveinferences comes from



130 Chapter 6. A Theory of Explicit Predictions

Altmann and Kamide (2007) who found in a visual world experiment that participants

looked to an empty glass on hearing “The man has drunk”, but toa full glass when

hearing “The man will drink”. Further evidence for the existence of prediction comes

also from the direct study of brain activations. Federmeier(2007) presents evidence for

the existence of parallel predictive and integrative processing in language comprehen-

sion based on event-related potentials (ERP) tracked during language comprehension.

Results indicate that top-down predictive processes are processed in the left brain hemi-

sphere while bottom-up integration processes take place inthe right hemisphere. The

evidence for predictive processes stems from experiments showing that a strongly con-

straining (and hence strongly predictive) context leads tostronger N400 effects when

the anticipated word is not encountered than weakly constraining contexts. Integration

based accounts cannot account for the detected difference as integration ease was bal-

anced based on pre-tests with Cloze probabilities, and integration-based theories would

therefore predict the same integration difficulty in both contexts. Federmeier concludes

that prediction seems important for language comprehension, but that it is also related

to some processing cost and that the ability to make predictions deteriorates with age,

showing that prediction effects are weaker for older adults.

6.1.2.2 Experimental Evidence for Prediction

Recent studies provided evidence that humans predict bits of the sentence that have not

been preceived yet based on what they have heard so far, e.g. in studies by Kamide et al.

(2003); Tanenhaus et al. (1995); van Berkum et al. (2005); Staub and Clifton (2006);

Yoshida et al. (2009). The study by Kamide et al. (2003), see Examples (2) earlier in

this chapter, provides not only evidence for connectedness, but also for prediction. Par-

ticipants’ anticipatory eye-movements to the correct argument of the verb (as opposed

to some other object on the screen) indicate that humans are predicting the upcoming

argument, at least to the level of its semantic sort. Similarexperiments have also been

conducted for English, where the same effect was shown (Kamide et al., 2002).

Evidence for predicting a specific lexical item was found in an ERP experiment

(van Berkum et al., 2005), where subjects heard Dutch stories that supported the pre-

diction of a specific noun, see Example (5). To probe whether this noun was antici-

pated at a preceding indefinite article, stories continued with a gender-marked adjective

whose suffix mismatched the upcoming noun’s syntactic gender. Adjectives that were

inconsistent with the predicted noun elicited a differential ERP effect, which disap-

peared in a control condition where no specific noun could be predicted based on con-
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text. Similarly, prediction-inconsistent adjectives slowed readers down before the noun

in self-paced reading. These findings suggest that people can indeed predict upcoming

words in fluent discourse, and, moreover, that these predicted words can immediately

begin to participate in incremental parsing operations. Similar results were found for

English in a study on the use of “a” vs. “an” as an indefinite determiner (Delong et al.,

2005), who found larger N400 effects for indefinite articlesthat mismatched the ex-

pected upcoming noun (e.g.,The day was breezy, so the boy went outside to fly an...

where the wordkitewas most expected).

(5) context:De inbreker had geen enkele moeite de geheime familiekluis te vinden.

[The burglar had no trouble locating the secret family safe.]

a. consistent:Deze bevond zich natuurlijk achter een grootneu maar onop-

vallend schilderijneu.

[Of course, it was situated behind a bigneubut unobtrusive paintingneu.]

b. inconsistent:Deze bevond zich natuurlijk achter een grotecom maar onop-

vallende boekenkastcom.

[Of course, it was situated behind a bigcom but unobtrusive bookcasecom.]

Another piece of evidence for prediction is theeither. . . orconstruction. Results

by Staub and Clifton (2006) show that hearing the wordeither triggers prediction of

or and the second conjunct: reading times on these regions wereshorter in theeither

condition, and participants also did not misanalyse disjunctions at sentence level as

noun disjunctions in the condition whereeitherwas present. As an example, consider

the sentence in (6). Here, the regionor an essayis processed more quickly in (6-a)

than in (6-b).

(6) a. Peter read either a book or an essay in the school magazine.

b. Peter read a book or an essay in the school magazine.

As Cristea and Webber (1997) point out, there are a number of constructions with

two parts where the first part can trigger prediction of the second part, similar to

either. . . or. A related form of prediction is syntactic parallelism; experimental find-

ings by Frazier et al. (2000) indicate that the second conjunct of a coordinate structure

is processed faster if its internal structure is identical to that of the first conjunct. This

can be seen as a form of prediction, i.e., the parser predictsthe structure of the second

conjunct as soon as it has processed the coordinator.
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Very recently, Yoshida et al. (2009) argued that in a study ofsluicing constructions

in English, the parser predicts sluicing structure and usesthe information to resolve

anaphora binding. Examples for experimental items from thestudy are shown in (7).

(7) Nicole’s father heard several stories during the holiday party, but it’s not clear

a. which story of himself from the party her grandfather became so terribly

upset over.

b. which story of herself from the party her grandmother became so terribly

upset over.

c. over which story of himself from the party her grandfatherbecame so

terribly upset.

d. over which story of herself from the party her grandmotherbecame so

terribly upset.

At the point ofherself, participants exhibited longer reading times in condition(7-b),

because of the gender mismatch betweenherselfandNicole’s father. This means that

they must have predicted a sluicing construction at the point of processingherself,

which in turn means that the structure up toherself must have been completely con-

nected at that point. In a structurally-blind interpretation, or an account where the

sluicing construction has not been built up and connected, the gender mismatch ef-

fect cannot be explained. Furthermore, they must have integrated the pronoun directly

when it was processed, thus being able to resolve the anaphora binding. If the pronoun

had not been integrated directly, we would only expect a later effect. In the control

conditions (no gender mismatch as in Example (7-a), or no sluicing as in sentences

(7-c) and (7-d)), reading times on the critical region were not significantly longer.

6.1.2.3 Verification

Whenever syntactic structure is predicted, we assume that it will be necessary to val-

idate these predictions and to match up the predicted structure with what is actually

encountered later on. The idea of verification bears similarities to integration in DLT,

where arguments are integrated at the heads. Under the assumption of full connect-

edness, these heads are usually predicted earlier on. Experimental results on locality

effects can be re-interpreted in terms of processing difficulty incurred through verifi-

cation. This aspect is evaluated in Chapter 9.1 based on the full specification of the

prediction theory and its implementation, (see Section 6.2and Chapter 8).
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6.1.2.4 Grain Size of Predictions

An important open problem in any theory of prediction is to identify the grain size

of the predictions. Should a specific word, semantic sort, just the part of speech, or

the syntactic structure be predicted? It may also be necessary to adapt the prediction

level to the type of prediction cue seen. A related question is how far into the future

predictions are made: just the next word, the next phrase, tothe next possible end of

sentence, even further?

One possibility would be to predict what’s necessary in order to build a plausible

and grammatical sentence under the full connectivity assumption. Such a notion of

prediction would be conservative in that it predicts only what is minimally necessary

to satisfy the assumptions of producing fully connected structures. Prediction necessi-

tated by the connectedness assumption can happen e.g. in cases where two dependents

but no head has been seen. The two dependents can only be connected into a single

structure, if their common head (or at least a structure thatrequires a common head for

them) is predicted. Similarly, when a grandparent and a child are seen, but not the par-

ent, then the connecting structure between grandparent andchild has to be predicted in

order to achieve full connectivity.

Based on the experimental evidence outlined above (Kamide et al., 2003), predic-

tions should also be generated based on a word’s subcategorization frames. For pre-

dictions which are generated through subcategorization, the practical question arises

of how to exactly define the subcategorization frames. The difference between argu-

ments and modifiers seems to be gradual rather than categorial. Linguists have tried to

differentiate between obligatory and optional constituents in language, such as in the

X-bar theory, but it has been found that the distinction is notoriously difficult also for

humans (e.g. in annotation, as can be seen in the disagreement between argument and

modifier annotations from different resources such as PropBank (Palmer et al., 2003)

vs. FrameNet (Johnson and Fillmore, 2000) and VerbNet (Kipper et al., 2000), as dis-

cussed e.g. in McConville and Dzikovska (2008)).

Another possibility is to always predict all possible structures (based on the gram-

mar). Prediction grain size then mainly depends on the shapeand independence as-

sumptions of the grammar rules, and could potentially lead to making a very large

number of very detailed predictions. The frequent generation of very detailed pre-

dictions however seems cognitively implausible due to the large prediction space this

would create. Another question is the abstraction level forpredictions. Should one
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predict just the existence of an NP, or its internal structure, or its head? Clearly, more

research is needed to learn more about the granularity of prediction that humans make.

6.1.2.5 Discussion

While it is still controversial whether explicit prediction takes place in human sentence

processing, and whether it occurs on a regular basis during processing or just in very

specific situations, we think that the evidence is well compatible with a prediction

account. As discussed in the previous section, it is howeverdifficult to pin down a

specific level at which prediction happens based on the evidence so far – these results

cover too few data points in the full space of where prediction could happen. This gap

should be filled by conducting more experiments that can inform prediction grain size,

and does not pose a fundamental problem to the concept of prediction.

6.1.3 Serial vs. parallel processing

Serial processing means that only one single analysis is processed at a time, usually

entailing that the parser must have some kind of back-tracking mechanism so it can

go back to an earlier point in the sentence and resume processing with an alternative

analysis once it is clear that the current analysis is not viable. Serial processing is diffi-

cult to reconcile with some findings such as unforced reanalysis. Unforced reanalysis

means that people can adopt an interpretation first which they then revise in favour

of another analysis before having encountered a point in thesentence where the first

analysis has become impossible or ungrammatical (Steedmanand Altmann, 1989). In

serial processing the processor cannot compare its currentanalysis to possible alter-

natives, and therefore is theoretically not able to give it up in favour of an alternative

one. Instead, one would have to assume that rewrite-rules can get triggered, or that

something causes the current analysis to be abandoned and a new one to be started.

The notion of rewrite rules may be problematic because of theoverhead of also having

to rewrite role assignments and other semantic interpretations – this seems rather com-

plex. On the other hand, it also seems difficult to pin down what causes a parse to be

abandoned in unforced reanalysis cases. Given just the syntactic component, it is not

clear how to decide on a threshold for when the parse is too badand should be given

up in the absence of material to normalise probabilities against. Instead, one would

have to assume some conflict for example between the semanticinterpretation and the

syntactic analysis to trigger reanalysis (Frazier and Clifton, 1998).
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Under parallel processing on the other hand, changing interpretations is straightfor-

ward: since several paths are followed at the same time, one can compare their proba-

bilities / plausibilities and change to the more likely one at any given point. A complete

parallel parser that follows all possible analyses at each point in time is however also

implausible, given processing difficulty effects as seen ingarden path sentences: a

fully parallel model would have the correct interpretationavailable as well, and there-

fore should not lead to the difficulties observed in garden path sentences. Therefore, a

conceptualisation as ranked parallel parsing has been suggested as an alternative to se-

rial parsing. In a ranked parallel parser, analyses with very low probability or rank are

discarded. In a garden path sentence, the correct analysis would have been discarded

and reanalysis would be initiated when none of the currentlymaintained analyses are

compatible with further input. The parser might then discard analyses less readily in

a second run (under the assumption that the reader pays more attention, and hence al-

locates more resources to the parsing process, which would reflect in more memory

allocation in the parser).

Discussion

People have found it notoriously difficult to come up with definite answer concerning

serial or ranked parallel processing (Lewis, 2000; Gibson and Pearlmutter, 2000). We

here assume ranked parallel processing. In addition to the memory restriction imple-

mented through a finite beam of maximally maintained analyses, our theory models a

limited memory also by restricting the number of predictions maximally maintained for

each analysis (we also show in Section 8.2.3 that nothing beyond this limit is needed

for parsing text like the Wall Street Journal).

6.1.4 Broad-coverage

Theories for syntactic processing are usually inspired by observations from very spe-

cific structures, such as garden path sentences, relative clauses, verb-final construc-

tions, centre-embedding, ambiguous PP-attachment, idiomprocessing, case ambigu-

ity, direct object vs. sentence complement ambiguity, etc., and often rather extreme

versions of these structures were used to find reliable effects.

But in order for a theory to claim that it is a theory of syntactic processing in hu-

mans, it should not only be able to explain the pathologies inhuman processing, but

also account for processing facilitation and behaviour on awide variety of structures.



136 Chapter 6. A Theory of Explicit Predictions

Theories should be evaluated on material that humans encounter in their daily lives

and not exclusively on unnatural special cases, such as garden paths or difficult con-

structions that push the border of what humans can process. An important question to

ask is therefore whether the existing theories scale up to naturally occurring, contex-

tualised text, and whether syntactic structures have any measurable influence on such

contextualised reading (Brants and Crocker, 2000).

The aim in this thesis is therefore to develop a theory of sentence processing that

makes predictions for a wide variety of structures, insteadof focusing on very specific

sub-constructions.

6.2 Design of the Sentence Processing Theory

A main goal of this thesis is to construct a cognitively plausible model of human sen-

tence processing, i.e. one that adheres to the specifications outlined in Section 6.1,

such as incrementality, connectedness, making predictions (as far as humans do), and

verifying them against upcoming events. Furthermore, we conceptualise sentence pro-

cessing in a parallel framework and specify that the theory should be general enough

to scale up to naturally occurring text, in order to account for difficulty incurred when

processing broad-coverage text, as well as explain well-established experimental psy-

cholinguistic findings.

Given these basic design decisions, we here define the link between the parsing pro-

cess and processing difficulty. We thereby also take into account what we learnt from

the broad-coverage analysis of previous theories, as discussed in Chapter 5: we ob-

served that the forward-looking aspect of surprisal and thebackward-looking aspect of

DLT integration cost explained complementary bits of the processing difficulty found

in the corpus. Furthermore, literature on these theories also found them to explain a

different set of experimental findings. Therefore, our theory proposes to draw from

both theories and unify them in a single concept of processing difficulty. We formulate

processes in terms of cognitively plausible constructs, such as memory restrictions,

activation and decay.

6.2.1 Processing Difficulty

We propose that processing difficulty be calculated incrementally as the sentence un-

folds. Difficulty occurs through surprisal. If the perceived input is incompatible with
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analyses that had a lot of probability mass and thus violatesexpectations, difficulty

ensues.

Secondly, difficulty arises at integration time, when validating predicted structures

against what is actually encountered. The amount of difficulty generated in verification

depends on (a) how difficult the prediction was and (b) on how recently the prediction

was made: if the prediction has decayed a lot, more difficultyarises than when a struc-

ture was predicted very recently. In our parsing model, we will therefore need to keep

track of when a structure was predicted, and we do this through time stamps. There

are lots of different ways people have proposed to quantify decay in previous work,

e.g. counting distance in words, distance in terms of levelsof embedding, number of

intervening discourse referents, amount of memory interference by related items etc.

Any of these accounts could be implemented within the sentence processing theory.

As a first approach, we here use the simple measure of distancein words. A time

stamp for a prediction is set to the number of the word at whichthe prediction was

triggered. Predictions can also be reactivated if they are used in other operations such

as substitution or adjunction.

Point (a), whether the verification of a prediction is more difficult when the orig-

inal prediction was difficult, is also controversial: On theone hand, very frequently

occurring predictions should be very easy to verify, as the parser does this very often

and structure matching should be easy. On the other hand, onecould argue that if a lot

of resources are spent on a complex prediction, this should also be remembered better

and hence easier to verify. This would point to using a variable decay factor, or more

sophisticated memory retrieval model, e.g. as suggested inLewis and Vasishth (2005).

Intuitively, the difference between a traditional surprisal account and the theory

proposed here is that some of the probability mass (and hencethe exact time when

surprisal effects occur) can be shifted to different pointsduring the processing because

prediction trees are integrated before the full tree would otherwise be seen. This means

that part of the cost of integrating the prediction tree intothe structure is “paid” earlier

through the forced commitment of connecting structures, while the rest of the probabil-

ity mass (the size of the “rest” depends on prediction granularity, i.e. how completely

a structure was predicted) is “paid” during verification. Inaddition to the nodes of the

verification tree that were not predicted in advance, some difficulty is also incurred for

remembering the predicted nodes, to the degree that their prediction has decayed. Note

however, that despite these verification costs, previouslypredicted structures are gener-

ally easier to integrate than structures that were not predicted (in particular if they were
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“completely” predicted all the way down to the lexical head and full subcategorization

frame of the verification tree), because the surprisal of encountering a predicted word

is very low.

Analyses can also be forgotten (pruned) from the set of analyses which are main-

tained in parallel if their probability falls out of the beam(as would happen for garden

path sentences), or when they would require the processor tomaintain a very compli-

cated predicted structure that contains more nodes than allowed by a memory threshold

(thus explaining centre embedding phenomena).

The model proposed in this thesis has two mechanisms that account for processing

difficulty: the part that is related to surprisal quantifies the difficulty of the parser in

terms of updating its representation of the analyses as the sentence unfolds. The verifi-

cation process predicts difficulty based on a memory retrieval process for remembering

and integrating newly encountered structure with previously predicted structure. These

two types of processing difficulty thus model theoreticallydifferent aspects of human

sentence processing.

A formalisation of this linking theory with respect to the PLTAG parser which

we describe in Chapter 8, is spelled out in Section 8.7. We evaluate the sentence

processing theory in Chapter 9.

6.3 Suitability of Grammar Formalisms

In the first part of this chapter, the underlying assumptionsfor the sentence processing

theory: incrementality with full connectedness, parallelprocessing and prediction in

combination with a verification mechanism, were motivated and outlined. In order

to build a broad-coverage model that implements these assumptions, the parser, and

hence a grammar formalism that the parser is based on, has to be able to accommodate

these assumptions. While it is probably possible to tweak any grammar formalism such

that it acts as if it was implementing the desired constraints, some formalisms might

be inherently more suitable than others, in that the adaptation steps required are less

difficult to realise. We here compare five grammar formalisms, Probabilistic Context

Free Grammar (PCFGs), Combinatory Categorial Grammar (CCG), Tree-Adjoining

Grammar (TAG), Dependency Grammar (DG) and Dynamic Syntax (DS).

Given the specifications of the sentence processing theory,the desirable properties

of a grammar formalism to use for the implementation of this theory are incremental-

ity and connectedness, as motivated in the first part of this chapter. Furthermore, it
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is desirable that the formalism distinguishes between arguments and modifiers, such

that subcategorised arguments can be predicted, but modifiers aren’t. Another impor-

tant point especially with respect to a final broad-coverageevaluation of the theory is

tractability of parsing algorithms for the grammar formalism. A further criterion is

easy linking of semantic interpretations to the syntactic structure, which is motivated

by the incremental interpretation hypothesis and easy later extension to, and integration

with, a semantic module. Finally, the generative power of the formalism can be used as

a further argument for psycholinguistic suitability: a formalism that matches the gen-

erative power observed in human languages is inherently more plausible than one that

over-generates (i.e. produces structures that are not observed in human languages) or

one that under-generates, (i.e. cannot account for all of the phenomena encountered in

human languages). Further psycholinguistic criteria are to match the degree of lexical-

ization in the human processor (even though evidence for this is controversial: There

is both evidence for (Staub, 2007) and against (Mitchell, 1987) the immediate use of

lexicalization information in verbs, and it’s been argued that lexicalization may only

come in at a later stage of the processing). Finally, the domain of locality is an aspect

to take into account, which becomes particularly relevant for modelling the processing

of idioms and non-compositional multi-word expressions, in particular in relation to

the link to a semantic interpretation for such structures.

An overview of these criteria and how formalisms satisfy them, is shown in Table

6.1 at the end of this chapter. The remainder of this section will discuss each of the

criteria for each of the grammar formalisms.

6.3.1 Probabilistic Context-Free Grammar

Probabilistic Context Free Grammars are most commonly usedfor natural language

processing applications among the grammar formalisms discussed here. There are lots

of resources and algorithms with well-known properties around, so that is of course an

argument in favour of using a PCFG.

Incrementality / Connectedness Top-down parsing and left-corner parsing with

left-transformed PCFG grammars allows to realise incrementality with full connect-

edness in a PCFG parser.

For psycholinguistic plausibility it is relevant to choosean arc-eager left-corner

parser rather than an arc-standard left-corner parser, as the arc-standard left-corner
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parser would lead to asymmetric predictions for the difficulty of left- vs. right-

branching structures, while arc-eager left-corner parsing would only predict centre

embedding to be more difficult and hence model psycholinguistic evidence better

(Thompson et al., 1991; Resnik, 1992).

Argument vs. Modifier Distinction A PCFG can satisfy this criterion if a suitable

grammar is chosen. For example, rules including modifiers should be binarised to

express that theADJ is optional within theNP. So a rule like

NP→ DT ADJ N

should be replaced by a set of rules like the following:

NP→ DT NP’

NP’ → ADJ NP’

NP’ → N

while it is necessary that a verb keeps all the required entities in the same rule:

VP→ V OBJ OBJ2

Furthermore, rules would need to be lexicalized – a formalism like TAG or CCG seems

to do this more naturally.

Tractability A top-down fully connected incremental parser has been implemented

(Roark, 2001b), both as a generative model (Roark, 2001a) and as a discriminative

parsing algorithm (Collins and Roark, 2004). The discriminative model is however

not suitable for estimating prefix probabilities (which is needed e.g. for calculating

surprisal).

Semantic Interpretation A semantic interface could be designed that uses the incre-

mental output of Roark’s parser and links it to a semantic representation.

Lexicalization Not fully lexicalized in the sense of CCG or TAG, but can use features

for stronger lexicalization.

Domain of Locality Very local, no long dependencies or larger tree structures.
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the pilot embarrassed Mary and put herself in an awkward situation

S/(S\NP) S\NP CONJ (S\NP)/PP PP

>
S\NP

<Φ>
S\NP

>B
S

Figure 6.1: Binding would only occur after full processing of second conjunct according

to CCG derivation. However, the empirical finding is that humans experience difficulty

of gender mismatch as soon as they hit the reflexive pronoun.

Generative Power Only context-free, so less powerful than the human processor has

been argued to be based on languages that contain context-sensitive constructions.

6.3.2 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) is a linguistically more expressive gram-

mar formalism (Steedman, 2000). In CCG, the language-specific knowledge about the

grammar is stored in the lexicon. There is then a finite set of rules that allow the lexi-

cal categories to combine. A detailed discussion of CCG and how it could be used for

incremental, fully connected parsing is available in Appendix A.

Incrementality / Connectedness CCG was originally designed as an incremental

formalism, and it is often claimed that CCG supports fully incremental derivations

because of its very flexible notion of constituents. Besidesa normal form derivation

(which is the derivation that uses least rules), non-standard constituents can be com-

bined via the application of composition. CCG supports all phrases as constituents

that are licensed by the grammar, and Steedman (2000) claimsthat the constructions

supported by CCG are the ones that can be shown to be interpreted incrementally by

humans.

However, there is also evidence for cases where connectedness in sentence process-

ing is stronger in humans than under a CCG derivation. We briefly discussed the in-

crementality study by Sturt and Lombardo (2005) in experimental items (1) in Section

6.1.1. Sturt and Lombardo’s (2005) experiment shows an example of where standard

CCG is not incremental enough to explain empirical findings (see Figure 6.1), because

it would only construct the syntactic connection betweenherself andpilot at the end

of the sentence.

Other examples of constructions where CCG is not incremental enough for fully
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connected parsing include object relative clauses, see Figure 6.2. Hence CCG would

have to be modified, e.g. by changing some of the categories, in order to make it

suitable for strictly incremental parsing, especially forthe object relative clause which

is one of the important evaluation cases in this work. It was not obvious how to do

that without changing the generative power of CCG and causing over-generation (see

Appendix A for more detail).

the woman that every man saw

NP/N N (N\N)/(S/NP) NP/N N (S\NP)/NP

>T >
N/(N\N) NP

>B >T
NP/(N\N) S/(S\NP)

>B B
NP/(S/NP) (S/NP)/((S\NP)/NP)

>B
NP/((S\NP)/NP)

>
NP

Figure 6.2: Example of incrementalized derivation for object relative clause in CCG. It

is not possible to make a fully incremental version inside the ORC NP “every man”.

Generative Power CCG is mildly context-sensitive and hence more powerful than

PCFGs. It can explain many linguistic phenomena, e.g. Dutchserial dependencies.

CCG can also capture long distance dependencies better thanCFGs.

Tractability Tractability for CCG depends on whether the unary operations type-

raising and geaching are lexicalized or not. Best case tractability is O(n6). However,

implementations of CCG, in particular the C&C parser (Clarkand Curran, 2004) are

very fast (it uses a discriminative model though). Hockenmaier and Steedman’s (2002)

parser uses a generative model, and also achieves respectable accuracy and speed.

Semantic Interpretation CCG has a direct interface to semantic interpretations, even

though the semantic interpretations are slightly non-standard. Baldridge and Kruijff

(2002) suggest annotating CCG lexical categories with a modality, which indicates

dependencies and would be stable against type-raising. Clark and Curran (2007) de-

scribe how to convert CCG dependencies into grammatical relationships in Depbank

style. The conversion requires some amount of hand-writtenrules to transform the

CCG dependencies into Depbank dependencies, as well as changing some manual an-

notations of the dependencies in the CCG lexicon and post-processing for matching

templates.
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An incremental CCG derivation can directly account for partial semantic interpre-

tations of the sentence at each point. It should not be a problem to get from the CCG

semantics to semantic roles.

Arguments vs. Modifiers Arguments and modifiers are distinguished in CCG,

one can identify modifiers by the fact that they yield the samecategory

that they take (which corresponds to auxiliary trees in TAG). In CCGBank

Hockenmaier and Steedman (2007), heuristics were used to distinguish arguments

from adjuncts, but new annotation in particular for NPs has been added since

(Honnibal and Curran, 2007; Honnibal et al., 2010).

6.3.3 Tree Adjoining Grammar

Tree-adjoining grammar (TAG) was developed by Joshi et al. (1975) as a linguistically

inspired grammar formalism. While CCG and PCFGs are string-rewriting formalisms,

TAG is a tree-rewriting formalism. Like CCG, TAG stores all knowledge about the

grammar in the lexicon, which contains tree structures. Tree structures for words can

be linked together to form a sentence using two different operations, substitution and

adjunction.

There exist a number of different versions of TAG, which are referred to in the the-

sis. The most important ones areLexicalized Tree Adjoining Grammar(LTAG), where

each tree in the lexicon must have at least one lexical anchor. LTAG grammars for a

number of different languages have been created – the biggest of them is the XTAG

effort for English (The XTAG Research Group, 2001).LTAG-spinal(Shen and Joshi,

2005), where all LTAG trees only have “spines” (i.e. the pathfrom the lexical anchor

to the root of the tree) but no substitution or foot nodes. An approach to defining a

version of TAG which allows for full connectedness isDynamic Version of TAG(DV-

TAG; Mazzei et al., 2007). Finally, a related but less powerful version of TAG isTree

Insertion Grammar(TIG) (Schabes and Waters, 1995), which also has the two basic

operations of substitution and adjunction but is sufficiently restricted to only derive

context-free languages. LTIG (Lexicalized TIG) trees are asubset of LTAG trees, ex-

cluding all those LTAG trees where the foot node in an auxiliary tree is not the leftmost

or rightmost child in the tree.

Incrementality / Connectedness Standard TAG or LTAG do not allow for incre-

mental fully connected processing. However, the Dynamic Version of TAG constitutes
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an incremental, fully connected version of TAG. The problems encountered in CCG,

concerning lack of connectedness for ORC relative clauses and coordination do not

occur in DVTAG, see for example Figure 6.3.

Figure 6.3: TAG derivation for Sturt et al.’s experimental sentence; graph taken from

Mazzei (2005).
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Generative Power The generative power of LTAG has been argued to be weakly

equivalent to the generative power of CCG, and is stronger than the generative power

of CFGs (Vijay-Shanker and Weir, 1994).

Extended Domain of Locality Another asset of TAG is its extended domain of lo-

cality. This means that TAG can e.g. capture the exact subcategorization frame of a

verb in one rule (the verb’s elementary tree) instead of using several syntactic rules

S→ NP VP, VP→V NP, or has to lose theVP node in a ternary ruleS→ NP V NP,

as one would have to do in a PCFG. Furthermore, a tree in the lexicon can have two

or more lexical anchors, thus encoding idioms like “kick thebucket” as one entity,

together with its semantic interpretation.

Tractability LTAG is parsable inO(n6), just like CCG. However, maintaining the

valid prefix property (VPP) requiresO(n9) processing time, see Joshi and Schabes

(1997) for a more detailed discussion. In practice, TAG parsers (and their context-

free cousins TIG parsers, which can parse inO(n3)) achieve good parsing accuracy

and speed. There is already an incremental LTAG parser available (Shen and Joshi,

2005), which is based on spinal LTAG. The performance is about 90% f-score for de-

pendencies. However, it does not construct fully connectedstructures. Unfortunately,

no parser for DVTAG, the strictly incremental version of TAGhas been implemented,

due to a large lexicon. There also exists a LTIG parser implemented as a generative

model (a generative model is necessary for calculating prefix probabilities) (Chiang,

2000).

Arguments and Modifiers The LTAG bank was converted from the Penn Tree Bank

and contains added information from PropBank, so it can be assumed to be similar to

the amount of knowledge to the (heuristically disambiguated) CCGBank.

Semantic Interpretation The dependency structure which can be used to calculate

the semantic interpretation is directly available throughthe derivation tree. For more

detailed discussions, see (Mazzei et al., 2007; Kuhlmann, 2007).

Psycholinguistic Plausibility Lexicalized Tree Adjoining Grammar has been ar-

gued to be psycholinguistically plausible regarding aspects of language acquisition

(the substitution operation is learnt before the adjunction operation), and disfluencies

in language production (Ferreira, 2005).
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Further notes: Pre- vs. post-modification There is an asymmetry between pre-

and post-modification in CCG in terms of the operations needed, which does not oc-

cur in TAG. To our knowledge, whether pre-modification and post-modification are

computationally equivalent in human sentence processing is still an empirical question

– some insight might be gained from French, which has both pre- and post-nominal

adjectives1. The reason for the asymmetry is that for pre-modification, e.g. an adjec-

tive before noun, there is no type-raising necessary in incremental processing. On the

other hand, for post-modification it is necessary to performan additional type-raising

operation (or to introduce an ambiguity in the supertag of the noun phrase that is being

modified, if type-raising is lexicalized), see Figure 6.4(b) and (d). CCG uses one more

operation for post-modification than it does for pre-modification, while TAG uses the

same amount of operations, see Figure 6.4(a) and (c). Whether this difference causes

processing difficulty predictions to be different between the pre- and post-modification

depends on the linking theory.

NP

DT N↓

+ N

ADJ N*

→ NP

DT N

ADJ N↓

+ N

(a) TAG pre-modification

NP/N N/N N

>B
NP/N

>
NP

(b) CCG pre-modification

NP

DT N

+ N

N* ADJ

→ NP

DT N

N ADJ

(c) TAG post-modification

NP/N N N\N
>T

N/(N\N)
>B

NP/(N\N)
>

NP

(d) CCG post-modification

Figure 6.4: Comparison of pre- and post-modification in TAG and CCG

1However, these are not semantically and distributionally equivalent, therefore some other language
where the pre- vs. post-modification position can be varied more freely might provide better evidence.
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6.3.4 Dependency Grammar

Dependency grammar originates from the work of Tesnière (1959). Dependency gram-

mars are by definition lexicalized, since only words can be nodes in the tree. This may

also make the parsing task easier because no new nodes have tobe postulated. The

“missing” phrase structure also means that the formalism isless expressive, i.e. it is

underspecified whether a modifier modifies the whole phrase orjust the head of a

phrase.

Incrementality / Connectedness Incremental deterministic dependency parsers like

the MALT parser (Nivre, 2004) have received a lot of attention in recent years. How-

ever, the MALT parser uses a stack and does not support full connectedness. In very

recent work, Menzel (2009) proposed a fully connected incremental dependency parser

within the framework of Weighted Constraint Dependency Grammars. The difficulty

with full connectedness in dependency parsing is that thereare no non-terminal nodes.

Therefore, if e.g. the head of two dependents has not yet beenseen, some empty node

must be predicted for these two nodes to depend on.

Argument vs. Modifier Distinction Labelled dependency arcs may specify the ar-

gument / modifier status of a dependent.

Semantic Interpretation Ease of semantic interpretation depends on whether the

connections are labelled with their functionalities. If they are, semantic interpretation

is straightforward.

Tractability and Implementation In practice, deterministic dependency parsers like

Nivre (2004) have been shown to be fast and achieve competitive accuracy. An in-

cremental (not fully connected) Nivre-style dependency parser with a small beam has

been implemented by Marisa Ferrara Boston (Boston et al., 2008). Surprisal is calcu-

lated based on this parser.

Generative Power Mildly context-sensitive languages are described throughcross-

ing dependencies (Kuhlmann and Mohl, 2007).
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6.3.5 Dynamic Syntax

Dynamic Syntax is a grammar formalism designed to directly reflect the left-right

(time-linear) sequence of natural language processing (Kempson et al., 2005, 2001).

Incrementality / Connectedness The formalisms is conceptualised as an incremen-

tal formalism, and is fully connected, i.e. each word is integrated into the structure

directly, there is no stack.

Arguments and Modifiers Dynamic Syntax differentiates between arguments and

modifiers, arguments are predicted (their head introduces a“requirement” of having

them) while modifiers are not.

Semantic Interpretation DS builds up a propositional structure instead of a standard

syntactic tree, so it directly reflects the predicate-argument structure of the sentence.

Tractability and Implementation There exists a Prolog implementation of a Dy-

namic Syntax parser and generator by Matt Purver. The parseris word-by-word in-

cremental (Purver and Kempson, 2004). The implemented lexicon however is tiny and

there seem to be serious coverage and tractability issues. It would likely be much

harder to obtain a version of the Penn Treebank to train a Dynamic Syntax parser on

than for any of the other grammar formalisms, for which such converted treebanks are

already available.

Generative Power The DS derived trees are characterisable in context free terms

(since they are only functor/argument binary trees) but thesystem as a whole is char-

acterised as context-sensitive in a general sense. However, formal characteristics seem

to be unknown2.

Domain of Locality Similar to TAG. Lexical packages can include several lexemes,

and the actions can construct or annotate arbitrary tree structure.

2Comment based on personal communication with Ronnie Cann.
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6.3.6 Discussion

Table 6.1 summarises the suitability results according to the important requirements

for the suggested sentence processing theory. All of the grammar formalisms3 can be

processed incrementally, however, fully connected processing has only been shown

to be possible for PCFGs (Roark, 2001a), in DVTAG (Mazzei, 2005), DG (Menzel,

2009) and DS (Kempson et al., 2001), although for DVTAG and DSno implementa-

tion that would scale up to broad-coverage processing is available, and for dependency

grammars, no fully connected parsing procedure was available at the time when I con-

sidered this question for this work. All of the grammar formalisms support the dis-

tinction of arguments and modifiers, and a link to a semantic representation can also

be established for all grammar formalisms, but in CCG and DS it is an integral part

of the formalism. Psycholinguistic plausibility has been claimed for most strongly for

Tree-Adjoining Grammar, see comment in Section 6.3.3. TAG is furthermore the only

formalism beside DS to support a larger domain of locality.

criterion PCFG CCG TAG DG DS

incrementality + + + + +

full connectedness + – + + +

arg / mod distinct + + + + +

tractability + + + + –

link to semantics (+) + (+) (+) +

generative power – + + + ?

domain of locality – – + – +

lexicalization – + + NA –

Table 6.1: An overview of selection criteria by grammar formalism.

Taken together, the criteria seem to be best fulfilled by an adapted version of TAG,

possibly similar to DVTAG. We decided against PCFGs due to their smaller generative

power and small domain of locality. CCG was ruled out due to the incrementality

problems outlined above. At the time, dependency grammar was mainly ruled out for

lack of a fully connected parsing strategy, but also becauseof the small domain of

3The above list of grammar formalisms is of course not an exhaustive list of all existing grammar
formalisms. Other incremental formalisms include Left Associative Grammar (LAG) (Hausser, 1986),
and the a proposal for incremental structure building by Phillips (2003). Further established grammar
formalisms include HPSG (Pollard and Sag, 1994) and LFG (Bresnan, 2001).
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locality. Finally, Dynamic Syntax was ruled out based on tractability problems. The

only implementations for DS are in Prolog and operate on toy language fragments.

6.4 Conclusions

In this chapter, we have motivated the properties that our theory of sentence processing

should implement: incrementality, full connectedness, explicit prediction in combina-

tion with a verification mechanism and parallel processing.In addition, the theory

should be specified and implemented such that an applicationto broad-coverage text

is possible.

We then explained the mechanisms of the proposed sentence processing theory and

outlined how processing difficulty is incurred. A more formal definition will be given

in Section 8.7.

The last part of the chapter reviewed alternative grammar formalisms with respect

to how well they conform to the specifications set out in our sentence processing theory,

and argued that Tree-Adjoining Grammar (TAG) would be most suitable. Challenges

posed by the choice of TAG are that a fully connected parser for an incremental ver-

sion of TAG did not exist, and that the existing incremental version of TAG, DVTAG,

requires further conceptual modifications to achieve greater psycholinguistic plausibil-

ity, in particular with respect to prediction grain size. These issues will be addressed in

Chapter 7, which discusses a psycholinguistically motivated version of TAG (PLTAG),

and Chapter 8, which describes the implementation and evaluation of an incremental

fully connected predictive parser for PLTAG. Finally, the sentence processing theory

suggested in this Chapter will be evaluated in its incarnation based on the incremental

PLTAG parser in Chapter 9.



Chapter 7

PLTAG: A psycholinguistically

motivated version of TAG

The last chapter outlined a new theory of sentence processing which assumes strictly

incremental processing and contains an explicit mechanismfor prediction and verifi-

cation. An implementation of this theory must be based on a grammar formalism and

parser that also adhere to the theory’s assumptions. In thischapter, we describe a spe-

cially developed grammar formalism, PLTAG, which is a strictly incremental variant

of Tree-Adjoining Grammar (TAG).

In the first part of the chapter, we motivate and define the new grammar formalism,

and compare it to standard TAG. In Section 7.3, more detaileddesign questions con-

cerning predicted entities and prediction granularity, also in relation with the sentence

processing theory described in the previous chapter, are discussed.

Parts of the material presented in this chapter have been published as

Demberg and Keller (2008b) at the TAG+9 workshop.

7.1 Limitations of Standard LTAG

7.1.1 An Introduction to LTAG

Tree-adjoining grammar (Joshi et al., 1975) is a tree-rewriting formalism. TAG stores

all knowledge about the grammar as little tree structures, calledelementary trees, see

the trees in Figure 7.1(a) - (c) as an example. Here, we will only talk about Lexicalized

TAG (LTAG), where all elementary trees have at least onelexical anchor, i.e. at least

one leaf is a lexical item. There are two types of elementary trees: initial trees (see

151
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Figure 7.1(a) and (c)), andauxiliary trees(see Figure 7.1(b)). Auxiliary trees are used

to for a language’s recursive structures, and are differentfrom initial trees in that they

contain exactly onefoot node (marked with the * symbol). A foot node always has

the same category as the auxiliary tree’s root node. Both auxiliary and initial trees can

have zero or moresubstitution nodes(marked with the↓ symbol).

Elementary trees can be linked together to form the syntactic structure of a sentence

(see Figure 7.1(d)) using two different operations,substitutionandadjunction.

NP

Peter

(a) initial tree

VP

AP

often

VP*

(b) auxiliary tree

S

NP↓ VP

V

sleeps

(c) initial tree with substitution node

S

NP

Peter

VP

AP

often

VP

V

sleeps

(d) derived tree

sleeps

Peter often

(e) derivation tree

Figure 7.1: Examples for TAG elementary trees.

The substitution operation integrates an initial tree witha substitution site of the

same category. For example, the initial tree forPeterin Figure 7.1(a) can be substituted

into the substitution node in Figure 7.1(c). The adjunctionoperation can be thought of

as two substitution operations: an internal node with a category matching the auxiliary

tree’s root node category is selected. The tree is cut apart at that point and the auxiliary

tree is substituted in at this node. Then the lower bit of the tree is substituted into the

auxiliary tree’s foot node.
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The derivation tree (see Figure 7.1(e)) encodes how the elementary trees were in-

tegrated with each other to construct the derived tree.

7.1.2 LTAG and Incrementality

Using standard LTAG with a lexicon of the typical linguistically motivated tree struc-

tures (like shown in the top row of Figure 7.2), it is not possible to derive even simple

sentences such asPeter often reads a bookincrementally. According to LTAG deriva-

tion rules, a derivation always starts with a tree whose rootcategory is S. Therefore,

the derivation can only start with the first word of the sentence if it happens to be a

sentential head, which is not the case for most English sentences. Even if this rule

about starting with an S-rooted tree was relaxed, and operations adjusted accordingly,

the wordsoften anda would still be out of order in our example sentence, see the

derivation in Figure 7.2.

a

DT

initial(subst)

Peter

NP VP

AP

often

VP

S

V

reads

NP

DT

book

NN

a

VP

S

V NP

reads

NP

Peter

NP

V

reads

VP

NP

S

Peter

NP VP

AP

often

VP

S

V

reads

NP

Peter

NP VP

AP

often

VP

S

V

reads

NP

DT

book

NN

LTAG

substitution

VPNP

S

V NP

reads

VP

VP*AP

often

adjunction

NP

Peter

NP

NNDT

book

substitution substitution

Figure 7.2: The most incremental derivation possible using LTAG for the sentence Peter

often reads a book.

The next section proposes a new version of TAG, called Psycholinguistically mo-

tivated LTAG (PLTAG), which can overcome this limitation, by providing predictive

structures –oftencan be integrated withPeter, because the missing structure of their

common head, a verb, is predicted.
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7.2 The PLTAG Formalism

PLTAG extends normal LTAG in that it specifies a lexicon of so-calledprediction trees

in addition to the canonical lexicon (which contains lexicalized initial and auxiliary

trees). The role of the prediction trees is to provide the structure needed for connect-

edness, i.e. predict structure that is otherwise part of later trees, hence the name “pre-

diction tree”. The canonical lexicon is very similar to other LTAG lexica. Cases where

PLTAG analyses differ from XTAG (The XTAG Research Group, 2001) analyses are

discussed in Section 7.3.

The prediction lexicon consists of elementary trees which are usually unlexicalized

and where each node has a special marker indicating that the node is predicted. The

markers on the nodes consist of a superscript and / or a subscript, which indicate its

predictive status. The super- and subscripts are used similar to the features in Feature

structure based TAG (FTAG, see Vijay-Shanker and Joshi, 1988). A root node only

has a subscript, while substitution and adjunction nodes have only superscripts. Inner

nodes have both subscripts and superscripts. The reason forroot, foot and substitution

nodes only having half of the indices is that these nodes still need to combine with

another tree in order to constitute a complete node. For example, if an initial tree

substitutes into a substitution node, the node where they are integrated becomes a

complete node, with the upper half contributed by the substitution node and the lower

half contributed by the root node of the substituted tree. Similarly, in adjunction, the

node where the adjoining operation is going to take place is broken up into its upper and

lower half. The upper half combines with the auxiliary tree root node into a complete

node, while the lower half combines with the auxiliary tree foot node into a new node.

A fully indexed tree is shown in Figure 7.3. Note that unlike in Figure 7.3, nodes of

canonical trees, or of complete derived trees are not annotated with indices in PLTAG.

The indices are only used to mark predicted nodes, and are removed as soon as a node

is verified.

PLTAG allows the same basic operations (substitution and adjunction) as normal

LTAG, the only difference is that these operations can also be applied to prediction

trees. In addition, PLTAG has a verification operation, which is needed to validate the

nodes previously introduced by the integration of a prediction tree.

Verificationis an operation that removes prediction indices from the prefix tree for

all nodes that it validates, and can introduce additional nodes below the last node on
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S3

NP3
1

Peter:1

VP3
2

AP2
2

often:2

VP2
3

V3
3

reads:3

NP3
5

DT5
4

a:4

NN5
5

book:5

Figure 7.3: The indices at the tree nodes indicate which word each node comes from

originally (words are numbered 1 to 5).

the spine1 of the prediction tree or to the right of the spine (this restriction to the right

side of the spine reflects the asymmetry of incrementality).The elementary tree used

in a verification operation (also referred to as theverification tree) must be a canonical

tree, and must match (we’ll define this later in more detail) all predicted nodes with

the same index, and no other ones. In brief, a verification tree matches the structure of

a prediction tree if the two trees have all nodes in the same order, with the exception

that the verification tree may contain additional nodes at the bottom of the spine or to

the right side of the spine.

Figure 7.4 provides examples for each of the three operations. The operations are

discussed in detail in the context of the PLTAG parser in Section 8.3.3.

A valid PLTAG derived tree for a sentence is a tree structure which must not con-

tain any nodes that are still annotated as being predictive –all of them have to have

been validated through verification once the input string has been fully processed. As

in other versions of TAG, the derived tree for a sentence may not contain any open

substitution or foot nodes.

Psycholinguistically motivated Tree Adjoining Grammar (PLTAG) can thus be

defined as a tupleG = (S,N,T, I ,A,PI,PA,F):

S: the non-terminal symbol that is the root of a derived tree

N: the set of non-terminal symbols

T: the set of terminal symbols

I : a finite set of initial trees

1The spine of a tree is the path from the root to its anchor leaf,this usually coincides with the head
of that tree.
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NP

Mary

is substituted into S

NP

Peter

VP

V

likes

NP↓

resulting in S

NP

Peter

VP

V

likes

NP

Mary

(a) substitution

VP

AP

often

VP*

adjoins into Ss

NPs

Mary

VPs
s

resulting in Ss

NPs

Mary

VPs

AP

often

VPs

(b) adjunction

S

NP↓ VP

V

meets

NP↓

verifies Ss

NPs

Mary

VPs

AP

often

VPs

resulting in S

NP

Mary

VP

AP

often

VP

V

meets

NP↓

(c) verification

Figure 7.4: Examples of PLTAG operations.

A: a finite set of auxiliary trees

PI: a finite set of initial prediction trees

PA: a finite set of auxiliary prediction trees

F: a set of indices that mark the non-terminals on prediction trees

All trees that can be generated by a PLTAG are composed of trees fromI , A, PI and

PA, through integration using the operationsadjunction, substitutionandverification,

starting with the first word of the sentence and proceeding incrementally (see Section

7.2.1 for a definition of a PLTAG derivation). The language generated by a PLTAG is
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the set of all terminal strings on the frontier of the trees that can be generated by the

grammar.

7.2.1 Derivations in PLTAG

LTAG derivations are defined as starting with an initial treewhose root node is an S-

node, and then applying the standard substitution and adjunction operations such that

elementary trees are always integrated into the partially derived tree. An LTAG deriva-

tion is complete when every leaf node of the derived tree is labelled with a terminal

symbol.

A PLTAG derivation, on the other hand, starts with the tree of the first input word,

and then applies substitution and adjunction operations. In PLTAG, the new elemen-

tary tree can either be substituted or adjoined into the partially derived tree, or the

partially derived tree can be substituted or adjoined into the elementary tree. If substi-

tution or adjunction is applied to aprediction treethe nodes annotated with prediction

markers in the resulting tree will have to be validated usingthe verification operation.

This means that for each integration of a prediction tree, there has to be a verification

operation later on.

A partial derivation for wordsw1..wi in PLTAG contains only lexicalized leaves

to the left of the rightmost lexical anchor. I.e. it must not contain any leaf nodes with

prediction markers or open substitution nodes before wordwi (see Figures 7.5 and

7.6). If the partial derived tree is an auxiliary tree, its foot must be to the right of the

lexical anchor. A PLTAG derivation is complete when every leaf node is labelled with

a terminal symbol, none of the nodes in the tree is marked as predictive, and the root

symbol of the derived tree is S.

OK: S1

NP

DT

The

NN

man

VP1

ADJP

JJ

never

VP1

not OK: S1

NP

DT

The

NN

man

VP1

ADJP2

ADVP2
2

ADV2
2

ADJP2

JJ

never

VP1

Figure 7.5: Example of a tree with an unverified prediction nodes.
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OK: S

NP

DT

The

NN

man

VP

VP

VB

saw

NP↓

not OK: S

NP

DT

The

NN

man

VP

VB

saw

NP

DT↓ NN

people

Figure 7.6: Example of a tree with open substitution nodes.

In order to better illustrate the intuitive relationship between LTAG and PLTAG, we

compare the derivations of the sentencePeter often reads a bookin LTAG vs. PLTAG.

As we have seen earlier, the most incremental LTAG derivation we can generate has

several words in the wrong order (see Figure 7.2). The wordsreadandbookare not in

incremental order, becauseoftenanda are only inserted later. The PLTAG derivation,

on the other hand, integrates all trees in correct incremental order, but makes use of

prediction trees (marked with the indicess ands), see Figure 7.7. The derivation starts

with the initial tree forPeterand then substitutes it into a prediction tree. This means

PLTAG would predict thatPeter is the subject of a verb phrase. The auxiliary tree for

oftencan then be adjoined into the predicted VP node. Next, the prediction can be

validated: in fact it is compatible with the upcoming verbreads. Given that the verb

is transitive, it subcategorizes for an NP, and we predict that in fact a determiner and

noun might be coming up next, by substituting a prediction tree into the NP substitution

site. The determinera is then substituted into the DT prediction node, and finally the

predicted nounbookis encountered and the prediction verified.
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Figure 7.7: The derivation for the sentence Peter often reads a book with PLTAG.
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The correspondence between an LTAG and a PLTAG derivation isintuitively

straightforward. Let’s go from the LTAG derivation to the PLTAG derivation (see

Figure 7.8): For each misplaced (wrt. the incremental order) tree, we have to use a

prediction tree instead, which matches the shape of the original tree, such that the

original tree can later verify the prediction tree. The “misplaced” tree can then be

moved to the correct incremental position for its lexical anchor, and will be integrated

into the derivation using the verification operation. Hence, there are the same number

and shapes of canonical trees in both derivations, and they are joined together using

the same operations, except that in a PLTAG derivation a prediction tree and a corre-

sponding verification operation is added for each out-of-order item. The function of

the verification operation is to replace each prediction tree by its verification tree, such

that in the final derived tree doesn’t contain any predictiontrees or parts of them.

Similarly, we can convert any PLTAG derivation into an LTAG derivation by re-

placing each prediction tree by the canonical tree that verifies it. The final derived

trees for LTAG and PLTAG are identical (compare final derivedtrees in Figures 7.2

and 7.7).
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Figure 7.8: A LTAG vs. PLTAG derivation for the sentence Peter often reads a book.

Note the relations between trees and operations in the LTAG vs. the PLTAG derivations,

as indicated by the arrows: each LTAG derivation step that was in correct incremental

order can be expressed by the same tree and same operation in the PLTAG derivation.
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7.2.2 Equivalence of PLTAG and LTAG

Equivalence between two grammar formalisms means that bothgrammar formalisms

assign the exact same structures to the same strings, and that they cover the same set

of strings.

1. PLTAG should not over-generate with respect to LTAG.

2. PLTAG should not miss out on any analyses that LTAG can generate.

3. PLTAG should assign the same analysis to a sentence as normal LTAG would.

The first point, no over-generation, is easiest to show: since every predicted node

has to be matched by a canonical node, only analyses that are exclusively made up of

canonical nodes (and no remaining prediction nodes) are accepted. So the prediction

trees do not introduce any additional structure, and hence cannot accept any sequences

that are not accepted by LTAG.

The second point depends on the prediction lexicon. If we define the prediction

lexicon such that for each tree in the canonical lexicon, there exists an exact copy

with all nodes marked as predicted in the prediction lexicon, it is trivial to show that

PLTAG can generate all analyses that LTAG can generate: We just order the LTAG

trees by their lexical anchors and allow the prediction trees to be used when needed for

connectivity. In the end they will all be verified by the identically-looking canonical

tree. We are thus guaranteed to be able to obtain the same derived tree for the string of

words.

The argumentation for the third point, whether analyses assigned to a sentence by

PLTAG vs. normal LTAG are the same, is similar to the previousargumentations. It

requires thatall and no moreanalyses be found, and hence the same questions about

prediction tree design are relevant as for the second point.2

Theorem: For each LTAG grammar, there exists a PLTAG grammar such thatthe

derived trees from the LTAG grammar are identical to the trees derived with the PLTAG

grammar (given an adequate PLTAG prediction lexicon).

2Note that in statistical processing (in particular if it also involves beam search) we cannot guarantee
that the identical set of analyses remain in the beam, or thatthe analyses will be in the same order.
Via the probabilities of the prediction trees, some analyses may be ruled out early on for being too
improbable although they later turn out to be perfectly fine,or probabilities are different because of the
distinct operations of integrating a prediction tree and then verifying it as opposed to directly integrating
the canonical tree.
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7.2.3 Predictions in PLTAG

In PLTAG, prediction occurs in two cases: when required by connectivity, and when

required by subcategorization. At the end of this section, the exact shape of prediction

trees used in this work is discussed.

7.2.3.1 Prediction through Connectivity

As we have seen in the examples above, canonical elementary trees can not always

be connected directly to a previously built syntactic structure. Examples are situations

when two dependents precede a head, or when a grandparent anda child have been

encountered, but not the head of the parent node. This happens, for instance, at the

integration of the second determiner in an ORC likeThe senator that the reporter at-

tacked, admitted the error, as illustrated in Figure 7.9. The elementary tree forthe

cannot directly be combined with the preceding relative clause structure. The inter-

vening structure will only later be provided by the trees forthe nounsenatorand the

verbattacked. If we want to maintain connectivity at this point, we therefore need to

predict this intervening structure (see the right hand sidetree in Figure 7.9).

Because natural language contains recursive structures, there are in theory infinitely

many ways to connect two trees. Although embedding depth canbe infinite in theory,

we here assume that it is finite and indeed very small due to limitations of human

memory. In our example in Figure 7.9, two prediction trees are needed to achieve full

connectedness. As mentioned earlier in this chapter, predicted nodes are marked with

unique indices, indicating which nodes should be verified bythe same tree. The nodes

that will eventually be verified by thereporter-NP tree have indexS2, and nodes that

will be verified by the tree anchored inattackedhave indexS1. Prediction trees can

be pre-combined, like the one in our example, for efficiency reasons during parsing –

this issue will be discussed in Section 8.4.1. Alternatively, two prediction trees, one

containing the nodes with indexS1 and the other one with nodes indexedS2 could be

integrated into the prefix tree with two substitution operations.

7.2.3.2 Prediction through Subcategorization

Another source of predictions are the lexicon entries themselves via their subcatego-

rization frames. Subcategorization in TAG is expressed through substitution nodes,

which have to be filled with an argument in order to yield a valid sentence. Each

open substitution node that is to the right of the rightmost lexical anchor constitutes
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a prediction during the parsing process. Modifiers are generally not predicted in our

framework, unless they are needed for connectivity (see Section 7.3.3 for a more de-

tailed discussion of this issue).

We exploit TAG’s extended domain of locality in order to construct lexicon entries

with more than one lexical anchor. We can use this to explain predictive facilitation

for either . . . orand related constructions (Staub and Clifton 2006; for a more detailed

discussion of generating such lexicon entries, see Section7.3.2).

For theeither . . . orcase, we assign a lexicon entry toeitherwhich predicts the oc-

currence the conjunctionor, as well as predicting a coordinate structure that combines

two entities of the same category, see Figure 7.10(a).

When processing aneither . . . ordisjunction in PLTAG, processing ator will be

facilitated compared to a simpleor construction. For the sequencePeter read a book

or, the or occurs unexpectedly, and can be attached either at the NP level or at the

S level (see Figure 7.10(c), (d)), leading to an ambiguity which will have to be resolved

later on. For the sequencePeter read either a book oron the other hand, the word
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or was predicted already ateither, and will therefore be less costly to integrate: the

probability of or given the predictedeither structure is higher than the probability

of or given the structure withouteither. In addition, there is no NP/S-coordination

ambiguity, see Figure 7.10(b). A formal evaluation of this case is reported in Chapter

9, Section 9.1.2.

7.2.3.3 Controlling Prediction Granularity

The PLTAG formalism itself does not make any claim or pose anyrestriction on the

shape of the trees in the prediction lexicon (except that they must contain more than

one node, like all TAG trees). However, since each of these prediction trees will have

to be verified by a tree from the lexicon later, any trees that would contain more nodes,

or nodes that are in an arrangement that does not exist in the canonical lexicon, could

never possibly be verified, and thus never lead to a valid PLTAG derivation. Therefore,

it makes sense to only include prediction trees into the prediction lexicon that are the

same or smaller than the canonical LTAG trees. Prediction trees that lack nodes to the

right of their spine can still be verified by a canonical tree that includes those nodes

(because the lack of those nodes has not possibly affected the derivation so far, due to

the incrementality constraint).

Of course, this opens the question of how big exactly a prediction tree should be.

The prediction tree sizes determine in fact the prediction granularity during parsing. If

we decide to always use complete copies of canonical trees, just marked as predictions,
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prediction tree: Ak

Bk ↓ Ck
k Ek∗

canonical tree: A

B↓ C

c

D↓ E∗

Figure 7.11: Example of a compatible prediction and verification tree, as defined for use

in our system.

this would mean that we would always predict upcoming structures which are needed

for connectivity down to the lexical item, and that we would for example predict full

subcategorization frames for verbs before having seen the verb identity. This level of

granularity would not only seem implausible psycholinguistically, but it would also

mean that we predict much more detail than necessary for connectivity reasons, and

would lead to a larger prediction lexicon. Instead, we will predict upcoming structures

only as far as required by connectivity or subcategorization. (However, this is a pre-

liminary assumption, as the optimal prediction grain size in remains an open research

question.)

We therefore define that prediction trees have the same shapeas trees from the

canonical lexicon, with the difference that they do not contain substitution nodes to the

right of their spine (the spine is the path from the root node to the anchor), and that their

spine does not have to end with a lexical item, for an example,see Figure 7.11. An

exception to this rule are nodes that lie on the path between the root and the foot node.

If a node to the left of the spine is missing in the prediction tree, it can not be matched

against the verification tree, and hence not be verified by it as doing so would violate

the incrementality assumption (the additional substitution node in the verification tree

would not be filled at the time of processing the verification trees lexical anchor).

7.2.4 Comparison to DVTAG

TheDynamic Version of TAG(DVTAG) was developed by Alessandro Mazzei in his

PhD thesis (Mazzei, 2005). Like PLTAG, it was motivated by constructing fully con-

nected analyses. The problem was solved slightly differently in his version of the for-

malism: instead of predicting tree structures in a prediction step and having a predic-

tion lexicon, the parts of the tree structures that would need to be predicted in PLTAG

are pre-attached to the canonical lexicon entries, see Figure 7.12(a). The sentence

Peter often reads a bookwould then be derived as shown in Figure 7.12(b).
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The most important theoretical difference lies in the fact that what is predicted in

PLTAG is not marked as predicted and hence is not subject to a verification mechanism

in DVTAG. Furthermore, prediction granularity in DVTAG is different from PLTAG:

in DVTAG, a larger number of more detailed alternative structures is generated. In

his thesis, Mazzei states that 6 million tree templates wereextracted by converting

the 1,226 XTAG templates to DVXTAG templates. This means that the size of the

grammar virtually explodes in DVTAG. This huge size of the grammar makes it very

challenging, if not impossible, to implement a broad-coverage DVTAG parser.
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Figure 7.12: A lexicon and derivation example in DVTAG.
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7.3 Lexicon Design and Open Questions

This section discusses some general questions concerning the design of the lexicon,

focusing on linguistic and psycholinguistic aspects (rather than implementational is-

sues). As explained in the previous section, predictions depend on subcategorization

frames of the lexicon entries. Furthermore, the shape of lexical trees also influences the

degree to which additional structures for achieving connectivity are needed – if lexicon

entries have the form as in DVTAG, connectivity is achieved without prediction trees.

7.3.1 Predicting a Sentence at the Beginning

An example for an open design issue that also affects the definition of a PLTAG deriva-

tion is whether a sentence node should always be postulated at the beginning. In psy-

cholinguistic terms, are people always predicting that they are going to process a sen-

tence? And do they do it in all situations? Both when reading abook and when in

just casual discourse (where in fact many utterances are NPsor other fragments of sen-

tences)? This would have consequences for the predictions required by connectivity,

and hence the processing difficulty predicted by the linkingtheory. This issue also de-

pends on the question whether e.g. the utterance of a single NP should be considered

as just being an NP, or in fact an elliptic sentence. For the PLTAG derivation shown in

Figure 7.8, always postulating a sentence would require changing the order of the first

and second trees. More generally, it means that a verb-prediction tree (and possibly

other structures like an NP structure if the first word is a determiner) would have to be

predicted in all languages which are not verb-first. At the verb itself, verification cost

would occur, meaning that a verb should be the more difficult,the longer the phrase

before the verb. On the other hand, this might be out-weighedby the forward-looking

component which expects a verb more and more strongly as the sentence unfolds.

In future work, it would be interesting to tease apart these two aspects and test them

empirically.

7.3.2 Size of Lexicon Entries

At the either..orexample in Figure 7.10, we have seen how lexical entries withtwo

anchors (one of them being predicted) can influence the predictions. An important

question is how to automatically and consistently decide which lexicon entries should

have multiple anchors and which ones should not. Hand-selecting them without an
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objective criterion will obviously lead to inconsistencies which may weaken claims

about the predictions of the theory for naturally occurringbroad-coverage text.

The problem of automatically learning the size of trees can be formulated in terms

of data-oriented parsing (Bod et al., 2003). The criterion for deciding on tree size

in a DOP framework are made based on the co-occurrence probabilities of words or

inner nodes in a syntax tree. If a pair of words (likeeither andor) occurs together

much more often than would be predicted by the “unigram” frequency of the words

either andor, they will be encoded in the same tree. For the incremental framework

it is thereby also particularly relevant which word is more predictive of the other.Or

certainly is not as strong a cue for the occurrence ofeither aseither is for or. So if

the first word of such a pair would be highly predictive of the second one, we could

define a threshold and include all those constructions into the lexicon as a tree for the

first word which includes the predictive lexicalized entry of the second. At a more

fine-grained level, this could also be done for internal nodes. A similar approach has

recently been described by Cohn et al. (2009), who used a non-parametric Bayesian

model for inducing Tree Substitution Grammars.

7.3.3 Arguments and Modifiers

Another question related to lexicon entry sizes is the distinction between arguments

and modifiers. Currently there is mostly evidence of arguments being predicted: ex-

periments targeted at detecting syntactic prediction usually try to show prediction of

obligatory phrases or words, (e.g., Kamide et al., 2003; vanBerkum et al., 1999b). The

distinction between arguments and modifiers in practice is however often difficult to

make for humans and laborious to annotate, indicating that the distinction is gradual

rather than a categorial one. Even though we assume in our linking theory that argu-

ments are predicted, while modifiers are not, some initial evidence (Arai et al., 2008)

indicates that modifiers can be predicted in a context where they are required by dis-

course.

Distinguishing modifiers from arguments impacts statistical NLP in formalisms

which make conditional dependence assumptions based on theargument / modifier

distinction. For example, the probability of a specific prepositional phrase under a VP

is dependent not only on the verb, but also on its other arguments, while the probability

of an adverbial phrase that modifies the verb (liketomorrow) may be independent of

the verb’s other dependents.
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7.3.4 Free Word Order Languages

The plausibility of our “minimal” predictions which only predict arguments that come

before the head of a phrase, but not the ones after can also be questioned. In English,

the syntactically most obligatory argument, the subject, is positioned before the verb,

while all other arguments usually occur after the verb. Minimal predictions thus pro-

vide a convenient way for generalising over intransitive vs. transitive vs. ditransitive

verbs. In languages that have more head-final constructions, and / or where several

arguments can be arranged in any order before the verb, we would end up making

more precise predictions and thus change the prediction granularity level with respect

to English. This does not seem very desirable.

A possible solution would be to assume a multi-set representation for these argu-

ments in free word order languages, rather than postulatingmany alternative structures,

as has been suggested for CCG (Hoffman, 1995; Baldridge, 2002). A multi-set rep-

resentation would mainly affect lexicon size and difficultypredictions made by the

linking theory due to the prediction and verification mechanism. In the verification

mechanism, the function that tests for compatibility between a predicted tree and a

verification tree would have to be modified such that the verification tree can match a

compatible multi-set representation.

7.3.5 Traces

The notion of traces has its origin in Government Binding theory. Traces are phoneti-

cally empty elements that are connected in the syntactic structure. Traces are used in

some syntactic theories to account for e.g. wh-movement andpassives. However, the

existence of traces is controversial. See (Sag and Fodor, 1994) for a detailed discus-

sion of linguistic as well as psycholinguistic evidence forand against the existence of

traces. This thesis assumes the existence of traces.

In the final version of this work, only traces encoding A’-movement (including

parasitic gaps), passives, control verbs and null complementizers were used, while

placeholders for ellipsed material, right node raising, expletives, and other pseudo-

attachments marked in the Penn TreeBank were ignored. Treatment options for traces

in relative clauses, passive constructions, rising and control constructions, extractions

(including long-distance extractions) and parasitic gapsare discussed in Appendix B.
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7.4 Conclusions

This chapter suggested new variant of tree adjoining grammar, called Psycholinguis-

tically Motivated TAG (PLTAG). Its most important properties are that it allows for

strictly incremental derivations, and supports a psycholinguistically more plausible

prediction grain size than DVTAG. PLTAG models the processes of prediction and

verification explicitly, and for doing so introduces prediction trees, which are simi-

lar to canonical TAG trees but can be unlexicalized trees, and a new operation called

verification.

We have shown the equivalence between PLTAG and standard LTAG, and ex-

plained how the formalisms can be mapped onto one another. Wethen addressed some

design questions that are relevant for using the formalism in a specific setting, such as

with a particular grain size for prediction trees, or application for languages that have

different properties, such as more flexible word order, fromEnglish.

The formalism was designed to meet the specifications of the sentence processing

theory outlined in Chapter 6. An implementation of the formalism, including an auto-

matically converted tree bank, automatically induced canonical lexicon and prediction

lexicon and a probabilistic, broad-coverage parser will bepresented in Chapter 8.





Chapter 8

An Incremental Predictive Parser for

PLTAG

The incremental predictive parser proposed in this chapterimplements the restric-

tions and requirements lined out in Chapters 6 and 7. This chapter describes the

conversion of the Penn Treebank to a format that is compatible with PLTAG, the

induction of a lexicon from the transformed treebank and thedesign of the pars-

ing algorithm and its probability model. We found that in practice, the lexicon ex-

tracted from the Penn Treebank did not contain any TAG trees that were not TIG1

trees. Similarly, other recent parsers like the Chiang (2000) parser is only a TIG

parser, and recently, CCG bank (Hockenmaier and Steedman, 2007) and the C&C

parser (Clark and Curran, 2007) have been shown to parse using exclusively context-

free rules (Fowler and Penn, 2010). To parse English based onthe context-free lexicon

extracted from the Penn Tree Bank, it is only necessary to handle trees that also satisfy

the condition of being TIG trees. Therefore, the PLTAG implementation described in

this chapter is actually only an implementation of a PLTIG parser.

In the last part of this chapter, we evaluate parsing performance. The parser de-

scribed here is to our knowledge the first fully incremental and predictive parser. Fi-

nally, the linking theory, which maps the parser actions to processing difficulty, is

formalised and its implementation described.

1TIG stands for Tree Insertion Grammar, for more informationsee Section 6.3.3.
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8.1 Treebank Conversion

In order to implement a parser for PLTAG, the first step is to create a resource of

PLTAG syntax trees, which can be used for training and testing the parser (training

data is needed because we here describe a supervised parser for PLTAG. Supervised

approaches generally achieve higher accuracy than unsupervised ones). An existing

big tree bank is the Penn Treebank, however its format is slightly different from PLTAG

trees, mainly in that tree structures are flatter than TAG trees. The Penn Treebank struc-

tures have already been converted to TAG structures in previous work by (Xia et al.,

2000), whose procedures we follow in this work. We decided toconvert the Penn

TreeBank ourselves instead of using an existing converted TAG treebank in order to to

add the NP annotation from Vadas and Curran (2007), and extract the prediction tree

lexicon more easily.

As a first step, the NP annotation from Vadas and Curran (2007)was added to the

Penn Treebank annotation, thus disambiguating the flat NP structures. Next, depen-

dents were marked as either arguments or modifiers of a head, following annotation

from PropBank (Palmer et al., 2003). Finally, all nodes in the tree were marked as to

whether they are the head child of their parent node, using a slightly modified version

of Magerman’s head percolation table (Magerman, 1994). This section will discuss

how the flat structures from the Penn Tree Bank were disambiguated in order to be

proper PLTAG derived trees, and how special cases like auxiliaries and copula con-

structions were handled.

After conversion, the resulting PLTAG treebank can also be used to automatically

induce the canonical lexicon and the prediction lexicon, asreported in Section 8.2.

8.1.1 Disambiguating Flat Structures

The structure of the Penn Treebank is flatter than the typicalstructure of PLTAG

derived trees. In PLTAG, a new internal node is introduced (via the root and foot

node of an auxiliary tree) whenever an adjunction operationtakes place. Therefore

a PLTAG tree has typically many binary branches where the Penn Treebank uses

flat structures. We assume right branching structures (for an example, see Figure

8.1), following previous efforts of converting the Penn Treebank into binary formats

(Hockenmaier and Steedman, 2007). However, the heuristic of right-branching does

not always lead to correct results, and has been shown to be particularly problematic

for NPs.
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Figure 8.1: Binarisation of flat Penn Treebank structures into right branching binary

structures for PLTAG.

Noun phrases (NPs) and quantifier phrases (QPs) are usually assigned a com-

pletely flat structure in the Penn Treebank. While the noun phrase annotation by

Vadas and Curran (2007) has remedied this to a certain extentby introducing disam-

biguating nodes to mark left branching inside NP phrases, right branching remains

implicit, and there is thus an asymmetry in the annotation for left vs. right branching.

We therefore introduce additional nodes in NPs to denote right branching, see Figure

8.2.
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Figure 8.2: Introducing explicit right branching.

Furthermore, quantifier phrases were unfortunately not disambiguated in the NP
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annotation, even though they suffer from the same problem ofbeing annotated very

flatly (see example tree structure in Figure 8.3). Heuristics are used to cope with these

cases.
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Figure 8.3: Structural disambiguation of Quantifier Phrases.

The most common case of inaccurate right branching structure remaining in the

treebank even after NP annotation concerns coordinated structures. We try to recognise

scopes within coordination automatically and introduce the missing nodes (see Figure

8.4). For sentence-initial modifiers such asbut, and, a new POS tag was introduced

(CCSIM), in order to distinguish this case from proper coordination within a sentence.

If we were operating more on a discourse level, these sentence-initial conjunctions

could be handled in the same way as normal conjunction.
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Figure 8.4: Structural disambiguation of coordinated phrases.

8.1.2 Auxiliary Treatment

In the Penn Treebank, auxiliaries and modals have the same part-of-speech tag as full

verbs. Following the standard head percolation rules, theyare therefore determined to
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be the head of phrases since the algorithm is not able to distinguish them from regular

verbs. A heuristic for detecting auxiliaries and modifiers was implemented in order

to assign them a different POS tag ’AUX’, which then enables the lexicon induction

algorithm (see Section 8.2) to encode them as an auxiliary tree, see Figure 8.5.

tree from Penn Treebank: S

NP

DT

The

NN

government

VP

VBZ

has

VP

VBD

failed

default tree: S

NP↓ VP

VBZ

has

VP↓

final tree after heuristics: VP

AUX

has

VP*

Figure 8.5: Auxiliaries and modals are assigned a special POS-tag ’AUX’ to distinguish

them from full verbs and correctly extract an auxiliary tree template for them.

8.1.3 Copula Treatment

The standard XTAG analysis of copula constructions introduces a new initial tree for

each predicate, and an auxiliary tree for the copula, see Figure 8.6(a). We did however

not adopt the standard XTAG analysis for PLTAG, because it would lead to a larger

number of lexicon entries: every predicate would be annotated with the full S-NP-VP-

structure. Instead, the predicate noun is assigned the typical NP tree template, see the

tree forfish in Figure 8.6(b). This can be achieved by introducing a special POS-tag

for copula verbs. However, there are some cases, where the annotation of the treebank

forces us to assign the XTAG-entry structure to the NP: In Figure 8.6(c), the word

director must be assigned a sentence structure because no trace or null element for the

copula is annotated.
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S

NP↓ VP

V

ε

NP-PRD

DT

a

NP

fish

and VP

V

is

VP*

(a) XTAG analysis of copula constructions.

S

NP

Paula

VP

VBZ

is

NP-PRD

DT

a

NP

fish

is analysed as S

NP↓ VP

COP

is

NP-PRD↓

and NP

DT

a

NP

fish

(b) PLTAG analysis of copula constructions.

S

NP-SBJ-1

PRP

He

VP

AUX

was

VP

VBN

named

S

NP-SBJ

trace-1

NP-PRD

NP

DT

the

NN

director

=⇒ S

NP-SBJ↓ NP-PRD

NP

DT↓ NN

director

(c) Exception case for PLTAG analysis of copula constructions.

Figure 8.6: Treatment of copula constructions in PLTAG.
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8.1.4 Remaining Problems

The treebank conversion algorithm assigns complete structures to ca. 97% of all trees

in the Penn Treebank. Some of the remaining three percent of trees were only partially

converted and may miss some leaves (this mainly affects sentences that include FRAG

(for fragment) nodes. Among the 97% of complete conversions, there is a small num-

ber of sentences where punctuation marks or some modifiers are in the wrong order

in the tree, due to the fact that modifiers in TAG cannot adjointo a node between two

arguments of a node.

8.1.4.1 Modification occurring between two arguments, or be tween a head and

its argument

The biggest cause of not being able to segment the tree correctly are modifiers which

occur in-between two arguments, or between a head and its argument (see Figure 8.7).

In standard TAG, such cases are handled by introducing additional VP nodes that the

modifiers could use as an adjunction site. In our implementation, we inserted a VP

node above each VB, VBD, VBG, VBN and VBZ node that is directlydominated by a

VP. This step creates additional attachment sites, and can thus have a potentially nega-

tive effect on precision of a parser using these structures.However, the introduction of

these additional nodes improves coverage substantially, because it then allows to de-

rive sentences with modifiers that occur in-between arguments. We found that on the

training data, the introduction of these additional VP nodes reduced trees that could

only be transformed to a wrong attachment order by more than 20%.

S

NP-SBJ-1

NN

asbestos

VP

AUX

was

VP

VBN

used

NP-arg

trace-1

PP-mod

IN

in

NP

modest amounts

PP-arg

IN

in

NP

making paper

PP-mod

IN

in

NP

the 50s

Figure 8.7: Problematic case of a modifier occurring between a head and its arguments.
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8.1.4.2 Punctuation Disambiguation

Another tricky case is punctuation. In the literature aboutparsing, punctuation is usu-

ally raised in the tree as far as possible, or simply removed.A reason why punctuation

treatment is difficult is that it is often used inconsistently (this is in particular also

true for the Penn Tree Bank data). However, punctuation doescontain useful informa-

tion, and it has been shown that it is beneficial to use it at least in some form (e.g. as

a feature) to inform the parser. As this thesis focuses on modelling human process-

ing and evaluation on text which contains all punctuation marks, we decided to try

to keep punctuation marks if possible. However, the question was then whether they

should be modifiers or arguments. Treating all punctuation marks as arguments helps

to prevent the problem of having a modifier (the comma) between two arguments.

On the other hand, treating punctuation as arguments leads to a much larger lexicon,

and poor generalisation performance. For example, sentence-final punctuation is prob-

lematic as an argument to the sentence for sentence-level coordination, causing the

lexicon entries for verbs not to generalise across sentence-level coordination vs. un-

coordinated phrases. Removing any sentence-final punctuation, as well as brackets,

quotation marks and dashes is thus an effective way to significantly reduce lexicon

size. It is a well-established way of dealing with punctuation, see also (Collins, 1999;

Bikel, 2004).

In the final version of the treebank converter, heuristics are used to identify

apposition-like insertions and introduce a new node with category ‘APP’ with the first

comma as its head, and subcategorising the apposition and second comma (see Fig-

ures 8.9 and 8.8). All other punctuation was removed if at thebeginning or end of a

sentence, or treated as a modifier.

NP

NP* APP

, ADJP↓ ,↓

Figure 8.8: Treatment of commas in appositions.
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S

NP

DT

the

NN

yield

, PP

IN

for

NN

example

, VP

VBD

rose

PP

IN

by

NP

5%

=⇒ S

NP

NP

DT

the

NN

yield

APP

, PP

IN

for

NN

example

,

VP

VP

VBD

rose

PP

IN

by

NP

5%

Figure 8.9: Example of three modifiers (two commas and a PP) occurring between the

argument and a head. Correct order can be achieved by introduction of an additional

node ’APP’, and adjoining the apposition with either the NP or the VP.

8.2 Lexicon Induction

After converting the Penn Treebank into PLTAG format, and adapting some of the

annotation as described in Section 8.1, the resulting PLTAGtreebank can be used to

induce a PLTAG lexicon. As described above, we annotated thetransformed structures

with head information from an adapted version of Magerman’s(1994) head percolation

table. The head information is necessary to segment the treefor the sentence into

the two types of lexicon described in Chapter 7: the canonical lexicon entries, and a

prediction lexicon (similar to the canonical lexicon, but mostly not lexicalized).

8.2.1 Creating the Canonical Lexicon

The creation of the canonical lexicon is based on the procedure described in (Xia et al.,

2000). Each node in a tree from the PLTAG tree bank must be annotated with a flag

indicating whether it is its parent’s head child or not. Furthermore, each lexical anchor

must be annotated with a flag stating whether it is a modifier oran argument.

The algorithm then determines the spine of an elementary tree by starting at each

lexical leaf of the tree and checking its ancestor nodes for whether they are the head

child or not. Whenever a node is encountered that is not the head child of its parent,

the algorithm checks whether the lexical anchor is a modifieror an argument. If it is an

argument, the node is cut into two halves. The upper half is marked as a substitution

node, and the lower half constitutes the root of the elementary tree. For example,

consider the sentenceThe Italian people often vote Berlusconishown in Figure 8.10(a).

The algorithm would for example check the parent ofThe for whether it is the head
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child of its parent nodeNPand find that it is not. It would then check whetherTheis an

argument or a modifier and find that it is an argument, and therefore cut theDET node

into two halves, thus creating the substitution site in the elementary tree forpeopleand

the root node for the elementary tree ofThe, see Figure 8.10(b).

Berlusconi

NP
often

ADVP

VP

S

The

DET

Italian

ADJ

N

vote

V

VP

4

4

4

5

5

6

6

5

2 people

N

NP

1

1

2

2

3

3

3
2

2 2

3

3

5 5

4 4

4
5

5

5
5

1

3

6

(a) PLTAG tree showing which part of the tree

will result in which lexicon entry.

DET

The

N

ADJ

Italian

N*

NP

DET↓ N

people

VP

ADVP

often

VP*

S

NP↓ VP

V

vote

NP↓

NP

Berlusconi

(b) Lexicon entries extracted from the above tree.

Figure 8.10: Generating lexicon entries from the PLTAG tree bank.

If the lexical anchor is a modifier, the parent node is cut in half (the lower half is

going to become the elementary tree’s root node), and the future foot node has to be

identified by checking the parent node’s head child (and its head children) for a node

of same category as the parent. The foot node is then also cut in half. The upper half

constitutes the new elementary tree’s foot node, and the lower half is joined with the

parent node’s upper half to form a complete node. This happens at the wordsItalian

andoftenin Figure 8.10(a). At the wordItalian, theADJ node is not the head child of

its parentN. As Italian is a modifier, we cut the parent nodeN into its upper and lower

half, and find that its head child also has categoryN, and also cut it in half. The colours

and indices in Figure 8.10(a) mark which part of which node will eventually belong to

which elementary tree. Figure 8.10(b) shows the elementarytrees extracted from the

example sentence.
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8.2.2 Creating the Prediction Lexicon

As defined in Chapter 7, prediction structures can be unlexicalized, and can basically

have any shape. As discussed in Section 7.2.3.3, only those prediction trees that match

the structure of some canonical tree can yield valid PLTAG derivations. Therefore,

only the subset of possible trees which are in the lexicon, orpruned versions of them

can be of any use to the parser. We can further restrict this set by defining the desired

level of generalisation (also discussed in Section 7.2.3.3). The prediction trees used in

this work include the tree structure to the left but not to theright of the spine, cutting

off any unary nodes at the bottom of the spine.

One way of generating such trees would be to transform the entries from the canon-

ical lexicon. But a large set of prediction trees risks to make the parsing algorithm very

slow because it creates a very big search space. We thereforerestrict the set of pre-

diction trees to structures that turn out to be necessary forincrementally parsing the

PLTAG tree bank. As mentioned earlier on, prediction trees are needed for connectivity

whenever two dependents precede a head, or when a grandparent and a child have been

encountered, but the head of the parent node has not been seen. In our example sen-

tence this happens at the wordsItalian andoften. A systematic way to find these cases

is by calculating theconnection pathat each word of the tree, and then subtracting the

nodes from all elementary trees whose lexical anchor has notbeen seen.

Connection paths were defined and used for calculating connectivity for DVTAG

by Lombardo and Sturt (2002). A connection path for wordsw1 . . .wn is the minimal

amount of structure that is needed to connect all wordsw1 . . .wn into the same syntactic

tree. The amount of structure needed at each word for the sentenceThe Italian people

often vote Berlusconiis indicated in Figure 8.11 by the structure enclosed in the circles.

Berlusconi

NP
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VP
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V

VP

3
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ADJ
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DET

1

1

2

2
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1
2

33 4

4

4

5 5

5

5

5

6

52

2

Figure 8.11: The connection path at each word.
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We then use the connection paths and our knowledge of how the sentence tree

can be decomposed into the canonical elementary trees to determine which parts of

the structure are included in the connection path for wordsw1 . . .wn, but which are

not part of any of the elementary trees with feetw1 . . .wn. In Figure 8.11, this occurs

twice: firstly whenItalian has been read, and the determiner and adjective can only be

combined by predicting that they must be part of the same nounphrase, and secondly

at often, when the VP and S nodes have to be predicted.

As can be seen in Figure 8.12, there is some structure needed for the connection

path which is part of an elementary tree whose lexical anchorhas not yet been pro-

cessed. The nodes required by the connection path but which are not part of elementary

trees with already seen anchors constitute the prediction tree, see Figure 8.12. These

prediction trees differ from the trees in the canonical lexicon in that all their nodes are

marked as prediction nodes, and in that they are not necessarily lexicalized.

It can happen that nodes from two or more different elementary trees are needed

by the connection path. In this case, we generate a pre-combined prediction tree (see

Section 8.4.1). A pre-combined tree has unique indices for nodes that originate from

different elementary trees, and is equivalent to generating several single prediction
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Figure 8.12: “Subtracting” the seen lexicon entries for the and Italian from the connec-

tion path structure at the word Italian leaves us with the connection bit, from which we

generate the prediction tree, as shown on the right hand side.
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trees and integrating them later online.

The prediction trees generated by the connection path method are simplified by

removing unary nodes that were originally introduced through adjunction from the

right side. This makes the trees smaller, reduces lexicon size and prevents us from

predicting the exact points of modification in a tree.

8.2.3 Lexicon Induction Statistics

Based on the argument/modifier decisions based on PropBank and special treatment

of punctuation our extraction algorithm generated 6000 prediction tree templates and

17000 canonical tree templates (i.e. unlexicalized trees). There were 146k unique

canonical lexicalized trees (counting simplified categories, e.g. using NP instead of

NP-SBJ). We obtained these numbers after trying to make the lexicon more compact,

by treating all relations annotated as “Support” in PropBank as modifiers, and also

treating as arguments words annotated as “-(VOC), (DIR), (LOC), (MNR), (PRP),

(TMP), (CLR)” in PropBank. The number of tree templates extracted in this first ver-

sion of the converter is considerably higher than the numberof tree templates extracted

in related work (Xia et al. (2000); Chen (2001) extracted about 6000 templates). This

gap is due to differences in the treatment of punctuation andtraces, as well as differ-

ences in the set of non-terminal categories used. The large lexicon led to very low cov-

erage of the grammar (< 60%). In order to increase coverage, the following changes

were made:

• using fewer categories (NN, NNS, NNP, NNPS→ NN; VB, VBD, VBG, VBN,

VBP, VBZ → VB; JJ, JJ, JJR, JJS→ JJ; RB, RBR, RBS→ RB; NML, NAC,

NP, NX→ NP; WDT, WP, WP$→ WP; PRP, PRP$→ PRP)

• treating all punctuation marks except when in apposition-like construction as

modifiers

• removing sentence-initial and sentence-final punctuationmarks

• removing all traces and null-elements except ‘0’, ‘*’, ‘*T*’

• removing the top empty category of the treebank sentences

After these measures, the size of the extracted lexicon was more than halved to 7100

tree templates (thereof 2000 unique ones) and 2800 prediction trees, achieving a cover-

age of more than 90% on Section 23 of the converted Penn Tree Bank (unseen during
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training). Lexicon size can be further reduced by using sister adjunction instead of

the adjunction operation, as in (Chiang, 2000), whose extracted lexicon contained only

2100 tree templates, and by introducing commas as heads of auxiliary trees in coordi-

nation, as done in (Chen, 2001). For a good analysis of different extraction strategies

and their effects on lexicon size see Chen (2001).

The average ambiguity per lexical item is 2.45 trees per wordfor the later version

of the lexicon. The distribution is not even but follows the Zipf distribution as can

be expected for language data. There are a few words with lotsof different trees (in

particular common function words like “and” (578 trees), “or” (219 trees), “as”, “in”,

“but”, “is”, “$”, “of”, “for”, “to” (between 100 and 200 different trees each, see Figure

8.13).
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Figure 8.13: The distribution of ambiguity in the PLTAG lexicon.

Among the derivations where prediction trees were needed inorder to achieve con-

nectivity, 89.3% of cases used one prediction tree (at a time, without intervening canon-

ical trees), in 10% of cases, 2 prediction trees had to be combined before connectivity

was achieved, and in less than 1% of cases were three prediction trees needed. There

were no instances in the Penn Treebank where more than 5 treeswere needed.
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8.3 The Incremental Parsing Algorithm

Given the lexicon entries and the PLTAG treebank for training and evaluation, we next

describe the incremental parsing algorithm. The parsing strategy of the incremental

PLTAG parser is related to an Earley parser. Alternative strategies, for example top-

down parsing (Lang, 1991) would not lead to incremental PLTAG derivations as the

parser would have to start with the sentence node, whose lexical anchor is the head

of the sentence; and the head of the sentence is most often is not the first word of a

sentence. Bottom-up TAG parsing (Vijay-Shankar and Joshi,1986) on the other hand,

would not lead to fully connected structures.

The implementation of the parser uses a chart to store and retrieve the parallel

partial analyses at each word (see Section 8.4.3 for more details on the chart). The

chart allows to aggregate similar analyses during the search phase and only calculate

complete derived trees when search is completed for the n-best trees. To limit the size

of the chart (both in terms of the number of different chart entries and the number of

analyses in one chart entry), a beam is implemented to only keep the best analyses

and prune analyses with low probability. As a further measure to increase efficiency, a

supertagging step (see Section 8.4.5) for choosing prediction trees is interleaved with

the parser steps. The supertagger selects the most promising prediction trees given

the context, such that the parser only has to try to integratethen best prediction trees

instead of all trees from the prediction lexicon at each step, which dramatically cuts

down on the search space.

The high level parsing algorithm (shown in Algorithm 1) works as follows: When

processing a new input wordwi , the algorithm retrieves all possible elementary trees

εwi for wi (line 2) and tries to combine them with all analyses coveringthe prefix of the

sentenceβw1..wi−1 (line 6). It then retrieves a subset of the prediction trees (line 16–18;

the subset is determined by the a super-tagger, see Section 8.4.5), and tries to combine

the prediction trees with all analyses covering wordsw1..wi (line 20). The prefix trees

are stored in a chart (see lines 2, 13), which will be discussed in Section 8.4.3. To cut

down on the search space and only follow the most promising analyses, prefix trees

that have too low probability are pruned (lines 9 and 15).

The operations for combining the trees consist of adapted versions of the standard

LTAG operations plus a verification operation. Note that we found that all auxiliary

trees that we extracted from the Penn Tree Bank satisfy the definition of TIG trees,

i.e. their foot nodes are the innermost or outermost leaf of the auxiliary tree. We will
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Input : canonical and prediction lexicon,

input sentencew1 . . .wn,

frequency count from training

Output : prefix tree for wordsw1 . . .wn

foreachword wi in w1 . . .wn do1

retrieve prefix trees{βw1...wi−1} from chart2

get elementary trees{εwi} for wi from lexicon3

foreachβw1...wi−1 do4

foreachεwi do5

try to combineβw1...wi−1 with εwi+16

end7

end8

prune resulting treesβw1...wi9

foreachβw1...wi do10

expand future fringes if necessary11

combine with trees with same fringe12

insert into chart13

end14

prune again15

get prediction trees{πk} from lexicon16

foreachβw1...wi do17

selectn bestπ out of{πk} (super-tagging)18

foreachπ out of the selected onesdo19

try to combineβw1...wi with π20

end21

end22

repeat lines 9-15 for{βw1...wi} and{πk}23

end24

Algorithm 1 : The PLTAG parsing algorithm.

keep referring to the formalism as PLTAG in this thesis, eventhough the operations

defined in our parser only handle (and for English only need tohandle) PLTIG trees.

As we have defined in Section 7.2.1, a PLTAG derivation startswith the first word

of the sentence. Partially derived trees are always prefix trees, i.e., they span a prefix

of the sentence. The upcoming elementary tree may substitute or adjoin into the prefix

tree (as in standard TAG), but also vice versa. We distinguish these cases by having

Up andDown versions of the parser operations. The elementary tree to beintegrated

with the prefix tree can either be a prediction treeP or a canonical treeF. For example,



8.3. The Incremental Parsing Algorithm 187

manner element. tree into prefix treeprefix tree into element. treeif matching pred

operation Substitution Adjunction Substitution Adjunction Verification

canonical SubstDownF AdjDownF SubstUpF AdjUpF verif

predict SubstDownP AdjDownP SubstUpP AdjUpP NA

Table 8.1: Parser operations table for an incremental PLTAG parser.

AdjDownP is the parser operation that adjoins the prediction tree into the prefix tree,

while SubstUpF substitutes the prefix tree into a canonical elementary tree, see a list

of all operations in Table 8.1.

The parsing algorithm does not allow two prediction operations to be executed in

a row, to avoid an overly large search space. Cases where nodes from more than one

elementary tree need to be predicted to achieve connectedness (as in the case of left

recursion) are covered if they have been seen during training and are thus available

as pre-combined prediction trees in the lexicon (see Section 8.4.1). The verification

operation can only be applied if the prefix tree contains predicted nodes which match

the structure of the canonical elementary tree.

8.3.1 The Concept of Fringes

An important property of incremental parsing is that for each partial derived tree, only

a small part of the tree structure is available for substitution, adjunction and verifica-

tion operations, as no operations before the last lexical anchor are possible, and any

insertion of lexical material beyond the next substitutionsite or predicted beyond the

lexical anchor would necessarily lead to a violation of incrementality later on, and not

constitute a valid PLTAG partial derivation as defined in Section 7.2.1. We call the part

of the tree that is available for substitution or adjunctionthecurrent fringe. It contains

all nodes on the path from the last lexemeln to the tree’s next leafln+1 (excluding their

common ancestor). Paths from the leafln+1 to ln+2, ln+2 to ln+3 etc. are referred to as

the tree’sfuture fringes. The last future fringe is the path from the rightmost leaf ofthe

tree back to its root.

An elementary tree’s current fringe is the path from its rootnode to the first leaf.

We write a fringe as two lists, one list for nodes from the leafon the way up that are

open for adjunction to the right, and the second list for the nodes on the branch down

to the next leaf with nodes open to the left for adjunction. Furthermore, we mark the

existence of a substitution node, which is technically the last element of the second list,
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with a colon at the end of the second list (or :nil if there is no substitution node). We

can then also define the list ofpast fringesas those parts of the tree that were current

fringes at previous points in time, i.e. paths between the root and the first leaf, the first

leaf and second leaf etc. up to the path from the previous leafto the current leaf. For

example, consider the tree shown in Figure 8.14(a):

R
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a

B

C

D↓

E↓

R*

(a)

D

d

(b)

R

A

a

B

C

D

d

E↓

R*

(c)

Figure 8.14: Example Trees for explaining the concept of fringes.

When first retrieving a tree from the lexicon, none of the leaves have been pro-

cessed. Therefore the past fringeH is empty, and the current fringeF is [][R,A,a] : nil .

The future fringes would be a list of fringes:

P = [[a,A][B,C] : D ↓, [D ↓,C][] : E ↓, [E ↓, B][R∗] : nil , [R∗,R][] : nil ].

Once lexical itema has been processed, the formerly current fringe shifts ontothe list

of past fringes, (H = [[][R,A,a] : nil ]), the first slice of the future fringes becomes the

new current fringe (C = [a,A][B,C] : D ↓), and the future fringes consist of the remain-

ing fringes (P= [[D ↓,C][] : E ↓, [E ↓,B][R∗] : nil , [R∗,R][] : nil ]). If we then combine

the tree achored ina with the tree shown in Figure 8.14(b) which has past fringeH = []

current fringeC = [][D,d] : nil and future fringesP = [[d,D][] : nil ], we obtain the tree

shown in Figure 8.14(c). The algorithm can efficiently decide whether trees (a) and (b)

can be combined by checking their current fringes. The current fringe of tree (a) after

processing non-terminala (C = [a,A][B,C] : D ↓) contains a substitution node with the

same category as the root category of tree (b), which is the first node on (b)’s current

fringeC = [][D,d] : nil . When integrating trees (a) and (b), their fringes are combined

such that they yield the fringe of tree (c). When tree (b) is substituted into nodeD ↓ of

tree (a), their fringes must bejoined to yield the fringe of tree (c).
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Joining Fringes The fringe joining operation ‘+’ appends the lists of the twofringes.

This operation can of course only yield a valid fringe, if either the first list of the second

fringe is empty, or if the second list and substitution node of the first fringe are empty,

and if the node where they are joined, i.e. the last node of thefirst fringe and the first

node of the second fringe have the same category. These conditions are satisfied in

our example for the current fringes of trees (a) and (b)[a,A][B,C] : D ↓ +[][D,d] : nil .

Remember that the substitution node is technically part of the second list in a fringe.

As substitution nodes are only the upper half of a complete node, and root nodes are

only the lower half of a complete node, the second list of the second fringe is appended

onto the second list of the first fringe, and the substitutionnode melted together with

the root node, yielding fringe[a,A][B,C,D,d] : nil . The future fringes of trees (a) and

(b) must also be joined:[d,D][] : nil +[D ↓,C][] : E ↓. In this case, the second list and

substitution node of the frist fringe are empty, so the fringes satisfy requirements and

the first list of the first fringe can be prepended to the secondfringe, yielding resulting

fringe [d,D,C][] : E ↓. Node halves for the root node and the substitution nodes are

again melted together into a complete nodeD. We will refer back to this concept of

joining fringes when discussing parser operations in Section 8.3.3.

When trees (a) and (b) from our example have been combined into tree (c) and

non-terminald has been processed, the resulting past fringe is thusP = [[][R,A,a] :

nil , [a,A][B,C,D,d] : nil ], the current fringe C is[d,D,C][] : E ↓ and future fringes

consist ofP = [[E ↓,B][R∗] : nil , [R∗,R][] : nil ]. The operations in our incremental

algorithm will make use of the fringe concept, and the rules specified in Section 8.3.3

take care of correctly putting together fringes when integrating two trees.

Note that if the past fringes, current fringe and future fringes of a tree are flat-

tened and appended, we obtain the depth-first traversal order of a tree, also re-

ferred to as left-to-right tree traversal in the classical Tree-Adjoining Grammar paper

in (Rozenberg and Salomaa, 1997, Section 10.1). For tree (c), this left-to-right traver-

sal would correspond to the order[R,A,a,a,A,B,C,D,d,d,D,C,E ↓,E ↓,B,R∗,R∗,R].

Each node is visited exactly twice, once when integration can be performed on its left

side, and once when operations can be applied at its right side (of course, no integra-

tions can be applied at terminal symbols). Distinguishing between whether a node is

visited for the first or second time is important for adjunction operations: an auxiliary

tree with the foot as its rightmost child can only adjoin intoa node that is open for

adjunction from the left (i.e. on the second list of the fringe), while an auxiliary tree

that has its foot node as its leftmost child can only integrate with nodes that are open
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for adjunction to the right and hence in the first list of a fringe. Because a fringe is

defined as the path from one leaf to the next, it always contains right-open nodes first

(from the way up from the left leaf), and then left-open nodes(on the path down to

the right leaf), which is why the chosen two-list-notation works well for displaying

the nodes in the order they are visited by depth-first traversal. All operations maintain

the correct order of nodes in the fringes, because all the components from a new tree

that are inserted into the old fringes are themselves valid depth-first traversal orders,

and they are inserted into the integration points where the trees are joined together,

updating both the left-visible and right-visible parts in the resulting node order. We

will show that the parser operation guarantee to correctly maintain fringes in Section

8.3.4.

8.3.2 A Parsing Example

For illustration of how the algorithm works, this section will go through an example

sentence and discuss the necessary parsing operations. Consider Figure 8.15, which

shows the start of an incremental PLTAG parse for the sentence The reporter that the

senator attacked, admitted the error. When the first word,the, is encountered, there is

nothing to integrate it with, so we apply theStart operation. The current fringe after

the operation begins at the lexical anchorthe. In the figure, it is indicated by the red

dashed line and shown in the fringe notation that was discussed in the previous section.

Next, at the wordreporter, the prefix tree from Figure 8.15(a) fits together with

the new elementary tree (b) by performing a substitution operation (this is determined

by checking the compatibility of the two trees’ fringes. Because the prefix tree is

substituted into the elementary tree (and not the elementary tree into the prefix tree)

and is a canonical tree, this is aSubstUpF operation. The fringe of the resulting tree is

given below the right hand side of Figure 8.15(b) and indicated in the tree by the red

dashed line.

Next, we read the wordthat and, after checking fringes, find that the prefix

tree from Figure 8.15(c) has an NP node that is open to the right, which means

that the auxiliary tree forthat (also Figure 8.15(c)) with its NP-foot node as the

leftmost child can adjoin at this point. Since the auxiliarytree is a canonical

tree, we apply operationAdjDownF. The resulting tree and fringe (again, indicated

by the red dashed line) are given at the right-hand side of Figure 8.15(c). Note

that adjunction of left-footed auxiliary trees has an effect on the past fringe. The
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past fringe for the prefix tree was[[][NP,DT, the] : nil , [the,DT][NN, reporter] : nil ].

Adjoining to a right-open node means that we have to find the left side

of the node in the former fringe and combine it with the current fringe of

the tree which is being integrated. This yields the correct new past fringe

[[][NP,NP,DT, the] : nil , [the,DT][NN, reporter] : nil ]. The fringe up to the node at

which the integration took place[reporter,NN,NP], is combined with the first future

fringe of the elementary tree, yielding[reporter,NN,NP][RC,WHNP, that] : nil . (For

the correct calculation of the derivation it is not necessary for the algorithm to main-

tain correct past fringes, since these will not be used any more. It is however crucial to

maintain correct current and future fringes.)

When processing the wordthe, we find that the current fringes of the trees can-

not be combined. Here’s where the prediction trees come intoplay. The algorithm

can take (and will try to do so after each input word) prediction trees from the pre-

diction lexicon and try to integrate them into the prefix tree. One of the prediction

trees in the set is the pre-combined prediction tree shown inFigure 8.15(d). Note

the indices1 and2, which indicate which nodes should be verified by the same tree

later. The prediction tree can be substituted into the open substitution node of the

prefix tree (hence we use operationSubstDownP). But because the prediction tree

does not have a lexical anchor, the current fringe is not shifted – instead, the fringes

of the prediction tree replace the integration point in the prefix tree current fringe,

resulting in the new current fringe[that,WHNP][S1,NP1
2 ] : DT2, and future fringes

[[DT2][NN2
2 ] : nil , [NN2

2 ,NP1
2 ][VP1

1 ] : nil , [VP1
1 ,S1,RC,NP][] : nil ]. Now, the current

fringe of the new prefix tree actually contains a DT-substitution node and can thus be

combined with thethe-tree, using operationSubstDownF. After fringe combination,

the fringe is shifted to after the last lexical anchor, “the”, as shown in Figure 8.15(e),

indicated by the red dashed line. The current fringe of the prefix tree now ends with

a prediction node, and is therefore a candidate for verification (we cannot shift fringes

before this predicted node is verified – we could however integrate other words into

the current fringe before verification).

For the following word,senator, there exists a canonical tree in the lexicon that

can verify all predicted nodes with index2. The indices of the validated nodes on

the fringes are removed, and the fringes are updated where necessary (i.e. wherever

the verification tree contains nodes that are not contained in the prediction tree). This

is done by replacing the leaves of the prediction tree by the corresponding nodes in

the verification tree. So the current fringe is updated from[the,DT2][NN2
2 ] : nil to
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Figure 8.15: Incrementally parsing an object relative clause with PLTAG.

[the,DT][NN,senator] : nil and the first slice of the future fringe is changed from

[NN2
2 ,NP1

2 ][VP1
1 ] : nil to [senator,NN,NP1,VP1

1 ] : nil . The next word,senator, has

an elementary tree that matches the predicted nodes with index 1, see Figure 8.15(f).

The future fringe resulting from the verification operationstarts from the lexical an-
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chorattacked, yielding current fringe[attacked,V][NP,∗trace∗] : nil and future fringe

[[∗trace∗,NP,VP,S,RC,NP][] : nil ]. Note that it would be grammatical (and indeed,

quite likely in this case) to next encounter a word that integrates with a position on

the future fringe, after the trace. Because the trace is an empty element, both fringes

should be available for integrating the next word. Therefore, a second analysis is cre-

ated, which is an exact copy of the first but whose current fringe starts after the trace,

yielding current fringe[∗trace∗,NP,VP,S,RC,NP][] : nil and an empty future fringe.

8.3.3 Formalisation of the Parser Operations

The parser can choose between five parser operations (SubstDownF, SubstUpF,

AdjDownF, AdjUpF, Verification) for combining a prefix tree with a canonical

elementary tree, and four operations for combining a prefix tree with a prediction tree

(SubstDownP, SubstUpP, AdjDownP, AdjUpP). In addition, there is theStart op-

eration which processes the tree for the first word in the sentence. Taken together,

these operations implement the PLTAG grammar operations (adjunction, substitution,

and verification) as operations on fringes. For efficiency reasons, we only keep track

of the trees’ fringes during search, and build the derived trees during retrieval of the

n-best analyses. The role of the parsing operations is to guarantee that valid prefix trees

are generated by checking all preconditions are satisfied before integrating a tree, and

to correctly calculate the current and future fringes of theresulting trees. The input of

the parser operations are the fringes of the prefix tree and elementary tree, and a list of

the prefix trees that have been previously integrated into the prefix tree, but have not

yet been verified. This list is necessary as some of the nodes of the prediction tree may

not be present on the current or future fringe at the time of verification, but are needed

to check whether the prediction and verification tree match.

The following paragraphs describe the parser operations inmore detail. The prefix

treeβ and the elementary treeε can each be represented as tuples T and T’, see Table

8.2.

A parser operation takes the two tuples for the trees2 and generates the tuple for

the resulting tree as spelled out below. All operations willbe explained by listing

their preconditions for integrating two trees, and their calculation of the resulting tree’s

current and future fringes.

2In fact, just the fringes and the position of the word that’s being processed are enough as C and X
can be determined automatically given the trees’ fringes.
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Tuple for representing parser operations:

C the category of the tree’s root node

X indicates the position of a tree’s foot node. Values are ’r’(rightmost leaf), ’l’

(leftmost leaf) and ’-’ (no foot node for initial trees)

i index of last subsumed word, ’-’ for elementary predictiontree

F a tree’s current fringe, can also be expressed as[ A
1..m

][ B
1..o

]:S, see Section 8.3.1

P
1..n

The tree’sn future fringes.

Other definitions:
k
k the indexk as a subscript or superscript marks predicted nodes.

L denotes the last canonical anchor of a tree, if it is part of afringe, always last

node on second list in a fringe

N a node

T 1 T ′ tree T is integrated with tree T’

⊕ merge fringes in correct order

+ join fringes, see Section 8.3.1

Table 8.2: Definitions for the specifications of parsing operations.

Start

[] 1 (C; X = −∨ r; 1; [][ B
1..o−1

,L] : nil ; P
1..n

)

(C; X; 1; P
1
; P

2..n
)

Preconditions of theStart operation are that the elementary tree must not be a predic-

tion tree. It can be either an initial tree, or an auxiliary tree with its foot to the right

(expressed asX = −∨ r in the formula), and it must not have an open substitution

node to the left of the lexical anchor. To check these conditions, the operation must

verify that the elementary tree’s current fringe ends with alexical anchorL. Finally,

this condition can only apply if there is no prefix tree and thenumber of the word pro-

cessed is 1. The operation then sets the new current fringe tothe first future fringe of

the elementary treeP1, and future fringes toP2...n.

SubstDownF

(C; X; 1..i; [ A
1..m

][ B
1..o

] : S; P
1..n

) 1 (C′; −; i +1; [][ B′
1..o′−1

,L′] : nil ; P′
1
)

(C; X; 1..i +1; P′
1

+P
1
; P

2
. . .P

n
)

cat(S) = C′
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(C; X; 1..i; [ A
1..m

][ B
1..o

] : S; P
1..n

) 1 (C′; −; i +1; [][ B′
1..o′−1

,L′] : nil ; P′
|P′|>1

)

(C; X; 1..i +1; P′
1

; P′
2..n′−1

,P′
n′

+P
1
, P

2..n
)

cat(S) =C′

+

C C

C’

C’

A’

L’
C’

A’

L’

(a) initial tree with|P| = 1

+

C

B

C

B

C’

C’

A’

L’

A’

C’

L’

(b) initial tree with|P| > 1

Figure 8.16: Illustration of the SubstDownF operation. The red dashed lines indicate

the current fringe. The names of the nodes in the figure do not correspond directly to

the variable names in the formulae. This also holds for the other figures in this section.

The S node in the right hand side of the formula is depicted as C’ in the figure (following

the equivalence condition cat(S) = C’.

Preconditions for theSubstDownFoperation are that the elementary tree must be an

initial tree, therefore there is no foot node (marked as ‘−’ in the formula). For the

prefix tree, it does not matter whether it is an auxiliary treeor not: TheX marks its

status as underspecified). Furthermore, the prefix tree’s substitution nodeSmust have

the same category as the root node of the elementary treeC′. In order not to violate

incrementality, the first leaf of the elementary tree must bethe lexical anchor (indicated

in the formula by theL′ on the current fringe).

To correctly calculate the current and future fringes of theresulting tree, two cases

are distinguished: the future fringe of the elementary treecontains has length 1 (P′
1

) or

length> 1 ( P′
|P′|>1

). If the length of the future fringe is one, the current fringe of the

resulting tree is made up of the future fringe slice of the elementary tree, joined at the

substitution site with the first future fringe of the prefix tree. Otherwise, the current

fringe of the resulting tree is simply equal to the first future fringe of the elementary

tree, see Figures 8.16 (a) and (b). In both cases, the last part of the future fringe of the

elementary tree needs to be joined with the first slice of the future fringe of the prefix

tree, as indicated by the ‘+’, see Section 8.3.1 for an explanation for how fringes are

joined.
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SubstDownP

(C; X; 1..i; [ A
1..m

][ B
1..o

] : S; P
1..n

) 1 (C′; −; −; [][B′k
k

1..o′
] : S′k; P′k

k
1..n′

)

(C; X; 1..i; [ A
1..m

][ B
1..o

] : S+[][B′k
k

1..o′
] : S′k; P′k

k
1..n′−1

,P′k
k

n′
+P

1
, P
2..n

)
cat(S) = C′

k
k

k

k
k

k

k

k

k
k

k
k

+

C C

C’
S’

A’

C’

L’

S’

A’

C’

L’

Figure 8.17: Illustration of the SubstDownP operation. The red dashed lines indicate

the currently accessible fringe.

Preconditions for theSubstDownPoperation are that the elementary tree must be an

initial tree, indicated by ‘–’ in second position of the elementary tree tuple. Prediction

trees are not lexicalized. Therefore, we do not account for any additional words in the

input string (as shown by the ‘−’ in the third position of the elementary tree tuple).

The indices at nodes in the elementary tree make the requiredprediction status of the

elementary tree for theSubstDownPoperation explicit. The inner nodes have both an

upper and a lower index and the substitution nodes only have upper indices. Again, the

root node of the elementary tree must have the same category as the substitution node

Son the current fringe of the prefix tree. As opposed to theSubstDownFoperation, the

elementary tree is allowed to have an open substitution nodeas a first leaf, as indicated

by the disjunction ‘S′k’).

The fringe of the resulting tree is made up out of the current fringe of the prefix tree,

joined with the current fringe of the elementary tree. The future fringes consist of the

first n′−1 future fringes of the elementary treeP′k
k

1..n′−1
, then followed by the elementary

tree’s last future fringe which is joined with the prefix tree’s first future fringeP′k
k

n′
+P

1
.

The last part of the resulting tree’s future fringe is the rest of the prefix tree’s future

fringes P
2..n

. Down-substitution with prediction trees is illustrated in Figure 8.17.

SubstUpF

(C; −; 1..i; [ A
1..m

][] : nil ; []) 1 (C′; X′; i +1; [][ B′
1..o′

] : S′; [ A′′
1..n′′

][ B′′
1..o′′

,L′′] : nil , P′
2..n′

)

(C′; X′; 1..i +1; P′
2

; P′
3..n

)
cat(S′)=C
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+

C C’

C A’’

L’’

C

C’

A’’

L’’

Figure 8.18: Illustration of the SubstUpF operation. The right branch of the elementary

tree might of course be much more complex than the one of the example tree shown

here. P′
1

is spelled out here as [ A′′
1..n′′

][ B′′
1..o′′

,L′′] : nil .

Preconditions of theSubstUpFoperation are that the future fringes of the prefix tree

must be empty. The elementary tree must have the substitution node as a first leaf,

which matches the root node of the prefix tree, and a lexical anchor as the second

leaf. To make this clear in the formula,P′
1

is spelled out as[ A′′
1..n′′

][ B′′
1..o′′

,L′′] : nil . After

combination of the trees, the current fringe starts at the lexical anchor of the elementary

tree, see Figure 8.18.

SubstUpP

(C; −; 1..i; [ A
1..m

][] : nil ; []) 1 (C′; X′; −; [][ B′
1..o′

k
k] : S′k; P′

1..n′
k
k)

(C′; X′; 1..i; [ A
1..m

][] : nil +P′
1

k
k; P′

2..n′
k
k)

cat(S′k) = C

k
k

k
k

k
k

k
+

k

k

k

k

k

C

C C’

L’

A’CA’

L’

C’

Figure 8.19: Illustration of the SubstUpP operation.

The preconditions for this operation are, again, that the future fringes of the prefix

tree are empty, that the elementary tree is a prediction tree(as indicated by thekk indices

on its nodes) and that it has a substitution node on its current fringe with the same

category as the prefix tree’s root node. In a substitution, the root node of the elementary

tree and the substitution node of the prefix tree are merged into a single node, and the

future fringe must thus be updated by joining the prefix tree’s current fringe[ A
1..m

][] : nil ;

with the elementary tree’s first future fringeP′
1

k
k. The future fringes of the resulting tree

are the future fringes of the elementary treeP′
2..n′

k
k, see Figure 8.19.
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AdjDownF (foot in auxiliary tree to the left)

(C; X; 1..i; [ A
1.. j−1

,A
j
, A

j+1..m
][ B

1..o
] : S; P

1..n
) 1 (C′; l ; i +1; [][ B′

1..o′
,C′∗] : nil ; P′

1..2
)

(C; X; 1..i +1; P′
2

+[ A
j+1..m

][ B
1..o

] : S; P
1..n

)
cat(A

j
) = C′

(C; X; 1..i; [ A
1.. j−1

,A
j
, A

j+1..m
][ B

1..o
] : S; P

1..n
) 1 (C′; l ; i +1; [][ B′

1..o′
,C′∗] : nil ; P′

|P′|>2
)

(C; X; 1..i +1; P′
2

; P′
3..n′−1

,P′
n′

+[ A
j+1..m

][ B
1..o

] : S, P
1..n

)
cat(A

j
) = C′

A’

L’

+

C C
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(a) auxiliary tree with|P| = 2
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(b) auxiliary tree with|P| > 2

Figure 8.20: Illustration of the AdjDownF operation for auxiliary trees with the foot as

their first leaf. The red dashed lines indicate the current fringe. Note that the C’ in the

prefix trees corresponds to the A
j

in the formula, as indicated by cat(A
j
) = C′.

(foot in auxiliary tree to the right)

(C; X; 1..i; [ A
1..n

][ B
1.. j−1

,B
j
, B

j+1..o
] : S; P

1..n
) 1 (C′; r; i +1; [][ B′

1..o′
,L′] : nil ; P′

1..2
)

(C; X; 1..i +1; P′
1

+[ B
j+1..o

] : S; P
1..n

⊕P′
2
)

cat(B
j
) = C′

(C; X; 1..i; [ A
1..n

][ B
1.. j−1

,B
j
, B

j+1..o
] : S; P

1..n
) 1 (C′; r; i +1; [][ B′

1..o′
,L′] : nil ; P′

|P′|>2
)

(C; X; 1..i +1; P′
1

; P′
2..n′−2

, P′
n′−1

+[ B
j+1..o

] : S, P
1..n

⊕P′
n′

)
cat(B

j
) = C′

The preconditions for applying theAdjDownF operation are that the elementary tree is

a canonical auxiliary tree with no substitution site beforeits anchor, and that the fringe

of the prefix tree contains a possible adjunction site for theauxiliary tree. The function

cat(A
j
) = C′ means that the category of the adjunction siteA

j
has to match the category

of the elementary tree’s root node. Note that we do only consider TIG auxiliary trees

here (i.e. trees whose foot node is not the left- or right-most child).

The fringes of the resulting tree are calculated as follows.Consider first the case

where the foot node is the leftmost leaf of the auxiliary tree. The current fringe of the
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Figure 8.21: Illustration of the AdjDownF operation for auxiliary trees with the foot as

their rightmost leaf.

resulting tree is the second future fringe of the auxiliary tree (starting at the lexical

anchor). If there are no further future fringes, the elementary tree’s current fringe

is joined with the prefix tree’s current fringe after the adjunction site, and the future

fringes of the resulting tree are simply the same as the future fringes of the prefix tree.

If the auxiliary tree has more than two future fringes, the resulting current fringe is the

elementary tree’s second future fringe and the future fringes of the resulting tree start

with the future fringes of the auxiliary treeP′
3..n′−1

. The last future fringe is joined with

the prefix tree’s current fringe after the adjunction siteP′
n′

+[ A
j+1..m

][ B
1..o

] : S. The rest of

the resulting tree’s future fringe is made up of the future fringe of the prefix treeP
1..n

.

When the foot node is the rightmost leaf of the auxiliary tree, the calculation of the

resulting tree’s future fringe is slightly more complicated. The current fringe of the

resulting tree starts with the elementary tree’s future fringesP′
1

. If this fringe ends with

the foot node (in theP′
|P|=2

case), the resulting tree’s current fringe continues with the

nodes after the integration nodeB
j
. Otherwise the future fringes (up to the second last

one) of the auxiliary tree constitute the future fringes of the resulting tree. The second

last fringe is joined with the prefix tree’s current fringe after the integration node.

The adjunction operation inserts the nodes on the path from the foot node to the

root node of the auxiliary tree at the adjunction siteB
j

in the resulting tree, see Figure

8.21. Because each node occurs exactly twice in the fringes of a tree, first as open

to the left and later as open to the right (as depth-first tree traversal visits each node

twice), the prefix tree’s future fringe that contains the adjunction site node open to the

right must be updated by inserting the last fringe of the auxiliary tree. This is noted in

the formula asP
1..n

⊕P′
n′

.
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AdjDownP (auxiliary tree foot left)

(C; X; 1..i; [ A
1.. j−1

,A
j
, A

j+1..m
][ B

1..o
] : S; P

1..n
) 1 (C′; l ; i +1; [][ B′

1..o′−1

k
k,C

′k∗] : nil ; P′
1..n′

k
k)

(C; X; 1..i; [ A
1.. j−1

,A
j
]+P′

1
k
k; P′

2..n′−1

k
k,P

′
n′

k
k +[ A

j+1..m
][ B

1..o
] : S, P

1..n
)

cat(A
j
) = C′

(auxiliary tree foot right)

(C; X; 1..i; [ A
1..n

][ B
1.. j−1

,B
j
, B

j+1..o
] : S; P

1..n
) 1 (C′; r; i +1; [][ B′

1..o′
k
k] : S′k; P′

1..n′
k
k)

(C; X; 1..i +1; [ A
1..n

][ B
1.. j−1

,B
j
]+ [][ B′

1..o′
k
k] : nil ; P′

1..n′−2

k
k, P′

n′−1
+[ B

j+1..o
] : S, P

1..n
⊕P′k

k
n′

)
cat(B

j
) = C′

k
k

k
k

k
k

k
k

k
k

k
k

k
k

k
k k

k
k

k
k

k

k

+

CC C
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Figure 8.22: Illustration of the AdjDownP operation.

The AdjDownP operation works the same as theAdjDownF operations, except the

auxiliary tree must be a prediction tree, and may have substitution nodes before the

anchor. When calculating the current and future fringes of the resulting tree, the current

fringe starts at the current fringe of the prefix tree, i.e. itis not shifted to after the

anchor of the auxiliary tree, as no lexeme was processed. An example of the operation

is shown in Figure 8.22).

AdjUpF

(C; r; 1..i; [ A
1..m

][ B
1..o−1

,C∗] : nil ; P
1
) 1 (C′; X′ = r ∨−; i +1; [][ B′

1.. j−1
,B′

j
, B′

j+1..o′
,L′] : nil ; P′

1..n′
)

(C′; X′; 1..i +1; P
1
⊕P′

1
; P′
2..n′

)
cat(B′

j
)=C

Preconditions for applying theAdjUpF operation are that the prefix tree must be an

auxiliary tree with the foot node as its rightmost leaf, and that the length of the future

fringe must equal one. Furthermore, the category of the prefix tree’s foot and root node

must be compatible with a node on the elementary tree. The elementary tree must be a

canonical tree, and must not have any leaf to the left of its lexical anchor. It may itself

be an auxiliary tree (with foot to the right).

When the prefix tree is adjoined into the elementary tree, thecurrent fringe of the

resulting tree is the first future fringe of the elementary tree. The current fringe of the

resulting tree however also contains the elementary tree’sfringe after the adjunction
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+ C

C’

L’

C

C*A

L’

C

C’

S’

S’

CA

Figure 8.23: Illustration of the AdjUpF operation. The red dashed lines indicate the

current fringe.

site. Note that the future fringe of the prefix tree contains the path from the foot node

to the root node. This fringe needs to be joined with the future fringe of the elementary

tree at the adjunction site (for nodes accessible from the right). See this effect in Figure

8.24, where the first slice of the future fringe of the elementary tree only contains two

C nodes, while the future fringe of the resulting tree after the operation contains three

C-nodes. The future fringe of the resulting tree is the same asthe rest of the future

fringe P′
2..n′

of the elementary tree.

AdjUpP

(C; r; 1..i; [ A
1..m

][ B
1..o−1

,C∗] : nil ; P
1
) 1 (C′; X′; −; [][ B′

1.. j−1
k
k,B

′
j

k
k, B′

j+1..o′
k
k] : Sk; P′

1..n′
k
k)

(C′; X′; 1..i; [ A
1..m

][ B
1..o−1

,C] : nil +[ B′
j+1..o′

k
k] : Sk; P

1
⊕ P′

1..n′
k
k)

cat(B′
j

k
k) = C

k
k

k

k

k

k
k

k
k

k

k

k

C’

+

C

C*A
C’

C

S’ L’

C

A C

S’ L’

Figure 8.24: Illustration of the AdjUpP operation.

The AdjUpP operation is very similar to theAdjUpF operation, the only difference

being that the prediction status of nodes needs to be taken care of, and that the leaves

before the anchor can be substitution nodes. As in the other operations with a predic-

tion tree, the fringe does not have to move beyond any anchor.
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Verification

(C; X; 1..i; [ A
1..m

][ B
1..o

,Lk
k] : nil ; P

1..n
) 1 (C′; X′; i +1; [][ B′

1..o′
] : S′; P′

1..i′−1
, [ A′′

1..m′′
][ B′′

1..o′′
,L′′] : nil , P′

i′+1..n′
)

(C; X; 1..i +1;P
1
⊕ P′

i′+1
; P

1
⊕ P′

i′+2..n
, P
2..n

)
m(ε, N

all

k
k)

k

k

k

k k
k

+

C

A

D A

S L

S

C

D

S

A

L

AC’

A’

S’ L’

S’

Figure 8.25: Illustration of the Verification operation. The red dashed lines mark the

current fringe.

Verification is the only operation during which the prediction status of anode can be

changed. It can only be applied if the last node of the fringe (i.e. the upcoming leaf)

is marked as a predicted node (if there was an open substitution node, it would have

to be filled first in order not to violate incrementality lateron). There exist no “up-

” and “down-” versions of this operation because verification is only triggered by a

constellation where the prefix tree contains a configurationof prediction nodes that is

compatible with the node configuration of a canonical elementary treeε (we denote this

using the functionm(ε, N
all

k
k)). TheVerification operation removes prediction markersk

andk from all nodes that are validated. This can of course affect the prediction statuses

of nodes in the past, current and future fringes (the above formula does not explicitly

show the prediction status changes on the fringes; this is hidden in the⊕ operation

applied to the future fringes of the prefix and verification trees). The⊕ symbol means

that the future fringes are merged together correctly by replacing prediction nodes

with canonical nodes in the correct order, adding any additional nodes (i.e. substitution

nodes to the right of the spine which are part of the verification tree but were not part

of the prediction tree), and keeping track of the adjunctions that were made to the

prediction spine before, as well as adding any remaining nodes of the prefix tree’s

future fringes. The reason for theP
1

operator showing up twice is due to the fact that if

the right side of the spine contains any nodes that are not part of the original prediction

tree, there will be additional fringe slices. Therefore, only part of the originalP
1

fringe

will be part of the current fringe, and part of it will be pushed to the future fringe. For

an example of the verification operation, see Figure 8.25.
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Dealing with Traces and Empty Elements One exception to the choice of where the

current fringe starts occurs at traces and empty elements. After applying all operations

as usual, the resulting fringes are checked to determine whether the next leaf (the last

node on the current fringe) is a trace or null-element. If that’s the case, the analysis is

copied and in the copy, the current fringe is shifted to the first future fringe.

8.3.4 Proof that Operations produce only valid PLTAG Deriva tions

This section demonstrates that the operations specified above produce valid PLTAG

derivations by showing that they are designed to satisfy thefollowing start and end con-

ditions, as well as invariants for partial derivations, which are taken from the PLTAG

derivation definition from Section 7.2.1.

• Start Condition for Derivation

At the start of a derivation, PLTAG only allows the use of canonical trees, but

no prediction trees. Since the lexicon of canonical trees inPLTAG and LTAG

are the same, the first tree must be a valid partial LTAG derivation. PLTAG in

addition requires that the initial tree must not have any open substitution trees to

the left of its anchor, and that, if it is an auxiliary tree, the foot must be right of

its spine.

• Invariants that hold for partial derivations

1. The current fringe of a derived tree is always the path between the last

processed word and the next leaf.

2. If the past fringe, the current fringe and the future fringe are flattened and

appended, the order of nodes corresponds to the depth-first search path of

the partial derivation.

3. A partial derivation tree that covers wordw j as the most recently processed

word also covers wordsw1..w j .

4. In a partial derivation, all leaves before wordw j are lexicalized (i.e. canon-

ical, not feet, and not substitution nodes).

5. For all prediction markers with the same index, their number must either

remain constant after introduction, or be equal to 0 (after verification).
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• End Condition for Derivation

At the end of a valid PLTAG derivation, there must not be any nodes marked as

predicted, and no open substitution nodes or foot nodes.

How do the rules maintain these conditions?

We here discuss the rules presented above with respect to howthey guarantee yielding

valid PLTAG derivations. All tables contain three rows, onefor the prefix treeβ, one

for the elementary treeε and one for the resulting treer.

Start

The Start rule (repeated here for convenience of reference), only allows canonical

trees. It requires the first leaf to be a lexeme (L), and the foot node, if it exists, to be the

rightmost leaf. It therefore satisfies the start condition as stated above. Furthermore,

the flattened and appended fringes of the initial tree must bydefinition be in depth-first

search order. This operation maintains this order, and thussatisfies invariant 2.

[] 1 (C; X = −∨ r; 1; [][ B
1..o−1

,L] : nil ; P
1..n

)

(C; X; 1; P
1
; P

2..n
)

past fringe current fringe future fringe

β
ε - [][ B

1..o−1
,L] : nil P

1..n

r [][ B
1..o−1

,L] : nil P
1

P
2..n

The new prefix treer resulting from the operation covers exactly wordw1 (satisfy-

ing invariant 3). The current fringe is shifted to the path after the first lexical anchor,

hence invariant 1 is also satisfied. Trivially, due to the start condition, there are no

open substitution nodes or predicted nodes before leafw1 (invariant 4); invariant 5 also

holds since no prediction trees have been used so far.

SubstDownF

TheSubstDownFoperations handle the substitution of a canonical tree intoa match-

ing substitution node in the prefix tree. (Here, the process is shown for P′
|P′|>1

, but the

same argumentation can be easily adapted to the caseP′
|P′|=1

.)
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SubstDownFsatisfies the invariants by maintaining the fringe condition (invariant 2):

The prefix tree’s flattened and appended fringes are in the same order as the depth-first

search of the tree, and the same is true with respect to the elementary tree. The oper-

ation combines these fringes such that the resulting fringealso maintains the correct

order: The nodes on the resulting fringe which originates from the elementary tree are

in the same order as before, and they are inserted into the prefix tree at the integration

point. The ‘+’ operation combines nodesS (which only has an upper half) and node

A′
1

(the root of the elementary tree which only has a lower half) into one single node.

The same happens at the point when the integration point nodeoccurs for the second

time in the fringe, where the last node of the fringe sliceP′
n′

, which is the right hand

side of the elementary tree’s root node, is combined with thefirst node inP
1
, the right

hand side of the prefix tree’s substitution node.

(C; X; 1..i; [ A
1..m

][ B
1..o

] : S; P
1..n

) 1 (C′; −; i +1; [][ B′
1..o′−1

,L′] : nil ; P′
|P′|>1

)

(C; X; 1..i +1; P′
1

; P′
2..n′−1

,P′
n′

+P
1
, P

2..n
)

cat(S) =C′

past fringe current fringe future fringe

β H
1..n

[ A
1..m

][ B
1..o

] : S P
1..n

ε − [][ B′
1..o′−1

,L′] : nil P′
1..n′

r H
1..n

, [ A
1..m

][ B
1..o

] : S+[][ B′
1..o′−1

,L′] : nil P′
1

P′
2..n′−1

,P′
n′

+P
1
, P

2..n

= H
1..n

, [ A
1..m

][ B
1..o

,S+B′
1
, B′
2..o′−1

,L′] : nil

The prefix tree covers wordsw1..wi. It does not have any open substitution nodes

or predicted leaves before the leaf with wordwi , and the leaf following this node is

the open substitution nodeS. During the operation, this open substitution node is

filled, and we know from the elementary tree that this tree’s first leaf contains the

lexical anchor forwi+1. Therefore, the operation guarantees that no substitutionnode

or predicted leaf can exist betweenwi andwi+1, and thus satisfies invariants 3 and

4. The resulting current fringe isP′
1

, which we know to be the path fromwi+1 to the

next leaf, thus satisfying invariant 2. The operation does not change anything in the

prediction index annotation of the nodes of the two trees, hence invariant 5 is also valid

after the operation.

SubstDownP

Next let us consider a substitution operation which introduces a prediction tree. Again,
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we assume that the prefix and elementary trees have fringes incorrect depth-first or-

der, and themselves satisfy the invariants. As in theSubstDownFoperation, the nodes

remain in the same order and are inserted into the prefix tree fringe at the integration

point, thus maintaining invariant 2. Because the elementary tree is a prediction tree,

the current fringe is not shifted and thus maintains the prefix tree’s properties of sat-

isfying invariants 3 and 4. The current fringe of the resulting tree starts at the last

processed word, and due to the update of the fringe with the elementary tree fringes, it

contains the path from that word to the next leaf, thus satisfying invariant 1. All nodes

introduced by the elementary tree contain indices, and these indices are not modified

by the operation, thus maintaining invariant 5.

(C; X; 1..i; [ A
1..m

][ B
1..o

] : S; P
1..n

) 1 (C′; −; −; [][B′k
k

1..o′
] : S′k; P′k

k
1..n′

)

(C; X; 1..i; [ A
1..m

][ B
1..o

] : S+[][B′k
k

1..o′
] : S′k; P′k

k
1..n′−1

,P′k
k

n′
+P

1
, P
2..n

)
cat(S) = C′

past fringe current fringe future fringe

β H
1..n

[ A
1..m

][ B
1..o

] : S P
1..n

ε − [][B′k
k

1..o′
] : S′k P′k

k
1..n′

r H
1..n

[ A
1..m

][ B
1..o

] : S+[][B′k
k

1..o′
] : S′k P′

1..n′−1
,P′

n′
+P

1
, P

2..n

[ A
1..m

][ B
1..o

,S+B′
1
, B′k

k
2..o′

] : S′k

SubstUpF

In up-operations, the prefix tree is integrated into the elementary tree. Therefore the

fringe from the prefix tree is inserted into the elementary tree fringe at the integration

point. The past fringe now begins with the elementary tree’scurrent fringe, joined at

the substitution node with the first past fringe slice of the prefix tree, and followed

by the remaining past fringe slices from the prefix tree. Then, the current fringe of

the prefix tree is merged with the first slice of the elementarytree’s future fringe. All

nodes remain in order (see table below), and invariant 2 is thus satisfied. Invariants

3 and 4 are guaranteed to hold because the elementary tree cannot contain any open

substitution nodes or predicted leaves before the integration site, and because the first

future fringeP′
1

has to have the form[ A′′
1..n′′

][ B′′
1..o′′

,L′′] : nil , i.e. the next leaf must be the

lexical anchor, and the current fringe switches to the position after that leaf. Hence

there is no possibility to introduce an open substitution node or predictive anchor, and
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the current fringe again describes the path from the last lexical anchor (L′′) to the next

leaf, thus satisfying invariant 1. As in the other substitution operations, all indices

from prefix and elementary tree are copied to the resulting tree, and invariant 5 is also

maintained.

(C; −; 1..i; [ A
1..m

][] : nil ; []) 1 (C′; X′; i +1; [][ B′
1..o′

] : S′; [ A′′
1..n′′

][ B′′
1..o′′

,L′′] : nil , P′
2..n′

)

(C′; X′; 1..i +1; P′
2

; P′
3..n

)
cat(S′)=C

past fringe current fringe future fringe

β H
1..n

[ A
1..m

][] : nil []

ε [] [][ B′
1..o′

] : S′ [ A′′
1..n′′

][ B′′
1..o′′

,L′′] : nil , P′
2..n′

r [][ B′
1..o′

] : S′+H
1
, H
2..n

, [ A
1..m

][] : nil +[ A′′
1..n′′

][ B′′
1..o′′

,L′′] : nil P′
2

P′
3..n′

[][ B′
1..o′

] : S′+H
1
, H
2..n

, [ A
1..m−1

,A
m

+A′′
1

, A′′
2..n′′

][ B′′
1..o′′

,L′′] : nil

The proof for operationSubstUpPworks analogously.

Adjoining Operations

Next, let’s consider an adjunction operation. In adjunction, it is slightly more difficult

to fit the fringes of the participating trees together in the correct order, because of the

additional path from the root to the foot node. We do not want to go through every

operation one by one because they are all very similar, and pick out AdjDownP as

an example. We distinguish the cases where the foot is the rightmost child of the

elementary tree from the case where it is the leftmost one.

AdjDownP (foot left)

When a tree with its foot to the left is adjoined into a prefix tree, the operation must

happen at the right side of the adjunction node. To maintain the correct order of nodes

in the past fringe, it is necessary to find the left side of the adjunction node inside

the past fringe, and cut the node into its upper and lower halves, inserting the current

fringe (i.e. the path from root to foot node) of the elementary tree. The insertion at the

left side is symbolised by⊕
A
j

to indicate that the insertion takes place at the left side

of nodeA
j
. The rest is reasonably straightforward: the path from the last leaf node up

to the integration site[ A
1.. j−1

,A
j
] is joined with the first slice of the future fringeP′

1
k
k.

Here, of course we only use the lower half of adjunction nodeA
j

to combine it with
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the right hand side of the foot node, which is the first node of the P′
1

k
k. The future

fringe is then composed out of the remaining fringe slices from the elementary tree,

whereby the right hand side of the foot node is melted with theupper half of the right

side of the adjunction nodeA
j
, followed by the rest of the prefix tree’s current fringe

[ A
j+1..n

][ B
1..o

] : S, and the future fringe of the prefix tree. This way, the nodes end up in

depth-first search order on the flattened version of the resulting fringes, and invariant

2 is satisfied.

(C; X; 1..i; [ A
1.. j−1

,A
j
, A

j+1..m
][ B

1..o
] : S; P

1..n
) 1 (C′; l ; i +1; [][ B′

1..o′−1

k
k,C

′k∗] : nil ; P′
1..n′

k
k)

(C; X; 1..i; [ A
1.. j−1

,A
j
]+P′

1
k
k; P′

2..n′−1

k
k,P

′
n′

k
k +[ A

j+1..m
][ B

1..o
] : S, P

1..n
)

cat(A
j
) = C′

foot left past fringe current fringe future fringe

β H
1..n

[ A
1.. j−1

,A
j
, A

j+1..m
][ B

1..o
] : S P

1..n

ε [] [][ B′
1..o′−1

k
k,C

′k∗] : nil P′
1..n′

k
k

r H
1..n

⊕
A
j

[][ B′
1..o−1′

k
k,C

′k] : nil [ A
1.. j−1

,A
j
]+P′

1
k
k P′

2..n′−1

k
k,P

′
n′

k
k +[ A

j+1..m
][ B

1..o
] : S, P

1..n

The bit of fringe which we insert into the history ([][ B′
1..o′−1

k
k,C

′k∗] : nil ) does not

contain any substitution nodes or predictedleaves, which is important for invariants

3 and 4. The prediction nodes are not changed, thus satisfying invariant 5, and will

eventually be turned into canonical nodes by the verification operation, even if they are

not present on the current or future fringes any more. As argued in theSubstDownP

operation, this operation also guarantees that the currentfringe cannot be shifted over

any open substitution sites or prediction leaves – it contains the path from the last

lexical anchor (still the same as in the prefix tree) to the newnext leaf, thus satisfying

invariant 1.

AdjDownP (foot right)

If the foot is to the right, we will have to do an operation similar to the⊕
A
j

operation

on the past fringe, but to the future fringe. Since the adjunction takes place at a node

that’s open to its left, we’ll have to find its right hand side in the future fringes,P
1..n

, and

insert the path from the foot node to the root node (P′
n′

k
k, the last slice of the elementary

tree future fringes) there. Again, we can see from the fringeorder that the current

fringe contains the correct path (invariant 1), and that thecorrect depth first search

order is kept (invariant 2). Again, invariants 3, 4 and 5 are not violated.
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(C; X; 1..i; [ A
1..n

][ B
1.. j−1

,B
j
, B

j+1..o
] : S; P

1..n
) 1 (C′; r; i +1; [][B′k

k
1..o′

] : S′k; P′
1..n′

k
k)

(C; X; 1..i +1; [ A
1..n

][ B
1.. j−1

,B
j
]+ [][B′k

k
1..o′

] : nil ; P′k
k

1..n′−2
, P′
n′−1

+[ B
j+1..o

] : S, P
1..n

⊕P′k
k

n′
)

cat(B
j
) = C′

foot right past fringe current fringe future fringe

β H
1..n

[ A
1..n

, ][ B
1.. j−1

,B
j
, B

j+1..o
] : S P

1..n

ε [] [][ B′
1..o′

k
k] : S′k P′

1..n′
k
k

r H
1..n

[ A
1..n

][ B
1.. j

]+ [][ B′
1..o′

k
k] : S′k P′

1..n′−2

k
k, P′

n′−1

k
k +[ B

j+1..o
] : S,P′k

k
n′

⊕
A
j

P
1..n

The last operation to be examined and discussed in detail isVerification .

Verification TheVerification operation may look fairly complicated – so how does

it implement the invariants? The⊕k operators guarantee to maintain the same order of

nodes in the past fringe (since prediction and verification tree must have the exact same

shape to the right of their respective spines, as tested by the m(ε,Nk
k

all
) function). In the

past fringe, the only thing that changes is that indexk is removed from nodes. In the

current and future fringes, correct order is again enforcedby the⊕ operator, but here,

additional bits of fringes that are present in the verification tree but not the prediction

tree, are inserted, any additional branches (and associated bits of fringes) that end in

substitution nodes to the right of the spine are inserted at the correct matching position

in the prediction tree. At the end of the verification operation, the correct node order in

the fringes is therefore guaranteed (invariant 2), and all indicesk disappear. Invariant 5

is guaranteed to be satisfied by them(ε,Nk
k

all
) function: all indices from the same original

prediction tree are verified and thus removed at once, and no other indices are affected.

The prefix tree did not contain any open substitution nodes orleaf nodes before the

word anchorwi , but the leaf followingwi , which is visible on the prefix tree’s fringe,

is a prediction leaf. The elementary tree does not contain any prediction leaves itself,

but may contain open substitution nodes before the lexical anchor wi+1. Invariant

3, saying that there must not be any open substitution nodes beforewi+1 is satisfied

because we know that any substitution nodes to the left of thespine that are open in

the verification tree were already filled while processing wordsw1..wi , otherwise they

would appear on the current fringe, and the current fringe ofthe prefix tree would still

be inside the prefix tree’s future fringes. The open substitution nodes to the left of the

spine in the elementary tree therefore get all filled during verification. Invariant 4 is
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satisfied because the prediction tree leafLk
k is verified against the matching fringe in

the verification tree,L′′. The current fringe now contains the path from the last lexical

anchor (L′′) to the next leaf, which means that invariant 1 is satisfied.

(C; F ; 1..i; [ A
1..m

][ B
1..o

,Lk
k] : nil ; P

1..n
) 1 (C′; F ′; i +1; [][ B′

1..o′
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1
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k
k)
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β H
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P
1
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End Condition

Finally, the end condition for valid PLTAG derivations saysthat a derivation is com-

plete when there are no more open substitution sites or prediction nodes, and the root

node is S. This becomes true when we reach a point where the future fringe is empty,

and the last node on the current fringe has categoryS. Since there are no more predic-

tion leaves on the fringe, all nodes that were annotated withan index must have been

validated during verification procedures, because single left-over nodes would conflict

with them(ε,Nk
k

all
) function. The operations that integrate a prediction tree always add

at least one fringe item that is a prediction leaf, but their current fringes cannot move

over it except during verification. Therefore, all prediction trees introduced with these

rules must have been verified and no prediction nodes can possibly be left invalidated

in the tree. Furthermore, the operations guarantee that it is never possible to have open

substitution nodes to the left of the last anchor. Since there are none on the current

fringe either, the condition that no open substitution nodes are left on the fringe is

satisfied.

8.4 Optimisations for the Implementation

The introduction of the concept of a fringe is a first step to making the algorithm

tractable, because it is not necessary to store the whole trees during the search phase

of parsing, but just the current and future fringes. The search space is however much

bigger in the PLTAG parser than in other parsers, because prediction trees are not

lexicalised and can thus be used at any point in the sentence.
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8.4.1 Restricted Use of Prediction Trees

An obvious optimisation is therefore to restrict the use of prediction trees. Otherwise,

nothing prevents the parser from integrating prediction trees infinitely3 without ever

processing the next word.

In the implementation presented here, the prediction lexicon is restricted to predic-

tion trees needed to parse the training set. A further restriction is to only allow them

in constellations that were observed during training. The advantage of that further re-

striction is that we can pre-combine prediction trees, and can forbid the algorithm to

integrate two prediction trees in a row, thus cutting down onthe search space even

further.

Only allowing one prediction tree to be integrated at a time however leads into the

dilemma of either requiring an infinite set of (pre-combined) prediction trees (for left-

recursive constructions as shown in Figure 8.26), or accepting slightly lower coverage

of the parser. For example, the sentence “I love Peter’s father’s cousin’s cat.” shown

in Figure 8.26, can easily be parsed non-incrementally, or with a parser that allows to

integrate several prediction trees in a row, as any decent-sized lexicon will contain all

elementary trees needed for this sentence. In order to parsethis sentence incrementally

with the restriction of using maximally one (pre-combined)prediction tree at a time,

a structurally exactly identical case has to be contained inthe training data to allow

for the combination of six prediction trees, so that three nouns and three possessive

markers can be predicted for correctly integratingPeter.

Because of recursive rules, embedding can in principle be infinitely deep, thus re-

quiring infinitely many prediction trees to be applied in succession in order to parse

a sentence. However, such structures do not usually occur innaturalistic examples of

language usage. We found that in the whole of the Penn Treebank, at most five pre-

diction trees had to be applied in a row for connectivity, andsuch a case only occurred

once. In more than 95% of cases, only one prediction tree is needed.

From a psycholinguistic point of view, we can argue for limited human memory and

could therefore constrain the size of prediction tree combinations to a specific number

x. We would then avoid the infinity problem. Combinations of prediction trees that

were not seen in the training data but contain less than x prediction trees could be

generated automatically by combining all prediction trees(also with themselves), a

maximum of x times. Note however that we would run into prettybad combinatory

3In case of a parser using beam search, the limit would be that no new trees can be added without
falling out of the beam width during pruning.
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Figure 8.26: PLTAG parse tree for a sentence with left recursion.
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Figure 8.27: An Example of prediction tree indexing.

explosion of the prediction lexicon’s size even if the maximal number of prediction

trees that can be combined is restricted.

As explained in Section 7.2, all the nodes in a prediction tree are marked with

indices. When prediction trees are combined, we have to makesure that the different

parts of the trees are assigned indices that reflect which node was part of which tree

originally. It is then very easy to keep track of which nodes need to be verified at

once, and guarantee that the prediction tree will be fully verified. For an example of

prediction tree pre-combination, see Figure 8.27.
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An alternative would be to postulate a lazy prediction strategy. This lazy prediction

strategy would only try to use prediction trees if the trees cannot be combined other-

wise. However, this entails that we would have to let the parser do backtracking, since

some analyses may need prediction even though there are other analyses (or analyses

that only later turn out to be false) which do not necessitateprediction. In the case of

a lazy strategy, predictions would only occur through connectivity and subcategoriza-

tion.

8.4.2 Arguments vs. Modifiers

Arguments and modifiers are distinguished based on the PropBank annotation and

more detailed PTB annotations, which contain markers such as “-CLR” for “closely

related” etc. For cases where the PTB annotation differs from the PropBank annota-

tion, the constituent is assigned modifier status, because lexicon size would increase

significantly if all of these cases were encoded as arguments. A source for identifying

arguments of nouns is NomBank. However, the relations annotated as arguments in

NomBank tend to be semantic arguments, which are not required syntactically, and

thus would lead to a much bigger lexicon and increased data sparseness problems. We

therefore decided not to use the NomBank annotation.

8.4.3 Chart parsing

Chart parsers and the CKY algorithm were particularly successful because they calcu-

late combinations of grammar rules only once and re-use structures for different anal-

yses. In our incremental algorithm, a similar procedure canbe implemented in order to

avoid calculating integrations between trees with identical current fringes repeatedly.

The chart for the incremental algorithm consists of a table with the wordsw1 . . . wn

on the one dimension, and a list of chart entries containing analyses that share the

same current fringe (but can have different future fringes), as shown in Figure 8.28.

For simplicity, the chart in Figure 8.28 only shows the current fringe but not the future

fringes in the chart cell. Storing analyses with different future fringes in the same chart

entry leads to a range of house-keeping issues, as the different future fringes must be

associated with the correct subset of operations that created them, in order to retrieve

correct analyses at the end of the search. For example, a highvs. low attachment

decision can impact on the order of nodes in the future fringe, while the current fringe

of the analyses is identical. So for some time, the two analyses will be treated the same,
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but once the future fringes that contain the nodes in different order due to the previous

high/low attachment have moved onto the current fringe, these analyses will end up in

different chart entries and different operations may applyto them. At the end of the

search phase, when the n-best trees are constructed, it is crucial to associate the analysis

with the high attachment future fringe with the original high attachment operation in

order to build valid trees. This situation is hinted at in Figure 8.28 in the third row in

the column with the secondthe: Another analysis also points back to the same chart

entry (as indicated by the red arrow), but was generated froma different analysis. The

best analysis must thus always follow the path indicated by the black arrow, and the

other one the path indicated by the red arrow. In order to correctly identify the best

analysis, it is necessary to update the probabilities of allanalyses within a chart entry

at every step, i.e. not just one probability per chart entry,but as many probabilities as

the number of analyses that the chart entry contains (keeping track of the probabilities

of all analyses is necessary anyway in order to calculate prefix probabilities at each

word).

In practice, this is implemented as follows: firstly, trees retrieved for the current

wordwi are combined in all possible ways with prefix treesβ1..i−1, and the probability

and construction history of each resulting analysis is updated: The probability of an

analysis is stored at the last future fringe, in order to correctly associate each analysis

with its maximum probability. Furthermore, a pointer to theelementary tree anchored

in wi and a pointer to the previous partial analysisβ1..i−1 are created, in order to be

able to retrieve correct trees at the end. The analyses are then sorted based on their

probabilities and pruned according to the beam width (this is the pruning step shown

in line 9 of Algorithm 1). Next, the remaining analyses are added to the chart, thereby

shifting the current fringe if necessary and combining any analyses with same current

fringe to the same chart entry. For example, consider a simple determiner elementary

tree (current fringes[][DT, the] : nil and future fringe[[the,DT][] : nil ]) being integrated

with a chart entry with current fringe[V,VP][NP] : DT ↓, and two alternative future

fringes, say[DT ↓,NP,VP,S][] : nil and [DT ↓,NP,VP,VP,S][] : nil . As discussed in

Section 8.3.3, the correct current fringe of the resulting tree is a combination of the first

future fringe of the elementary tree and the first future fringe of the prefix tree. In our

implementation of the parsing operations, the step of combining the future fringe of the

prefix tree with the elementary tree’s future fringe,[the,DT][] : nil is performed after

pruning (for efficiency reasons), when inserting the analyses into the chart. However,

this means that two new current fringes are generated:[the,DT,NP,VP,S][] : nil and
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Figure 8.28: A chart for parsing the example sentence from Figure 8.15. The chart is

shown after completion of the search phase. The black arrows show the sequence of

operations and elementary trees needed to find the best parse for the sentence. The

(red) dotted arrows show an example derivation path for a different analysis.
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[the,DT,NP,VP,VP,S][] : nil . As these fringes are different, they need to be stored in

different chart entries. We refer to this delayed joining ofthe elementary tree’s future

fringe with the prefix tree’s future fringe as ”expansion” (see line 11 in Algorithm

8.3.3). It is also possible that many of the analyses turn outto have the same current

fringe after expansion, in which case they are stored in the same chart entry. If there

are more expansions into different current fringes than identical current fringes, the

number of chart entries can be larger than the beam. We therefore perform another

pruning step (Algorithm 8.3.3 line 15) to again cut the number of analyses down to the

beam width.

When search is completed, the bestn trees are retrieved by following a chart en-

try’s back-pointers to the partial derivations and elementary trees used to construct the

analysis. However, since one chart entry can have differentfuture fringes, only some

of the back-pointers stored in a particular chart entry are compatible with a particular

solution. Here is when the construction history (i.e. the pointers to the elementary trees

which were integrated to construct the analysis) comes intoplay: only previous chart

entries that are compatible with the elementary trees on theconstruction history are

followed, see the black full vs. red pointed lines in Figure 8.28.

A cognitively more plausible parser would not have a separate search and tree con-

struction phase, but construct full derived trees instead of just maintaining the fringes.

The chart is thus more of an engineering step, which we hypothesise would not be nec-

essary if the probability model was based on as much experience and world knowledge

as humans have available, because good analyses could be chosen more accurately, and

thus a much smaller beam would be sufficient, which in turn means that it would not

be a problem to store the derived trees for all analyses.

8.4.4 Tagging

Currently, the parser operates on gold-standard tags. To maintain full incrementality,

it would be necessary to use a fully incremental tagger without preview, or to let the

parser retrieve the elementary trees based on the lexeme butnot the POS tag. This

would of course increase the ambiguity that the parser has todeal with. On the other

hand, using a separate POS-Tagger without preview would yield worse POS-tagging

results than state-of-the-art taggers, and can thus be expected to also have an impact

on parsing quality.
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8.4.5 Supertagging

Many TAG and CCG parsers use supertagging to cut down on the search space during

parsing. Supertagging is also referred to as “almost parsing” and basically consists of

choosing a small set of elementary trees to be integrated at each word, so that in the

case of the supertagger choosing just one tree per word, the parsing process would only

consist of joining the trees together. Supertagging thus increases the efficiency of the

parsing task significantly.

Maintaining incrementality in parsing means that the supertagger should not be

allowed to have any preview. However, lack of preview has detrimental effects on

supertagging quality4.

In the incremental PLTAG parser, the combinatory explosiondue to a large number

of trees to be integrated at each word is particularly grave,because prediction trees do

not have any lexical anchor. The average ambiguity for integrating a prediction tree

is thus the size of the prediction tree lexicon (i.e., 2800 for using the full prediction

tree lexicon, or 700 for using only prediction trees that were seen more than 5 times

in the training data), while the average ambiguity for canonical trees is 2.5 trees per

type, and about 50 trees per token in parsing (since frequentwords have lots of read-

ings and very rare words are treated as unknown words for reasons of smoothing, and

can therefore also have a large number of readings). Non-incremental parsers, which

do not operate with any unlexicalized trees, thus incur a significantly lower level of

ambiguity. In order to keep parsing times manageable, it turned out that it is necessary

to select a subset of most promising prediction trees. So in fact the parser presented

here does do supertagging, but only for prediction trees. Features for the estimation

include the current fringe of the prefix treefβ and the POS tag of the next wordtw+1

to give a small look-ahead, which is important for supertagging performance. See the

full probability model of the supertagger in Formula 8.1. The look-ahead of knowing

the POS tag of the next word does not necessarily compromise incrementality, if we

assume that the POS tag was determined without preview. It does however make the

interpretation of prediction weaker: predictions caused by subcategorization frames

are made more eagerly (after processing the head that subcategorizes them) than pre-

dictions necessitated for maintaining a fully connected structure, which are only made

when the next word is perceived and processed enough to determine its POS tag. In

general, it seems cognitively plausible to assume that onlypredictions are made that

4Personal communication with James Curran.
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have proven useful in past experience, and are promising given the current context. It

does however also mean that an additional process is assumedin human parsing: a fast

heuristic component that selects promising predictions based on local information in

addition to a deeper parsing process.

∑
π

P(π| fβ, tw+1) = 1 (8.1)

where P(π| fβ, tw+1) = P(π| fπ,λπ)P( fπ,λπ| fβ, tw+1)

π = prediction tree f = fringe t = POS tag

β = prefix tree λ =category of spine leaf node

In order to alleviate data sparseness, a prediction tree is not directly conditioned on

the fringe of the prefix tree and the next word’s POS tag. Instead, the probability of the

prediction treeπ is estimated conditional on its fringe and the category of the category

of the last node on its spine,λ; it’s fringe and last spine node’s category are in turn

conditioned on the fringe of the prefix tree and POS tag of the next word.

Probabilities are estimated using maximum likelihood estimation.

P̂(π| fπ,λπ) =
f req(π, fπ,λπ)

∑π f req(π, fπ,λπ)

P̂( fπ,λπ| fβ, tw+1) =
f req( fπ,λπ, fβ, tw+1)

∑ fπ ∑λπ f req( fπ,λπ, fβ, tw+1)

In order to further reduce data sparseness, we estimate the probability on an al-

phabetically ordered set of unique categories of the current fringe instead of the exact

current fringe of the prefix tree. For example, instead of conditioning on the fringe

[DT,NP,NP,VP,VP,VP,S][] : null, we would condition on{DT,NP,S,VP} : null. The

idea behind this probability model is that the order of nodesis less important than the

identity of the nodes themselves as possible integration sites.

For smoothing, the Brants smoothing method, described in Section 8.5.1, is ap-

plied. We use one level of backoff for estimatingP( fπ, tπ| fβ, tw+1) on just the most

probable integration pointnfβ instead of the fringefβ

max
nfβ

P( fπ, tπ|nfβ, tw+1)

The reason for using the probability of the most likely integration point instead of the

product of all possible integration points is that a fringe with more different categories
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should not have a lower probability of a particular tree adjoining into it than a fringe

with the same category on it but fewer different other categories.

The supertagger is integrated directly into the parser. After retrieving the prediction

trees, the supertagger model is used to select the 10 best trees for each prefix fringe,

which the parser then tries to combine with the partial analyses stored in the chart.

8.5 Probability Model

This section defines a probability model for the PLTAG parser. It specifies how PLTAG

derivations are assigned probabilities. The probability estimate of a partial derivation

at wordwi is the product of the probability estimate of the prefix tree covering words

w1..wi−1 and the probability of integrating the elementary tree for word wi using one

of the PLTAG parsing operations.

Probabilities for elementary treesε are estimated from sections 2 – 21 of the Penn

TreeBank. To address data sparseness caused by unseen or rare events, the probability

model has to be smoothed. We present two different smoothingmodels, and discuss

backoff steps used in smoothing. Backoff steps are used in smoothing to get an ap-

proximate probability estimate for unseen events by using asimilar (but more general)

event.

For ease of reference, see the overview of the mathematical symbols that will be

used for the definition of the probability model in this chapter in Table 8.3:

The details of the probability estimates for each parser operation differ slightly, and

are outlined in the paragraphs below. The general pattern isthe same for all operations:

the probability of an elementary treeε is conditioned on its integration siteηβ in the

prefix treeβ, and is normalised with respect to all alternative elementary trees that

could be integrated at this site. The conditional probability of an elementary tree given

the integration site is thereby estimated as the independent probabilities of the tree

templateτε conditioned on the integration siteηβ, and the probability of the lexical

anchorλε conditioned both on the tree templateτε and, in order to capture bilexical

probabilities, the lexical anchor of the head child of the integration site nodeλβ.

P(ε|ηβ) = P(τε|ηβ)×P(λε|τε,λβ)

Furthermore, the integration point nodeηβ is approximated by the tree templateτη that

originally introducedηβ, its lexical anchorλη, its categorycη, the position ofη within

τη, denoted asnη, and the “trace mark”tm, which is a flag for whether the first and /
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elementary trees ε (subsumesα,σ,π)

initial trees σ (subsumesπ)

auxiliary trees α (subsumesπ)

prediction trees π
prefix tree β
tree structures τ
integration point node1 η (can be subst or adj node)

position ofη within η’s elementary tree n

category of integration point node c

a tree’s head leaf λ (subsumesζ,w, t)

category atλ (for prediction trees) ζ
word lexemes w

POS-tags t

trace mark tm

Table 8.3: Mathematical symbols used in the definition of the probability model.

or last node on the current fringe is a trace or null element.

P(ηβ) = P(τη,λη,cη,nη, tm)

The sentence processing model also includes a procedure forfactoring in decay. This

is however not part of the probability model itself, but of the linking theory, and will

be discussed in Section 8.7.

Probabilities for Tree at First Word

The probability of integrating a particular elementary tree anchored in the first word

using theStart operation is normalised with respect to the set of alternative elementary

trees that can occur at the beginning of a sentence. In order to alleviate data sparseness

issues, the probability of the elementary treeε conditioned on the start of sentence

symbolSOSis broken down into the probability of the tree template of the elemen-

tary treeτε given theSOSsymbol, and the probability of wordwε being the anchor of

tree templateτε. The probabilities for these two conditional events are estimated us-

ing maximum likelihood with frequency counts from the training section of the Penn

TreeBank.
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∑
ε

P(ε|SOS) = 1 (8.2)

where SOSis start of sentence,P(ε|SOS) = P(τε|SOS)P(wε|τε)

P̂(τε|SOS) =
f req(τε, SOS)

∑τε f req(τε, SOS)

P̂(wε|τε) =
f req(wε,τε)

∑wε f req(wε,τε)

Probabilities for SubstDown Operations

The probability of substituting an initial tree into the open substitution site of the prefix

tree is normalised with respect to all possible initial trees that could be substituted at

this site, i.e. with respect to all initial trees with the same root category.

∑
σ

Ps(σ|ηβ) = 1 (8.3)

where Ps(σ|ηβ) = Ps(τσ|τη,λη,nη,cη, tm)P(λσ|τσ,λη)

λσ = ζσ if σ is prediction tree. λσ = wσ, tσ if σ is non-prediction tree.

λη = ζβ if β is prediction tree. λη = wβ, tβ if β is non-prediction tree.

P̂s(τσ|τη,λη,nη,cη, tm) =
f req(τσ,τη,λη,nη,cη, tm)

∑τσ f req(τσ,τη,λη,nη,cη, tm)
(8.4)

P̂(λσ|τσ,λη) =
f req(λσ,τσ,λη)

∑λσ f req(λσ,τσ,λη)
(8.5)

We estimate the probabilities as outlined in equations 8.4 and 8.5 because treat-

ing the tree template conditioned on the prefix tree and the lexicalization of the tree

template as independent events alleviates data sparsenessissues. A very similar model

for estimating TAG tree probabilities for parsing has also been successfully employed

in Chiang’s (2000) TIG parsers. The estimation of the lexical component shown in

equation 8.5 is identical for all parser operations, therefore it won’t be repeated in the

following equations.
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Probabilities for SubstUp Operations

The probability of an elementary treeε (can be either initial or auxiliary tree) that is

integrated into the prefix tree using aSubstUpoperation is the probability of the prefix

tree being substituted into the first substitution node of the elementary tree (i.e. nor-

malization is based on the category of the first substitutionnode of the elementary

tree).

∑
ε

Ps(ε|ηβ) = 1 (8.6)

where P(ε|ηβ) = Ps(τε|τη,λη,nη,cη, tm)P(λε|τε,λη)

λε = ζε if ε is prediction tree. λε = wε, tε if ε is non-prediction tree.

λη = ζβ if β is prediction tree. λη = wβ, tβ if β is non-prediction tree.

P̂s(τε|τη,λη,nη,cη, tm) =
f req(τε,τη,λη,nη,cη, tm)

∑τε f req(τε,τη,λη,nη,cη, tm)

Probabilities for AdjDown Operations

The probability of an auxiliary tree being adjoined into theprefix tree is normalised

based on the category of its root node and the possibility that no auxiliary tree of that

type is adjoined to at all.

∑
α

Pa(α|ηβ)+Pa(NONE|ηβ) = 1 (8.7)

whereP(α|ηβ) = Pa(τα|τη,λη,nη,cη, tm)P(λα|τα,λη)

andP(NONE|ηβ) = Pa(NONE|τη,λη,nη,cη, tm)

λα = ζα if α is prediction tree. λα = wα, tα if α is non-prediction tree.

λη = ζβ if β is prediction tree. λη = wβ, tβ if β is non-prediction tree.

P̂a(NONE|τη,λη,nη,cη, tm) =
∑allηβnodes with no node ad joinedf req(τη,λη,nη,cη, tm)

∑allηβnodesf req(τη,λη,nη,cη, tm)

Probabilities of AdjUp Operations

Similarly, the probability of an elementary treeε being integrated using an AdjUp

operation conditioned on the root category of the prefix treeis normalised with respect
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to all elementary trees that contain a possible adjunction site with the same category

on their current fringe, and the possibility that the prefix tree will not be adjoined into

anything just now.

∑
ε

Pa(ε|ηβ)+Pa(NONE|ηβ) = 1 (8.8)

where P(ε|ηβ) = Pa(τε|τη,λη,nη,cη, tm)P(λε|τε,λη)

λε = ζε if ε is prediction tree. λε = wε, tε if ε is non-prediction tree.

λη = ζβ if β is prediction tree. λη = wβ, tβ if β is non-prediction tree.

P̂a(τε|τη,λη,nη,cη, tm) =
f req(τε,τη,λη,nη,cη, tm)

∑τε f req(τε,τη,λη,nη,cη, tm)

Probabilities for Verification

The probability of a canonical elementary tree being integrated using the verification

operation is conditional on the prediction trees that matchthe structure of the canonical

elementary tree, and is normalised with respect to only those other canonical trees that

are also compatible with the predicted nodes.

In order to capture the head-argument bi-lexical dependencies that were not avail-

able at previous integrations involving the unlexicalizedprediction tree, the lexical

anchor of the verification tree is conditioned on the lexicalhead that the prediction tree

was originally integrated with.

∑
ε

Pv(ε|πβ) = 1 (8.9)

where P(ε|πβ) = Pv(τε|πβ)P(λε|τε,λπη)

P̂v(τε|πβ) =
f req(τε,πβ)

∑ε compat withπβ
f req(τε|πβ)

8.5.1 Smoothing and Backoff-levels

When estimating these probabilities, there are data sparseness issues. Many events

are only seen very rarely, or not at all during training. However, we do not want to

imply that an event that was not seen in the training data is impossible, and hence

it should not be assigned probability zero. The standard approach to alleviating this
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problem is to use some kind of smoothing. In smoothing, some probability mass from

the observed events is re-distributed onto unobserved events. In order to do this in a

way that differentiates between more or less likely events,it is common to use backoff

for smoothing, which means that we estimate the probabilityof a given event using

the probability of a similar event, usually by taking away some of the conditioning

parameters (also referred to as deleted interpolation).

8.5.1.1 Backoff levels

The backoff-levels for PLTAG-parsing are adapted from Chiang (2000), see Table 8.4.

Backoff levels forP̂(τε|τη,λη,nη,cη, tm)

l1 P̂(τε|τη,λη,nη,cη, tm) no backoff

l2 P̂(τε|τη, tη,nη,cη, tm) removing the lexemewη from λη

l3 P̂(τε|τη,nη,cη) removing POS tag, adj. position in fringe, trace marker

l4 P̂(τε|cη) conditioning only on category of integration node

Backoff levels forP̂(λε|τε,λη)

l1 P̂(λε|τε,λη) no backoff

l2 P̂(λε|τε, tη) no bi-lexical probability, just integration POS tag

l3 P̂(λε|τε) probability of lexeme estimated based on tree structure

l4 P̂(λε|tε) probability of lexeme estimated from POS tag only

Table 8.4: Backoff-levels for the incremental LTAG parser. The probability of a tree

is based on the product of two estimated probabilities, one for the tree structure, and

one for the lexeme given the tree structure. Both of these probability estimates are

smoothed separately, which means that they have separate back-off levels.

As has been shown before for other parsers (Bikel, 2004), bi-lexical probabilities

(which are weighed in only in backoff level l1), have a very small influence on overall

parsing accuracy, presumably due to data sparseness. For the PLTAG parser, they only

account for .5% point accuracy gain.

8.5.1.2 Smoothing

For the parser presented here, we use standard smoothing methods to estimate unseen

events. Our smoothing methods use interpolated backoff, where the values for different

backoff stages (as outlined in Table 8.4) are interpolated –this means that for each esti-

mate, even if we have an estimate for the most specific context, we use the probabilities
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from the similar events as well and weigh all the probabilities using interpolation fac-

tors. Standard smoothing algorithms for interpolation between different backoff-levels

include e.g. Witten-Bell Smoothing and Kneser-Ney Smoothing (or a variant called

Modified Kneser-Ney Smoothing), and a smoothing algorithm originally developed

for POS-tagging by Thorsten Brants (Brants, 2000), which achieved best performance

when compared to the other smoothing algorithms in a German Parser presented in

(Dubey, 2004). For the parser presented here, two differentsmoothing techniques

were implemented and evaluated: Brants’ smoothing and the smoothing technique

used in (Chiang, 2000), which is similar (but does not optimize parameterization) to

the smoothing technique used in (Collins, 1999; Bikel, 2004);

A big difference between the smoothing algorithm is that theBrants’ algorithm

uses fixed interpolation parameters that are independent ofthe context. This can be

advantageous if the data is too sparse to effectively estimate the parameters in all nec-

essary contexts. It therefore doesn’t need a held-out set for estimating the interpolation

parameters, making the implementation a bit less complex than e.g. Modified Kneser-

Ney Smoothing, which achieved second best results for Dubey’s German Parser. In

Brants’ Smoothing, the interpolation parameters (one is needed for each backoff level

to weigh the influence of that backoff level) are estimated based on increasing the

interpolation weights for a particular backoff level if that backoff level estimates the

conditional probability best (in terms of maximising it) for the events observed dur-

ing training. The algorithm for the estimation of the interpolation parametersλ1..λ4 is

shown in Figure 8.29. The smoothed probabilities are estimated as:

p = λ1x1 +λ2x2+λ3x3+λ4x4

wherex1..x4 are the different backoff levels shown in Table 8.4.

The smoothing model used in many other parsers, such as the Collins parser

(Collins, 1999), Dan Bikel’s reimplementation (Bikel, 2004) and David Chiang’s TAG

parser (Chiang, 2000), assigns a different smoothing term to each different context.

The smoothing terms are calculated on-the-fly, using the following formula to calcu-

late interpolation termsλ:

λi = (1− di−1

di
)(

1

1+ 5ui
di

)

wheredi is the frequency of the context at backoff leveli as seen during training (d0 =

0), andui is the number of unique outcomes for that context during training, i.e. how
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Input : Map containing tuples〈τε,τη,λη,nη,cη, tm〉, 〈τη,λη,nη,cη, tm〉,
〈τε,τη, tη,nη,cη, tm〉, 〈τη, tη,nη,cη, tm〉, 〈τε,τη,nη,cη〉, 〈τη,nη,cη〉,
〈τε,cβ〉, 〈cβ〉, and their frequencies

Output : Estimate for interpolation parametersλ̂1− λ̂4

λ̂1, λ̂2, λ̂3, λ̂3, λ̂4 = 0;1

foreach 〈τε,τη,λη,nη,cη, tm〉 with f req(〈τε,τη,λη,nη,cη, tm〉) > 0 do2

d1 =







f req(〈τε,τη,λη,nη,cη,tm〉)−1
f req(〈τη,λη,nη,cη,tm〉)−1 i f f req(〈τη,λη,nη,cη, tm〉) > 1

0 i f f req(〈τη,λη,nη,cη, tm〉) = 13

d2 =







f req(〈τε,τη,tη,nη,cη,tm〉)−1
f req(〈τη,tη,nη,cη,tm〉)−1 i f f req(〈τη, tη,nη,cη, tm〉) > 1

0 i f f req(〈τη, tη,nη,cη, tm〉) = 14

d3 =







f req(〈τε,τη,nη,cη〉)−1
f req(〈τη,nη,cη〉)−1 i f f req(〈τη,nη,cη〉) > 1

0 i f f req(〈τη,nη,cη〉) = 15

d4 =







f req(〈τε,cβ〉)−1
f req(〈cβ〉)−1 i f f req(〈cβ〉) > 1

0 i f f req(〈cβ〉) = 16

switch max(d1, d2, d3, d4)do7

cased1: λ1+ = f req(〈τε,τη,λη,nη,cη, tm〉)8

cased2: λ2+ = f req(〈τε,τη,λη,nη,cη, tm〉)9

cased3: λ3+ = f req(〈τε,τη,λη,nη,cη, tm〉)10

cased4: λ4+ = f req(〈τε,τη,λη,nη,cη, tm〉)11

end12

end13

λ̂1 = λ1
λ1+λ2+λ3+λ4

14

λ̂2 = λ2
λ1+λ2+λ3+λ4

15

λ̂3 = λ3
λ1+λ2+λ3+λ4

16

λ̂4 = λ4
λ1+λ2+λ3+λ4

17

Figure 8.29: Brants’ Smoothing for estimating the probability for tree structures

P̂(τε|τη,λη,nη,cη, tm). The smoothing works analogously for estimating P̂(λε|τε,λη) .

many different cases were conditioned on this context. Linear interpolation is done via

a recursive term:

p = λ1l1+(1λ1)(λ2l2+(1−λ2)(λ3l3+(1−λ3)(λ4l4+(1−λ4)10−19))

A comparative evaluation of the two smoothing methods is provided in Section 8.6.



8.6. Parser Evaluation 227

8.6 Parser Evaluation

The parser was trained on Sections 2-21 and evaluated on Section 23 of the Penn Tree-

Bank (only sentences of length 40 or less were used for training and evaluation). We

report Parseval labelled bracketing scores with respect tothe PLTAG converted trees.

This means that our results are not directly comparable withlabelled bracketing scores

obtained on the unconverted Treebank. We have also experimented with converting

our TAG structures to flattened tree structures where a category never has the same

category as a child. The flattened structures are a bit flatterthan original Penn Tree-

bank structures. When evaluating on the flat structures, F-scores decrease by about two

points. This lower F-score is due to the fact that there are fewer brackets in total. To

compare to other parsers, we also converted the output of theCharniak (2000) parser

into this flatter format and found F-scores to also go down by 2% points with respect

to non-flattened tree structures.

Coverage Out of the 2294 sentences of section 23 of length 40 or less there were 33

sentences (about 1.4%) that could not be successfully converted into PLTAG format.

We therefore exclude these sentences from our analysis. Furthermore, there were 140

sentences for which no parse could be found within reasonable time/memory usage

(10 min, 1.8 GB RAM), yielding a coverage of 93.80%. The reason for the failure to

cover a sentence can be that all valid parse have fallen out ofthe beam, that a necessary

prediction tree has not been selected by the supertagger, orthat no grammatical parse

can be derived given the PLTAG lexicon learnt during training.

Parsing Accuracy Table 8.5 gives the parsing results for the variants of the PLTAG

model that we evaluated. The baseline model selects the mostfrequent parse for a

given sentence: it adds up the frequencies of all the canonical and prediction trees

for each parse and prunes low-frequency ones; the complete tree with highest overall

frequency is returned as the best one. This baseline model achieves an F-score of 48.06

which serves to illustrate the difficulty of the task.

The full PLTAG probability model achieved an F-score of 64.40 with Witten-Bell

smoothing, thus clearly outperforming the frequency baseline. A significant gain is

achieved by replacing Witten-Bell with Brants smoothing, resulting in an F-score of

72.05 (all other parameters were held constant, beam width for both smoothing meth-

ods was set to 10−11).
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Model Prec Recall F-score Cov

Baseline 44.39 52.38 48.06 85.1

WB smoothing 62.63 66.28 64.40 93.8

Brants smoothing72.73 71.38 72.05 93.8

Oracle 72.86 74.26 73.55 93.8

beam size=20 70.06 72.02 71.02 81.3

Table 8.5: Parsing results for the PLTAG parser; Baseline: frequency baseline for parse

operation selection; WB: Witten-Bell; Oracle: correct prediction tree given

We also investigated the influence of bi-lexical probabilities and found that these

only have a small effect on overall parsing performance, which only decreased by 0.5%

when bi-lexical probabilities were removed from the model.Presumably this is due to

data sparseness, as well as the fact that PLTAG lexicon entries are relatively large

and already encode argument positions. The small effect of bilexical probabilities is

consistent with previous results (Bikel, 2004). Interestingly, an extremely small beam

size of only 20 chart entries with maximally 20 analyses per chart entry yields very

similar results in terms of accuracy. However, only 81% of sentences can be assigned

an analysis using this small beam width, see Table 8.5.

Parsing speed for our parser increases superlinearly in thenumber of words, see

Table 8.30, which shows parsing times for a constant beam width of maximally 400

analyses. Even though the parser only tries to combine a limited, constant number of

fringes (bounded by the beam width) against a limited numberof elementary trees at

each word (bounded by how many elementary trees the lexicon contains for a specific

word, or, respectively, by the number of trees the supertagger offers to the parser),

parsing times are not linear in the number of words. This can be explained by the fact

that the fringes tend to get longer, thus providing more possible adjunction sites at the

end of longer sentences. Note that parsing speed would be much higher if supertagging

was introduced for canonical trees, thus strongly reducingthe number of elementary

trees that can be combined with prefix trees at each word.

8.6.1 Prediction Trees and Supertagging

The size of the prediction tree lexicon, and the set of prediction trees selected by the

supertagger, influences parsing performance.

Let’s first consider the coverage of the prediction lexicon:In section 23, about



8.6. Parser Evaluation 229

0 20 40 60 80

0
5

10
15

20
25

Empirical Parsing Times with Bounded Parallelism 
(<= 400 analyses)

Sentence Length in Words

P
ar

si
ng

 D
ur

at
io

ns
 in

 s
ec

on
ds

single data points
word length average

Figure 8.30: Empirical processing times as measured on a 2GHz, 1GB RAM machine.

4.5% of the sentences do not need any prediction trees to be parsed, and for 92.5%

of the sentences, all the required prediction trees were seen in the training set with a

frequency of more than five (our frequency cut-off). This means that we cannot parse

the remaining 3.5% of sentences correctly even if all the required canonical trees have

been seen. Furthermore, the supertagger might not select the correct prediction tree,

and the parser would thus not be able to use the correct prediction tree even if it is

contained in the lexicon.

But how well would we do if the prediction lexicon contained all necessary pre-

diction trees, and if we always selected the correct prediction tree? To quantify the

loss in F-score due to supertagging errors or missing prediction trees, we evaluated the

parser using an oracle that always supplies the correct prediction tree. This increased

the F-score to 73.55, see Table 8.5.

8.6.2 Comparison to other Parsers

Our results are not directly comparable to parsers that reproduce the Penn Treebank

bracketing as our parser produces deeper tree structures informed by PropBank and

Vadas and Curran’s (2007) noun phrase annotation. We therefore compare to other

TAG parsers only, but these also differ in which variant of the formalism they use
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(LTAG, spinal LTAG, LTIG), resulting in F-scores that are not fully comparable.

Table 8.5 gives the F-scores of existing TAG parsers and compares them on the

dimensions that are psycholinguistically relevant (incrementality, connectedness, pre-

diction). The formalism that comes closest to ours in terms of psycholinguistic prop-

erties is Mazzei et al.’s (2007) DVTAG, for which however no implementation, proba-

bility model, or evaluation are available. All the other approaches achieve a higher

F-score than our PLTAG parser, but at the cost of not being incremental (Chiang,

2000; Sarkar, 2001) or not building connected structures (Shen and Joshi, 2005). There

also exist incremental fully-connected PCFG parsers whichachieve better f-scores

than our parser (84.4 – 87.4). The best-performing parser (Collins and Roark, 2004)

uses a discriminative model, which is unsuitable for calculating prefix probabilities.

Kato and Matsubara’s (2009) parser is similar to Roark’s (2001b) incremental top-

down PCFG parser, which we used in earlier chapters to evaluate Surprisal. These

two parsers seem to come closest to our parser in that they areincremental, construct

fully connected structures on a word-by-word basis, and usea generative model which

can be used for calculating Surprisal. They do however not satisfy the other require-

ments posed by our sentence processing theory, in particular modelling of prediction

and verification processes.

Model incr con pred F

Mazzei et al. (2007) + + + N/A

This work + + + 72.1

Sarkar (2001) – – – 79.8

Chiang (2000) – – – 86.7

Shen and Joshi (2005) + – – 87.4∗

Table 8.6: Comparison of this work with other TAG parsers; incr: incrementality; con:

connectedness; pred: prediction; F: F-score; ∗: evaluated on dependencies.

8.6.3 Discussion

Differences in performance with other TAG parsers are likely due to the incrementality

restriction (incremental parsers generally have slightlylower performance), not doing

any supertagging for canonical trees, a large lexicon, and asparse probability model.

The sparse probability model is due to the large lexicon and the larger range of op-

erators (Up/Down versions of substitution and adjunction, and verification). A further
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effect of the prediction and verification mechanism is that many lexical dependencies

are lost when prediction trees are integrated. Because prediction trees are not lexical-

ized, the statistical model cannot condition on the lexeme,but only on the prediction

anchor (i.e., an internal category or POS tag). At verification, we are not currently tak-

ing into account all dependencies between the current word and the lexemes that had

been integrated into the prediction tree. An improvement inparsing performance is

likely to result from addressing this shortcoming. A discriminative model could possi-

bly also yield improved f-scorses, but psycholinguistic measures like Surprisal cannot

be calculated based on a discriminative model, as it conditions on the words, while

Surprisal expresses in how far a word is unexpected.

This parser was however not designed for performance, but asthe basis for a psy-

cholinguistic model. In fact, many would have said before that a parser like the one

presented here, which uses unlexicalized trees to make predictions in order to spell

out the structure needed to connect all words would not be tractable at all. The 93.8%

coverage and 72.1 point f-score mean that the parser is well suited for evaluating the

sentence processing theory it was designed for on broad coverage text.

8.7 Formalisation of the Linking Theory

The desiderata for a linking theory: incrementality, connectedness, prediction with

verification and parallel processing, were outlined in Section 6.2. Here, we formalise

the linking theory with respect to the implementation of thePLTAG parser.

During processing, the elementary tree of each new wordεwi is integrated with all

previous structures (βw1...wi−1), and a set of syntactic expectations is generated (these

expectations can be easily read off the generated tree in theform of predicted treesπ).

The trees (different prefix analyses and alternative elementary trees) have probabilities

that express how good an analysis they are – from a psycholinguistic viewpoint these

probabilities can be thought of as the analyses’ prominencein the mind.

Each of the nodes of these predicted treesπ has a time-stampt that encodes when

it was first predicted, or last activated (i.e., accessed). Based on the time stamp, a tree’s

nodes’ decayd at verification time is calculated, under the assumption that recently-

accessed structures are easier to integrate than more decayed ones.

In our model, processing difficultyD is thus incurred during the construction of

the syntactic analyses, as calculated from the probabilities of the elementary trees (this

directly corresponds to Haleian Surprisal calculated overPLTAG structures instead of
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over CFG structures, see the first line of Equation (8.10) below). This surprisal com-

ponent corresponds to the difficulty incurred through the parsing process. In addition

to this,D has a second component, the cost of verifying earlier predictions, which is

subject to a decayd (see the second line of Equation (8.10)). While the verification of

prediction trees happens as part of the parsing process, difficulty is associated with re-

trieving previous predictions from memory, which is assumed to be a separate process

from the parsing procedure. The overall processing difficulty D at wordwi is therefore:

Dwi = − log ∑
βw1...wi

P(βw1...wi)+ log ∑
βw1...wi−1

P(βw1...wi−1) (8.10)

− log∑
π

P(π)(1−dtπ)

Note that the prefix probabilities∑β1...wi
P(β1...wi ), which are needed to calculate

Surprisal, fall out of the parsing process naturally, thanks to strict incrementality and a

generative model.

The verification cost component ofD bears similarities to DLT integration costs,

but we do not calculate distance in terms of number of discourse referents intervening

between a dependent and its head. Rather, verification cost is determined by the num-

ber of words intervening between a prediction and its verification, subject to decay.

This captures the intuition that a prediction becomes less and less useful the longer

ago it was made, as it decays from memory with increasing distance. Furthermore,

verification cost depends on the probability of the prediction tree, while integration

cost is independent on the probability of the structure of the head. Larger structures

with more dependents tend to be less probable though, such that high verification cost

for complex argument structures can still correlate with high integration cost due to

several arguments needing integration.

8.7.1 Parameters in Theory and Implementation

The essence of the sentence processing theory proposed in this thesis is that humans

predict upcoming structure, and that verifying the predicted structure causes processing

difficulty (this is theoretically motivated by memory retrieval costs for remembering

the prediction and integrating past information with the new structures). An important

contribution of this work is to model the processes of prediction and verification ex-

plicitly. These processes of prediction and verification can in principle be modelled

on top of a range of parsers and grammar formalisms, PLTAG as suggested in this
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thesis is one implementation that realises the assumptions. Beside basic implemen-

tational choices like the grammar formalism, there is a number of further factors and

parameters that modulate predictions of the theory:

• the decay factor

The decay factor determines the rate at which predictions are “forgotten” and

subsequently incur higher cost at being retrieved and matched against a verifica-

tion tree. This also means that the decay factor influences the weighing between

verification cost and the Surprisal component. With a low decay factor, verifica-

tion costs could thus occupy a much larger value range than Surprisal values and

hence be the main influencing factor in processing difficultypredictions. Simi-

larly, with a decay rate that’s very close to 1, verification costs would always be

very small, and hence hardly change the predictions made by the Surprisal part

of the equation.

• ticking of the clock / how to calculate the distance between head and argument

As a simple assumption, we suggest to count distance in words, but that is prob-

ably not the best measure. An alternative are e.g. discoursereferents5. Deciding

on how to count distance has a similarly big effect on predictions as the decay

factor. Another question is how time stamps should change. Should they be

updated when something is integrated at them, thus accounting for re-activation

effects? This would correspond to a reactivation of the headinto which a new

structure is integrated.

• beamwidth of the parser

Parsing beam width influences predictions not only in how likely the parser is

to achieve an accurate parse in the end. It also influences Surprisal values in

that using a beam during parsing means that the prefix probabilities can only be

approximated, but not calculated exactly because not all analyses are constructed

and summed over when determining prefix probabilities of a structure. Secondly,

the beam width also affects verification cost. The fewer analyses there are, the

fewer verifications need to be executed.

5Discourse referents have been shown to be an imperfect measure. Alexopoulou and Keller (2007)
show that two types of extraction fromwh-phrases can differ in processing complexity, even though
they involve the same number of intervening discourse referents. Based on this result, they argue that
the number of intervening syntactic heads (rather than discourse referents) is the crucial factor for de-
termining integration cost.
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• shape of trees in lexicon

Another variable is the shape of the trees. Here, we assume tree shape as moti-

vated by linguistic theories, using standard TAG trees (with a few exceptions).

But linguistic theories also differ with respect to how structures are analysed,

what is regarded as a head etc. For example, if we regarded thedeterminer as

the head of a noun phrase, a noun phrase would not need to be predicted when

encountering a determiner, and no verification would happenwhen encountering

the noun. Another aspect is the domain of locality, i.e. which lexemes are stored

in the same lexicon entry. In its current implementation, only particle verbs like

“show up” and “either..or”-like constructions are encodedin the same tree.

• training data / probability model

The amount and type (i.e. what type of text is used for training, whether it is from

the same domain as the target data that the model is to be evaluated on) of train-

ing data has a direct effect on parsing accuracy. Low parsingaccuracy means that

Surprisal estimates are imprecise because analyses are associated with incorrect

probabilities, hence also leading to incorrect estimations of changes in probabil-

ity mass. In addition, verification costs are adversely affected if there are many

wrong analyses (in particular, analyses that seem very far-fetched from a human

perspective) which contribute verification events and leadto unjustifiably high

integration cost, or fail to assign high integration cost where it occurs because

the correct analysis (or analysis preferred by a human at that point) has fallen

out of the beam.

8.7.2 Implementation of Surprisal Component

Surprisal is calculated as the difference between the prefixprobability at the current

wordwn and the prefix probability at the previous wordwn−1. The prefix probability is

by definition the sum of the probability of all trees coveringwordsw1..wn. Because the

parser is not doing a full search but using a beam and a supertagger for prediction trees

for efficiency reasons, prefix probabilities calculated by adding up the probabilities of

all analyses that fall inside the beam is only an approximation. To lessen the effect of

beam search as much as possible, we calculate prefix probabilities at each word before

pruning (i.e. prefix probabilities are calculated between line 8 and line 9 in Section 8.3,

Algorithm 1).
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8.7.3 Implementation of Verification Cost Component

The intuition when formulating verification cost is to capture the cognitive effort ob-

served e.g. in English relative clause processing, long distance dependencies and centre

embedding. These locality effects suggest that people incur difficulty when integrating

new material under certain conditions. The theory presented here explains these dif-

ficulties as a result of matching new material against previously predicted structures.

However, the processing theory assumes a language processor at human performance

level, i.e. which is much better at language processing thanany current parser, thanks

to more exposure to data, semantic and world knowledge etc, which help to make more

accurate predictions and analyses. If the implemented model had these additional re-

sources, we hypothesise that it could accurately parse using a much smaller beam.

Beam size plays an important role for the estimation of verification costs – in the

current parser setting, about 400 different current fringes are maintained at the same

time, many of them containing multiple analyses. If we add upthe verification cost

for each verified tree, verification costs will sometimes be extremely high. When in-

specting these cases, it turns out that most of the verifications in fact concern the same

original prediction tree, which mostly coincides with whathappens at the correct anal-

ysis. In addition, there are a number of “freak” analyses that seem very far-fetched

from a human perspective and mostly have low probability. Given that they contribute

a disproportionally large amount of verification cost to thetotal verification cost when

verification costs from all analyses are summed up, it seems that a better estimate of

the actually incurred verification cost would be to either weigh the verification costs

by the probability of the analysis in which they occur, or to only count the verifica-

tion cost incurred in the most likely analysis (which requires verification). Both of

these approaches are also more compatible with the assumption of parallel process-

ing than summing up the verification cost of all analyses. After implementing both of

these approaches, it turned out that processing difficulty predictions were very similar

(correlation ofr > 0.97), and it was hence undecidable which version is better (itdid

not make any difference in either the case studies or the broad-coverage evaluation re-

ported in Chapter 9). We (somewhat arbitrarily) decide on using the difficulty estimate

based on the most likely verification.
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8.7.4 Discussion

The linking theory contains two mechanisms, the surprisal component which quantifies

difficulty incurred through unexpected events and the verification component which

captures memory retrieval effects when matching newly encountered structure against

predicted structure. Surprisal thereby directly falls outof the calculations necessary

for the parser’s probability model, while the decay effectsin verification cost are not

part of the probability model. In future work, it would be desirable to integrate these

two theoretical components more closely: verification costshould affect the choice

of which analyses the parser follows up on (i.e. what remainsin the beam), while

memory retrieval processes should in turn affect the parsing process, for example via

incrementally updating the parser’s probability model (see Section 10.2.3).

8.8 Conclusions

This chapter started out by describing the conversion of thePenn TreeBank into PLTAG

format and the automatic induction of the canonical PLTAG lexicon and the prediction

lexicon. Next, an incremental parsing algorithm for PLTAG,which incrementally de-

rives fully connected partial structures on a word-by-wordbasis was presented. The

parsing algorithm has been proven to only produce valid PLTAG derivations. In order

to make the parsing process fast enough for broad-coverage parsing, a number of steps

had to be taken to optimise over the implementation of the straight parsing algorithm.

These optimisations include restricting the use of prediction trees, pre-combining them

into larger prediction trees and introducing super-tagging for prediction trees in order

to select a small number of most promising prediction trees.Furthermore, a generative

probability model is proposed, which will enable us to easily calculate Surprisal on a

word-by-word basis. Finally, we evaluate the parser on the Penn Treebank. It achieves

a coverage of 93.8% and f-score of 72.1%, making it suitable for broad-coverage eval-

uation of the sentence processing theory proposed in Chapter 6.

The final section of this chapter presented and discussed theformalisation and im-

plementation of the linking theory. The final piece of research in this thesis, the eval-

uation of the sentence processing theory based on the incremental, fully connected

predictive PLTAG parser will be reported in Chapter 9.
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Evaluation

This chapter describes the evaluation results for the proposed sentence processing the-

ory using the incremental PLTAG parser trained on the Penn Treebank. We first discuss

the parser’s predictions for a number of established psycholinguistic results and show

that the theory manages to model a wide range of effects, suchas locality effects in

relative clauses as well as prediction effects.

The second part of this chapter presents evaluation resultsfor difficulty predictions

on naturally occurring broad coverage text, the Dundee Corpus. The evaluation method

on the broad coverage text is again linear mixed effects models, as discussed in Chapter

3. We then compare the predictive power of our theory to the theories evaluated on this

data in Chapter 5, DLT integration cost and Surprisal.

Parts of the material in this chapter have been published at CogSci 2009

(Demberg and Keller, 2009).

9.1 Evaluation on Psycholinguistic Case Studies

This section evaluates the proposed sentence processing theory on a series of estab-

lished experimental processing results from the psycholinguistic literature, and com-

pares the theory’s capacity of accounting for the experimental results against other

sentence processing theories. The modelling results reported in the following sections

are based on a decay factor ofd = 0.9 and a beam width of analyses within 10−11

probability of the best analysis in order to get an adequate Surprisal estimate. The

number of time steps was set to the number of intervening words. The probabilities for

the PLTAG grammar were derived from the Penn Treebank (cf. Chapter 8).

237
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9.1.1 SRC / ORC asymmetry

One of the classic sentence processing results is the findingthat subject relative clauses

(SRCs) as in (1-a) are easier to process than object relativeclauses (ORCs) as in (1-b).

Refer to Section 4.1 for an overview on previous work on relative clauses. A recent

study by Staub (2010) asked the question of where exactly processing difficulty occurs

within relative clauses, after observing that theories like Surprisal make different pre-

dictions from theories like Dependency Locality Theory. While both theories predict

that object relative clauses are more difficult to process than subject relative clauses,

DLT would predict the difficulty to occur on the embedded verbphrase, while Sur-

prisal would predict higher difficulty to occur on the NP in the relative clause. Staub

(2010) found evidence for increased difficulty in both regions, and hypothesises that

Surprisal-type theories and DLT-type theories predict different aspects of processing

difficulty (just like suggested in this thesis). Therefore,this experiment is particularly

relevant for the evaluation of our theory.

Data

We evaluated our theory on the materials used in Staub’s (2010) study, experiment 1.

The 24 sentence pairs are designed such that both conditionscontain exactly the same

words, but with different word order such that one is a subject relative clause and the

other one is an object relative clause. These patterns are infact the same as in the

traditional “The reporter thatattacked the senator / the senator attackedadmitted the

error” sentences, see (1) for an example.

(1) a. The bus driverwho followed the kidswondered about the location of a

hotel.

b. The bus driverwho the kids followedwondered about the location of a

hotel.

Method

We compare difficulty predictions from our theory to observed reading time data from

Staub’s (2010) relative clause study. One problem of comparing difficulty predictions

directly with reading times is the missing link in our theoryof how difficulty is exactly

reflected on reading times: our model makes no claims about how difficulty is reflected

in fixation behaviour and reading times, and is agnostic withrespect to how processing
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difficulty relates to different reading measures.

In other parts of this thesis, where multiple regression is applied to determine

whether an explanatory variable is a significant predictor of reading times, the aspect

of skipping behaviour was taken out of the model by removing all skipped words, for

mathematical modelling reasons (see discussion in Section3.2.2). Given that we are in

this case study mainly interested in whether we can replicate a significant difference,

and are not doing any regression modelling, taking both fixation durations and skipping

into account will give a more intuitive picture of the processing difficulty that partic-

ipants incurred during the experiment. Staub (2010) uses slightly different reading

measures than were used in this thesis, i.e.go-past times. Go-past times are defined as

the sum of the durations of all fixations from the first fixationon a word (only counted

if the region to the right of the word has not yet been fixated) until the word is left to the

right. In particular, fixations to the left of the word that happen after a regression out

of the critical region are also counted. Go-past times are the latest measure reported

in Staub’s (2010) study, and therefore presumably capture difficulty effects more com-

pletely than an early measure1. In order to approximate a general notion of difficulty

from these measures, go-past reading times were multipliedwith fixation probability

(determined from 1-skipping rate from Staub (2010)), thus obtaining average go-past

times.

Results

Figure 9.1(a) shows average go-past times from Staub’s (2010) study. Numbers in

Figure 9.1(a) vs. 9.1(b) and 9.1(c) should not be directly compared quantitatively, but

rather qualitatively. Our model makes qualitatively correct predictions for all empirical

findings, see Figure 9.1(b): we predict no effect on relativepronoun and main verb, and

indeed there was no effect on either of these regions in the empirical data either. The

model also correctly predicts the larger difficulty on the embedded verb of the object

relative clause.

For the embedded NP, the model predicts differences in processing difficulty be-

tween the conditions only on the first word of the NP, the determiner. This is because

the onset of the NP is unexpected, but once the start of the NP has been processed, a

noun is strongly expected. The longer observed reading times at the noun in the ORC

1In Staub’s study, first pass times showed no effect on the determiner, an inverse effect on the noun
region (first pass times were faster for the ORC noun than for the SRC noun) and a significant effect on
the embedded verb, with longer reading times on the ORC embedded verb.
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Figure 9.1: Staub (2010) experimental data vs. model predictions on the same materials

for the different regions of the relative clause. Significance for p < 0.001 is marked as

’***’. Subfigures (b) and (c) show predictions for the embedded verb and noun regions

for the full PLTAG model and a Surprisal-only baseline model, respectively.
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condition can be explained as a spill-over effect from the determiner, where the disam-

biguation between subject and object relative clause occurs. It is plausible to assume

a spill-over effect at this point because the determiner wasskipped frequently (48% of

the time). As our model predicts processing difficulty but doesn’t include any compo-

nent for modelling how processing difficulty is reflected in reading times, we cannot

model this spill-over effect.

Figure 9.1(c) shows the model predictions for the SRC and ORCsentences from

Staub (2010) for a baseline model which does not take into account verification and

only estimates processing difficulty in terms of Surprisal.The incorrect prediction

of the Surprisal-only-baseline is consistent with Levy’s (2008) observation that Sur-

prisal is unable to predict the ORC/SRC asymmetry correctly. For the embedded NP

region, predictions for the Surprisal baseline and a model including verification are

qualitatively the same, with slightly larger difficulty predicted by the model including

verification.

DLT integration cost makes the correct prediction of longerreading times on the

ORC verb region, but does not predict any difference betweenconditions on the NP

region. It therefore also explains the data less well than our PLTAG model.

Evaluation on Relative Clauses from the Dundee Corpus

In Chapter 4, we have shown that DLT integration cost can account for some of the

reading time variance observed on naturally occurring relative clauses from the Dundee

Corpus. Given that we have just shown that the PLTAG-based prediction theory pro-

posed in this thesis can also account for the difference in processing difficulty in sub-

ject vs. object relative clauses, the question arises of whether it can also account for

the processing difficulty on the embedded verb of relative clauses from the Dundee

Corpus.

We ran a mixed effects model following procedures describedin Sections 3.2 and

4.2, and included the predictions from the theory presentedin this work, which we

will refer to as PREDICTIONTHEORY, as one of the predictors in the regression model.

Because PREDICTIONTHEORY is negatively correlated with WORDFREQUENCY, we

used residualized PREDICTIONTHEORY values in the regression models, i.e. the part

of PREDICTIONTHEORY which cannot be accounted for by word frequencies.

Residualized PREDICTIONTHEORY was a positive significant predictor of reading

times on the embedded verb region of relative clauses both for log-transformed total

reading times and log-transformed first pass reading times.For better interpretability,
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Predictor Coef Sig

INTERCEPT 260.55 ***

PREDICTIONTHEORY 15.16 **

WORDLENGTH 8.82 ***

WORDFREQUENCY -20.57 **

PREVIOUSWORDFREQUENCY 5.68

LANDINGPOSITION -73.20 ***

LAUNCHDISTANCE -4.28 ***

WORDLENGTH:LANDINGPOSITION -27.92 *

Table 9.1: Final regression model for total reading times on the embedded verb of

relative clauses from the Dundee Corpus.

we report the result on raw total reading times, which is equivalent to log-transformed

total reading times, in Table 9.1. The reported model includes a random intercept and

random slope for WORDFREQUENCY under subject (all other random slopes lead to a

decrease in model quality). Outliers were removed as usual (see Section 3.2.5).

But does PREDICTIONTHEORY work as well as INTEGRATIONCOST? Or does

it work even better in predicting reading times? In order to answer these questions,

we fitted a model that included all significant low-level predictors and both PREDIC-

TIONTHEORY and INTEGRATIONCOST as explanatory variables in a log-transformed

total reading time model, and compared this model against two models, each only con-

taining the significant low-level predictors and one of the predictors. We found that

removing INTEGRATIONCOST from the model including both INTEGRATIONCOST

and PREDICTIONTHEORY did not significantly reduce model fit (p = 0.16; in fact the

model including PREDICTIONTHEORY and not INTEGRATIONCOST was slightly bet-

ter according to AIC and BIC). On the other hand, removing PREDICTIONTHEORY

from the model including both INTEGRATIONCOST and PREDICTIONTHEORY did

significantly reduce model fit (p < 0.01; AIC and BIC scores are lower (hence better)

for the model including PREDICTIONTHEORY). This means that integration cost does

not have a significant explanatory value above and beyond thepredictions made by our

theory. We conducted the same analysis on first pass reading times and found the same

result.
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Conclusion

The full version of our model as trained on the Penn Treebank correctly predicts the

relative clause asymmetry pattern found in empirical studies (longer reading times in

the verb region of the verb and noun regions of the object relative clause), as evidenced

by running it on the 24 experimental items from Staub (2010).The Surprisal-only

baseline of our model which does not associate the verification mechanism with any

processing difficulty cannot account for the results on the embedded verb region.

Being able to replicate the relative clause data is particularly interesting, as pre-

vious models either predict difficulty on the NP region (likeSurprisal) or on the verb

region (like DLT), but not on both.

Furthermore, we showed the predictions by our theory also correctly account for

reading times in naturally-occurring relative clauses from the Dundee Corpus, and that

they explain the data better than DLT integration costs. This finding provides further

support for our theory.

9.1.2 Either-or Predictions

The experiment reported in (Staub and Clifton, 2006) provides evidence for prediction

in human sentence processing. The authors showed that following the wordeither

readers predict the disjunctionor and the complement that follows it; processing was

facilitated compared to structures that includeor without either. Wheneither was

present in items with sentence-level disjunction, it prevented people from initially mis-

analysing the sentence for NP-level disjunction. Such misinterpretations and following

corrections only occurred in the sentence-level conditionwheneitherwas not present.

Data

For our evaluation, we used the 48 example sentences from theStaub and Clifton

(2006) study. As an example, consider the sentences in Example (2). Disjunction

occurs at the noun phrase level in half the experimental items (like in Examples (2-a)

and (2-b) and on sentence level in the other half of the materials (like in Examples

(2-c) and (2-d)). Staub and Clifton (2006) found that the or-NP region (marked in re-

cursive style in Examples (2)) is processed more quickly (i.e. first pass reading times

and go-past times were significantly shorter) in (2-a) and (2-c) than in (2-b) and (2-d).

(2) a. Peter read either a bookor an essayin the school magazine.
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b. Peter read a bookor an essayin the school magazine.

c. Either the student read a bookor his friendwrote one.

d. The student read a bookor his friendwrote one.

When running our model on these sentences, probabilities for the either conditions

could not be estimated accurately because such uses ofEither . . . or had not been seen

in the training data (Sections 2–21 of the Penn TreeBank) andhence the model would

back off a lot and give very low probability to seeingor following either. Occurrences

of eitherin the Penn TreeBank are mostly “Either way. . .” constructions. We therefore

added four sentences (one of each type) to the training data,making sure that the lexical

items used were different from the ones in the test sentences. The sentences added to

the training data were:

(3) a. The cat consumed (either) the food or the drink to get tothe hut.

b. (Either) Albert lost a mobile or his colleague nicked it.

Adding at least a minimal amount of training data seems justified as one would not

expect a human whose only language exposure is the Wall Street Journal, and who

hence has not experienced the use ofeither...orconstructions to exhibit typical reading

time results on the experimental materials.

Results

Figure 9.2 graphs the predictions for the full model (Surprisal and verification compo-

nents) for theeither . . . orsentences from Staub and Clifton (2006). The graph shows

the go-past reading times found experimentally for the or-NP region in the Staub study,

compared to the sentence processing difficulty that our model predicts for this region.

Our model was run on the exact same sentences and replicates this pattern very well:

the presence ofeither facilitates reading at the post-or NP in both the NP coordination

and the S coordination condition (the effect was the same both in the experiment and

the model, so the two conditions are merged together in Figure 9.2). The graph shows

the model run with the same parameters as in the Surprisal andverification condition

in the RC experiment. A Surprisal-only version of our model would predict the same

pattern, but with even lower difficulty predictions for theeither-conditions.
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Figure 9.2: Average go-past time, average PLTAG prediction and average Surprisal

baseline prediction for the or-NP region on the sentences used by Staub and Clifton

(2006). The difference between the no either and either conditions is significant at

p < 0.01both for the model and in the experiment.

Discussion

Our model replicates the pattern found in the empirical study of either-or processing

by Staub and Clifton (2006). The results demonstrate that our PLTAG model is not

only able to replicate locality effects, as shown in the relative clause experiment, but

also to capture prediction effects, which can be explained by Surprisal, but not by DLT.

As mentioned at the beginning of this section, the Staub and Clifton (2006) study

not only found faster processing in theor NP region but also less misanalysis for

sentence-level disjunction wheneitherwas present. Our implementation can also repli-

cate this finding: In the sentence-leveleither case, the analysis predicting sentence

coordination clearly was the most probable analysis (by 100times) when processing

or, which in turn also means that predicting additional structure to integrate the NP

as the argument of an unseen verb still leads to a more probable analysis than if this

additional structure had not been predicted and the NP had been integrated as an NP-

level disjunction. In the case whereeither is not present, adjoining the structure for

or at the NP level is by far the most probable analysis (because in the training data,

NP-level disjunction has been seen more often than S-level disjunction). This analysis

then allows for a direct integration of the NP into theor structure – having to predict a

future verb makes the sentence-level analysis even less likely when the NP afteror is

processed.
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Figure 9.3: The influence of the decay parameter on modelling results for the either. . . or

experiment.

Model predictions for this experiments depend also on the parametrisation of the

model. The most important parameter is the decay factor, which (non-linearly) deter-

mines how the Surprisal part of the model and the verificationcost are weighed, see

Figure 9.3. If the decay factor is low, the model assumes thatpredictions are forgotten

quickly, resulting in higher verification costs. Very high verification costs in turn lessen

the relative effect of Surprisal on model prediction. Ifeitherwas present, Surprisal is

very low whenor is encountered, in particular Surprisal is much lower than if either

had not occurred previously. On the other hand, asor is integrated, some verification

cost occurs in theeither condition, but not otherwise. Whether the model makes the

correct prediction thus comes down to weighing the difference in Surprisal between the

conditions vs. the verification cost incurred ator in theeithercondition. For illustra-

tion see the model predictions for theeither..orstudy for the chosen decay parameter

0.9 in comparison to the extreme decay parameters of 1 (whichwould correspond to

perfect memory) and 0, which would in turn mean that the reader would not be able to

remember any predictions as soon as the next word is processed in Figure 9.3.

The initial problems with this experiment, concerning the lack of exposure toei-

ther.. orconstructions during training, highlight how much the modelling results also

depend on the linguistic materials used in training. Modelling results will be more

accurate and valid, if the model could be trained on a more varied and proto-typical

language corpus than the Wall Street Journal.
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9.1.3 Anti-locality Effects

Anti-locality effects have been shown for a number of languages, including German

(Konieczny, 2000; Konieczny and Döring, 2003), Hindi (Vasishth and Lewis, 2006),

and recently, also English (Jaeger et al., 2010). Anti-locality effects refer to the finding

that reading times can be shorter at the head when intervening materials were inserted

between the head and its arguments. Examples for anti-locality effects in German in-

clude experiments presented in (Konieczny, 2000) and (Konieczny and Döring, 2003).

The original experiment reported in (Konieczny, 2000) found that the verb in verb-

final constructions in German is read faster when more material (just one argument,

vs. an additional PP vs. a longer, modified PP) occurred before the verb. This finding

is contrary to the locality effect found in English centre embedding and the SRC/ORC

asymmetry. A similar experiment was conducted by Koniecznyand Döring (2003),

who also controlled for length of the intervening material between conditions. An

example of their materials is shown in (4).

(4) a. Die Einsicht, dass [NP-NOM der Freund] [NP-DAT dem Kunden] [NP-

ACC das Auto aus Plastik] verkaufte...

the insight, that the friend the client the car from plastic sold, ...

The insight that the friend sold the client the plastic car . ..

b. Die Einsicht, dass [NP-NOM der Freund [NP-GEN des Kunden]] [NP-

ACC das Auto aus Plastik] verkaufte, ...

the insight, that the friend of the client the car from plastic sold, ...

The insight that the friend of the client sold the plastic car...

In materials following the example in (4), reading times on the verbverkaufteare

shorter in (4-a) than in (4-b) even though the length of interfering elements is exactly

identical. Surprisal can explain this finding as (4-a) restricts the possible identity of

the head more strongly than (4-b). DLT would predict the opposite effect as one more

argument is integrated in condition (4-a) than in condition(4-b). Similarly, the sur-

prisal vs. verification components of PLTAG would make opposing predictions: while

the surprisal component would predict less difficulty at theverb, the verification com-

ponent would predict larger processing difficulty at the verb because it required a less

probable prediction tree, which therefore at verification time will also be more diffi-

cult to verify than a more probable prediction tree. Whetherthe theory proposed here

can correctly account for the observed effect is therefore inconclusive at this point - it



248 Chapter 9. Evaluation

depends on the parametrisation of the model for German.

The English materials involve subject and object relative clauses with one, two or

three optional PPs at the end, see Example (5-a) to (5-c). Reading times were measured

on the region after the relative clause, i.e. the verb of the main sentence,bought in

example (5).

(5) a. The player [that the coach met at 8 oclock] bought the house...

b. The player [that the coach met by the river at 8 oclock] bought the house...

c. The player [that the coach met near the gym by the river at 8 oclock]

bought the house...

Jaeger et al. (2010) found that reading times on the criticalregion were faster the more

PPs had been inserted at the end of the relative clause. This finding can in principle be

explained by expectation-based theories such as Surprisal(because the expectation of

the verb phrase grows stronger and stronger the more attachments are made, as fewer

syntactic alternatives remain), but not by locality-basedtheories. The theory proposed

here can potentially explain the difference in processing difficulty because its Surprisal

component predicts faster reading times on the main verb, while the verification cost

component predicts the same difficulty independent of the number of intervening PPs.

This difference to DLT integration cost predictions stems from the fact that the main

verb is not standardly predicted in PLTAG, and hence no verification costs occur, while

DLT would predict increased integration cost for more PPs based on the larger number

of intervening discourse referents between the main verb and its subject.

An open question is whether the theory could possibly explain the findings of

Jaeger et al.’s (2010) second experiment, in which any PPs not occurring inside the

relative clause are topicalised: in this case, the topicalisation of the PPs would trig-

ger the prediction of a verb and hence cause verification costlater on in cases (5-a)

and (5-b), but not in (5-c). The contrast between conditions(5-a) and (5-c) would be

strengthened, but it is not clear whether the correct prediction could be obtained for

case (5-b).

We ran the parser on all the experimental items provided in the appendix of

Jaeger et al. (2010), but the difference in difficulty predictions on the main verb did

not reach significance. Note also that the claim that Surprisal can explain the differ-

ences (Levy, 2008) is based on a single example, and that Surprisal values that are

indeed very close: Levy reports Surprisal values of 13.87 for 1 PP, 13.54 for 2 PPs and

13.40 for 3 PPs, which are supposed to account for quite largedifferences in reading
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times (510ms, 410ms and 394ms respectively). It is hence doubtful whether Surprisal

can really account for the observed anti-locality effect.

9.1.4 Centre Embedding

Another well-known effect iscentre embeddingwhere an increasing number of nest-

ings soon makes sentence structures impossible to process,see e.g. (Eady and Fodor,

1981; Chomsky, 1957). Consider the sentences from (Gibson,1998) in example (6):

(6) a. The intern [ who the nurse supervised ] had bothered theadministrator [

who lost the medical reports ].

b. The administrator [ who the intern [ who the nurse supervised ] had both-

ered ] lost the medical reports.

Sentence (6-b) has been shown to be considerably more difficult to process than (6-a)

based on complexity ratings. In PLTAG, the more complex condition (6-b) would

incur higher verification costs than the easy condition (6-a) because two verbs would

have to be predicted simultaneously in (6-b), and high verification costs are incurred in

particular at the second verbhad bothered, as the distance to the initial prediction site

is high. Furthermore, such double embedded structures are rare and therefore higher

Surprisal costs are incurred than in the single embedding condition. When running the

model on the example sentences in (6), the model replicated the preference for the easy

condition by predicting lower processing difficulty than for the difficult condition.

9.1.5 Facilitating Ambiguity

Another effect that our theory can account for isfacilitating ambiguity, as reported in

(Traxler et al., 1998). The finding is that reading times can be faster under some cir-

cumstances in an ambiguous region than in an unambiguous region. Consider example

(7): the reflexive pronoun (herself / himself) in (7-a) and (7-b) is unambiguous in that it

can only refer to the daughter / colonel respectively. In sentence (7-c) however,himself

is ambiguous as to whether it refers to the son or the colonel.

(7) a. The daughteri of the colonelj who shot herselfi/∗ j on the balcony had been

very depressed.

b. The daughteri of the colonelj who shot himself∗i/ j on the balcony had

been very depressed.
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c. The soni of the colonelj who shot himselfi/ j on the balcony had been very

depressed.

Reading times were found to be faster on thehimself / herselfand immediately

following region in the ambiguous case (7-c). This finding isdifficult to account for

under a locality or competition account. However, Levy (2008) explains how Surprisal

can account for this effect: the attachment of the relative clause is ambiguous atwho

– it might attach to thedaughter/sonor thecolonel. These two analyses are followed

in parallel, but one of them is ruled out in cases (7-a) and (7-b), leading to higher

Surprisal than sentence (7-c), where both analyses can still be maintained, resulting in

lower Surprisal. The argumentation is exactly the same under the proposed theory, as

the verification component makes no adverse predictions forthis data.

Testing these sentences on the implemented theory is not possible as the parser

does not make any checks to see whetherhimself would matchdaughteror not. It

would hence not recognise the ungrammaticality of the low attachment in (7-a) and

high attachment in (7-b).

9.1.6 Local Coherence Effects

It has been observed that processing difficulty can sometimes occur in sentences that

are neither ambiguous nor particularly complex (Tabor et al., 2004). An example for

this is the sentence in (8-a), which has the same syntactic complexity as (8-b).

(8) a. The coach smiled at the player tossed a frisbee by ...

b. The coach smiled at the player who was tossed a frisbee by ...

c. The coach smiled at the player thrown a frisbee by ...

d. The coach smiled at the player who was thrown a frisbee by ...

The important difference between the sentences is that in (8-a) the word sequencethe

player tossed a frisbeeis a coherent string of words wherethe playerwould be the

subject of a main verbtossed, while the player thrown a frisbeecannot be interpreted

as such. While (8-a) can be expected to be the most difficult sentence among the

sentences in (8), because reduced relative clauses are moredifficult than non-reduced

relative clauses, and ambiguous verb forms are more difficult than unambiguous verb

forms, the observed difficulty effect was stronger than would be expected by adding the

verb ambiguity and reduced relative clause effects. The common explanation for the
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effect is that the locally coherent interpretation ofthe player tossed a frisbeeinterferes

with the globally coherent analysis of the sentence, and hastherefore been argued

to provide evidence against a view of strictly incremental processing, as the locally

coherent analysis should not be calculated in the first place, becausethe playeralready

has a different function in the sentence, and cannot possibly be the subject oftossed,

and tossedcannot be the main verb of the sentence, as there is already a main verb,

smiled.

One explanation of the effect that would still be compatiblewith strictly incremen-

tal processing is the one suggested by Gibson (2006), who suggests that the observed

effect might be due to a conflict between the top-down analysis which would require

thattossedbe analysed as the first word of a reduced relative clause (verb past partici-

ple), and a bottom-up analysis which would assign the most likely POS-tag totossed

using a unigram model, resulting in predicting a verb in simple past tense. The interac-

tion effects of the ambiguity of tossed and the reduced relative would thus stem from

the incompatibility of the most probable POS-tag fortossedand the globally coherent

analysis.

From a PLTAG point of view, POS-tagging is not a step of just choosing the POS-

tag. Instead, elementary trees are retrieved for each word.The implemented parser

currently uses gold-standard POS-tags to reduce the ambiguity at parsing, therefore

we cannot test the phenomenon at this point. However, our implementation could

possibly account for the effect if super-tagging was introduced for the retrieval of el-

ementary trees from the canonical lexicon. The explanationwould then be that the

super-tagger would fail in the difficult cases to provide theparser with the necessary

reduced relative clause tree in the first place, and difficulty would ensue from the parser

attempting to integrate the unsuitable tree(s) and on failing to succeed having to “ask”

the super-tagger for more alternative elementary trees. The postulation of a supertagger

for canonical trees would be a small theoretical step given that a supertagger for pre-

diction trees has already been introduced to the parser model. Theoretically it would

however mean to assume a separate heuristic mechanism in addition to the parsing

process which quickly selects most promising syntactic structures based on local in-

formation only. Such an approach would be less parsimoniousthan an architecture that

explains the same effect without local heuristics (e.g. thebottom-up parsing model of

Morgan et al. (2010)), but it is conceivable that the human language processing system

also uses fast local heuristics in addition to a more involved integration process.
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9.1.7 Digging-in Effects

Digging-in effects refer to the finding that a wrong syntactic analysis becomes harder

and harder to reanalyse the longer the ambiguous region is. As an example, consider

the sentences in (9). Sentences (9-a) and (9-b) are initially ambiguous at the NPthe

bookwith respect to whether the NP is an argument of the verbwrite or the subject

of the main phrase, while sentences (9-c) and (9-d) are not (because the verb already

has an argument,the essay. Subjects initially interpretthe bookas an object ofwrite

because it is a semantically very likely object ofwrite and becausewrite is more often

seen as a transitive verb than as an intransitive one.

It has been shown using acceptability judgements (Ferreiraand Henderson, 1991)

and reading times (Tabor and Hutchins, 2004), that (9-b) is much more difficult than

(9-a) and the control condition (9-d). One would expect (9-b) to be a the most dif-

ficult condition anyway, as it is more complex than (9-b) and more ambiguous than

(9-d). However, Tabor and Hutchins (2004) found a difficultyeffect on the last word

of (9-b) (an interaction between length and ambiguity before encounteringgrew) that

goes beyond the main effects of ambiguity and complexity.

(9) a. As the author wrote the book grew. (ambiguous, short)

b. As the author wrote the book describing Babylon grew. (ambiguous, long)

c. As the author wrote the essay the book grew. (unambiguous,short)

d. As the author wrote the essay the book describing Babylon grew. (unam-

biguous, long)

Our model can predict both the ambiguity effect and the complexity effect, and would

hence predict that (9-b) would be the most difficult sentence. However, it does not

predict the effect to be super-additive, i.e. it does not predict the interaction between

ambiguity and complexity found in the reading time experiments.

It is however conceivable, that the interaction effect is not a purely syntactic effect

where the parser gets stuck with an analysis, but that the difficulty is due to semantic

effects that enforce the object interpretation in (9-b). Our model trained on the Wall

Street Journal does not reflect the fact thatbookis such a good object ofwrite (bookis

only once seen as an object ofwrite in the training material). For the model, sentence

(9-b) is hence less difficult than for us, who know that book isa good object of write.

Consider for example sentence (10) which has the same structure as sentence (9-b),

but with the ambiguous noun phrase being a bad semantic object for the verbwrite.



9.1. Evaluation on Psycholinguistic Case Studies 253

(10) As the author wrote the wind coming from the east strengthened.

(We are not aware of this having been tested, but it seems likely that observed difficulty

effects on the last word would not go beyond the additive effect of the ambiguity and

complexity effects for sentence (10).)

9.1.8 Storage Costs

Storage cost (SC) is the second component of Dependency Locality Theory. Evidence

for SC is reported in (Chen et al., 2005): if lots of open dependencies need to be kept

in memory, processing is slower. This effect was found for verbal dependencies, wh-

filler-gap dependencies and the expected PP argument for a verb. An example for

the verbal dependencies is shown in (11). Reading times in the critical region, which

is shown in italic print in (11), was slowest for the condition with two open verbal

dependencies (11-a), next slowest was the condition with one long verb dependency

(11-b), slightly faster was the sentence with one short verbdependency (11-c) and

fastest the condition with no open verb dependency (11-d).

(11) a. The detective suspected that the thief knew thatthe guard protected the

jewelsand so he reported immediately to the museum curator

b. The detective suspected that the knowledge thatthe guard protected the

jewelscame from an insider.

c. The suspicion that the thief knew thatthe guard protected the jewels

worried the museum curator.

d. The suspicion that the knowledge thatthe guard protected the jewels

came from an insider worried the museum curator.

The sentence processing theory presented here does not currently attribute difficulty

to maintaining predictions in memory (even though such a component could be added

easily, because the information which predictions have to be maintained for how long

is readily available in the model). Neither the Surprisal nor the verification cost com-

ponent can account for the storage effect. We originally decided against attributing

difficulty to storing predictions because we were not able tofind a significant effect

of storage cost on the naturalistic data, when implementingGibson’s storage cost and

evaluating it on the broad coverage Dundee Corpus.
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9.1.9 Garden-Path Effects

While many of the effects discussed in this chapter so far areonly detectable in reading

times (and some of them in acceptability ratings),garden path sentencesrefer to a

situation where a reader (or listener, although garden pathsentences are more common

in reading because intonation helps in finding the correct reading) becomes aware of

the difficulty of the sentence, often initially judging it ungrammatical, even though the

sentence is grammatical. The reader is initially “lured” into an initial very probable

interpretation which later turns out to be incompatible with the end of the sentence.

The most famous example is probably Bever’s (1970) sentenceshown in (12):

(12) The horse raced past the barn fell.

The reader initially analysesracedas a simple past form and hence the main verb of

the sentence. However, this is incompatible withfell. For the correct interpretation of

the sentence,raced past the barnmust be analysed as a reduced relative clause, and

racedhence as a past participle.

Garden path effects are usually not only caused by difficult syntactic constructions,

but are also dependent on semantics, i.e. they often consistof syntactically slightly

difficult structures that in addition are made very implausible given the semantics of

the sentence. For instance, Padó (2007) showed that difficulty ensues when syntactic

and semantic interpretations are at odds. Our model so far does not account for these

additional semantic effects, and therefore can’t fully explain most garden path effects.

In order to explain the qualitative difference between a minor processing difficulty

which people aren’t even aware of and complete processing break-down, with some

people not being able to recover the correct analysis at all,our model would assume

that the correct analysis has fallen out of the reader’s “search beam” because it was

too unlikely when compared to alternative analyses. Hence,the sentence must be

re-analysed from scratch, which is only successful if enough memory resources (in

a human: concentration and cognitive abilities) can be madeavailable for the larger

beam needed to process the sentence. This is a standard account of explaining gar-

den path sentences with a ranked parallel parser, which was already suggested in

e.g. (Altmann and Steedman, 1988; Gibson, 1991).
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9.1.10 Discussion

This section has evaluated, where possible, and otherwise discussed, the predictions of

our prediction theory on nine psycholinguistic case studies. Our theory can simultane-

ously account for Surprisal effects likeeither..orprediction and facilitating ambiguity

effects, and locality effects encountered in relative clauses (we have shown this for

both psycholinguistic experimental material and naturally occurring relative clauses)

and centre embedding. As our model is not implemented for German, it remains in-

conclusive, whether it can account for German anti-locality effects. Evaluation on

English anti-locality effects did not reach significance, we therefore count them as

’not explained’ (and will also count Levy’s (2008) Surprisal predictions on the same

case as ’not explained’ in our comparison Table in Section 9.4, as it makes equivalent

predictions).

Furthermore, we have argued that our theory can predict garden path effects and

potentially digging-in effects if combined with a semanticmodel, and that it will be

able to predict local coherence effects if a super-tagger (based on words only and no

gold-standard POS tags) for non-prediction trees is added to the implementation.

Our model cannot currently account for storage cost effects, even though a cost

function measuring the amount of predicted structure couldbe easily integrated with

our current processing theory. We defer a detailed summary and comparison with other

theories to Section 9.4.

As a general note, we would like to emphasise that testing experimental materials

with the model trained on the Penn TreeBank can be problematic as the experimental

materials often include unusual lexemes or rare constructions that were not seen during

training on the Wall Street Journal texts. Not having encountered such events often

enough can lead to inaccurate parses, and hence wrong difficulty estimates, or biased

outcome due to slightly different distribution of some events in the WSJ as opposed to

other text genres.
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9.2 Broad Coverage Evaluation on the Dundee Corpus

This section evaluates the PLTAG implementation of the proposed sentence processing

theory on the broad-coverage Dundee Corpus. All parameters(i.e., decay, timestamps,

beam width) are the same as for the evaluation on case studies. Like for the evaluation

of DLT integration cost and Surprisal, which was presented in Chapter 5, mixed effects

models are used.

9.2.1 Data

Using the PLTAG parser, we were able to parse about 80% of the words in the Dundee

Corpus. In the remaining cases, no analysis could be found within the parser’s beam

width. This is a bit lower coverage (presumably due to differences in text genre be-

tween the Wall Street Journal and the Independent) than reported for evaluation on

section 23 of the Penn TreeBank (93% coverage of sentences).The distribution of dif-

ficulty predictions are slightly skewed, with a tail of rare,very large predicted difficulty

values, see Figure 9.4.

Histogram of Distribution of Predicted Processing Difficulty

Predicted processing difficulty based on PLTAG parser
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Figure 9.4: Distribution of PLTAG difficulty predictions.

9.2.2 Results

We evaluated our PLTAG-based model on the Dundee Corpus using the same model

as for the broad-coverage evaluation of Surprisal and DLT integration cost, which in-

cluded all predictors that we are not primarily interested in, as well as an intercept

and their random slopes under subject. Outliers were removed using the> 3 standard
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deviations in residuals criterion (cf. Section 3.2.5). We again use the term PREDIC-

TIONTHEORY to refer to the explanatory variable for our model used in theregression

models. PREDICTIONTHEORY is a significant positive predictor of reading times be-

yond what other factors included in the baseline model can explain. This is true for

both first pass times and total reading times, see Table 9.2.

First Fix First Pass Total Time

Predictor Coef Sig Coef Sig Coef Sig

(INTERCEPT) 205.50 *** 241.18 *** 254.07 ***

WORDLENGTH 0.71 * 8.11 7.36 ***

WORDFREQUENCY -6.33 *** -12.34 *** -15.80 ***

PREVIOUSWORDFREQUENCY -3.11 -6.19 * -6.35 ***

PREVIOUSWORDFIXATED -10.95 *** -33.66 * -35.60 ***

LAUNCHDISTANCE -1.63 *** -0.75 -0.86

LANDINGPOSITION 8.31 *** -18.00 -21.39 ***

SENTENCEPOSITION -0.05 ** -0.24 *** -0.28 ***

FORWARDTRANSITIONALPROB -1.59 *** -1.97 -2.77 ***

BACKWARDTRANSITIONALPROB 0.71 * 1.18 1.36 **

WORDLENGTH:WORDFREQUENCY -1.15 *** -3.06 *** -4.15 ***

WORDLENGTH:LANDINGPOSITION rem – -19.21 *** -18.59 ***

PREDICTIONTHEORY 0.09 * 0.20 ** 0.33 ***
* p < 0.05, ** p < 0.01, *** p < 0.001

Table 9.2: Coefficients and significance levels for models of first fixation times, first pass

durations, and total time for all words in the Dundee Corpus. The models include all

predictors that are not of primary interest, interactions between them, and their slopes

under subject. PREDICTIONTHEORY and its random slopes under subject were run

on the residuals of the basic model. Predictors marked “rem” were removed from the

regression because they did not significantly reduce the AIC.

Furthermore, there is a small significant effect on first fixation times. The PREDIC-

TIONTHEORY effect on reading times seems very stable, we also find it in a simpler

design regression model where PREDICTIONTHEORY is entered as a predictor without

residualizing or fitting slopes under subject, and also whenPREDICTIONTHEORY is

used as an only predictor for reading times.

We can further analyse the difficulty predictions from the theory proposed in this
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First Pass Total Time

Predictor Coef Sig Coef Sig

PREDICTIONTHEORY-VERIFICATION 0.17 0.47

PREDICTIONTHEORY-SURPRISAL 0.36 *** 0.62 ***
* p < 0.05, ** p < 0.01, *** p < 0.001

Table 9.3: Coefficients and significance levels for the Surprisal and verification compo-

nents of PREDICTIONTHEORY, regressed against the residuals of the main model from

Figure 9.2.

work by taking a look at its two components, Surprisal and verification cost. We find

that when fitted to the residuals of the model of other predictors, both of them have

positive coefficients, but only the one for the Surprisal component reaches significance,

see Table 9.3. As was the case for integration cost, the verification cost component

assigns a cost of zero to many words.

9.2.3 Comparison to DLT and Surprisal

The predictions from our theory can be expected to be correlated with Surprisal calcu-

lated based on the Roark parser (see Section 5.5.1) and mighthave some correlation

with DLT integration cost. The full table of correlations between different predictors

of sentence processing difficulty is shown in Table 9.4. The strongest correlation exists

between lexical Surprisal and the predictions by our theory, as expected, whereas the

correlation with structural Surprisal is rather small. Furthermore, integration cost is

more strongly correlated with our theory than with either ofthe Surprisal measures.

INTEGRATION LEXICAL STRUCTURAL

COST SURPRISAL SURPRISAL

LEXICAL SURPRISAL 0.19

STRUCTURALSURPRISAL -0.09 0.36

PREDICTIONTHEORY 0.26 0.53 0.10

Table 9.4: Correlation coefficients (Pearson’s r) between the predictors, for fixated

words (N = 157,538) that have been assigned a difficulty estimate by the prediction

theory model.

The theory presented in this work, and implemented using PLTAG works better

than Surprisal because PLTAG explains the data better: LEXICAL SURPRISAL makes
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wrong predictions, meaning that higher Surprisal would lead to faster reading. Simi-

larly, we can argue that PREDICTIONTHEORY works better than INTEGRATIONCOST,

as INTEGRATIONCOST doesn’t make correct predictions on the broad-coverage data,

see also discussion in Sections 5.3 and 5.4.

STRUCTURALSURPRISAL does make correct predictions, and turns out to improve

the model similarly much as PREDICTIONTHEORY. To compare the two predictors,

both predictors and their random slopes under subject were added into a first-pass-

durations regression model. We then compared the model withstructural surprisal and

prediction theory to two separate models with only one of thefactors. In both cases,

there was a small but significant decrease of model fit, and theAIC score was exactly

identical. Similar values were obtained from comparing total time models (the model

including PREDICTIONTHEORY was one AIC count better than the STRUCTURAL-

SURPRISAL model, but this clearly is not a significant difference). On these grounds

we can’t argue for either of the models over the other based onthe broad coverage data

alone.

A way in which the measures do differ is that PREDICTIONTHEORY aims to be a

more complete measure than STRUCTURALSURPRISAL in that it does account for lex-

ical frequency effects and integration effects, in addition to structural Surprisal effects.

Evidence for this is provided by the fact that when added to a baseline model which

only contains low-level parameters WORDLENGTH, PREVIOUSWORDFREQUENCY,

PREVIOUSWORDFIXATED , LAUNCHDISTANCE, LANDINGPOSITION, SENTENCE-

POSITION, WORDLENGTH:LANDINGPOSITION, and random intercept and slopes

under subject (i.e. excluding WORDFREQUENCY, FORWARDTRANSITIONALPROB-

ABILITY and BACKWARDTRANSITIONALPROBABILITY ), PREDICTIONTHEORY can

explain more of the variance, and leads to much better model fit (lower AIC and BIC,

p< 0.0001) than adding only STRUCTURALSURPRISAL to such a model. The models

are shown in Table 9.5.

To get a better intuitive impression of the explanatory power of the predictors,

it is also informative to consider the simplest possible model, where the measure of

interest is the only predictor of reading times. In such a model (response variable

total reading times, subset of words that were not skipped),PREDICTIONTHEORY

explains just over 2.2% of the variance in the data (reporting Adjusted R-squared),

while LEXICAL SURPRISAL accounts for 1.9% of the variance, INTEGRATIONCOST

accounts for 0.2% of the variance and STRUCTURALSURPRISAL only for 0.0005% of

the variance. (In comparison, the best single predictors ofreading times, word length
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Predictor Coefficient Significance

(INTERCEPT) 247.64 ***

WORDLENGTH 17.65 ***

PREVIOUSWORDFREQUENCY -5.77 ***

PREVIOUSWORDFIXATED -33.99 ***

LAUNCHDISTANCE -0.69

LANDINGPOSITION -23.26 ***

SENTENCEPOSITION -0.62 ***

WORDLENGTH: LANDINGPOSITION -26.15 ***

PREDICTIONTHEORY 0.85 ***

STRUCTURALSURPRISAL 0.6 ***
* p < 0.05, ** p < 0.01, *** p < 0.001

Table 9.5: First pass duration baseline model including only low-level predictors, and

predictors STRUCTURALSURPRISAL and PREDICTIONTHEORY separately estimated on

the residuals of the baseline model.

and word frequency, each account for a bit more than 6% of the variance in the data.

Note however that the low overall level of R2 values is not a big concern to us – it

mainly reflect the fact that the data is very noisy.)

9.2.4 Discussion

Mixed effects analysis showed that difficulty predictions from the theory proposed in

this dissertation can account for a significant proportion of the variance observed in

reading time data. The effect seems to be mainly driven by theSurprisal component

of the model, but the verification component also makes a small contribution in the

right direction. Future work should explore effects found during the analysis of DLT

integration cost in Chapter 5, affecting the processing of verbs in the presence of aux-

iliaries and the processing of compound nouns, as well as cost on more words. A

straight-forward way to extend verification cost in the proposed model would be to

assign costs for the retrieval of each integration node, instead of only the ones needed

to be retrieved for verification. We leave this to future work.

When comparing broad-coverage predictions from the PLTAG-based implementa-

tion of our theory with other theories, our theory clearly outperforms DLT integration

cost (estimated based on the MINIPAR parser (Lin, 1998)) andlexical Surprisal (es-
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timated from the Roark parser (Roark, 2001a; Roark et al., 2009)). Furthermore, our

theory can account for a larger proportion of the variance inthe data than structural

Surprisal. We therefore conclude that the theory proposed here makes useful predic-

tions and has the largest explanatory power for naturally-occurring text among theories

compared in this work.

9.3 General Discussion

Taking together the evidence from the psycholinguistic case studies and the broad cov-

erage evaluation, the theory of prediction in human sentence processing presented in

this thesis has been shown to have very good explanatory power for specific psycholin-

guistic phenomena such as Surprisal and locality effects, as well as difficulty encoun-

tered in naturally occurring broad-coverage text. As a laststep, we compare our theory

to alternative theories with respect to the phenomena discussed here, see Section 9.4.

Before proceeding to the model comparison, We would like to note that the predic-

tions of our theory can be modulated by a number of parametersand design decisions.

For some of these factors, it was possible to make informed decisions, while others

were based on assumptions coming from different sources such as linguistic theories

about what the elementary trees should look like etc, and sometimes it was necessary

to guess or try out different parameters, for example for thesize of the decay effect

or beam widths for the parser. The difficulty predictions also strongly depend on the

language model from the Wall Street Journal, which is a rather specialised part of nat-

ural English, with some otherwise frequent words appearingrarely and some words

that are specific to financial affairs and economy being regarded as very frequent by

the model even though they wouldn’t be for the average human.The same also holds,

to some extent, for syntactic structures. Furthermore, in order to calculate Surprisal

we used the pruned probabilities, so this only constitutes an approximation to the full

probability space. Finally, the model is also restricted bythe complete lack of semantic

or discourse context, which is not only a different factor for predicting processing dif-

ficulty, but also influences sentence processing in that the information from a semantic,

discourse and world model could disambiguate syntactic structures and certainly helps

humans to rule out many of the implausible analyses generated by the parser.
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9.4 Comparison to Other Models

This section compares the explanatory power of the proposedsentence processing the-

ory with the sentence processing theories discussed in Section 2.2, and the recently

developed HHMM model, see below. Among these theories, our prediction theory is

most similar to Surprisal and DLT integration cost.

The present model differs from Surprisal most importantly in that it contains the

additional verification component. The Surprisal component of our model is quite sim-

ilar to Surprisal calculated on Roark’s PCFG parser, which is evident from their high

correlation (r = 0.60, Pearson’s product-moment correlation; note that this number

differs from correlations shown in Table 9.4, as it refers only to the Surprisal com-

ponent of our measure). Differences occur through the use ofdifferent formalisms, a

right-corner transformed PCFG vs. PLTAG, as well as implementational aspects such

as beam widths. As shown in Table 9.6, these differences allow our model to correctly

account for the asymmetry in English relative clauses and centre embedding on top of

what Surprisal can account for. Furthermore, the broad-coverage evaluation showed

that our theory is better suited for explaining difficulty innaturally-occurring text.

Others have also evaluated Surprisal on the Dundee Corpus (Kennedy et al., 2003),

Potsdam Sentence Corpus (Kliegl et al., 2006) and MIT narratives by Asaf Bachrach

(Roark et al., 2009), but only structural Surprisal estimates, not lexical Surprisal, have

so far been shown to correctly predict broad-coverage reading times.

The relationship between our theory’s verification component and DLT integration

cost is a bit more complex. DLT integration cost predicts processing difficulty based

on the number of discourse referents that occur between the head and its preceding

dependent(s). The relationship between the difficulty predictions and reading times is

for simplicity suggested to be linear Gibson (2000), whereas verification cost in the

model suggested here depends on the probability of the prediction tree that’s verified,

as well as the the distance of the initial prediction point measured in words and the

decay factor, and modulated further by reactivations through integration of other words

into the predicted structure. The correlation between DLT integration cost estimations

and the verification cost component of our theory isr = 0.27 (according to Pearson’s

product-moment correlation; evaluated only on those wordsof the Dundee Corpus on

which both theories make non-zero predictions). Our model can explain prediction

effects likeeither..orprocessing, facilitating ambiguity and broad-coverage processing

on top of what DLT integration cost can explain, see Table 9.6.
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Theories EOP ERC EAL GRC FA LC DI SC CE BC

this work + + (–) ? + ? ? – + +

Surprisal + – (–) + + – – – NA (+)

DLT – + – – – NA NA + + –

Memory&Activ. NA + NA + NA NA NA + + NA

Entropy NA NA NA NA NA NA NA NA NA +

Competition NA NA NA NA (–) NA + NA NA NA

HHMM NA NA NA NA NA NA NA NA NA +

Table 9.6: Comparing explanatory power of different sentence processing theories

for empirical processing difficulty phenomena. EOP = Either...or prediction effects;

ERC = classical English SRC / ORC asymmetry; EAL = English anti-locality effect

(Jaeger et al., 2010); GRC = Anti-locality effects in German Relative Clauses; FA =

Facilitating Ambiguity, LC = Local Coherence Effects; DI = Digging-In Effects; SC =

Storage Cost Effects; CE = centre embedding; BC = broad coverage; ’+’ means that

the effect can be explained, ’–’ means it cannot be explained, ’?’ means that it can in

principle be explained (e.g. with the addition of a semantic model) but remains to be

shown, and ’NA’ means that, to the best of our knowledge, this effect has not been

tested for that theory. For ‘(–)’ refer to Sections 9.1.5 and 9.4.

Lewis and Vasishth’s (2005) Memory and Activation model (see Section 2.2.8) is

in some ways similar to DLT integration cost, but uses a well-motivated psycholinguis-

tic account of human memory and activation of lexical items,which allows it to explain

German anti-locality effects on top of what DLT can explain.It would be interesting

to integrate the psycholinguistically motivated architecture for memory access into our

model.

Entropy and Competition models are more different from the model proposed here,

see Sections 2.2.6 and 2.2.7. Entropy has only been tested onbroad-coverage text, but

not on any of the phenomena evaluated here (as far as we are aware). The competition

model is the only one among models compared here that can account for digging-in

effects, see Table 9.6. Competition models have also been claimed to account for facil-

itating ambiguity (Green and Mitchell, 2006), on the groundthat some people would

choose the one analysis, and other the other one, such that for the unambiguous cases,

some penalty for maintaining the other analysis would be incurred, but not in the am-

biguous case. However, under this interpretation, a large variance between reading
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times would be expected for the unambiguous condition, which has not been shown

to be the case. Due to this controversy, the field is marked as ‘(–)’ for Competition

models in Table 9.6.

Concurrently to the model presented in this thesis, Schuleret al. (2008) have sug-

gested a model which is motivated by incremental (though notfully connected), time-

linear and memory-restricted processing. Their parser uses a hierarchical HMM which

is right-corner transformed. The HHMM process itself however, does not seem to

be a psycholinguistically well-motivated model. Parsing with the HHMM is not lex-

icalized. Schuler et al. (2008) found that a stack size of four is generally sufficient

for parsing most of the Penn TreeBank. This is comparable to our results in that in-

stead of using a stack, we connect fragments using prediction trees, and found that no

more than 5 prediction trees (and in most cases, 4 predictiontrees) are needed to parse

the PTB. Wu et al. (2010) derive psycholinguistic measures from their HHMM parser

by calculating Surprisal and counting average stack depth across parallel analyses for

each word, which bears similarity with DLT storage cost. Both of these measures

were found to be positive predictors in a regression model modelling self-paced read-

ing durations on a corpus of four short narratives designed to contain large integration

costs, by Asaf Bachrach. This is the same corpus used in this work to evaluate the

implementation of DLT integration cost, see Section 5.3. This text is less well-suited

for evaluating a model of sentence processing than the Dundee Corpus as it does not

contain naturally occurring text, is more difficult to parsewith a parser trained on news-

paper (see Section 5.3), and uses self-paced reading (see critical comments in Section

2.1.4.1) instead of eye-tracking as a measure of processingdifficulty. Difficulty pre-

dictions from the HHMM model have not been evaluated on any experimental data,

see Table 9.6.

9.5 Conclusions

This chapter has evaluated the predictions of the processing difficulty proposed in

Chapter 6, based on the implementation of the strictly incremental predictive parser

described in Chapter 8 and based on the PLTAG formalism, as suggested in Chapter 7.

We found that our theory can simultaneously account for moreof the empirical data

than alternative theories, in particular, it correctly predicts both Surprisal and locality

effects. Additionally, we compared our theory on broad-coverage text from the Dundee

Corpus, replicating the studies presented in Chapters 4 and5 with our theory as an
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explanatory variable. We were able to show that our theory predicts reading times on

the embedded verb of subject and object relative clauses better than either Surprisal

or DLT integration cost, and that it can also correctly account for processing difficulty

across the whole of the Dundee Corpus. We also showed that it was able to predict a

larger proportion of the variance in the reading time data onthe Dundee Corpus than

either Surprisal or DLT.

In conclusion, we find a wide range of empirical support for our PLTAG-based

theory of prediction and verification in human sentence processing, and show that it

has larger explanatory power than previous theories of sentence processing.





Chapter 10

Conclusions and Future Work

This Chapter briefly summarizes the main contributions thatthis thesis makes, and

points out directions for further research.

The first claim of this thesis, that the evaluation of psycholinguistic theories on

broad-coverage data can be a valid additional resource to traditional lab experiments

and that it can provide insights which cannot be obtained from traditional experiment

data, was shown in Chapters 4, 5 and 9.2: Chapter 4 showed thatan established effect,

the subject vs. object relative clause asymmetry, can also be shown for relative clauses

from naturally occurring text. Chapter 5 compared two existing theories, Dependency

Locality Theory (DLT) and Surprisal on the broad-coverage corpus and found that

DLT, while making correct predictions for verbs and some nouns, cannot correctly ac-

count for the difficulty effect across all words. The corpus study furthermore indicated

that the role of auxiliaries and compound nouns needs to be investigated in more de-

tail. Section 9.2 provides supporting evidence for the theory proposed in this work, in

addition to the evaluation on case studies, and compares sentence processing theories

also with respect to how much of the variance in the reading time data they can account

for.

The second claim, stating that Surprisal and Dependency Locality Theory explain

different aspects of sentence processing was shown in Chapter 5, where we found that

both theories can explain some of the data, but their predictions are not significantly

correlated.

The third claim was that modelling prediction and verification processes is cogni-

tively plausible, and that it provides a framework for combining aspects from DLT and

Surprisal. The plausibility of prediction and verificationis supported by the discussion

of recent experimental evidence in Chapter 6. We have also shown that our model

267
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incorporating the explicit prediction and verification mechanism is very successful at

predicting a range of experimental data (Section 9). Finally, Chapter 8.7 showed how

the modelling of prediction and verification naturally combines aspects of Surprisal

and Dependency Locality Theory.

10.1 Main Contributions

The first part of this thesis showed that eye-tracking data from naturally occurring

text can be a beneficial complimentary method for evaluatingtheories of human lan-

guage processing. The second part developed, implemented and evaluated a model of

prediction coupled with a verification process for human sentence processing. The re-

sults provide some methodological, experimental and theoretical contributions, as well

as the PLTAG version of the Penn Treebank as a resource and a strictly incremental

parser for TAG as an NLP tool.

• Evaluation on a broad-coverage corpus.

Evaluation on broad-coverage text allows to detect processing difficulty on struc-

tures in context and possibly tease apart effects introduced by the experiment

from processing difficulty encountered in every-day processing. Furthermore,

theories of sentence processing can be tested as to whether they scale up to

broad-coverage, naturally occurring text, an aspect whichis particularly rele-

vant with respect to applying psycholinguistic theories for sentence processing

in NLP applications.

Demonstrating the usefulness of eye-tracking corpora willhopefully motivate

the creation of similar corpora that overcome some of the limitations of the

Dundee Corpus, in particular the fact that no manual parse tree annotation is

available for the Dundee Corpus, and that it was only read by 10 subjects.

• Demonstration that syntactic processing effects can be found in eye-tracking data

of naturally-occurring text.

Previous models of reading primarily focussed on low-levelreading effects. We

have shown in our studies in Chapters 4 and 5 that higher-level syntactic effects

that can also be detected in the reading data, and that they help to account for

a part of the variance in the reading data that lower-level effects cannot account

for.
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• Comparison of alternative sentence processing theories onthe same resource.

Three theories of sentence processing, DLT integration cost, Surprisal and the

prediction theory proposed in this thesis were evaluated onthe same resource.

This made it possible to compare effect sizes in terms of variance accounted for,

and determine whether the same or different parts of the variance were explained

by the theories.

• Implementation of DLT.

To the best of our knowledge, this work performed the first implementation of

DLT. Before, DLT had been calculated by hand for a small number of materials

used in experiments.

• Definition and Formalization of PLTAG.

The design of PLTAG was guided by the principles of incrementality and con-

nectedness and includes an explicit mechanism for generating and verifying syn-

tactic predictions. Chapter 7.2 argued that PLTAG and LTAG are strongly equiv-

alent. PLTAG differs from the most similar TAG variant, DVTAG, in that its

lexicon is much smaller, providing adaptable prediction grain size, and having

shown that parsing with it is tractable.

• PLTAG Treebank and Lexicon.

We converted the Penn TreeBank into PLTAG format and induceda PLTAG

lexicon, consisting of canonical LTAG trees and predictiontrees.

• Proposition of a new cognitively plausible theory for syntactic processing.

The theory proposed in this work is based on psycholinguistically plausible as-

sumptions including incremental processing, memory decayand an explicit pre-

diction and verification mechanism.

• Implementation of a strictly incremental statistical parser for PLTAG.

The parser is to our knowledge the first strictly incrementalpredictive parser. We

show that it can tractably parse broad-coverage data and that it achieves accu-

racy results that make it suitable for using as a basis for evaluating the sentence

processing theory.

• Implementation of the PLTAG-based sentence processing theory.

The full implementation of the proposed theory makes it possible to evaluate

predictions for processing difficulty automatically on both experimental items



270 Chapter 10. Conclusions and Future Work

and broad coverage text. Furthermore, it can make predictions on untested phe-

nomena that can then be verified in a laboratory experiment.

• Evaluation of the PLTAG-based sentence processing theory.

The model of sentence processing difficulty proposed in thisthesis captures ex-

perimental results from the literature, and can explain both locality and predic-

tion effects, which standard models of sentence processinglike DLT and Sur-

prisal are unable to account for simultaneously. Furthermore, it is validated by

the broad-coverage evaluation: it can explain the variancein reading times on

naturally-occurring text better than alternative models like Surprisal and DLT

integration cost. Our model therefore constitutes an important step towards a

unified theory of human parsing.

10.2 Directions for Further Research

The results obtained in this thesis open directions for further research. This section

point outs some interesting future directions which build on the present work.

10.2.1 Evaluation of Theory in Other Languages

The theory developed in this thesis was only implemented andtested on English. How-

ever, a plausible theory of human sentence comprehension should make correct predic-

tions for a range of (ideally all) languages. PLTAG could also be used as a formalism

for implementing our theory in other languages, because it is mildly context-sensitive

and can therefore model cross-serial dependency constructions that have been argued

to exist in Dutch (Bresnan et al., 1982) and Swiss German (Shieber, 1985).

Studying crosslinguistic phenomena is particularly interesting because some psy-

cholinguistic effects may only be tested based on manipulations that are not grammati-

cal in English, but could be manipulated and tested in another language where they are

grammatical.

In order for our theory to generalize to other languages, it must also take into

account aspects of language that are currently largely ignored, such as morphology.

A first starting point would be to train the parser and test thetheory on French, be-

cause there is a broad-coverage French eye-tracking corpusavailable, which was also

collected by the Dundee group (Kennedy and Pynte, 2005). An interesting aspect in

which French differs from English is for example headednessof noun compounds (in
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English, the head is usually the last component, whereas in French it tends to be the

first component).

10.2.2 Integration with Semantics and Discourse

In recent years, people have argued that the traditional view on language processing is

often too syntacto-centric (Jackendoff, 2003; van Berkum et al., 2007). This thesis fo-

cussed only on syntax, but this is of course far from the wholestory. We saw in Section

9.2 that the syntactic predictors indeed only explain a small proportion of the variance

in the reading data. A first step towards combining syntacticand semantic effects into a

combined Surprisal measure have been undertaken in (Mitchell et al., 2010), where we

combine syntactic Surprisal based on the Roark parser with semantic Surprisal (based

on LSA) and calculate a combined Surprisal measure that improves model fit over just

syntactic Surprisal. Ideally, however, we would like to usethe parser presented here, as

we have shown that surprisal estimates from the PLTAG parsermatch reading times on

the Dundee corpus better than surprisal estimates based on the Roark parser, and be-

cause it implements a verification component. The semantic and syntactic components

should also be integrated better, such that they can inform each other: the semantic

component should take into account syntactic relationships, and the parser could take

semantic plausibility into account when rating analyses. LSA only quantifies how re-

alted two lexemes are irrespective of their roles to each other or in the sentence. A

deeper semantic approach could calculate semantic analyses based on the TAG deriva-

tions. Modelling discourse effects, reference resolutionand etc. would be important

further steps towards a more holistic model of human language processing.

10.2.3 Incremental Update of the Language Model

The model proposed in this thesis only deals with language comprehension, and is ag-

nostic as to how the probabilities are acquired, and to how they would change over

time (in fact, in the current training of the model, probabilities are based on the batch

of events observed during training, and then never updated). A better model would

take into account short term priming as well as long term learning from observing

new events during run time. Dubey et al. (2006) has shown how aprobability model

for a parser can be updated during parsing to model short termpriming. Structures

which have been encountered recently are then predicted to be easier and hence faster

to process than otherwise expected. Over time, this effect of exposure to a specific
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encountered structure weakens, but will have a small effecton the overall probability

distribution in the model. Such learning effects have also received empirical support

from a recent study (Wells et al., 2009) that exposed severalgroups of adults to differ-

ent stimuli over a couple of weeks, and showed that it affected how difficult they found

the processing of such structures at the end.

10.2.4 Experiments on Prediction Grain Size

The specification of the sentence processing theory and the PLTAG formalism in Sec-

tion 7.3 raised questions about the exact grain size of predictions. Are arguments

principally different from modifiers in that they are predicted while modifiers are not?

And which role does context play in this respect? It has been shown that modifiers can

be predicted if they are required to semantically disambiguate a referent. How detailed

are the predictions? How specific are predictions of subcategorization frames, and

when are they generated? And how does the prediction of subcategorization frames

generalize to languages with free word order?

These questions should be answered based on laboratory experiments.

10.2.5 Automatic Determination of Lexicon Entry Sizes

The extended domain of locality in TAG gives us the flexibility to generate lexicon

entries with more than one lexical anchor, and thus model lexicalized multi-word ex-

pressions and idioms. As pointed out in Sections 6.1.2 and 7.3.2, it would be desirable

to learn in a more principled fashion from data what size a lexicon entry should be,

for example using a DOP-like framework or extending the leaning process proposed in

(Cohn et al., 2009) for Tree Substitution Grammar to PLTAG structures.

10.2.6 Modelling the Effect of Processing Difficulty on Read ing

Times

As briefly discussed in Chapters 2 and 9, theories of sentenceprocessing try to predict

processing difficulty, and evaluate predictions most oftenon reading times. If done on

a word-by-word basis, like in our broad-coverage evaluations in Chapters 5 and 9.2,

possible spill-over and skipping effects are not accountedfor. It is possible that this

severely affects some words, like e.g. the determiner of an unexpected noun phrase,

which will receive a high difficulty prediction by Surprisal-based theories, which is
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most likely to be only empirically measurable on the following noun due to common

skipping of words that are short and frequent. One way of solving this issue would

be to integrate the difficulty predictions into a model of eye-movement, such as the

ones discussed in 2.1.3, in particular E-Z Reader 10, which suggests a mechanism for

integrating higher-level processes (Reichle et al., 2009), or Klinton Bicknell’s recent

rational model of reading (Bicknell and Levy, 2010).

In a similar line or argument, a better mathematical model needs to be developed

in order to include information about skipping into the regression models.

10.2.7 Improving Parser Performance

Finally, the performance of the incremental predictive PLTAG parser presented in

Chapter 8 falls short of the parsing accuracy achieved by today’s state-of-the-art

parsers. It is however very likely, that performance can be substantially improved

if some psycholinguistically motivated constraints are relaxed. First promising steps

would be to introduce supertagging for canonical trees in addition to prediction trees.

In addition, the lexicon could be changed to be smaller, thusreducing data sparseness,

by leaving out all traces and doing sister adjunction (Chiang, 2000) instead of standard

TAG adjunction.





Appendix A

CCG and Incrementality

Combinatory Categorial Grammar (CCG, Steedman, 1996, 2000), is a grammatical

theory which provides a transparent interface between surface syntax and underlying

semantics. Each (complete or partial) syntactic derivation corresponds directly to an

interpretable structure. This allows CCG to provide an account for the incremental

nature of human language processing. As we will discuss in this chapter, CCG with

the standard lexicon and rules does however not always allowfor the strongest inter-

pretation of incrementality.

In CCG, the language-specific knowledge about the grammar isstored in the lex-

icon. There is a finite set of rules that allow the lexical categories to combine. These

rules are based on the categorial calculus (Ajdukiewicz, 1935; Bar-Hillel, 1953) as

well as on the combinatory logic of Curry and Feys (1958).

This section is first going to give an overview of the CCG combination rules, before

discussing incremental processing in CCG. Most examples used for explaining CCG

rules are taken from Steedman (2000), which the reader should also refer to for further

detail.

A.1 Standard CCG Rules

Each word in the lexicon is assigned one or more categories that define its behaviour

in the sentence. Categories for a word can either be atomic e.g.,NP, S, PP, or complex

like the category(S\NP)/NP. Complex categoriesX/Y andX\Y designate a functor-

argument relationship betweenX andY, where the directionality of the relation is

indicated by the forward slash/ and the backward slash\. For example, categoryX/Y

takes categoryY as an argument to its right and yields categoryX, while categoryX\Y

275
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takes categoryY as an argument to its left to result in categoryX.

These two rules are referred to as forward and backward functional application,

shown in Rules (1-a) and (1-b).

(1) Functional Application

a. X / Y Y ⇒ X (>)

b. Y X \ Y ⇒ X (<)

Figure A.1 shows natural language examples for functional application. With only

functional application, it is possible to derive normal form parses of traditional con-

stituents of English sentences that do not involve any kind of traces or movement.

John sleeps

NP S\NP

<
S

(a) forward application

eats carrots

(S\NP)/NP NP

>
S\NP

(b) backward application

Figure A.1: Examples of forward and backward application in CCG.

In addition to these two most basic operators, the canonicalCCG inventory as de-

fined in (Steedman, 2000) contains a range of further operators. Forward and backward

composition for example are needed to allow for non-standard constituents, such as in

“Mary [[bought] and [will eat]] carrots.” . Essentially, composition allows to apply a

functor to its argument even if that argument is a functor itself, i.e. if the argument has

dependents itself. The simplest case of this are Forward andBackward Composition,

see Rules (2) and Figure A.2, but CCG allows the same also for cases where multi-

ple dependents are missing (Generalized Composition), as in “John [[recommended],

and[will give]], a book to Mary.”, see Rules (3) and Figure A.3. Composition is used

when the argument of a function is itself still expecting arguments. These expected

arguments are then inherited to the functor category.

will eat

(S\NP)/VP VP/NP

>B
(S\NP)/NP

Figure A.2: An example of forward composition in CCG.
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will give

(S\NP)/VP (VP/PP)/NP

>B2

((S\NP)/PP)/NP

Figure A.3: Examples of generalized forward composition in CCG.

(2) Composition

a. X / Y Y / Z ⇒ X / Z (> B)

b. Y \ Z X \ Y ⇒ X \ Z (< B)

(3) Generalized Composition

a. X / Y (Y / Z) / $1 ⇒ (X / Z) / $1 (> Bn)

b. (Y \ Z) \ $1 X \ Y ⇒ (X \ Z) \$1 (< Bn)

CCG also has unary rules, known as type-raising rules, see Rules (4) and Figure

A.4. Type-raising turns an argument of a function into a function which takes the orig-

inal function into its argument. Type-raising usually occurs together with composition

and is necessary for filling argument slots of the functor that are not directly accessi-

ble. The argument can turn into a function through type-raising and then inherit the

remaining arguments of the original function through composition. Type-raising is of-

ten used for subjects, e.g. in sentences like[ [Peter bought] and[Mary ate]] the carrot.

To prevent extensive type-raising that would potentially lead to over-generation of the

grammar, T\ X and T/ X have to be licensed categories for the language.

(4) Type-raising

a. X ⇒ T / (T \ X) (> T)

b. X ⇒ T \ (T / X) (< T)

Peter bought

NP (S\NP)/NP

>T
S/(S\NP)

>B
S/NP

Figure A.4: Example of forward type raising in CCG.

The intuition behind type-raising of NPs is that the argument can by virtue of its
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case demand for a specific predicate in order to build a proposition. In inflecting lan-

guages, a dative NP can therefore select for different verbsthan a accusative NP. Nom-

inative vs. accusative NPs would just be type-raised to different complex categories,

reflecting their function in the sentence.

Examples for type-raising English NPs in their different functions occurs for ex-

ample, when combining clusters of English NPs into constituents (for example for a

clause such as“give [a teacher an apple] and [a policeman a flower]”, see Figure

A.5).

give a policeman a flower

((S\NP)/NP)/NP NP/N N NP/N N
> >

NP NP
<T <T

((S\NP)/NP)\(((S\NP)/NP)/NP) (S\NP)\((S\NP)/NP)
<B

(S\NP)\(((S\NP)/NP)/NP)
<B

S\NP

Figure A.5: Example of type raising with type-raising categories for NPs in different

syntactic functions.

Type raising and composition rules are also necessary to parse extractions like in

relative clauses, where, just as in coordination, the nearest argument is not directly

available.

The last of the standard CCG rules is forward and backward (crossed) substitution.

Substitution rules are needed for so-called “parasitic gaps”, extracted items with more

than one dependency, as in“articles whichi I filei without readingi” .

(5) Substitution

a. Y / Z (X \ Y) / Z ⇒ X / Z (< S×) where Y = S\ $

Finally, there is a special ternary coordination rule shownin Rule (6). This rule

(and the associated lexicon entryCONJ for “and” / “or” etc.) is preferable1 over the

lexicon entry of a conjunct(X\ X)/X.

(6) Coordination

a. X CONJ X’ ⇒ X” ( < Φ >)

1The(X\ X)/X rule allowed for problematic application of unary rules or composition to the con-
juncts before coordination was completed, see Steedman (2000).
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The full set of CCG rules includes crossed versions of forward and backward com-

position and substitution. However, it depends on the language whether how many

of these rules are allowed to be applied. In English, forwardcrossed composition

is forbidden, because it would cause over-generation. Generally, crossed rules are

“dangerous” in order-sensitive languages, because they can lead to accepting ungram-

matical word sequences. On the other hand, English does permit backward crossed

composition. This rule is needed in order to account for heavy NP-shift. To prevent

over-generation, both of the backward crossed rules (composition and substitution) are

restricted in what categories they can be used on, as seen in Rule (5).

A.2 The limits of CCG and Over-generation

CCG rules create so-called spurious ambiguity. This means that there are alternative

ways and orders of applying these rules, which lead to syntactically distinct but seman-

tically equivalent derivations of a sequence of words. The combination of type-raising

and composition can be used to construct almost any syntactic tree for a sequence

of words. Current CCG parsers create CCG normal form derivations, which means

that they use type raising and composition only when the sentence can’t be correctly

parsed otherwise. However, the possibility of building non-standard of constituents,

which are licensed by how phrases can be coordinated, allowsCCG to make more in-

cremental derivations and thereby explain some of the incrementality that is observed

in the human parser.

However, it is not possible to build an arbitrary derivationusing these rules, and

this sets a limit on how incremental a bottom-up CCG parser with the standard rules

can actually be. For example, the standard set of rules is notsufficient to build an

incremental derivation of object relative clauses likereporter who John attacked, even

though it is grammatically possible to form a coordination of the form: [[the reporter

who John] and [the senator who Mary]] attacked admitted the error . The normal

form derivation of an object relative clause is shown in Figure A.6. In order to parse

the coordinated phrase, it is necessary to use an additionalrule, calledGeach Rule.

Geach rule is not part of standard CCG. The normal form derivation of the coordinated

ORCs with extracted verbs is shown in Figure A.7. The Geach rule is a unary rule,

see Rule (7). Interestingly, composition can be reduced to Geach rule and functional

application (see Figure A.8). (This is where the> B notation for composition comes

from.) Similarly, there’s a unary version of substitution,see Figure A.9.
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reporter who John attacked

N (N\N)/(S/NP) NP (S\NP)/NP

>T
S/(S\NP)

>B
S/NP

>
N\N

<
N

Figure A.6: Example of normal form derivation for object relative clause in CCG.

flowers that John and books which Jenny liked

N (N\N)/(S/NP) NP CONJ N/((S\NP)/NP) (S\NP)/NP

>T >T
N/(N\N) S/(S\NP)

>B B(Geach)
N/(S/NP) (S/NP)/((S\NP)/NP)

>B
N/((S\NP)/NP)

<Φ>
N/((S\NP)/NP)

>
N

Figure A.7: Example of incrementalised derivation for object relative clause in CCG

(coordination is not incremental in this derivation).

(7) Geach

a. Y / Z ⇒ (Y / G) / (Z / G) (B)

This means that the Geach rule actuallyis technically part of traditional CCG, but

it usually only occurs wrapped up with functional application. But what happens, if we

want to take incrementality a step further and try to substitute the ORC noun (“John”

in Figure A.7) by an NP like “every accordionist”? CCG cannotparse object rela-

tive clauses which contain an embedded NP of length greater one fully incrementally,

see the derivation in Figure A.10, where the wordmancannot be integrated with the

sentence prefix.

Whether CCG should be able to strictly incrementally deriveobject relative clauses

is however open to discussion, as it depends on whether a sentence such as“[[books

that every] and [journals that no]] accordionist liked”is judged as similarly good and

grammatical as“flowers that John and books which Jerry liked”, and whether it can

actually be shown that human processing is strictly incremental at this point.

The most incremental analysis of an object relative clause is not fully incremental
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X/Y Y/Z
>B

X/Z

(a) functional composition

X/Y Y/Z
B

(X/Z)/(Y/Z)
>

X/Z

(b) Geach and functional application

X/Y (Y/Z)/W
>B2

(X/Z)/W

(c) generalized composition

X/Y (Y/Z)/W
B

(X/Z)/(Y/Z)
B

((X/Z)/W)/((Y/Z)/W)
>

(X/Z)/W

(d) Geach twice and functional application

Figure A.8: Functional composition (first derivation) can alternatively be understood as

a combination of the Geach rule and functional application (second derivation).

Y/Z (X\Y)/Z
>S

X/Z

(a) Binary substitution

Y/Z (X\Y)/Z
S

(X/Z)/((X\Y)/Z)
>

X/Z

(b) Unary substitution and functional application

Figure A.9: Binary substitution can be decomposed into unary substitution and func-

tional application.

(see Figure A.11 (b)), since one can only type-raise the NP “every man” once the words

everyand man they have been combined. Note though that the determiner canbe

integrated incrementally into other prefixes (e.g. in subject relative clauses), as shown

in the first derivation in Figure A.11 (a). Grammaticality isa gradual process, but it

books which every and journals that no man

N (N\N)/(S/NP) NP/N CONJ N/((S\(NP/N))/NP) N

>T >T
N/(N\N) S/(S\(NP/N))

>B B
N/(S/NP) (S/NP)/((S\(NP/N))/NP)

>B
N/((S\(NP/N))/NP)

<Φ>
N/((S\(NP/N))/NP)

Figure A.10: Example of incrementalised derivation for object relative clause in CCG

(coordination is not incremental in this derivation).
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the woman that saw every and the girl that saw no man

NP/N N (N\N)/(S\NP) (S\NP)/NP NP/N CONJ NP/N N

>T
N/(N\N)

>B
NP/(N\N)

>B
NP/(S\NP)

>B
NP/NP

>B
NP/N

<Φ>
NP/N

>
NP

(a) Subject relative clauses can be parsed incrementally, even though a wh-constraint is violated.

the woman that every man saw

NP/N N (N\N)/(S/NP) NP/N N (S\NP)/NP

>T >
N/(N\N) NP

>B >T
NP/(N\N) S/(S\NP)

>B B
NP/(S/NP) (S/NP)/((S\NP)/NP)

>B
NP/((S\NP)/NP)

>
NP

(b) Object relative clauses cannot be parsed incrementallybecause of the subject island constraint

(the NP has to be type-raised as a whole).

Figure A.11: Incrementality in subject relative clauses, which, contrarily to the object

relative clause, does get a derivation in CCG.

does not seem obvious why “Here come the woman that saw every and the girl that saw

no man.” would be much more grammatical than “Here come the woman that every

and the girl that no man saw.”, and thus justify why the one canbe derived in CCG and

the other one can’t.

A.3 Incrementality in CCG

This section further analyses CCGs failure to fully incrementally derive object relative

clauses. Table A.1 lists all possible category constellations for a sequence of three

words, which are functors and arguments of one another. There are five constellations

which only use composition and functional application.

The other tree constellations (6., 7. and 8. in Figure A.1 require type-raising. De-
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1. a/b b/c c

2. (a/c)/b b c

3. a/b b c\a

4. a (b/c)\a c

5. a b\a c\b

6. a b (c\a)\b ⇒ c/(c\a) (c\a)/((c\a)\b) (c\a)\b

7. a/c b c\b ⇒ a/c c/(c\b) c\b

8. a b/c c\a ⇒ b/(b\a) (b\a)/(c\a) c\a

Table A.1: Category constellations in a sequence of three adjacent words that are func-

tors and arguments of one another.

pending on the parametrisation of a specific language, not all of the type-raising rules

for 6. and 7. would be parametrically licensed in standard CCG, which means that it

depends on the specific instance whether a sequence of categories is parsable incre-

mentally. In the eighth case, the functorc\a is not directly adjacent to its argument

a. Instead, there is another word is another word in the middlewhich takesc as its

argument. These categories can still be combined incrementally using type-raising and

geaching, but the type-raising required for this kind of operation would likely not be

licensed by the language (since there’s no category that subcategorises for its grand-

child).

But what happens in CCG categories which cannot be parsed incrementally, even

when not following the type-raising restrictions, such as object relative clauses with an

NP that’s composed of a determiner and a noun? This case requires a constellation of

four categories:

a/(s/np) np/n n (s\np)/np ⇒
a/(s/np) (s/np)/((s\(np/n))/np) n (s\np)/np

Even after type-raising it is not possible to process this category constellation in-

crementally, due to the first category of the accusative relative pronoun category. There

are however ways around this problem. For example, the category of the object rel-

ative pronoun could be changed. If the category was (a/((s\npi)/np))/npi instead of

a/(s/np), an incremental derivation would be unproblematic.

However, there are theoretically motivated reasons for theoriginal object relative

pronoun category (N\N/(S/NP)): the standard category prevents subject island vio-

lations by burying the subject NP in the verb category instead of including it in the
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the woman that every man saw

NP/N N ((N\N)/((S\NP)/NP))/NP NP/N N (S\NP)/NP

>T
N/(N\N)

>B
NP/(N\N)

B
(NP/X)/((N\N)/X)

>B
(NP/((S\NP)/NP))/NP

>B
(NP/((S\NP)/NP))/N

>
NP/((S\NP)/NP)

>
NP

Figure A.12: Incremental derivation of object relative clause with new object relative

pronoun category.

category of the object relative pronoun. (The NP argument in(N\N/(S/NP)) is for

the object NP.) The subject NP is thus not accessible from outside the relative clause.

This property is interesting, and raises the question whether it can be used in a directed

manner in order to enforce island constraints. For example,the wh-island constraint is

violated in subject relative clauses likethe man that every and the woman that no kid

saw, and there are also ungrammatical object relative clauses with a dative as a relative

pronoun, where the ungrammaticality is due to the extraction of parts of the object

from within the relative clause. In this case, the category of the dative relative pro-

noun does not prevent extraction to outside the NP and CCG therefore over-generates

in these cases:“[girls whom I gave every] and [boys whom you stole no], ball”. See

Figure A.13 for the complete derivation of this sentence. See Baldridge (2002) for

more examples of CCG over-generating on relative clauses. So the change of the ob-

ject relative clause category to the more complex category seems defensible, given that

it would allow fully incremental derivations of object relative clauses, and lead to less

of an asymmetry in terms of when island constraints are violated in CCG.

To summarise this observation, we conclude that incremental processing can’t be

guaranteed to be possible if the categories are not “deep enough” to reflect the structure

of the relevant part of the tree. The more complex version of the direct object relative

pronoun category((N\N)/((S\NPsub j)/NPob j))/NPsub j) reflects that a subject NP is

required first, followed by a transitive verb to the right, while the standard simple object

relative pronoun category(N\N)/(S/NPob j) only encodes that a sentence lacking an

object NP is needed, but does not encode the subject NP. The complex version thus
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girls whom I gave every,

N ((N\N)/X)/((S/X)/NP) NP ((S\NP)/NP)/NP NP/N

>T >T
N/(N\N) S/(S\NP)

B B
(N/X)/((N\N)/X) (S/NP)/((S\NP)/NP)

>B >B
(N/X)/((S/X)/NP) (S/NP)/NP

>
N/NP

>B
N/N

(a) beginning

girls whom I gave every, and boys whom you stole no, ball

N/N CONJ N/N N

<Φ>
N/N

>
N

(b) rest

Figure A.13: Derivation for an ungrammatical sentence.

captures more of the internal structure of the object relative clause, which in turn allows

for incremental derivations. Incrementality can thus be obtained to a certain extent by

creating deeper categories, such as the new relative pronoun, or by type-raising (which

creates other forms of deep trees in that a noun phrase becomes a structures rooted in

a sentence that lacks a noun phrase).





Appendix B

Traces in PLTAG

As with prediction trees, elementary trees for traces can beintegrated by the parser

without any evidence from the input string, and therefore can potentially slow parsing

down a lot. We therefore decided to ”bind” all traces either to the tree that subcate-

gorises them, or to the filler, depending on the relationshipbetween filler and trace.

We here discuss two different attachment strategies:

1. The trace is attached into the tree that contains the substitution node for it if

• the substitution nodes for filler and trace are in the same elementary tree

(like in passives, or simple extractions like “..., said X”-constructions).

• the tree that the trace substitutes into adjoins into the tree that has a substi-

tution node for the filler (such as raising or control verbs).

2. The trace and filler make up a multi-component lexicon entry (MCTAG, Weir,

1988), meaning that two elementary trees always have to be both attached into a

tree, not just one of them, if

• both the trace and the filler adjoin into the same tree (for example for ex-

trapolate modifiers).

• the trace-tree substitutes into a tree that in turn substitutes into the filler tree

(as in relative clauses).

Cases we don’t currently treat:

• if the filler and trace substitute into different trees (can be dealt with using the

non-tree-local version of MCTAG, but that makes MCTAG more expressive)

287
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• parasitic gaps

All these cases are given with an example and discussed in more detail below.

B.1 Relative Clauses

Our current treatment of relative clauses does not encode whether the relative pronoun

is a subject or object pronoun. This only becomes encoded later on with the verb entry,

which will contain a trace in the subject or object position.

An interesting alternative might be to observe the full pathbetween the trace and

the filler. The tree for a relative pronoun would then look as follows:

NP

NP* SBAR

WHNP-1

WP

who

Sk
k

NPk

trace-1

VPk
k

NP

NP* SBAR

WHNP-1

WP

whom

Sk
k

NPk ↓ VPk
k

Vk
k NPk

trace-1

We will require further experiments to establish whether the trace should is pre-

dicted as early as the relative pronoun is encountered or not. For the time being, the

trace is attached to the main verb and not an MCTAG entry with the relative pronoun.

B.2 Traces for Passive Constructions

Following the above guidelines, a passive verb’s lexicon entry attaches the trace at ob-

ject position in the verb tree because both filler and trace are substituted into this same

structure. This is attractive because it codes the filler-trace relationship in passives

locally (since they are already co-indexed in the lexicon entry).
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S

NP-SUBJ-1↓ VP

VBN

held

NP-trace

*-1

PUNCT↓

B.3 Raising and Control

Raising constructions are slightly different, because thetrace is part of the recursively

adjoined tree and refers to the subject of that phrase. We’llhave to decide on how to

encode where to find the filler for the trace in such cases (although this may mainly

be a problem of a semantic interpretation component) – the same holds for object

control constructions. The trace is here only predicted once the head verb of the raising

or object control construction has been encountered. Raising verbs are however still

problematic because they don’t have a special tag that distinguishes them from regular

verbs. The automatic head finding rules based on Magerman’s head percolation table

determine raising verbs to be the head of the sentence and therefore assign them an

incorrect structure (an auxiliary tree with the S node as a recursive structure, instead of

the VP node for the recursive structure).

S

NP-SUBJ-1

DT

The

NN

rate

VP

VBZ

appears

S

NP-SBJ

trace-1

VP

TO

to

VP

VB

sink
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automatic: S

NP↓ VP

VBZ

appears

S*

desired: VP

VBZ

appears

S

NP-SBJ

-NONE-

*-1

VP*

B.4 Extraction

Traces that occur for topicalized direct speech like in “ ‘...’, saidtracePeter.” are easy

to treat because both filler and trace occur locally in the same tree.

S

S-1↓ ,↓ VP

VBD

said

S

trace-1

NP↓ .↓

Other kinds of extraction are handled similarly, consider for example the following

sentenceBecause I’m late, Peter thinks 0 I hurry up, which contains an adjunct that

originated in a lower clause, and an empty element for the relative pronoun marked by

0. However, this does not lead to a problem, because theI think-tree is an auxiliary

tree that is adjoined in later. In terms of the lexicon however, this analysis entails that

each verb must not only have an different elementary tree foreach of its arguments

that could be topicalized, but also for modifiers. The alternative to these multiple trees

is to use multi-component TAG (MCTAG). The SBAR sentence andthe trace under

the VP are then simultaneously integrated at the VP. Since werequire full connectivity

in PLTAG, we would however have to add a prediction tree for the verb structure right

away for connectivity reasons, and the effect would be very similar, perhaps attaching

the trace even earlier if we decided to use lazy prediction asa parsing strategy.

If deciding against MCTAG, we run into the question of prediction grain size again:

with the trace integrated into the verb structure, the tracewould only be predicted

once the head of the phrase (i.e. the verb, likehurry up in the below example tree

structure) is encountered. This does not seem very plausible, in particular for the

modifier example. MCTAG would on the other hand predict the trace and the structure
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in between once the filler clause “Because...” is encountered. One important aspect to

take care of when using MCTAG however is that both componentshave to be attached

to the same elementary tree; otherwise, the formalism becomes too powerful and will

over-generate. MCTAG can also explain extrapolations to the right, for example: “The

man is really tall, who is wearing that hat.”

However, then we also have to learn the associated lexicon entries from the Penn

Treebank, such that the filler and trace elementary trees arestored together. This phe-

nomenon is not very common and occurs in a bit less than 1% of sentences.

S

NP↓ VP

VBZ

think

CP

THAT

0

S*

S

SBAR-1

Because I’m late,

S

NP

I

VP

VP

VBZ

hurry up

SBAR

trace-1

B.5 Long-distance extractions

Similarly, we can use MCTAG for more deeply embedded constructions like “Which

dog did Peter buy a bone fortrace?”

S

WHNP-1

which dog

S*

and NP

trace-1

, S

NP

Peter

VP

VBZ

buy

NP

a bone

, VP

VP* PP

IN

for

NP↓

B.6 Parasitic gaps

A parasitic gap is a construction where a verb’s argument is dropped (i.e. replaced

by a trace, the secondtrace-1 in the below example) under the condition that the co-

referential argument has been fronted, also leaving a tracebehind (the firsttrace-1 in

the below example). The difficulty about them is that the rightmost trace is contingent

on the WH-phrase having been fronted beforehand, and that this is difficult to capture
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in a lexicon entry. (A sentence like “Peter files papers without reading.”) is not gram-

matically correct. I currently do not have a good treatment for traces due to parasitic

gaps.

SBARQ

WHNP-1

Which papers

SQ

VBD

did

SQ

NP-2

you

VP

VB

file

NP

trace-1

PP

IN

without

S-NOM

NP

trace-2

VP

VBG

reading

NP

trace-1
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Padó, U. (2007). The Integration of Syntax and Semantic Plausibility in a Wide-
Coverage Model of Human Sentence Processing. PhD thesis, Saarland University.

Palmer, M., Gildea, D., and Kingsbury, P. (2003). The proposition bank: An annotated
corpus of semantic roles.Computational Linguistics, 31(1):71–106.

Phillips, C. (2003). Linear order and constituency.Linguistic Inquiry, 34(1):45pp.

Pickering, M. J. and Garrod, S. (2007). Do people use language production to make
predictions during comprehension?Trends in Cognitive Sciences, 11(3):105–110.

Pickering, M. J., Traxler, M. J., and Crocker, M. W. (2000). Ambiguity resolution
in sentence processing: Evidence against frequency-basedaccounts. Journal of
Memory and Language, 43(3):447–475.

Pinheiro, J. C. and Bates, D. M. (2000).Mixed-Effects Models in S and S-PLUS.
Springer, New York.

Pollard, C. and Sag, I. A. (1994).Head-Driven Phrase Structure Grammar. University
of Chicago Press, Chicago.

Potts, G., Keenan, J., and Golding, J. (1988). Assessing theoccurrence of elaborative
inferences: Lexical decision versus naming.Journal of Memory and Language,
27(4):399–415.

Purver, M. and Kempson, R. (2004). Incremental parsing, or incremental grammar?
In Frank Keller, Stephen Clark, M. C. and Steedman, M., editors, Proceedings of
the ACL Workshop on Incremental Parsing: Bringing Engineering and Cognition
Together, pages 74–81, Barcelona, Spain.

R Development Core Team (2007).R: A language and environment for statistical
computing. ISBN: 3-900051-07-0. R Foundation for Statstical Computing, Vienna,
Austria.

Ratcliff, R. (1979). Group reaction time distributions andan analysis of distribution
statistics.Psychological Bulletin, 86(3):446–461.

Rayner, K. (1998). Eye movements in reading and informationprocessing: 20 years
of research.Psychological Bulletin, 124(3):372–422.

Rayner, K. and Bertera, J. H. (1979). Reading without a fovea. Science,
206(4417):468–469.

Reali, F. and Christiansen, M. H. (2007). Processing of relative clauses is made easier
by frequency of occurrence.Journal of Memory and Language, 53:1–23.



304 Bibliography

Reichle, E., Pollatsek, A., and Rayner, K. (2006). EZ Reader: A cognitive-control,
serial-attention model of eye-movement behavior during reading.Cognitive Systems
Research, 7(1):4–22.

Reichle, E. D., Warren, T., and McConnell, K. (2009). Using E-Z Reader to model
the effects of higher level language processing on eye movements during reading.
Psychonomic Bulletin & Review, 16(1):1–21.

Resnik, P. (1992). Left-corner parsing and psychological plausibility. In In The Pro-
ceedings of the fifteenth International Conference on Computational Linguistics,
COLING-92, pages 191–197.

Richter, T. (2006). What is wrong with ANOVA and multiple regression? Analyz-
ing sentence reading times with hierarchical linear models. Discourse Processes,
41:221–250.

Roark, B. (2001a). Probabilistic top-down parsing and language modeling.Computa-
tional Linguistics, 27(2):249–276.

Roark, B. (2001b).Robust probabilistic predictive syntactic processing: motivations,
models, and applications. Brown University Providence, RI, USA.

Roark, B., Bachrach, A., Cardenas, C., and Pallier, C. (2009). Deriving lexical and
syntactic expectation-based measures for psycholinguistic modeling via incremen-
tal top-down parsing. InProceedings of the 2009 Conference on Empirical Methods
in Natural Language Processing, pages 324–333, Singapore. Association for Com-
putational Linguistics.

Roland, D. (2008). Relative clauses and surprisal. InPoster presented at the 14th
Annual Conference on Architectures and Mechanisms for Language Processing.

Roland, D. (2009). Relative clauses remodeled: The problemwith mixed-effect mod-
els. InPoster presented at the CUNY 2009 Conference on Human Sentence Process-
ing.

Roland, D., OMeara, C., Yun, H., and Mauner, G. (2007). Processing object relative
clauses: Discourse or frequency. InPoster presented at the CUNY sentence process-
ing conference. La Jolla, CA.

Rozenberg, G. and Salomaa, A. (1997).Handbook of Formal Languages: Beyond
Words. Springer Verlag.

Sag, I. A. and Fodor, J. D. (1994). Extraction without traces. In Proceedings of the
Thirteenth West Coast Conference on Formal Linguistics, pages 365–384, Stanford,
CA. CSLI Publications.

Sampson, G. (1995).English for the Computer: The SUSANNE Corpus and Analytic
Scheme. Clarendon Press, Oxford.



Bibliography 305

Sarkar, A. (2001). Applying co-training methods to statistical parsing. InProceedings
of the 2nd Meeting of the North American Association for Computational Linguis-
tics: NAACL, pages 175–182, Pittsburgh, PA.

Schabes, Y. and Waters, R. C. (1995). Tree insertion grammar: a cubic-time, parsable
formalism that lexicalizes context-free grammar without changing the trees pro-
duced.Fuzzy Sets Syst., 76(3):309–317.

Schubert, L. K. (1984). On parsing preferences. InProceedings of the Tenth Interna-
tional Conference on Computational Linguistics, pages 247–250.

Schuler, W., Miller, T., AbdelRahman, S., and Schwartz, L. (2008). Toward a
psycholinguistically-motivated model of language processing. In Proceedings of
the 22nd International Conference on Computational Linguistics-Volume 1, pages
785–792. Association for Computational Linguistics.

Shen, L. and Joshi, A. K. (2005). Incremental ltag parsing. In HLT ’05: Proceedings of
the conference on Human Language Technology and Empirical Methods in Natural
Language Processing, pages 811–818.

Shieber, S. (1985). Evidence against the context-freenessof natural language.Lin-
guistics and Philosophy, 8(3):333–343.

Shieber, S. M. and Johnson, M. (1993). Variations on incremental interpretation.Jour-
nal of Psycholinguistic Research, 22(2):287–318.

Singer, M. and Ferreira, F. (1983). Inferring consequencesin story comprehension.
Journal of Verbal Learning and Verbal Behavior, 22(4):437–448.

Singer, M., Graesser, A., and Trabasso, T. (1994). Minimal or global inference during
reading.Journal of Memory and Language, 33:421–441.

Staub, A. (2007). The parser doesn’t ignore intransitivity, after all. Journal of Experi-
mental Psychology: Learning, Memory, and Cognition, 33:550–569.

Staub, A. (2010). Eye movements and processing difficulty inobject relative clauses.
Cognition, 116:71–86.

Staub, A. and Clifton, C. (2006). Syntactic prediction in language comprehension: Ev-
idence from either . . . or.Journal of Experimental Psychology: Learning, Memory,
and Cognition, 32:425–436.

Steedman, M. (1996).Surface structure and interpretation. MIT press.

Steedman, M. (2000).The syntactic process. The MIT press.

Steedman, M. and Altmann, G. (1989). Ambiguity in context: Areply. Language and
Cognitive Processes, 4:105–122.

Sturt, P. and Lombardo, V. (2005). Processing coordinate structures: Incrementality
and connectedness.Cognitive Science, 29:291–305.



306 Bibliography

Sturt, P. and Yoshida, M. (2008). The speed of relative clause attachment. InProceed-
ings of the 14th Annual Conference on Architectures and Mechanisms for Language
Processing, Cambridge, UK.

Swets, B., Desmet, T., Clifton, C., and Ferreira, F. (2008).Underspecification of
syntactic ambiguities: Evidence from self-paced reading.Memory and Cognition,
36:201–216.

Swinney, D. A. and Cutler, A. (1979). The access and processing of idiomatic expres-
sions.Journal of Verbal Learning and Verbal Behavior, pages 523–534.

Tabor, W., Galantuccia, B., and Richardson, D. (2004). Effects of merely local syntac-
tic coherence on sentence processing.Journal of Memory and Language, 50(4):355–
370.

Tabor, W. and Hutchins, S. (2004). Evidence for self-organized sentence processing:
Digging in effects.Learning, Memory, 30(2):431–450.

Tabor, W., Juliano, C., and Tanenhaus, M. (1997). Parsing ina dynamical system:
An attractor-based account of the interaction of lexical and structural constraints in
sentence processing.Language and Cognitive Processes, 12(2):211–271.

Tabor, W. and Tanenhaus, M. (2001). Dynamical systems for sentence processing.
Connectionist psycholinguistics, pages 177–211.

Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., and Sedivy, J. C. (1995).
Integration of visual and linguistic information in spokenlanguage comprehension.
Science, 268:1632–1634.

Tesnière, L. (1959).Elements de syntaxe structurale. Editions Klincksieck.

The XTAG Research Group (2001). A lexicalized tree adjoining grammar for english.
Technical report, Institute for Research in Cognitive Science, University of Pennsyl-
vania.

Thompson, H. S., Dixon, M., and Lamping, J. (1991). Compose-reduce parsing. In
Proceedings of the 29th annual meeting on Association for Computational Linguis-
tics, pages 87–97, Berkeley, California.

Traxler, M., Morris, R., and Seely, R. (2002). Processing Subject and Object Rela-
tive Clauses: Evidence from Eye Movements.Journal of Memory and Language,
47(1):69–90.

Traxler, M., Williams, R., Blozis, S., and Morris, R. (2005). Working memory, ani-
macy, and verb class in the processing of relative clauses.Journal of Memory and
Language, 53(2):204–224.

Traxler, M. J. (2007). Working memory contributions to relative clause attachment
processing: A hierarchical linear modeling analysis.Memory and Cognition.



Bibliography 307

Traxler, M. J., Pickering, M. J., and Clifton, C. (1998). Adjunct attachment is not a
form of lexical ambiguity resolution.Journal of Memory and Language, 39:558–
592.

Trueswell, J. C., Tanenhaus, M. K., and Kello, C. (1993). Verb-specific constraints
in sentence processing: Separating effects of lexical preference from garden-
paths. Journal of Experimental Psychology: Learning, Memory, andCognition,
19(3):528–553.

Vadas, D. and Curran, J. (2007). Adding noun phrase structure to the penn treebank. In
Proceedings of the 45th Annual Meeting of the Association ofComputational Lin-
guistics, pages 240–247, Prague, Czech Republic. Association for Computational
Linguistics.

van Berkum, J., Hagoort, P., and Brown, C. (1999a). Semanticintegration in sen-
tences and discourse: Evidence from the N400.Journal of Cognitive Neuroscience,
11(6):657–671.

van Berkum, J., Koornneef, A., Otten, M., and Nieuwland, M. (2007). Establishing
reference in language comprehension: An electrophysiological perspective.Brain
Research, 1146:158–171.

van Berkum, J. J., Brown, C., Zwitserlood, P., V. Kooijman, V., and Hagoort, P. (2005).
Anticipating upcoming words in discourse: Evidence from erps and reading times.
Journal of Experimental Psychology: Learning, Memory and Cognition, 31:443–
467.

van Berkum, J. J. A., Brown, C. M., and Hagoort, P. (1999b). Early referential con-
text effects in sentence processing: Evidence from event-related brain potentials.
Journal of Memory and Language, 41:147–182.

van Gompel, R. P., Pickering, M. J., Pearson, J., and Liversedge, S. P. (2005). Evidence
against competition during syntactic ambiguity resolution. Journal of Memory and
Language, 52:284–307.

Vasishth, S. and Lewis, R. L. (2006). Argument-head distance and processing com-
plexity: Explaining both locality and antilocality effects. Language, 82(4):767–794.

Vijay-Shankar, K. and Joshi, A. K. (1986). Some computational properties of tree
adjoining grammars. InHLT ’86: Proceedings of the workshop on Strategic com-
puting natural language, pages 212–223, Morristown, NJ, USA. Association for
Computational Linguistics.

Vijay-Shanker, K. and Joshi, A. K. (1988). Feature structures based tree adjoining
grammars. InProceedings of the 12th conference on Computational linguistics,
pages 714–719, Morristown, NJ, USA. Association for Computational Linguistics.

Vijay-Shanker, K. and Weir, D. J. (1994). The equivalence offour extensions of
context-free grammars.Mathematical Systems Theory, 27:27–511.



308 Bibliography

Vitu, F., McConkie, G., Kerr, P., and O’Regan, J. (2001). Fixation location effects
on fixation durations during reading: An inverted optimal viewing position effect.
Vision Research, 41(25-26):3513–3533.

Warren, T. and Gibson, E. (2002). The influence of referential processing on sentence
complexity.Cognition, 85(1):79–112.

Weir, D. (1988).Characterizing Mildly Context-Sensitive Grammar Formalisms. PhD
thesis, Department of Computer and In- formation Science, University of Pennsyl-
vania.

Wells, J., Christiansen, M., Race, D., Acheson, D., and MacDonald, M. (2009). Expe-
rience and sentence processing: Statistical learning and relative clause comprehen-
sion. Cognitive psychology, 58(2):250–271.

Witten, I. H. and Bell, T. C. (1991). The zero-frequency problem: Estimating the
probabilities of novel events in adaptive text compression. IEEE Transaction on
Information Theory, 37(4):1085–1094.

Wu, S., Bachrach, A., Cardenas, C., and Schuler, W. (2010). Complexity metrics in
an incremental right-corner parser. InProceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, pages 1189–1198, Uppsala, Sweden.
Association for Computational Linguistics.

Xia, F., Palmer, M., and Joshi, A. (2000). A uniform method ofgrammar extraction and
its applications. InProceedings of the 2000 Joint SIGDAT conference on Empirical
methods in natural language processing and very large corpora, pages 53–62.

Yoshida, M., Walsh-Dickey, M., and Sturt, P. (2009). Sluicing and syntactic prediction.
In Preparation.


	Introduction
	Central Claims
	Motivation
	Evaluation on Naturally Occurring Text
	Computational Modelling as a Method
	Why a new Theory of Sentence Processing?
	Why Focus on Syntax?
	Relevance

	Overview of the Thesis

	Background
	Reading Times as a Measure of Human Sentence Processing
	Characteristics of Human Reading
	Factors that Influence Reading Times
	Modelling low-level reading processing
	Experimental Methods for the Acquisition of Reading Data

	Models of Human Sentence Processing
	Early approaches
	Dependency Locality Theory
	Frequency-based Theories
	Surprisal
	Transitional Probabilities
	Entropy
	Competition-Based Models
	Memory and Activation

	Summary and Conclusions

	Data and Analysis Methods
	The Dundee Corpus
	Distributions of Reading Measures
	Distributions for Low-Level Variables
	Distribution of Explanatory Variables for Syntactic Processing
	Discussion

	Method: Mixed-Effects Models
	Regression Analysis
	Normal Distribution of the Response Variable
	Correlation of Explanatory Variables
	Dealing with Repeated Measures
	Outlier Removal
	Model Selection
	Discussion

	Conclusions

	Case Study: Processing Difficulty in Naturally Occurring Relative Clauses
	Empirical Findings in Relative Clause Processing
	Experiment on RC Embedded Verb
	Materials
	Regression Procedure

	Results
	Total Reading Time
	Early measures

	Discussion
	Related Work on Contextualised Relative Clause Processing

	Conclusions

	Broad Coverage Evaluation of DLT and Surprisal
	Motivation
	Predictors of Processing Difficulty
	Experiment 1: Integration Cost
	Method
	Results
	Discussion

	Experiment 2: Integration Cost for Verbs and Nouns
	Method
	Results
	Discussion

	Experiment 3: Surprisal
	Method
	Results
	Discussion

	Experiment 4: A Comparative Model of DLT and Surprisal
	Method
	Results
	Discussion

	General Discussion
	Conclusions

	A Theory of Explicit Predictions
	Fundamental Assumptions and Properties
	Incrementality
	Prediction
	Serial vs. parallel processing
	Broad-coverage

	Design of the Sentence Processing Theory
	Processing Difficulty

	Suitability of Grammar Formalisms
	Probabilistic Context-Free Grammar
	Combinatory Categorial Grammar
	Tree Adjoining Grammar
	Dependency Grammar
	Dynamic Syntax
	Discussion

	Conclusions

	PLTAG: A psycholinguistically motivated version of TAG
	Limitations of Standard LTAG
	An Introduction to LTAG
	LTAG and Incrementality

	The PLTAG Formalism
	Derivations in PLTAG
	Equivalence of PLTAG and LTAG
	Predictions in PLTAG
	Comparison to DVTAG

	Lexicon Design and Open Questions
	Predicting a Sentence at the Beginning
	Size of Lexicon Entries
	Arguments and Modifiers
	Free Word Order Languages
	Traces

	Conclusions

	An Incremental Predictive Parser for PLTAG
	Treebank Conversion
	Disambiguating Flat Structures
	Auxiliary Treatment
	Copula Treatment
	Remaining Problems

	Lexicon Induction
	Creating the Canonical Lexicon
	Creating the Prediction Lexicon
	Lexicon Induction Statistics

	The Incremental Parsing Algorithm
	The Concept of Fringes
	A Parsing Example
	Formalisation of the Parser Operations
	Proof that Operations produce only valid PLTAG Derivations

	Optimisations for the Implementation
	Restricted Use of Prediction Trees
	Arguments vs. Modifiers
	Chart parsing
	Tagging
	Supertagging

	Probability Model
	Smoothing and Backoff-levels

	Parser Evaluation
	Prediction Trees and Supertagging
	Comparison to other Parsers
	Discussion

	Formalisation of the Linking Theory
	Parameters in Theory and Implementation
	Implementation of Surprisal Component
	Implementation of Verification Cost Component
	Discussion

	Conclusions

	Evaluation
	Evaluation on Psycholinguistic Case Studies
	SRC / ORC asymmetry
	Either-or Predictions
	Anti-locality Effects
	Centre Embedding
	Facilitating Ambiguity
	Local Coherence Effects
	Digging-in Effects
	Storage Costs
	Garden-Path Effects
	Discussion

	Broad Coverage Evaluation on the Dundee Corpus
	Data
	Results
	Comparison to DLT and Surprisal
	Discussion

	General Discussion
	Comparison to Other Models
	Conclusions

	Conclusions and Future Work
	Main Contributions
	Directions for Further Research
	Evaluation of Theory in Other Languages
	Integration with Semantics and Discourse
	Incremental Update of the Language Model
	Experiments on Prediction Grain Size
	Automatic Determination of Lexicon Entry Sizes
	Modelling the Effect of Processing Difficulty on Reading Times
	Improving Parser Performance


	CCG and Incrementality
	Standard CCG Rules
	The limits of CCG and Over-generation
	Incrementality in CCG

	Traces in PLTAG
	Relative Clauses
	Traces for Passive Constructions
	Raising and Control
	Extraction
	Long-distance extractions
	Parasitic gaps

	Bibliography

