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Abstract

The aim of this thesis is to design and implement a cognitipéhusible theory
of sentence processing which incorporates a mechanism ddeling a prediction
and verification process in human language understandiniggceevaluate the validity
of this model on specific psycholinguistic phenomena as aglbn broad-coverage,
naturally occurring text.

Modeling prediction is a timely and relevant contributiorifte field because recent
experimental evidence suggests that humans predict upgostiucture or lexemes
during sentence processing. However, none of the curremé¢rsee processing theo-
ries capture prediction explicitly. This thesis proposesusel model of incremental
sentence processing that offers an explicit predictionvamification mechanism.

In evaluating the proposed model, this thesis also makesthoaeogical con-
tribution. The design and evaluation of current sentenoegssing theories are usu-
ally based exclusively on experimental results from indlinl psycholinguistic exper-
iments on specific linguistic structures. However, a themrlanguage processing in
humans should not only work in an experimentally designedrenment, but should
also have explanatory power for naturally occurring lamggua

This thesis first shows that the Dundee corpus, an eye-trgckirpus of newspaper
text, constitutes a valuable additional resource fortgstentence processing theories.
| demonstrate that a benchmark processing effect (the ctidipgect relative clause
asymmetry) can be detected in this data set (Chapter 4).nlah@uate two existing
theories of sentence processing, Surprisal and Dependauwality Theory (DLT),
on the full Dundee corpus. This constitutes the first broaektage comparison of
sentence processing theories on naturalistic text. | fiatllibth theories can explain
some of the variance in the eye-movement data, and that gpgyre different aspects
of sentence processing (Chapter 5).

In Chapter 6, | propose a new theory of sentence processhighwxplicitly mod-
els prediction and verification processes, and aims to whé&complementary aspects
of Surprisal and DLT. The proposed theory implements keynidag concepts such
as incrementality, full connectedness, and memory decéag uhderlying grammar
formalism is a strictly incremental version of Tree-adjogn Grammar (TAG), Psy-
cholinguistically motivated TAG (PLTAG), which is introdad in Chapter 7. | then
describe how the Penn Treebank can be converted into PLTAGatoand define an
incremental, fully connected broad-coverage parsingrdlgo with associated prob-
ability model for PLTAG. Evaluation of the PLTAG model shotet it achieves the



broad coverage required for testing a psycholinguistiomen naturalistic data. On
the standardized Penn Treebank test set, it approachesrfioenpance of incremental
TAG parsers without prediction (Chapter 8).

Chapter 9 evaluates the psycholinguistic aspects of theoged theory by testing
it both on a on a selection of established sentence progcepbhenomena and on the
Dundee eye-tracking corpus. The proposed theory can acémua larger range of
psycholinguistic case studies than previous theoriesjsaadignificant positive pre-
dictor of reading times on broad-coverage text. | show thaan explain a larger
proportion of the variance in reading times than either Dhegration cost or Sur-
prisal.
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Chapter 1

Introduction

This chapter presents the motivation for evaluating sestgarocessing models on
broad-coverage, naturally occurring text and motivates davelopment of a new
model of human sentence processing. It also summarizestiieatclaims put for-
ward in this thesis and gives an overview of its structure.

1.1 Central Claims

Recent evidence from psycholinguistic experiments suggeas humans predict up-
coming structure or lexemes during sentence processinget#r, none of the current
sentence processing theories model prediction explicithe aim of this thesis is to
design and implement a cognitively plausible theory ofsece processing which con-
tains a mechanism for modelling syntactic prediction anafigation as processes in
language understanding.

The thesis puts forward the three claims. The first claimas évaluation of psy-
cholinguistic theories on broad-coverage data can be d ealditional resource to
traditional lab experiments, and that it can provide insghhich cannot be obtained
from the data acquired in a traditional lab experiment sgtti

The second claim is that two previous theories of sentenceegsing, Surprisal
and Dependency Locality Theory explain different aspetsentence processing.

The third claim in this thesis is that the explicit modelliofprediction and veri-
fication is cognitively plausible and provides a framewarkd¢ombining the different
aspects of DLT and Surprisal.
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1.2 Motivation

This section motivates the questions addressed and matkedsn this thesis.

1.2.1 Evaluation on Naturally Occurring Text

Theories for syntactic processing are usually inspiredliseovations from very spe-
cific structures, such as garden path sentences, relativeed, verb-final construc-
tions, centre-embedding, ambiguous PP-attachment, igimtessing, case ambigu-
ity, direct object vs. sentence complement ambiguity, etied often rather extreme
versions of these structures are used to find reliable sffétts possible that effects
observed in carefully controlled lab experiments are rar@bsent in naturalistic data
such as those found in corpora.

In order for a theory to claim that it is a theory of syntactiogessing in humans,
it should not only be able to explain the pathologies in humpeotessing, but also
processing facilitation and behaviour on a wide varietytnictures. Theories should
be evaluated on material that humans encounter in they il and not exclusively
on unnatural special cases, such as garden paths or diffangdtructions that push the
boundaries of what humans can process. An important questiask at this stage is
therefore whether the existing theories scale up to ndyusaturring, contextualised
text, and whether syntactic structures have any measurghlence on such contex-
tualised reading.

Many theories are partial — they were only specified for a subswhat happens
in natural language. Applying them to “real” text makes icessary to complete
these theories. Applying sentence processing theoriesrfus data helps to assess
performance and detect weaknesses, incompleteness hmddaf existing theories.
Ultimately, theories and computational models of them ddug used not only for
theoretical insights about sentence processing in hunbahspuld also be employed
in NLP applications.

¢, From a corpus, a range of standard eye-tracking measurdsa@mputed just
like for experimental materials, but the results hold faunalistic, contextualised text,
rather than for isolated example sentences manually eanstt by psycholinguists.
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1.2.2 Computational Modelling as a Method

Computational modelling (i.e., implementing theoriesaisimportant methodology
in psycholinguistic research. Modelling helps to make masgects explicit, which
otherwise risk to remain underspecified in theories. Itvedl®o observe the effect of
assumptions on the global theoretic framework and undedteeir implications (for

example the implications of controversial notions, suchktest incrementality).

Constructing an implementable computational model poses/design questions,
which in turn can lead to well-motivated psycholinguistiperiments aiming to an-
swer these questions. Examples from our work are questadressing the grain size
of predictions, whether a main verb should always be predjar whether arguments
and modifiers should be predicted.

A fully specified model can be used to generate new predigtion unexplored
structures which can then be tested in an experimentahgdir on the naturalistic
corpus data, of course), and can then provide new insightefming the model or
falsifying assumptions that the model makes.

1.2.3 Why a new Theory of Sentence Processing?

The theory proposed in this thesis differs from existingoties in that it contains an
explicit mechanism for prediction and verification. It fuermore assumes that the
parsing process is strictly incremental, such that all wardan analysis are always
connected under a single node.

Recent experimental evidence for prediction comes fr‘orm(lda et a‘., 20d3;
, 200%; Staub and Clifté)n, 2006). Modellprgdiction and a cor-
responding verification mechanism can advance our unaelisig.of how they inter-

van Berkum et AI.

act with other properties of human sentence processing andhey are reflected in
experimental findings. For example, the present work shbassprediction becomes
inherently necessary under the assumption of a strictiemental parsing process.

Finally, current theories of sentence processing can orplaé some of the phe-
nomena found in psycholinguistic experiments. Therefdrawing from those the-
ories and designing a theory that can extend the coverageswiops theories to a
wider range of phenomena will constitute an advance in odetstanding of human
language processing.
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1.2.4 Why Focus on Syntax?

The focus of this thesis is on sentence structure. Howevecegsing difficulty is
triggered by many other aspects of language understansliloyy, as lexical access to
words, semantic anomalies or discourse. This thesis ddedanm that syntax plays a
bigger role in processing than the other components. InfeeEexpect that low-level
effects and artefacts during reading (oculomotor probjesascade planning, fixation
positions of words, shapes and orthographic lengths of svetd.) account for the
bulk of the variance in the eye movement record. Current hsooiereading such
as EZ-readelL (Reichle et‘AI., 2009) and SWI‘FT (Engbert ,&G&DS) mainly focus on
low-level processes, although Cloze probabilities hagemtly been included into one

of the models as a higher-level linguistic predictor to expregressions during read-
ing JReichIe et al., 2009). However, these models do nowatimch introspection or
theoretical illumination with respect to understandingvliuman sentence processing
works: Cloze probabilities are a rather coarse measuredamat disentangle syntac-
tic from lexical or semantic effects. Therefore, it is imsting to investigate whether
we can find reading effects of higher-level linguistic preses such as syntax, seman-
tics and discourse using more fine-grained models. Syntalsc well-understood
both theoretically and in NLP, and thus provides a good is@goint for modelling
(rather than semantics or discourse, which usually recuanee syntactic structure to
calculate their representations on).

1.2.5 Relevance

Relevance of this work stems from two aspects. On the one, hand/ant to achieve
a better understanding of how sentence comprehension wonksnans. On the other
hand, knowing about what causes processing difficulty fondws can be exploited in
human-computer interaction to assess understandabiligreerate easily understand-
able text.

The goal of this thesis is not only to build a model that worksllvin terms of
making predictions that correlate with reading time dataltso in particular to build a
cognitively plausible model. The model proposed here iitogly plausible in that it
models memory and decay, and draws on concepts from psgghatic experiments
such as incrementality and prediction.

Possible applications for such a system would be spokeodgiial systems, user
adaptation in text generation, e-learning systems or tahbtyacheckers. In spoken
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dialogue systems, knowing about the processing difficultyiaan will incur when

hearing or reading a specific sentence could be used to atitaiyachoose among
a number of possible ways to formulate the information tedabibe conveyed to the
user. In addition, deciding on dialogue turn length can lficdit in spoken dialogue

systems with elaborated information presentation str@se¢e.g. Demberg and Moore
(2006)). A system that knows how difficult a sentence (or giajah) is could be used
to automatically identify the optimal length of a dialogugrt. In a more general

context, such a system could be used for choosing the optwellof difficulty in text
generation for a specific group of users (children vs. ejdeebple vs. adults).

In e-learning (especially foreign language learning),siteven more crucial to
choose sentences with an appropriate level of difficultytfierlearner, and one way to
do this is to measure syntactic difficulty (in addition to okng an appropriate vocab-
ulary). Furthermore, a “readability checker”, similar teggell-checker, could point out
to the author bits in text that contain very complex and diftito understand syntactic
structures.

Another field of applications would emerge if it could be simothat computer
programs also have more difficulty processing text that figscdit for humans (one
example for this is PP-attachment). Then special stragegield be used to handle bits
of text that would be difficult to translate, or we might assanswers from difficult
text a lower confidence score in question answering.

1.3 Overview of the Thesis

Chapter 2  provides background information about eye-tracking as asme of hu-
man language processing difficulty. This background is irtgea for understanding
the analysis of our main source of data, the Dundee eyentrgchrpus, and the meth-
ods used for analysis of this data set (Chapter 3), as weadkrdléd evaluation of models
of human processing difficulty (Chapters 4, 5 and 9). Segpridpositions the the-
ory put forward in this thesis with respect to other sentgmmoeessing theories. The

detailed description of two theories, dependency loc#iigory (DLT, Gibson (2000))

and Surprisal (Hale, 2001) provides background for undadihg the evaluation of

these theories in Chapters 4 and 5, and the design of ourytbéexplicit prediction,
proposed in Chapter 6.
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Chapter 3 analyses the properties of the eye-movement informatidghérDundee
Corpus, a collection of newspaper articles (ca. 50,000 gjofor which the eye-
movement record of 10 subjects is available. The analykitaethe characteristics of
the eye-movement record in the Dundee Corpus to readingctesistics reported in
other eye-tracking experiments.

The second part of Chapter 3 explains mixed effects modets d&scusses how
they can be applied to the Dundee Corpus data.

Chapter 4 represents a proof of concept that broad-coverage dataasube news-
paper texts from the Dundee corpus, can be used as a resoumaluating theories
of sentence processing. We focus on a very specific and raalydnequent structure,
relative clauses. The relative clause asymmetry (objéative clauses are more diffi-

cult to process than subject relative clauses) (King ant] 1891) is a well-established

effect. Being able to show that this asymmetry does not oxit & experimental test
settings but can also be found in natural language dataatetichat broad-coverage
texts such as the Dundee corpus can be used as a complenrestance for testing
theories, in addition to experimental test suites. It thudivates our broad-coverage
evaluation of sentence processing theories in Chapterd'9.an

Chapter 5] evaluates two previous theories of sentence processimggridency Lo-
cality Theory (DLT) and Surprisal on the broad-coveragaddtthe Dundee Corpus.
To our knowledge, this is the first time that theories of secgéegprocessing have been
tested on broad-coverage data. We gain insights about évéops theories’ abilities
to scale to broad-coverage text and find that in particulal, Dtegration cost is not
defined on a sufficiently general level to account for genamatessing difficulty.

Another central finding is the fact that Surprisal and DLTegration cost are un-
correlated, both for arbitrary words in the corpus, and g (for which DLT makes
the bulk of its predictions). This result suggests that agete theory of sentence
processing complexity needs to include two mechanismsclkwed-looking one as
proposed by DLT, and a forward-looking one as proposed bpr&al. The analysis
thus sets the ground for the development of our own theorg e 6).

Chapter 6 proposes a theory of sentence processing that is desigbedtignitively
plausible by implementing fundamental aspects of humatesea processing, such as
incrementality and prediction followed by a verificatioopess, and is general enough
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for modelling broad-coverage naturally occurring data.e Tieory also draws from
what we learnt from the evaluation of Surprisal and Depeogémcality Theory on
the Dundee Corpus. It consists of a parsing process, frorohwggntence processing
difficulty is derived.

The second part of the chapter evaluates five grammar famalwith respect to
their suitability as a basis for implementing the suggestatence processing theory,
and concludes that an incremental version of Tree-Adjgii@nammar (TAG) would
satisfy requirements best.

Chapter 7 defines a variant of the Tree-Adjoining Grammar formalis¥G}, called
Psycholinguistically Motivated TAG (PLTAG) and relatesatstandard TAG. The for-
malism allows for incremental, fully connected derivatafra sentence, and contains
explicit mechanisms for prediction and verification.

Chapter 8] explains the development of a strictly incremental, preédekcparser for
PLTAG. This chapter first describes the conversion of thenPe@rebank into PLTAG
format and the induction of a PLTAG lexicon based on the caeadePLTAG tree bank.
It then defines an incremental parsing algorithm and a pibtyatmodel for PLTAG.
The parser is evaluated on the Penn Treebank.

The last part of the chapter contains the formalisationetiinking Theory, which
connects the parsing process to processing difficulty ptiedis generated by the sen-
tence processing theory proposed in Chapter 6.

Chapter 9] evaluates our theory of sentence processing with explreitliption on
data from a range of psycholinguistic case studies and shvour theory can ex-
plain both locality and surprisal effects, which other thie® are not able to explain
simultaneously. The theory proposed in this thesis is thagergenerally applicable
than previous theories. Secondly, we evaluate the theotlgehroad-coverage, natu-
rally occurring text from the Dundee Corpus and show thattbeory is a significant
predictor of reading times, and that it can explain a largeoant of the variance than
either Surprisal or DLT can. Finally, our sentence processheory is compared to
the alternative sentence processing theories that weliaaitn Section 2.2.

Chapter 10 summarizes the main contributions made by this thesis, ares gn
outlook on future work.






Chapter 2
Background

This chapter discusses reading times as a measure for piagekfficulty in human
sentence processing. It outlines the characteristicsaolimg and factors that influence
reading, as well as giving an overview of methods for acqgireading data, such as
eye-tracking. In the second section, previous models ofdmusentence processing
are presented.

These basics about reading, eye-tracking and models ofisergence process-
ing are relevant background for presentation of the Dunadepus data set and the
methodological discussion concerning linear mixed-éffenodels in Chapter 3, as
well as the experiments in Chapters 4, 5 and 9.

2.1 Reading Times as a Measure of Human Sentence

Processing

While the high-level goal of my work is to investigate theat@nship between syntac-
tic structures and processing difficulty, this thesis dealy with processing difficulty
in as far as can be derived from reading times. The princgea is that reading takes
longer at difficult regions in the text, because words aradptdor longer (e.g. it has
been found that infrequent words which are arguably mofedif to access lexically,
take longer to read than frequent words of the same lengtiecause parts of a
sentence have to be read again. Longer reading times alsgaterwith e.g. naming
latency, another measure that is thought to correlate witicuwty, but which is not
specific to reading.

The nature of the relation between language processingeading is generally

9
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believed to be some more or less strong version of the “eywtimk” hypothesis
which states that people always look at the word they areentlyr processing. Some
people argue against a strong “eye-mind link”, saying teatimg is a fairly automatic
process that proceeds at a very steady speed and is onlynicéldidy low-level visual
and oculomotor factors. In this view, syntactic processdyg mfluence the steady
reading flow when there is a “total processing breakdownnathé case of garden
paths. In this work, it is assumed that more subtle syntactcessing difficulties can
also influence reading times, and can thus be measured iormeof longer reading
times and refixations on the words. This work evaluates tes@f sentence process-
ing difficulty using linear regressions with reading timesaaresponse variable. This
can be interpreted as a strong eye-mind link: syntacticggsiag difficulty for a word
is used as a predictor for reading times at that exact wordidiaer, note that some
measures of reading times that aggregate several fixa@ongassibly partially allevi-
ate the problem). A strict eye-mind link is probably too sgamf an assumption, and
should be relaxed in future work by integrating the prediasifor sentence processing
difficulty with a model of eye-movements in reading, see Gérap0, Section 10.2.6.

A challenge that one faces when using reading times as alaier@f syntactic
processing difficulty is that reading times are influenced targe number of variables.
It is difficult to factor out which part of the variation obsed in reading times can be
attributed to syntactic processing.

Alternative ways of researching processing difficulty aasdd on grammaticality
or plausibility judgements, completion studies (Cloze suga), brain imaging (for
example using EEG or fMRI) and visual world studies. An exifigr grammaticality
judgements is the study gfarden path sentencesA famous example for a garden
path sentence iShe horse raced past the barn fefit encountering the wortell, the
most likely analysis of the sentence is incompatible with ¢ontinuatiorfell, and a
much less likely analysis must be chosen for the prefix (spwading to the sentence
The horse that was raced past the barn)felGarden path sentences illustrate very
severe processing difficulty that leads to the total breakrdof the analysis process
and sometimes can mean that the correct analysis cannotbeé, fand a grammatical
sentence is judged as ungrammatical.

Completion studies are often used in pre-tests to assedhevhtems have sim-
ilar probabilities or are similarly easy or difficulty to mhet. In a completion study,
participants are given a sentence which lacks one or mordsaaond are asked to fill
those words in. The Cloze Probability of a word is then thepprton of times that a
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particular word was chosen by participants.

During brain imaging studies, language is presented asreigixt or speech, and
participant’s neural activity is measured. Examples folta@stablished effects include
the N400 and P600 effects observed in EEG studies. N40OOteffieve been shown
! 199§a)
while the P600 effect has been shown to occur at unexpeceuvand has often

to occur at semantic anomaliés (Brown and Hat_%ort, ]JQQSBmhum etal.

been linked to syntactic problen%s (Kaan et‘ al., 2000).

A more recent method are visual world studies where peoglenito sentences
while looking at pictures. The pictures participants fixzé@ be interpreted as reflect-
ing how participants interpret an ambiguous sentence, wrthey expect a sentence
to continue.

Limitations of Reading Experiments

Reading can only ever capture a limited amount of infornrmatibout language pro-
cessing, since it's a learnt skill and has only been acquisetiumans a short time
ago (as seen on the evolutionary scale of things). It is miffefrom hearing speech
sounds in that a reader can read at his own pace, whereag medented words are
perceived at a predefined speed. While a reader can go baassages that he did
not understand properly, this is not possible in speech. speech signal is usually
more noisy on the one hand, but also richer because it cenpaosodic information

that can be used for disambiguation.

2.1.1 Characteristics of Human Reading

When reading, the eye does not move over the text smoothlylyutick jumps. The
time while the gaze travels is called a saccade, and uswigstabout 25 to 60 mil-
liseconds. During a saccade, no information is taken inast een found that people
do not even notice light flashes that occur during a saccadsacgade is usually 7-8
letters far and is assumed to be planned in advance, becaagerfs very rarely land
on punctuation marks, spaces or highly predictable funatiords, but rather on long
words and in the middle of those, where high information dgmsn be expected. The
eye also does not move steadily forward in the text, but talstep backwards roughly
every 10 saccades. These backward saccades are also egtlessions. The intervals
when the eye rests still on a certain point are called fixatiénfixation usually takes
200 to 250 milliseconds.
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Figure 2.1 shows an example of a trace of human eye-movererits) reading,
which were recorded with an eye-tracker. The fixations arekethby blobs on the
words, and saccades are shown as fine lines. The small numéerso the blobs
indicate the fixation time in milliseconds. One can obsernvinis example of reading,
how function words likehe, or, andreceived no or fewer fixations than content words.

=T .‘::"ﬁ g5 - WG 224 .n 148 . |_. 118, 5
"-'-‘:"-55_-3' l';i;- Iﬁ i ‘-3,1&';..,:.___;-‘ure-"'.':-— =
o5, 180, 168l

E';:j.l;ia':lll---e?-" VYot

e ..‘_=_=‘__._J — 45, = NN
'*-_--.I‘l-lllrl-ir.]ﬁ'.‘vl-l ne fohims

5 - 0 04 176, 2384 133
1ebopn S BRG]t e P T T T TS MM W e
HegeSIEng-CERIURGE anc- AN T CHT Prgel-S¢
5 e _ o = Bt . L 252 =-.7 - o} 2402 f
5k E.‘;—.: . :\;i-_ u‘_.__g'l_.: | t.%:_ g S RETIE s 1‘-:1';-,_:_4. FERIOWF d

Figure 2.1: Trace of human eye-movements whilst reading recorded with an eye-tracker.

When fixating, information from a window of about 20 charastes taken into
account: 3-4 characters to the left and 15 characters taghe One can also differ-
entiate between the foveal region (abotfrdm the fixation point), from which most
of the information is extracted and the parafoveal regidio( 5 from the fixation
point). This data was obtained from studies where part ofékeis dynamically ob-
scured, depending on the subject’s fixation point, suchtti@subject can only see
a certain part of the text. Obscuring the foveal region hanldeund to slow down
reading considerably, but reading is still possible beearsugh information can be
19¥18p, it has been shown
that obscuring the parafoveal and further away regionssshiown reading although

taken from the parafoveal regi&n (Rayner and Bér&era,

subjects are not able to pin down what causes their readificpdty.

2.1.2 Factors that Influence Reading Times

Saccade lengths, fixation durations and refixation prob@silin reading are influ-
enced by a number of factors, such as letter recognitiongfmizes), oculomotor
errors (saccade planning errors), word length and frequeffects, fixation landing
position and launch distance, syntactic difficulties aridat$ on the semantic and dis-
course level, (for a review SQRLayM%S). When anaysiading times, those
of the factors that we are not directly interested in haveetdilbered out, in order to
obtain the residual variance which cannot be explained eyelow-level factors, but
potentially by those factors which we are interested in.
The factors that are known to impact reading times are:
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e Fonts and sizes
Fonts are not usually a problem in experimental settingauee they will nor-
mally be the same for the whole experiment and thereforegpoesent a poten-
tially confounding factor.

e Beginning or end of sentence or line
At the end of a line, a long saccade to the beginning of the imexthas to be
programmed, which may be a more difficult process and herkeentere time
than programming a short saccade. At the beginning of the time saccade
target might have been slightly missed, which may lead tahgéo fixation, or
quick correcting saccade.

e Frequency effects
Frequency has been found to be an important element in lexocass, with
frequent words being read faster than infrequent ones.

e Age of acquisition / familiarity
Lexical access speeds have also been shown to depend orafaynith the
word (familiar words are read faster), or the age of acqoisitwords that were
learnt at an earlier age are faster to access than wordg Eaarlater age. Of
course, frequency, familiarity and age of acquisition drergjly correlated, as
readers are more familiar with frequent words and haveikelquired them
earlier.

e Word length effects
Length effects are commonly found in reading, with short dgobeing read
faster than long words. The length-effects interact widgfrency effects (fre-
guent words are usually shorter), age of acquisition (loogenore complicated
words are acquired later) or morphological complexity (piaiogically com-
plex words are generally longer than simplex words).

e Launch distance
Vitu et al. (2001); Kennedy et al. (2003) showed that launistadce is also an
important contributing factor to fixation duration. The ¢gr the launch dis-

tance, the longer the expected fixation.

e Fixation landing position
The landing position of the fixation within the word has alseeb shown to have
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an important influence on reading times. Typically, words faxated longest
when the saccade lands towards the middle of the word (opvieaing posi-
tion). This may seem counter-intuitive as it should be fastelecode a word if
viewing acuity is good on most letters of the word, and is leeraferred to as
the IOVP (inverted optimal viewing position) effel:t (\/mu@IJ, 2001).

e Word position within the sentence
It is sometimes argued that people speed up their pace ohgead the sen-
tence goes on, meaning that words later on in the sentendeeaaxpected to be
processed faster than words at the beginning of a sentence.

e Morphological effects (more or less complex words)
Potentially decomposable words (likeyholg take longer to read than words
that are not potentially decomposable but have the saméilang frequency.

e Syntactic difficulties
Words that are syntactically unexpected take longer to.read

e Semantic difficulties
Semantically mismatching words also take longer to read tards that fit in
well semantically.

e Spill-over effects
If the previous word was difficult to process, longer progegsmes can also be
expected on the current word. This is called a spill-overatff

e Secondary tasks / concentration / depth of processing
Finally, interfering tasks or lack of concentration caroafgluence reading time.

2.1.3 Modelling low-level reading processing

A considerable proportion of the reading times can be aiteithto low-level processes
for identifying a word and accessing its meaning, which o@&fore the word is inte-
grated into a larger semantic context.

There are three main approaches among models of eye mowveimeeading that
make different assumptions about the relation betweendadimg process and the
actual fixation position in the text. The one type of modelsq&nown as sequen-
tial attention shifts (SAS) models) assumes a fairly cleadation between the fixated
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words and attention. In this framework, fixation on a patécuword means that this
word is being processed (with some interference to its tireeighbouring words
due to motoric latencies). In such models, the duration andtion of a fixation are
computed during the reading process and are calculated dtm@® in the text. The

EZ-Reader system is an example for such a mJ)deI (Reichle,‘éﬁ@lG). Recently, the
EZ-Reader model was also extended to accommodate a conigfonémgher-level
linguistic processing, which takes Cloze probabilitiegasstimate for syntactic and

semantic processing (Reichle et al., 2009).

The second type of model (Guidance by attentional grad(@#’€5)) implements a
looser relation between attention and fixations, and assamenderlying mechanism
that determines a certain pace and step-width at which tbe mpve. An example for
this second kind of model is the SWIFT systém (Engbert QQQD,S). In SWIFT, the
target of a saccade is determined by a stochastic procdss thiiluenced by a word’s

activation. This activation is dependent on visual anddistic properties of the words
(such as frequency), as well as the eccentricity of the wbaiv(far it is from the
current fixation). Fixation duration in SWIFT is modulatedthe “inhibition” process
which can redirect or inhibit a saccade if lexical accesfadity is encountered.

The third type of model (primary oculomotor control (POC)inly models ocu-
lomotor processes and doesn’t take into account any litigyssocesses for mod-
ulating the basic low-level visual information (such as @dength). The SERIF

model (McDonald et al., 2005) is an implemented example chsa non-linguistic
approach. One of the main contributions of the SERIF modikldsmplementation of
an anatomic constraint: the foveal split.

All current implemented models of eye-movement in readoay$ on oculomotor
and lexical access effects, and largely ignore syntacticsmantic processing. A
natural way to extend these models would thus be to add nrageistic components.
However, such an integration is outside the scope of thEtshénstead, linear regres-
sion models are used to test whether syntactic predictoraceount for some of the
variance in reading data above and beyond simple low-letdbonotor processes and
visual properties of words, which are explained by curreatleis of eye-movements
in reading. Two ways of integrating low-level predictionsne considered in for this
thesis: using the reading time predictions of an existingleh@as a predictor in the
regression model, vs. including the raw values of facto@mnto influence reading
(word length and frequency, launch distance, fixation laggosition etc.) as sepa-
rate predictors. When evaluating the SERIF model predistion the Dundee Cor-
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pus, a regression model that contained all of the raw faeptained a significantly
larger amount of the variance in the reading times than tleeage predictions from
the trained SERIF model (to obtain these, the SERIF modelusad to simulate the
eye-movements of 10 readers on the Dundee Corpus. The sadukading times
were then used as predictors for the real reading times imetip@ssion on the cor-
pus). Given these results, all of the models reported inviloik use the single direct
influencing factors as predictors instead of predictioasifa low-level reading model.

2.1.4 Experimental Methods for the Acquisition of Reading D ata

Information about human reading times on test sentences éxeriment can be ob-
tained with different methods. The most common ones arepseléd reading, rapid
serial visual presentation and eye-tracking. While rapidbs visual presentation and
self-paced reading give the experimenter more control it exactly the experi-
mental subject is perceiving (e.g. by blocking words togethto phrases which are
presented at the same time, and not allowing the subject tiagk in the sentence),
eye-tracking provides a more natural setting for reading.

2.1.4.1 Self-Paced Reading

In self-paced reading (SPR), text is presented in chunkkthensubject has to indicate
by pressing a key when they want to go on the next word (or chunkas been argued
that it is better not to present single words, but largersymtg. constituents, because
many words (in particular function words) are skipped irunaftreading.

There are several ways of conducting self-paced readirjestuwords (or con-
stituents) can be presented in the middle of the screen pmam, or the whole sen-
tence can be presented with dashes (keeping word lengtlpands) and only sequen-
tially revealing a subset of the words at a time.

Major differences between self-paced reading and eyé&itrg@re that the subject
cannot go back to previous parts of the sentence in SPR, Bubheeep everything
in memory, and don’t have parafoveal preview of upcomingdsoiThis might cause
reading to be unnatural and lead to artefacts (Bartek e2@0Q7), and might cause
results from SPR and eye-tracking studies to lead to difteesults. Finally, SPR has
been found to be slower than normal reading, and might thus tifferent properties
(e.g. some processes may occur on the word instead of onithev&r region), and
the additional task of pressing a button might also influeeegling behaviour.
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2.1.4.2 Eye-tracking

During eye-tracking, the eye-movements are recorded \aithezas (often attached to
the subject’s head) that track the pupils and are calibretébe screen. The text is
presented on a screen, showing one or more lines of text atea £ye-tracking has
been used in psycholinguistic research since the 70s. Datadye-tracking studies
can help to detect more subtle processing difficulties ttehat as obvious as garden
paths, and to perform more accurate measurements, e.g. amdabyword basis.
Processing difficulty manifests itself in longer gaze-diorss or re-inspection of parts
of the sentence.

The raw data from eye-movement recordings (as shown in &igur) can be anal-
ysed in different ways in order to capture different aspetimocessing (e.g. for early
processes such as lexical access vs. later processes ssemastic interpretation).
Figure 2.2 shows an example of how the eye travelled throngtséntence, and ex-
plains different eye-tracking measures at the example e@fwbrd himself Single
fixation measures include first fixation time and second fixatime (not shown in
Figure 2.2, but corresponds to only fixation 6). The othertibrameasures are mul-
tiple fixation measures. Here, “early” measures are oftstirgjuished from “late”
measures. An example for an early measure is first pass tisecalled gaze dura-
tion), which adds up all fixations from first entering a regioffirst leaving it. Another
early measure is the regression path time, which in the ebafigure would corre-
spond to points 5, 6, 7 and 8. Examples for late measures ebad@ass time, and
total reading time, which is defined as the sum of all fixationshe critical region. A
region’s skipping rate is the percentage of trials wherditsepass time is zero.

1 1
The pil ot enbarrassed John and put! hi msel f :i n a very awkward situation.
o——— > 00— > 0—>0—30 >0

1 2 3 4
First flxathn time =5 ) - °
gaze duration = 5+6 7 9

Total time = 5+6+8+10
Second pass time = 8+10
Skipping rate: e.g. put

0

o -
V

Figure 2.2: Measures for Eye-tracking.
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2.1.4.3 Other methods for reading research

Methods used in psycholinguistic research for investigptexical access and word
identification processes are for exam@eid serial visual presentatiowhere words
are presented at a high rate of up to 1000 words per minute. ddaelvantage of
this method is that it is also unnatural and has problemdairta self-paced reading.
Another method is to make the subjeead aloudwhile recording eye-movement to
measure the distance between fixation and pronounced wdneaard reading errors
and recovery strategies.

Further tasks that primarily test for lexical access arenduming taskwhere the
time between presentation of a word and the onset of the pooation of the word is
measured, thiexical decision taskwhere participants have to tell whether a string is a
valid word or not, and theemantic categorisation taskat assesses how long it takes
the participant to retrieve the semantics of a word.

2.2 Models of Human Sentence Processing

Low-level reading processes cannot explain all of the vaean the eye-movement
data, and it has been shown that some of the reading timds#exdue to high level
syntactic or semantic processing difficulties. This thés@ises on explaining the
variance in the reading time data which cannot be explaigelddlow-level processes.
A number of theories have been proposed to account for pogedifficulty ef-
fects that are due to syntax and semantics. Ambiguity h&n dfeen looked at as a
primary source of syntactic processing difficulty, espicia garden path sentences,
where ambiguity causes the parser to re-analyse a sentesht®us leads to processing
delays. However, ambiguous structures have also been stoosametimes facilitate

reading (van Gompel et al., 2005), at least if the ambigwetyains unresolved. On

the other hand, increased processing difficulty has also bbserved in completely
unambiguous structures. For these cases, the cause osgirageifficulty is usually
attributed to complexity, or unexpected syntactic or semavents.

Sentence processing theories can roughly be categorisethegories explaining
processing difficulty through ambiguity, and ones explagnilifficulty based on com-
plexity. Ambiguity has been argued to lead to difficulty eittihrough competition
arising between alternative analyses (competition-basadkls), through unexpected
events, i.e. when the previously most likely analysis bee®immprobable or impos-
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sible given evidence from new input (reanalysis theoriesgudency-based theories,
Surprisal, transitional probabilities) or when ambigugyeduced due to a word pro-
viding a lot of information as to how the sentence will coogn(Entropy). Process-
ing difficulty has been linked to sentence complexity thimagarge number of open
dependencies that need to be remembered and later ret(ieepeéndency Locality
Theory, Memory and Activation).

2.2.1 Early approaches

The earliest approaches to explaining processing diffiquitmarily focused on diffi-
culty caused by ambiguity. Such early models defined a sedgritively motivated
constraints to decide which structures should be prefevedothers.

The earliest approach to modelling human parsing was vial seodels. In garden
path sentences, such a model would explain delays throughsxe backtracking and
trying to match parses to the input.

MS @b) assumed that human parsing was serial aneésteglgfixed con-
straints, such as a restricted length context window toiprélge existence of garden
path sentences. According to this theory, easy re-anadysidy possible if the change
in interpretation affects the last x words only. Ambigustithat are due to an earlier
word lead to garden paths sentences. However, many arga@usathis theory by
showing that there are both garden path sentences thatajersanbiguities within
such a window and sentences where the ambiguous point iefuatvay but that do

a@ 1996)).

As an alternative to serial models, parallel parsing modelse developed based

not lead to garden paths (see for example (Jur

on experimental evidence suggesting that lexical itemgdinths are accessed in par-
allel &Swinney and Cutlls- , 1979). In parallel models, npiétiinterpretations (both
structural and lexical) are maintained simultaneouslye Titst constraint-based par-

allel parsing models were non-probabilistic and assumeceiistence of a number
of constraints. The function of these constraints is to rén&alternative parses for
a sentence, such that some structures would be predictedceferred over others.
Very strongly dis-preferred structures are pruned in thadeh, in order to provide
a mechanism to account for garden path sentences. The mpsttant constraints
used in serial non-probabilistic models are based on liycpieferences (e.g. Right
Association (Kimball, 1973), Local Association (FraziedaFodor, 1978), Late Clo-
sure (Frazier, 1978), Final Arguments (Ford et al., 198®),Graded Distance Effect




20 Chapter 2. Background

dSchubert, 1984), Attach Low and Parall‘el (Hobbs and émpl and the Recency
Preference (Gibson, 1991)).

2.2.2 Dependency Locality Theory

Dependency Locality Theory (DLT), suggestec; by Gi%g&m@xplains processing
difficulty independent of ambiguity. Instead, processiifgjailty in DLT is caused
by the cost of the computational resources consumed by teegsor. Two distinct
cost components can be distinguishedir(igration costassociated with integrating
new input into the structures already built at a given stagthé computation, and
(i) memory cosinvolved in the storage of parts of the input that may be usqzhrs-
ing later parts of an input. In our implementation (see Ceegp# and 5), we will
focus on integration cost, as “reasonable first approxwnatof comprehension times
can be obtained from the integrations costs alone, as Iom)gea@guistic memory
storage used is not excessive at these integration poi@dtbs¢n, 1998, p. 19f). This

is a safe assumption for our studies, as we use corpora duttpredited newspa-
per text, which are unlikely to incur excessive storages@stcontrast to artificially
constructed experimental materials). Gibson defines liatiem cost as follows:

Q) Linguistic Integration Cost

The integration cost associated with integrating a newtitf@ad h with a
head K that is part of the current structure for the input consi$tsvo parts:
(1) a cost dependent on the complexity of the integratiog. @nstructing a
new discourse referent); plus (2) a distance-based costn@tone increasing
function I(n) energy units (EUs) of the number of new disseureferents that
have been processed sincewas last highly activated. For simplicity, it is
assumed that I(n) = n EUs. (Gibson, 1998, p.12f)

According to this definition, integration cost is dependemtwo factors. First, the type
of element to be integrated matters: new discourse refeferd., indefinite NPs) are
assumed to involve a higher integration cost than old/ésteddl discourse referents,
identified by pronouns. Second, integration cost is semsit the distance between
the head being integrated and the head it attaches to, wisteeck is calculated in
terms of intervening discourse referents.

As an example, consider the subject vs. object relativesel@xample in Figure
2.3. At the embedded veditackedn the subject relative clause, two integrations take
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place: the gap generated by the relative pronatio needs to be integrated with the
verb. The cost for this is 1(0), as zero new discourse refsreave been processed
since the gap was encountered. In addition, the embeddédattaickedneeds to
be integrated with its preceding subject. Again, this isee fmtegration since no
discourse referent occurs between the verb and the subfe¢tdvever, there is a cost
for building a new discourse referent (the embedded vedhﬁ)s leading to a cost
of I(1). The total cost aattackedis therefore I(1). This is illustrated in Figure 2.3,
which depicts the dependencies that are built, and theratieg costs per word that
are incurred.

- m

) The reporter who attacked the senator admitted the
Disc.ref. X X X X

Integ. Cost1(0) (1) 1(0) 1(2) 1(0) I(2) I()+I(3) 1(0) 1(2)

T NATEAON\CA

i The reporter who the senator attacked admitted the
Disc.ref. X X

X X
Integ. CostI(0) I(1) 1(0) 1(0) 1(1) I(L)+I(2)(1)+I(3) 1(0) I(1)
Figure 2.3: An example of integration cost computations: subject relative clauses (SRC)
vs. object relative clauses (ORC), with word-by-word mark-up for discourse referent and

integration costs. The links between the words represent syntactic dependencies.

At the verbattackedin the object relative clause, three structural integretitake
place: (1) integration with the subject Nifee senatorno integration costs occur since
no new discourse referents occurs inbetween the verb andRhé) an empty cat-
egory for the relative pronoun is integrated, but again,itiegration is local and no
costs occur, (3) the object position empty category is c@xed with the preceding
relative pronourwho. There is an integration cost of 1(2) for this step due to the t
discourse referentsttackedandthe senatowhich occurs in between. In addition,
there is a cost of I(1) for constructing the discourse refeagattacked which leads to
a total integration cost of (1) + I(2) at the embedded worthefobject relative clause.
So overall, DLT predicts that the verb of an object relatilaise is more difficult to
process than that of a subject relative clause. Note thaddiassumes that the inte-

1DLT assumes that verbs introduce event discourse referents



22 Chapter 2. Background

gration cost function is identity, i.e., I(n) = n. Howevether functions are possible
here; we will return to this issue in our implementation degration cost in Chapter
5, Section 5.3,2.

For assessing the second component, memory cost (alskeckferas storage cost),
it is necessary to determine the subcategorizations of a woorder to count how
many open dependencies need to be maintained at each pdinten There is a
cost for storing in memory each open dependency, which isutatetl by how many
discourse referents were introduced since the occurrdrtbe dependent.

Integration costs and memory cost interact through the eqainof energy units
memory unit@ndtime units There is only a limited number of energy units available
at each point in time, so working memory resources can be upeoy having to
remember many dependencies (thus using up lots of memads) tiniwhich case there
will be less resources for actual integrations (as measused) integration cost), in
turn causing them to take more time. The relationship batveeergy units, memory
units and time units was formalised B&) = MU « TU. In the case of ambiguity,
analyses that require fewer energy units are preferred.

DLT has been shown to account for a range of linguistic effestluding the
SRC/ORC processing difficulty asymmetry, difficulty of cenémbeddings, cases of
processing breakdown, filler-gap dependencies, heavy NtRasld extraposition.

2.2.3 Frequency-based Theories

Frequencies have been found to be an important correlatprdoessing difficulty and
reading time. Reading times are in general longer on inagwords than they are on
frequently occurring words. Frequency effects do argualkyonly occur for lexical
access but also for syntactic processing: If a sentencebgyaimus, humans have been
found to process the more frequent analysis faster and péagliprocessing difficulty
if the infrequent analysis turns out to be correct.

‘Jurafsky ‘(199‘6) first proposed to use probabilistic confrexd grammars (PCFGs)
to estimate probabilities of alternative analyses and tisegrobabilities to explain
garden path sentences: Only the most probable parsesdatgto the PCFG) would
be kept in memory. The improbable ones were pruned using lseanch, which dis-
cards highly improbable analyses. For interpretations Wexe pruned, the parser
would have to backtrack, which explains the processingediffy for garden path sen-
tences.
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Crocker and Bran‘tsl, (ZObO) argue that PCFGs can be used toodd-boverage
parsing better than models that only take into account singanually defined con-
straints, as the early approaches did.

A question that arises in the construction of probabiliaséd models is how to
combine probabilities from different sources, such as ghdlies from parsing, n-

grams and valency. Narayanan and Jurafsky (2002) use d betigork with proba-
bilities from a range of different sources. A belief netwaskmore powerful than a
PCFG but it is harder to justify the contributing factors dhdir relationship to one-
another.

2.2.4 Surprisal

An alternative measure of syntactic complexity has beepgsed by Hale (2001) in

the form of Surprisal. Surprisal assumes a parallel parg@ach builds structures in-
crementally, i.e., it constructs all possible syntactialgses compatible with the input
string on a word-by-word ba&slntuitively, Surprisal measures the change in proba-
bility mass as structural predictions are proven wrong wéeew word is processed.
If the new word invalidates predictions with a large proligbmass (high Surprisal),
then high processing complexity is predicted, correspagnth increased reading time.
If the new word only invalidates predictions with a small lpability mass (low Sur-
prisal), then we expect low processing complexity and redueading time.
Technically, Surprisal can be defined using the conditiopabbability
P(T|ws---w), i.e., the probability of a tre€ given the sentence prefix - - -wi. This
is the probability thal is the correct tree, given that the string of wavgdto wordw
has been encountered. Surprisal is then defined as the cimahgeconditional proba-
bility distribution fromwj tow . As’;\/y %8) shows, this can be formalised using
the Kullback-Leibler divergence (relative entropy). Thellkack-Leibler divergence
between two probability distributiodandQ is defined as:

D(PIIQ) = 3 Pli)log gy 2.1

The Surprisal at encountering wove 1 then corresponds to the Kullback-Leibler
divergence betweeR(T |w; - --Wi;1), i.€., the probability distribution of all syntactic

2While Surprisal is compatible with a fully parallel parsiérioes not necessarily require one. It is
possible to compute the probabilities of a limited set ofigses and then use these to track changes in
the probability distribution. In fact, the (Rank, 20&)1a)vser used in this paper performs beam-search,
i.e., does not compute all possible analyses, and thus iieaasuch a limited-parallelism version of
Surprisal.
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trees that are consistent with wordg - - - w1, and P(T |wy---W), the probability
distribution of the trees that are compatible with the prefix- - w:

P(T Wy -« Wi 1)

=Y P(T|wzg---wy1)lo 2.2

Sct1 Z (T|wy k+1)log P(T [y W) (2.2)
This expression can be simplified using the following fact:
P(T,wy---wW P(T

P(T wa- - -wi) = P W) PAT) (2.3)

P(Wl .. 'Wk) P(Wl .. ‘Wk)

This equation holds because we know that each tred inontains the words
wy - - W, thereforeP(T,wy---wg) = P(T). We can now substitute Equation (2.3)
into Equation((2.2). We can then simplify the definition ofr@isal using the fact
ST % = 1 (the probabilities of all syntactic trees given a particydrefix sum
up to 1), and performing some straightforward logarithmamsformations:

P(T)
P(T) Pl W, 1) P(wy - W)
— -lo 1. log—""—""~ (2.4
Scta Z P(Wq---Wiy1) 9 P(Vfl’l("ll"sz) g P(Wy---Wiy1) &4
P(wy---w
= —IogM = —logP (Wi 1wy - - W)

P(Wl .. Wk)

This derivation shows that the Surpri&§al 1 at wordwy 1 corresponds to the negative
logarithm of the conditional probability afi 1 given the sentential content; - - - w.
This is an important simplification, as it means that Sugdigan be computed without
making representational assumptions (i.e., the syntaetCT does not figure in the
definition of Surprisal). In practice this means that a numdfevays of computing
Surprisal are possible, utilising either simple probahitimodels of language (such as
n-gram models) or more sophisticated ones, such as proftabdontext-free gram-
mars (PCFGSs).

Surprisal can be reformulated in terms of firefix probabilitiesof wordswy and
Wk 1, Wwhich can be obtained easily from a PCFG. The prefix prolglof a wordwy
is obtained by summing the probabilities of all tr8ethat span fronw; to w:

P(Wl"'Wk> = ZP(T’W1Wk> (2.5)

The formulation in Equation (2.4) is therefore equivalem@tformulation that uses
prefix probabilities:

P(w1---Wii1)

=—lo
S g P(W1-- W)

= IogZ P(T,wq-- W) — IogZ P(T,wi---Wgi1) (2.6)
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SurprisalS,, 1 at wordwy 1 thus corresponds to the difference between the logarithm
of the prefix probabilities of wordvy, andwi, 1. We give an example that illustrates
how prefix probabilities can be computed using a PCFG. In a&@Bach context-free
grammar rule is annotated with its probability, as in Figli# The rule probabilities
are then used to calculate the prefix probability of a word.

For example, ifwvi 1 is the wordwhoin the example in Figure 2.4, then the prefix
probability S+ P(T,wy - --W41) is the sum over the probabilities of all possible trees
that include the prefiw; - - - Wi 1, where each tree probability is computed as the prod-
uct of all the rules that are needed to build the tree (FigudesBows only one such
tree).

S
NP VP
/\

NP SBAR

P

DT NN WHNP S

| | | —_—
The reporter WP
|
who

Example Rule Rule probability
The reporterwho ... S» VP NP p=0.6
The reporter who ... NP> NP SBAR p=0.004
The reporter NP— DT NN p=0.5
The DT — the p=0.7
reporter NN— reporter p =0.0002
who ... SBAR— WHNP S p=0.12
who WHNP— WP p=0.2
who WP — who p=0.8

Figure 2.4: Example derivation of prefix The reporter who and rules from a probabilis-
tic context free grammar (PCFG) that would be needed in order to calculate its prefix

probability.



26 Chapter 2. Background

’;\/y 2008) evaluated Surprisal on a range of syntacticgssing difficulty phe-
nomena and found that it can correctly account for antiiycaffects in German,
facilitating ambiguity and subject preference in Germaut, that it cannot account
for locality effects found in English relative clauses, giitg-in effects or local coher-
ence effects (see Section 9.1 for a discussion and ovenfiglese psycholinguistic
effects).

2.2.5 Transitional Probabilities

Recently, it has also been shown that information aboutgfjgential context of a word

can influence reading times. In particular, McDonald andl&jgk (2003b) present

data extracted from an eye-tracking corpus (a smaller cotfpan the Dundee corpus
used here) that show that forward and backward transitgmodlabilities are predictive
of first fixation and gaze durations: the higher the transalgrobability, the shorter
the fixation time.

By forward transitional probabilityMcDonald and Shillcock (2003b) refer to the

conditional probability of a word given the previous wdP0wy|wi_1). This captures
the predictability of the current word given a one-word et For example, the
probability of the wordn given that the previous word wasterestedis higher than
the probability ofin if the last word waslog Thebackward transitional probabilitys
the conditional probability of a word given the next wdP@dwi|wi,1). This provides
an estimate of how predictable the current word is given # word, e.g., of how
probable it is to seeterestedor dog currently, given the next word is. A possible
interpretation of why material that is further away in thgttean benefit the current
word and lead to shorter reading times for words with higtklaaed transitional prob-
abilities are preview effects and backward saccades. Téwpess results are backed
up by results demonstrating the role of forward transitigmababilities in controlled
reading experiment£ (McDonald and Shillcmk (2003a); IeiaJ(Erisson et M (2005),
who equate transitional probability and Cloze predictgbiind do not find any effects

of transitional probability).

It is interesting to note that the forward transitional pblity P(wg|wk_1) is a
simple form of Surprisal, viz., one that takes into accounly dhe previous word
Wi_1, rather than the whole prefiwy ---wx_1 (see Equation (2/4)). Another differ-
ence is that forward transitional probabilities are estedaising word bigrams, while
Surprisal is typically estimated using syntactically gaed probabilities, based on
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Equations((2.5) and (2.6). We will return to this issue in¢batext of our discussion
of Surprisal in the Dundee Corpus in our chapter about bomagrage evaluation of
Surprisal in Section 5.5.

2.2.6 Entropy

Another suggestion for measuring difficulty in processimgtences based on the
changes in probability distributions of analyses when @ssing a sentencestropy

Hale, 2003, 2006) which quantifies the uncertainty aboairést of the sentence.

The entropy of the probability distribution over the set bfp@ssible sentenceS
with lengthnis defined as

=—WZ wi) log(P(wW7)).

When words are processed, these distributions changegi@sate many sentences
in the set of all possible sentences that are not compatiitketiae seen input). The
entropy at a word is therefore

H(i) = —WZ P(W) 1wy ) log(P(wl 1 w})).
Tes
The reduction in entropy through processing the next wotldes
AH(i+1)=H(i)—H(i+1).

PositiveAH correspond to a decrease in entropy, hence meaning thatittent
word has diminished our uncertainty about how the sentem@ming to continue.
Non-negativéAH are used to predict reading times at each word.

m @) showed that entropy can explain linguistic pime@na such as the
accessibility hierarchy. Recently, entropy as a measungatessing difficulty has
, 2010), showing

been evaluated as a broad coverage mJJdeI (Roark
that it can be a significant positive predictor of readlngasm

2.2.7 Competition-Based Models

Competition-based models focus on processing difficultysed by ambiguity. The

main idea in competition models (McRae et al., 1998) is tli@r@atives compete

against one another (in terms of frequency, structure atofjl one of the alterna-
tives reaches criterion. The system then settles on ongsasalf this analysis turns
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out to be incorrect, the system has to “change its mind” later.e. switch to a com-
peting analysis. This switching to an alternative analysaifests itself as a garden
path effect. The competition process also takes up time esakpsing resources: peo-
ple are assumed to read more slowly if there are two closelguwent alternatives
than when one is very plausible and one very implausible (ghguite similar to an
entropy-based approach).

An interesting finding in‘ (van Gompel et aLI., 2&)&)5; Traxleaéﬂ 1998) is the fact
that there can be a processing advantage if a sentence igwnabiwith respect to

e.g. PP-attachment, so that the ambiguous sentence candesged faster than the
unambiguous sentence. This finding does not fit with someetdmmon assump-
tions in human sentence processing, such as that procesfiaglty would be caused
by resolving ambiguities. In particular, finding that thelaguous case is less difficult
to process seems to provide evidence against competiiseelmodels.

However, Green and Mitch

D

| (2006) argued that facilitatom ambiguous struc-

tures can be explained by an averaging effect where diffiades not occur due to
competition but only due to backtracking (i.e. when theayshas to change its mind
and switch to an alternative analysis). Across differemtip@ants, different initial in-
terpretations were adopted and always cause some of theefieop-analyse, whereas
in ambiguous structures, everybody can keep their initialysis and average reading
times are therefore shorter.

Competition-based models can be divided into short-lgstimmpetition models

and long-lasting competition mode‘ls (van Gompel Q aI.,éOQong-lasting compe-
tition models claim that competing syntactic analyses & kn parallel throughout
an ambiguous region until some disambiguating elementdswartered. Short-lasting
competition models assume that there are initially altié&raanalyses which are acti-
vated in parallel, but one of them rapidly wins and receivesimmore activation than
its alternative, which causes this one analysis to be adsgutmetimes even before the
disambiguating region is reached.

(1947)ﬂsitation Set GravitatiolfVSG) model makes use of dynam-
ical systems theory, and also derives processing diffiduliyn competition between

Tabor et al.’s

analyses. It is implemented as a simple recurrent netwatlkadigravitation module”
which clusters similar states in the network. These cleststates correspond to the
different competing analyses of a sentence. Processifigully is then predicted to
be proportional to the time the gravitation module needsr&vitate on one cluster,
i.e. decide on a particular analysis. Furthermore, diffjcatcurs when new evidence
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means that a different cluster becomes more promil%ent ('EH‘IJi)TanenhaLE, 2d01).
VSG can explain thematic expectations, competition effacid the main clause bias
in contrast with reduced relative clauses.

2.2.8 Memory and Activation

Lewis and Vasishth (2005) proposed a model of sentence gsmgethat uses the cog-

nitive architecture ACT-R. This is attractive, in that AGRT#mplements cognitively
plausible mechanisms, in particular working memory asgttitre, and has also been
used to model a large range of other cognitive processes.

The memory and activation model explains many of the estiaddl processing
phenomena through memory retrieval effects. The undeylymechanisms of mem-
ory retrieval are rehearsal, spreading activation andydédaeir implementation uses
left-corner parsing to determine top-down predictionsudlwhat types of words or
structures are needed to build a sentence, simultaneoitblypaitom-up evidence for
what words are encountered in the input. When a word is veidrom memory,
its activation is boosted (this explains e.g. lexical fregey effects: items that are re-
trieved very often have higher activation), at the same timeee is a steady activation
decay according to the power law of forgetting which is agublio all of the items in
memory.

The model accounts for locality effects (like the EnglishC3QRC asymmetry and
centre embedding) through decay and resulting lower aaiivaf words that need to
be retrieved for integration after seeing a lot of intermgninaterial. It can also account
for some anti-locality effects through activation of thetiéhrough intervening argu-
ments. Furthermore, the theory can explain interfererfeetgfretrieval is hindered by
activation of similar items) and storage load effects (ifrexttems need to be stored,
there are also more interference effects at retrieval).

2.3 Summary and Conclusions

The first part of this chapter has provided background forguess of sentence pro-
cessing difficulty, discussing in particular reading tinassa correlate for processing
difficulty. In a comparison of alternative methods of gathgreading time data, this
chapter has argued that eye-tracking is the most natucatigthod among them. Eye-
tracking measures are used for a range of evaluations int&isaf 5 and 9.
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The second part of this chapter discussed existing theofissntence processing.
Out of these theories, Surprisal and DLT integration costaost relevant for this the-
sis (in particular for Chapters 4 and 5) and are thereforéaéxgd in detail. Surprisal
and DLT belong to different categories of sentence prongdsieories: Surprisal ex-
plains processing difficulty through unexpected eventsleDLT predicts processing
difficulty when many dependencies need to be stored in mesionyltaneously, and
when long distance dependents have to be retrieved from nydorantegration.



Chapter 3
Data and Analysis Methods

The first section of this chapter describes the properties lafge eye-tracking cor-
pus, the Dundee Corpus, which is the data resource useddaegiiession analyses
described in Chapters /4, 5 and 9. We show that all of the stendading effects can
be found in the Dundee Corpus data and point out some waysithwine naturally
occurring text differs from experimental items. The stgdieported in this thesis rep-
resent the first time that such a collection of naturallyewdog text has been used
to evaluate models of higher-level linguistic processeshsas syntactic processing
difficulty.

The second part of the chapter discusses linear mixedtgffegression models,
which are going to be used as a method of evaluating senteéncegsing models, in
Chapters 4,5 and 9. All of the experiments and statisticalyses presented here and
in the following chapters were computed using R, an openprogramﬁan-

guage and environment for statistical comput*ng (R Develept Core Team, 2007).

3.1 The Dundee Corpus

The Dundee Corpu% (Kennedy and Pyltﬂe, 2005) contains Bnghid French news-
paper articles, which are each annotated with the eye-menedata. This section
focuses on the properties of the English portion of the Den@erpus (the French
subcorpus was not used in this work). The English corpusatas20 approximately
equallg long articles fronThe Independermntewspaper. In total, it consists of 51,502

tokens and 9,776 types. The texts were split into 40 five-line ssden presenta-

1The token number refers to tokens as tokenized in the Dundgeu§ for presentation to the par-
ticipants, i.e., punctuation marks are attached to the svdfdvords and punctuation marks are counted

31
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tion to the readers during eye-tracking. It is annotated wie eye-movement records
of 10 English native speakers, who each read the whole cogmasanswered a set
of comprehension questions after each text. These eyieéritpdata were acquired
using a Dr. Boise eye-tracker, which recorded the movenritse right eye with a
sampling rate of 1 ms and a spatial accuracy of 0.25 chagacter

Before carrying out our analyses, we excluded all cases ichwtine word was
the first or last one of the line, and also all cases where thd was followed by a
any kind of punctuation. This eliminates any wrap-up e8dbiat might occur at line
breaks or at the end of sentences. Furthermore, we excllidedrds that were in
a region of four or more adjacent words that had not been fixaiece such regions
were either not read by the participant or subject to dats thee to tracking errors.
This left us with 385,467 words.

In the first part of this section, distributions of the regfdineasures in the Dundee
Corpus are shown and problems with the data, as well as plarittes of the corpus
are discussed. The second subsection looks at the diginbudf non-syntactic ocu-
lomotor and lexical explanatory variables in the corpus, simows the typical reading
effects like the IOVP eﬁe@t the length and the frequency effect. Finally, the third-sub
section shows the distribution of a number of syntactic @xatory variables that were
tested in this thesis. More sophisticated analyses andssign models are described
in later chapters.

3.1.1 Distributions of Reading Measures

The reading measures described in this section are firstdiixauration, first pass
duration and total reading time. We focus on these meas@resbecause these eye-
tracking measures are also reported during later expetsnas they seemed most
informative — first fixation duration and first pass duratioa early measures and of-
ten assumed to show lower-level effects and fast highet-kflects, while total read-
ing time is a later measure and is thought to reflect highegtlenguistic processing,
which we are primarily interested in in this work. Furthemaoskipping, refixation
probabilities and regression probabilities are discusBewlly, the problems of track
loss, which is quite common in the Dundee corpus, and intbjest variability are ad-
dressed. Subject variability is particularly importantdyéecause the Dundee corpus
was only read by 10 subjects, which is a rather small numbenwbmpared to exper-

separately, then there are a bit more than 56k words in theusor
2For a definition of the effect please see Sedtion 3.1.2.2.
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imental settings or other corpora that were used for ingastig reading behaviour,
20063hwias read by more

such as the Potsdam Sentence CorLous (Kliegl‘ét al.,
than 250 subjects.

3.1.1.1 First Fixation Duration, First Pass Duration and To tal Reading Time

We start by inspecting the distribution of first fixation, fipgiss and total reading times
in the Dundee Corpus. Figure 3.1 shows three histogramsrébffiftation durations,
Figure 3.2 shows the equivalent histograms for first pasatiurs and Figure 3.3 for
total reading times.

Firstly, we can see in the top subfigures of Figures 3.1 tol&aBrhany of the data
points have a reading time value of 0. These words were s#tigpeng reading. If
we included these values into our regressions, they wouldecaon-normality and
heavily influence the regression estimations. The probl@mtivese cases stems from
the fact that there is no smooth distribution of shorter amatter reading times until
they equal zero. Furthermore, it may be questionable, venétle meaning of skipping
a word would be the same as fixating it for an incredibly shioret Therefore, all the
regression models in this thesis are only run on fixated wakipping can be dealt
with in separate, logistic regression models.

Inspecting the middle subfigure of Figures 3.1 to 3.3, it beesclear that the data
is not exactly normally distributed: the plotted normaltdisition does not fit the data
very well (with the most severe mismatch for total readimgets). The empirical data
is skew, with a long tail to the right because fixation dunasi@r reaction time can
become very long, but never shorter than zero. Furtherntbege is a sudden cut-
off at the left tail at about 60ms, which is due to internatisgs of the eye-tracker.
Fixation shorter than 60ms are regarded as microsaccadesasurement errors and
therefore aggregated with the previous or following saecathis non-normality of
reading times however comes it no surprise: It is already-kvewn from the lit-
erature that readiFLtimes (and all other kinds of reactiores) are usually skew to

19

the right (Ratcli%f,

regression models that assume normal distribution of thigomrese variable.

79, p. 447). Non-normality can pdiaetly cause problems in

One way of dealing with non-normal distributions is to trfams the data, for
example by using log-transformed reading times. The lagdformed first fixation
durations, first pass durations and total reading timested finuch better by the nor-
mal distributions, see bottom plots in Figures 3.1 to 3.3 ®ther solution is to change
assumptions and not use the normal distribution (but egggéimma distribution) in



34 Chapter 3. Data and Analysis Methods

regressions. Centre plots in Figures 3.1 to 3.3 show thagdinema distribution (in-
dicated by the dashed red line) fits the data much better ttendrmal distribution.
Note that the normal and gamma distribution almost comiyleteerlap for the log
transformed reading times, suggesting that it would be cesgary to use the gamma
distribution if reading times are log transformed. We cawoahake the same argument

more formally: In the literature (CooliceJn. 2004, p. 292¢,camnmon rule of thumb for

deciding whether a distribution seriously differs from thermal distribution is by

checking whether the skew of a distribution is significaxiifferent from 0. The skew
3y-y

W)’

V< is the standard deviation. The skew is then tested for sigmitie of being differ-

of a distribution is calculated akew=

wheren is the number of data points and

ent from 0 by dividing it by its standard error. The skew oftffisation times is 137,
which corresponds to t-valuel¥ and is significantly different from zero. On the other
hand, the skew of log-transformed first fixation times-&66, with t-value—1.5 and
is thus not significantly different from 0. This indicatesithog transformed reading
times would not violate the assumption of a normally disitélal response variable in
a regression model. We will return to this issue in more dlet&dection 3.2.

¢From the plots in Figures 3.1[to 3.3, it is also evident thas become heav-
ier and heavier from first pass to total reading time. Thisue tb the aggregation
of multiple fixations. As we will discuss in Section 3.2, thariance in the reading
time data therefore also increases with larger means. Haagmenon is known as
heteroscedasticity.
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3.1.1.2 Skipping, Refixations and Regressions

Skipping probability is 45% for first pass reading in the Deactorpus. This rate is
higher than previously reported — figures in the literatatie &bout a bit more than one
third of the words being skipped in first pass read%ng (Bresband VituJ 199‘8). This

difference can possibly be attributed to the newspapetypet, and possibly the eye-

tracker and post-processing. Figure 3.4 shows a histogfane mumber of fixations.
Fixating exactly once is the most frequent event, with ttabpbility of more fixations
dropping quickly (the distribution is log-linear). Refiias as shown in the left-hand
diagram comprise both multiple fixations on the same wordhdua single pass and
regressions back onto a word.

10000
|

10000
1

100
1

Frequency (log scale)
100
1

Frequency (log scale)

T T T T T T T
0 1 2 3 4 5 6

- HHEEEEEE D@D:D o °

0123 45¢6 789

Number of Fixations Number of Fixations from the Right

Figure 3.4: Distribution of Number of Fixations per Word and Number of Regressions

onto a Word.

The probability of regressions out from a word in the DundeepQs is similar
to the rates that have been previously reported in the fiterawhere people found
that about 10% of saccades were directed to the left. In thedBel Corpus, we find
backward saccades in about 12.5% of all fixations, but thesgpdse leftward sac-
cades that stay within the same word. The proportion of s=goes leaving the word
to the left is 10.8%, which corresponds to previously regamates. This regression
rate means that about 5% of all words (which are not at the ebdginning of a line)
are the target of a regression, which corresponds to 8.3% fifated words. Figure
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shows a histogram of regressions. The scale is logrlitieia means that most
words are not source of a regression, about 22,000 wordb@sstirce of exactly one
regression, 781 are the source of two regressions etc.

10000
I

Frequency (log scale)
100
Il

T T T T T T T
0 1 2 3 4 5 6

Number of Fixations out

Figure 3.5: Distribution of Number of Regressions out per Word

3.1.1.3 Track Loss

The rate of track losses is unfortunately quite high in thgpas. We define a track
loss as a sequence of four adjacent words that are not fixaigtdof the approx. half
a million tracked words (50,000 words 10 participants), 7.3% of the data points
are invalid due to track loss. Regions of track loss are ebarlufrom all regression
analyses and statistics calculated for this thesis, shetatge proportion of track loss
risks to distort the data substantially, in particular fstimating skipping and refixation
probabilities.

3.1.1.4 Inter-subject Variability

One disadvantage of the Dundee Corpus is that it was onlylngd@ subjects. Figure
shows six box-and-whisker diagrams that display thiemihces in reading be-
haviour of the 10 subjects. The plots in the first column shoevihean and variation
in first fixation duration, first pass duration and total regdime for the 10 subjects;
the second column shows a zoomed-in version of the correspgmplots in the first

column. All of these plots refer to fixated words only. Thediof the boxes in-

dicates the first and third quartile of the data points. Timgtle of the whiskers are
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calculated from the inter-quartile-range (IRQ), which he ifference between the
first and the third quartile. The whiskers are then definedeashing 1.%IRQ from
the lower quartile and 1.6IRQ from the upper quartile. Any points outside this span
are traditionally regarded as outliers.

There is a substantial amount of variation both within antiveen subjects:
Within-subject variance is evident through the large nundie€outliers”, i.e. points
that are above or below the whiskers. Between-subjectivagiaan be better seen in
the zoomed-in versions of the plots in the right-hand coluthe notches around the
mean are quite tight and only partially overlap, which metirad the subjects have
different reading behaviours. (If the notches of two platswt overlap this is strong
evidence that the two medians differ (Chambers et al., 19882).) For example, we
can see from Figure 3.6 that subject “sg” exhibits more Warian first fixation dura-
tions than the other subjects, and subjects “sg” and “sceélshortest fixation times,
while the fixation times of subject “sb” are longest amongphdicipants.

See also the left-hand side of Figure 3.7 for differencesairiigipants’ average
skipping probability per word, number of fixations per worttahe probability that
a word in the corpus is the source of a regressions. The hightt side figures depict
first pass launch distan@@ll data points and zoomed in around the means). We can
see that subject “sg” (the one with short fixation times) skiords least often (only 3
out of 10 words are skipped) and has the highest fixation agression rates (above
1 in 10 words) among the participants, while “se” skips 45%vofds, and has a low
fixation and regression rate. Reader “sa” and “se” make thgdst saccades, which
corresponds to the finding that they have the smallest nuoflaserage fixations on a
word and largest skipping probabilities.

The observed differences in reading behaviours betwege&slare expected. In
practice, this illustrates why it is important in our stuslie model subjects as a random
effect in regression models.

3All launch distances have negative values, because ongetfrom first pass reading are shown,
which by definition only count as first pass if there has nothgstn a fixation to the right of the word.
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3.1.2 Distributions for Low-Level Variables

The distribution of low-level variables which we discusstliis section follows the
expected distributions which have also been found for aliertracking experiments.

3.1.2.1 Fixation Landing Position and Launch Distance

Figure 3.8 shows the distributions of fixation landing piosis and launch distances in
the corpus. The plotted fixation landing positions are nohradised for word length
here, hence the strong skew. The small bar at landing positibis due to the fact
that this plot shows landing positions on words and not ontwltalled an object in
the terminology of the corpus: An object is a word plus its@uation. Thus, it can
happen that the fixation lands e.g. on quotes before a wotdjitee there is no space
in-between the word and the punctuation, they are countesh@®bject, leading to
possible negative fixation positions for words.

Launch distance is the distance from the current landingipogo the preceding
one. Launch distances have a peak at ab@itharacters, which is the median launch
distance for most subjects (see Figure 3.7). The unexdgdiggh number of launch
distances with length zero is an artefact in the data: thfifiation on a new screen is
assigned launch distance 0 in the Dundee Corpus. The distribof launch distances
furthermore also exhibits a skew to the left. This can be @arpld by the fact that
words toward the beginning of the line cannot possibly haweth distances beyond
the number of characters between them and the beginning dihth

Fixation landing positions Launch distances for first fixations
g all : T
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g | =
g | - 5
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g &
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o ] e 8
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g g
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Fixation Landing Position on WORD Launch Distance

Figure 3.8: The distributions of fixation landing position on a word and launch distances

in the Dundee Corpus.
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3.1.2.2 The IOVP effect

A well-known effect is the inverse optimal viewing positii@VP) effect (Vitu et al.,

2001), which refers to the fact that fixations at the begigron end of a word are

shorter than fixations on the middle of a word. In the Dundeg@s we also find clear
evidence of the IOVP effect, i.e. that fixation durations largger when the fixation
lands at the middle of a word. Figure 3.9 plots the fixatiorations against the landing
positions, conditioned on the length of the word, that issatds with a certain length
are grouped together. For example, the plot in the first colofithe third row in the
figure shows fixation durations for all words of length 8 (thatbm left plot shows
all words of length 1, the one on its right all words of lengthrd so on). Fixation
durations were longer when the fixation landed on the 4thtocbaracter of the word
than when they landed on the first or last character of the wbings pattern is pretty
stable for words up to length 13. After that, the pattern bee®less regular due to the
low number of observations.

Interestingly, variance seems to be pretty much constansacdhe fixation posi-
tions, thus not supporting the hypothesis that the IOVPcefieuld be an artefact
due to fixations on the beginning and end of a word being eitber long (because it

is difficult to see the word) or very short because of immedrafixations to a more

optimal position, which was proposed by Engbert et al. (2005

3.1.2.3 Word Length

Word length is an established influencing factor of fixatiemadions. The longer the
word, the longer the fixations, and the smaller the probighitat a word is skipped.
The distribution of word lengths in the Dundee corpus is shdanvthe first plot in
Figure 3.10. The plot below it shows the average numbers afidirs for the different
word lengths. The number of fixations increases linearlyhwibrd length. Skipping
probability decreases exponentially with increasing wiempth, as depicted in the
bottom left plot. Words with more than 15 characters areusily never skipped; and
even for words with more than 6 letters, skipping probapiiglls below 10%. The
plots in the right column of Figure 3.10 show the main effdatord length on reading
time. There is a almost no effect in first fixation times, andeeyvarge effect in first
pass reading time and total reading time, which can be engididby the linear increase
of refixation probability with increasing length. The pl@iso show that variance in
fixation durations increases substantially with word léngt
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Histogram of word lengths in the Dundee Cor| First Fixation Duration per Word Length
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3.1.2.4 Word Frequency

The frequency of a word also has a strong influence on fixatizatosbns. The more
frequent a word, the shorter the fixation durations. In thigkywwe use frequency
estimates from the British National Corpus (BNC), afteipgiing off punctuation.
Their distribution is shown in the first histogram in Figurd B The distribution is
zipfian and follows expectations: there are some very fregwerds, many frequent
words and a long tail of infrequent words. Note the unexplgtbigh number of
words with log frequency per million words smaller tharD.5, which we are going
to have a closer look at below.

The second histogram in Figure 3.11 shows the distributfomhe frequency of
words in the corpus based on frequencies in the Dundee cdgals it can thus be
regarded as a local text frequency. Importantly, this idistron looks very different
from the BNC-based estimate, hugely overestimating th@gtmn of rare words.
Therefore it is important to estimate frequencies from gdaresource.

Word frequency distribution Word frequencies distribution
estimated from BNC estimated from Dundee Corpus

60000
|
30000
|

Frequency
40000
|
Frequency
20000
|

20000
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10000
|

0
L

0
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[ T T T T T T 1 [ T T T T T T 1
-1 0 1 2 3 4 5 6 00 05 10 15 20 25 30 35

Log Word Frequency Log Local Word Frequency

Figure 3.11: The distributions of frequency estimated from the British National Corpus
and the Dundee Corpus itself. Log word frequencies in from the BNC were normalised
for occurrences in a million and log transformed with l0g;o. The local frequencies are
also log; g transformed, but are scaled for number of occurrences against total number

of words in the corpus.

Coming back to the unexpectedly high number of very rare wardhe left sub-
figure of Figure 3.11, there are two possible explanationthi®large number of very
infrequent words. Firstly, some of the words in this clasg/rhave been assigned
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inappropriately low frequencies. This can for example ledhse for numbers and
compounds. A second possibility is that these are wordsiwdnie specific to the top-
ics of the text that they occur in, for example if the newspaptcle talks about some
very rare species of animal, or used some acronyms thatt@oeluced in the text and
would not occur in the BNC. The first case is a more severe pmophs the second
problem could be fixed by also using local text frequency agdiptor in regressions.

Figure 3.12 gives some insight into the first problem catggorthe top left hand
plot, we can see that the variation in word length is verydday words in the lowest
frequency bin. We would normally expect a monotone relatim between word
length and word frequency, with frequent words being shdhan infrequent words.
Similarly, infrequent words from the most infrequent clat®uld be skipped least
often and receive most fixations. But this is not the caseh@sécond and third plot
in the left column show. So let’s try what happens if we exeldicom the analysis
all words that contain digits, special symbols (like ‘$’,dhens) or contain several
capital letters. The variation in word length of rare wor@smases considerably, and
both skipping probability and fixation numbers become monotis functions, with
the rare words skipped least often and fixated (and regrésyetbst often (see plots
in the right column of Figure 3.12).

As can be seen in plots 3.13(a) and (b), leaving these datdspmilt also has the
corresponding effect on the distribution of reading tim&en average fixation dura-
tions are plotted for each word frequency class, rare wondsverage receive shorter
fixations than would be expected given their frequency (spedw plots in subfigures
(a) and (b) of Figure 3.13). This effect is removed when wavih digits or special
characters and abbreviations are removed from the datdlsetguestion is then how
to handle these data points. On the one hand, they could tm lahd possibly be
explained by an interaction between word frequency and \emgth. The other solu-
tion is to either leave them out of the regression analyges, change their frequency
assignment. For instance, a psycholinguistic reason fanging the frequency as-
signment of digits would be that they are probably considlesea class of signs in the
human processor and therefore should be annotated withclass frequency. Com-
pounds with hyphens on the other hand should not be annosatedhe frequency
for the whole compound, as there is evidence in the liteeatur compound reading
that the reading durations of compounds are primarily dépenon the frequency of
the first part of the compounb (Juhasz et al. (2003)). Thdestudported in this thesis
exclude words that contain digits, special characters\@ratupper case letters.
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Figure 3.12: The first column shows word length distributions, skipping probability and

numbers of fixation on a word for words of different frequency classes. The second

column matches the plots from the first column, but the data set of the second column

excludes all words with symbols that are not characters, such as numbers, punctuation,

compounds with a hyphen or special signs.
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Figure 3.13: The distributions of reading times for different word frequencies. Plots in
the first row show distributions the complete data set, while plots in the second row
exclude all words containing digits, special symbols or several capital letters. The plots
in the second column zoom in on the region around the median durations of the data

from the corresponding left column plots.
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Figures 3.13(a) and (b) also show the main effect of frequendhe reading mea-
sures, which confirms the expectation that more frequentisvare read faster than
less frequent ones, in particular when only consideringdwavhich contain nothing
but characters and no special signs.

3.1.2.5 Transitional Probabilities

The forward transitional probability of a word is the comaiital probability of word
Wy given wordw,_1. We estimated these probabilities from the BNC using the EMU
Cambridge Statistical Language Modelling TOO||JKit (Clavksand RosenfeIJi, 19%7).
Transitional probabilities have been shown to influenceifixadurations. There are

two reasons for why forward transitional probabilities da expected to influence
reading: the first reason is rather low-level, saying thatwerds with high transitional

probability look visually familiar and are therefore easyread because they often
occur together. The second reason is that these word bigaataally capture the

predictability of a word given the last word, and thus alsptaee some of the linguistic

structure.

The first plot of Figure 3.14 shows the distribution of logviard transitional
probabilities (FTP) in the corpus. FTPs were estimated ftoenBNC, after strip-
ping any punctuation (his makes the distribution much simerodand helps to alleviate
data sparseness problems). The top right plot shows how BEféPsorrelated with
the number of fixations on a word. The relationship is logéinwith the number of
fixations increasing the less predictable a word is giverptiegious word. The main
effect of transitional probabilities can be read from thétdm four plots in Figure
3.14, indicating that reading times are the longer for lessligtable words.

It is also informative to look at the interaction betweengram frequencies and
forward transitional probabilities, shown in Figure 3.The relationship is very strong
and mainly linear, with words with higher frequency alsoihgvhigh transitional prob-
abilities. An exception is the cloud of points with transital probabilities between 0
and —2.5, where the corresponding unigram probabilities seem tdifteibuted all
over the place, instead of having high frequencies. In @algr, almost all words with
a unigram probability smaller than zero seem to be in thisatld hese are cases where
the current word has not been seen (or has not been seen titearenough; there’s
a frequency cut-off of 65,000 words for the vocabulary sinethe corpus. For such
cases, smoothing (i.e. some of the probability mass is takexy from observed events
and reserved for unseen events) is applied: we use thettosasiprobability of see-



52

Distribution of Forward Transitional Probabilii

Frequency
30000 50000
1 |

10000
1

:

T T T T 1
- & 4 _2 o

o}
L

log Forward transitional probability (2-gram)

Distribution of First fixation durations
for words with different fip

g . I .
o ® I e

g@— %: !E°
5 : g
S a
e 111]
¢ 3| OEEEsamas
| il

T T T T T T T T T
& -7 -8 -5 -4 -5 -2 4 a

Forward transitional probability (2-gram)

Distribution of Total Reading Timess
for words with different fip

ogi_ ° ° o 3 B
8 ¢ R
o T S S
E o ° L4
= g s §
% L]
T B g
L : 1
_19, I? _Ie _|5 _|4 _Is -Ie -|1 cln

Forward transitional probability (2-gram)

First Fixation Duration Number of Fixations

Total Reading Time

Chapter 3. Data and Analysis Methods

Average number of fixations against fip

1.5
1

0.5

0.0
L

-7T& -88& -5 —4& -3& -2& -1& -0&

log Forward transitional probability (2-gram)

Distribution of First fixation durations

for words with different fip (zoomed)
g4

T
1

i v

=] | | : | |
1 | 1 1 |
T I I I T I I I
-4 -7 -8 -5 -4 -5 -2 i o]

Forward transitional probability (2-gram)

Distribution of Total Reading Times
for words with different ftp (zoomed)

N

ditnuing

T } } } } } }
&4 -7 8 -5 -4 - -2 -1 @0

I
I
|
|
p— | |
!

150 200 250 200 450 400 450 500

Forward transitional probability {2-gram)

Figure 3.14: Distribution of forward transitional probabilities in the corpus and their main

effect on reading measures.
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Unigram frequency vs.
bigram transitional probability

log frequency bins

log Forward transitional probability (2—gram)

Figure 3.15: This plot shows the correlation between log frequencies and log transitional

probabilities for the Dundee Corpus.

ing a generic “unknown” word given the previous word (estieasfrom replacing rare
words in the training corpus by a label “unknown”). With tpisactice, the probability
of seeing an unknown word following the word “Mr” is for exatapnuch more likely
than seeing an unknown word following “but”. There are of s@ualso cases where
both the current and the previous word are unknown. The dmddog probability for
these cases is1.05 (again, this was estimated from the training corpus biaceng
rare words with the “unknown” label); in the plot this compesids to the right hand
dotted line at-1.05 that is parallel to the y-axis.

The horizontal line of points at frequeneyl corresponds to unknown words, since
they are assigned this value as their smoothed probabilitgse words still have dif-
ferent FTPs because even when a cut-off occurs in the unifyeuency estimation,
it may not be below the cut-off threshold for the bigram estiion. Commonly occur-
ring examples for such cases are the estimation of digitsviaig the wordaround
Finally, the horizontal clusters of dots with identicaldtencies between log frequency
values of 5 and 6 are due to multiple occurrences of commodsyarhose transitional
probability differs according to their context.

We also calculated backward transitional probabilitiesRBfrom the BNC. BTPs
estimate the probability of the current word given the failog word. The idea here
is that backward transitional probabilities are thoughtdapture preview effects. The
distribution is much more peaked than the distribution tomfard transitional prob-
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Figure 3.16: Distribution of backward transitional probabilities in the corpus and their

main effect on reading measures.

abilities, but shows similar behaviour, with the number aafions increasing log-

linearly with decreasing transitional probability, andtbdirst fixation durations and

total reading times decreasing with increasing transiigomobability. Overall, the

backward transitional probability effect seems to be senahan the forward transi-

tional probability effect (see Figure 3.16).
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3.1.3 Distribution of Explanatory Variables for Syntactic Process-
ing
This section gives a brief overview of the distribution oé thigher-level explanatory

variables in the corpus. There are no full regressions sigéction, so effects may be
disguised or covered by other factors.

3.1.3.1 Surprisal

Surprisal was proposed Mam01) as a measure of signgacitence processing
difficulty. The Surprisal of a word in a sentential contextresponds to the probability
mass of the analyses that are not consistent with the new. Worda detailed descrip-
tion of Surprisal, see Section 2.2.4 in Chapter 2. Two diiferversions of Surprisal
were analysed: lexical Surprisal and structural (or umlgxzed) Surprisal. lexical
Surprisal takes into account the probabilities of the grammles for non-terminals as
well as the probabilities for terminals, i.e. the probdias of a word given a POS-tag.
It therefore also captures aspects quite similar to worguigacy. Structural Surprisal
on the other hand only takes into account the probabilitiegkerules involving non-
terminals.

Lexical Surprisal ~ The top right-hand plot in Figure 3.17 shows a histogramégs |
ical Surprisal as calculated using the Roark parser. Theilalison is similar to the
one for forward transitional probability (but mirrored la&se Surprisal uses negative
log values). Furthermore, there seems to be a correlatiomelea lexicalized Sur-
prisal and reading measures: More surprising words areefixatore often, and are
fixated for longer according to both first fixation duratiorstfipass duration (the latter
is not shown in Figure 3.17) and total reading time. Howetves, effect might be con-
founded with simple lexical frequencies. Therefore, it@e@ssary to run a multiple
regression in order to factor out these effects, and find dwdtler Surprisal values
contribute anything to explaining the data above and begimgle frequencies.

Structural Surprisal ~ Figures 3.18 and 3.19 show the distribution of two versidns o
structural Surprisal from the Roark parser, and their ¢atian with reading measures.
The data in Figure 3.18 is calculated the same way as lexig@kiSal, but the lexical
probabilities are subtracted, in order to eliminate leiicaguency effects. There still
seems to be a positive correlation between reading measndeSurprisal, since the
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as calculated using the Roark parser.
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regression lines have a positive gradient.

However, there is no visible effect for the second versiostaictural Surprisal.
This second version differs from the first version in thatphebabilities are estimated
from POS-tag sequences. This means that all informationtatwbcategorization
frames is ignored. This second version seems to capturefesseffect, if anything,
the regression line in the bottom right plot from Figure 3sE@ms to be descending,
which would mean that words would be read faster when they were surprising.
Note though that little can be derived from such a simpleaiation, since none of the
potentially confounding effects have been filtered out.

In our regression models, structural Surprisal using tserfiethod turned out to be
a better predictor of reading times, which is why all futuremions of structural sur-

prisal in this thesis refer to the first version. This ressitorroborated by Roark et al.

(2009), who, on a different corpus, found an effect of sutadtSurprisal using the first
method, but no effect using the second method.

3.1.3.2 Dependency Locality Theory

Another theory for processing difficulty, Dependency Lagalheory (DLT), was pro-

posed by Gibson ( 199‘8. 2000). A central notion in DLThiegration costa distance-

based measure of the amount of processing effort requires wie head of a phrase
is integrated with its syntactic dependents. Please ref€hapter 2, Section 2.2.2 for
a detailed account of DLT and its two components, integnatiost and storage cost.
Note that in our analysis here, we only show plots for inteégrecost, because we only
use this component in later experiments. The cause forghgaritially that il% Gibsgn
1998), only the integration cost component is used as arogppation to DLT, and
partially that we did not find storage cost to be a significaatctor of reading times.

The distribution for integration costs is shown in Figur@G. It looks quite dif-
ferent from the Surprisal distributions: There is a largenber of words with an in-
tegration cost equal to 1, and the number of words with higitegration cost drops
log-linearly. There is no clear correlation with the numbéfixations, but a positive
gradient for the regression line for first fixation duratioAgain, these results have to
be analysed more carefully while taking into account paddigtconfounding factors.
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3.1.4 Discussion

The main function of this section was to provide an overviéwhe characteristics of
the Dundee Corpus and introduce the main factors that anerktm influence read-

ing times. We saw that the low-level factors behave as we dvexpect after what

we know from other eye-tracking studies, with typical diaitions for launch dis-

tances and landing positions in a word, the IOVP effect arttd \@inger word length

and lower frequency corresponding to longer reading tinAs.important observa-

tion from analysing frequencies was the influence of digis acronyms. Such data
points do not usually occur in eye-tracking experimentseiexperimental materials
are usually purpose-designed and there is no reason farding such items. While

we could see quite strong correlations between the lowl-lagables and reading
times, such correlations were not as strong for the highestisyntactic predictors.
This can be considered as a first indication that the expiapgtower of syntactic

effects on reading time in naturally occurring data is nostisng as the influences
from more low-level variables. Because reading times dlegnced by many factors,
some of which have a large impact on fixation durations, migartant to account for

these low-level effects before trying to find correlatiom$vireen more subtle or com-
plex effects and reading times. The following section widladiss linear mixed-effects
models for analysing the Dundee corpus and finding out whétieevariables we are
interested in have any explanatory power for the readinggim

3.2 Method: Mixed-Effects Models

There are two types of mixed effects models which we will dsschere: hierarchi-

cal linear mixed effects models (Pinheiro and Bates, 208@9)yvell as mixed effects

models with crossed random effects (Baayen et al., 2008)h Bi@ a generalisation

of linear regression that allows the inclusion of randontdes (such as participants
or items) as well as fixed factors, hence the name “mixed’cefieodels. The fixed

factors can be discrete (such as whether the previous wasdixeed) or continuous
(such as word frequency).

This section first motivates the use of mixed-effects mountelkis work, and then
discusses which specifications within mixed effects modktuld be used to model
the data best.
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3.2.1 Regression Analysis

In general, regression analysis refers to modelling a respeoariabley (in our case,
the fixation durations) as a function of one or more explayatariablesx;..x, (in our
case, length, frequency, landing position, Surprisal&aéic.). In the regression, an
intercepti and one regression coefficiebi..3,, for each of the explanatory variables
is estimated such that the best possible fit with the respearsable is achieved. The
remaining unexplained variance in the response varialtheisrrore.

y=i+B1-x1+PB2- X2+ +€

Once the intercept and regression coefficients for the agpday variables have
been estimated, one can be interested in the size of the #reanverse of which tells
us how much of the data (i.e. which proportion of the variaimcthe reading times)
can be explained by the explanatory variables. We are heveveys mainly interested
in whether the explanatory variables we are focusing ontfie syntactic predictors)
are able to explain any of the data above and beyond what caxgdiained by the
more low-level explanatory variables. That is, we are lagkat whether a regression
coefficient that is found during the regression processgsifscantly different from
zero, and whether it has the expected polarity (which tele/bether the relationship
between the explanatory variable and the response vadebtdhanging proportionally
or anti-proportionally).

Assumptions for standard regression analyses include:

1. The response variable is normally distributed.
2. The variance of the error is constant across observatmmsoscedasticity).
3. The independent variables are error-free.

4. The predictors are linearly independent, i.e. it mustb®possible to express
any predictor as a linear combination of the others.

5. The errors are uncorrelated, that is, the variance-coves matrix of the errors
is diagonal and each non-zero element is the variance ofitbe e

Not all of these basic assumptions are fulfilled by the ravdirgatime data. We
will therefore discuss problematic aspects in the next@est First, we will look at
how a more normal distribution of the response variable @madhieved. We will
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see that the models suffer a little bit from heteroscedgtiout that this problem
seems much less of an issue once the distribution of the mesp@riable is close to

a normal distribution. Regarding these two assumpt*ormrﬂin-Gadda et al‘. (2067)
argue that mixed effects models are quite robust to viatatiof these assumptions.
The third assumption, error-freeness of the independerdblas, i.e. that the values
for length, frequency, Surprisal etc. are correct, is naessarily true either. For some
of the variables, like length, this is trivial, but frequgnestimations depend on the
corpus used and the estimates of processing difficulty sacBuaprisal depend on
parses from an automatic parser, which will be incorrectzalde proportion of the
time. However, we can’'t do anything against this probleml+the estimates are as
good as possible given our tools. In addition, not all prextgcare necessarily linearly
independent of one another. This holds in particular formtoge complex syntactic
explanatory variables which may also capture more lowtleffects and therefore not
be independent of them. This problem, and how to deal witwilt,be discussed in
Section 3.2.3. Finally, we will review different ways of airucting the regression
model, and discuss model selection and outlier removal.

3.2.2 Normal Distribution of the Response Variable

As seen in Figures 3.1 to 3.3, the response variable, redidigg is not exactly nor-
mally distributed but skew to the right. This non-normakiglates the first assump-
tion underlying the regression model. A more normal disiidn of data points can be
achieved by excluding all data points with zero fixation dioraand log-transforming
the reading times.

For the Dundee corpus, the skipping rate is approximate¥s fdy first fixations
(i.e. 45% of the words are not fixated at first pass reading) 396 of the words are
never fixated. This means that zero reading times make upsadsyable amount of
the data, and therefore have an important influence on @gresoefficients. If not
treated separately, these data points increase residuahe@ in reading time regres-
sions immensely. If one wants to include all data points art@analysis, it would be
better to use the number of fixations as a response variatdanply a flag, indicating
whether a word has been fixated or not, and use a logisticsegremodel.

One way to try to overcome the problems that are due to nomaldy of the
reading time data is to use mathematically transformedimgatmes instead of raw
reading times in the regression. Logarithmically transfed reading times are more
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similar to a normal distribution than the raw values for maegding time data sets.
For an example, recall Figures 3.1 t013.3: the histogramw $hat the reading time
data for all three reading time measures discussed hereditnaah distribution better
when they are logarithmically transformed.

Figures 3.21 a) and b) show the error plots for raw and ldgaiitally transformed
models for regressing total reading times. In the log mdugtieroscedasticity occurs
much less than in the raw reading times model (this can befsa@rthe shapes of the
dots in the first plot of the two figures: While the residualsdree larger as fitted val-
ues increase in the plot of raw reading times, there is no gattkrn in the log reading
times plot). In the quantile-quantile plots (bottom lefots of the two subfigures) we
can see that the deviation from the linear line became mueliengi.e. the data is less
skew).

All of these arguments support the use of log-transformadirg times in regres-
sion models. A disadvantage with this practice is howevar thodel results may be
harder to interpret when the values of the response varabl&ansformed, which is
harder to justify given claims that mixed-effects modekbs mbust with respect to vio-
lation of normality. Due to this inconclusiveness, we als/agn regressions with both
the raw and the logarithmically transformed values. Gdheithese models lead to
the same conclusions. We will therefore report results téraw reading time data,
for the sake of interpretability. In the literature, peoplgen use raw reading times
and do not transform them logarithmically (logarithmiatséormation of explanatory
variables like transitional probabilities or frequenciBswever, is very common). It
seems to be generally assumed that transforming the re&idiegvalues would not
have a significant effect on the regression outcome.

Alternatively, the regression model can be specified torassaidifferent distribu-
tion, which reflects the distribution of the data better.Ha tase of reading time data,
the gamma distribution would be a good fit, see centre sulefigarFigures 3.1 to 3.3.
However, running the regression models specifying the gardistribution was not
possible for technical reas&]s

4A practical problem occurred when trying to run regressifmsa gamma-distributed response
variable using R: it seems like there is a bug in the Imer fiomadf the Ime4 package that occurs when
specifying the Gamma family. The regression exits with thieré’'mu[i] must be positive”. This error
has been observed by other researchers for this case asmaleported to developers, but it has not
been fixed as of beginning of August 2010. Alternative immeatations of mixed-effect modelling for
gamma distributed data is the glm function, which howeversdoot allow the use of random effects,
and the GenStat package, which turns out to be too slow todstwith large data sets like the one of
interest for the work reported here.
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Figure 3.21: Model inspection with raw vs. log reading times as the response variable.
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3.2.3 Correlation of Explanatory Variables

The underlying mathematical assumptions of regressioneisadclude that the ex-
planatory variables be independent (assumption 4). Thahey should not capture
the same effect and hence explain the same part of the variadowever, by the

nature of some of our explanatory variables, this is not teec For example, word
frequency, forward transitional probability, and lexiGalrprisal all depend on the fre-
guency of a word and therefore capture partly overlappipgets. Similarly, frequent

words are usually short, while infrequent words tend to Imgéy etc. Therefore, it is
important to determine whether there is a statisticallyiicant correlation between
different predictors. Table 3.1 shows that there are indé®uhg correlations between
the related predictors.

word freq word prev land launch forw backw lexic ulex
length no freq pos dist trans trans surpr surpr
w-freq -0.70

w-number| 0.03 -0.03

prev-freq 0.07 -0.07 0.00

land pos 0.51 0.18 -0.00 -0.06

launch dist -0.03 0.01 0.00 -0.00 -0.00

forw.trans| -0.56 0.67-0.01 -0.04 0.13 0.01

back.trans| -0.56 0.67-0.01 -0.03 0.15 0.010.67

lex surpris| 0.51 -0.61 0.02 0.01 -0.13 -0.00-0.68 -0.54

ulex surpr| -0.04 0.05 -0.02 -0.17 0.02 -0.00 -0.10 0.08.35

integ cost | 0.21 -0.28 0.03 0.03 -0.06 0.00 -0.22 -0.28 0.18 -0.07

Table 3.1: Correlations (according to Pearson test) between explanatory variables in

the data set. Values are highlighted for correlations larger than 0.3.

Large correlations between predictors can cause largelatbons between the
estimated fixed effects. Such collinearity between fixedatff can lead to unstable
results, where a coefficient estimate jumps around, i.eastdnpositive value in one
model, but a negative one in a very similar model with theicelr predictor removed.
Furthermore, significance estimates can be inflated. Thanm#hat coefficients and
significances cannot be trusted for predictors which haegelaorrelations with other
predictors.

Strategies for removing collinearity in the model inclugating predictors and
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residualizing predictors against the ones they are cdeehaith, or expressing pre-
dictors differently. For example, the correlation betwé&erding position on the word
and word length is so strong because the length of the woodgiy limits the values
that landing position can possibly take on. Alternativéifye landing position can be
expressed with respect to the word length, for example aathﬁ%lgggitﬂoq Given

what we know about the IOVP effect, it also makes sense ta@ssunon-linear rela-
tionship between landing position and reading time. In,fagtiared landing position
values lead to a much better model fit, and make sense thedhgtias they model
the shape of the IOVP effect. Correlation between the sguaaiative word landing

position and word length is reduced to -0.25.

Baayen et al. (2008) also recommends running a kappa testeoprédictors. |If

there is too much collinearity, the matrix of predictors lcbbecome singular, which
would mean that the parameter estimation would be impassibhe kappa test de-
termines the condition number, which estimates the degrednich the matrix is sin-
gular, meaning that there exists a potentially harmful degsf collinearity between
predictors. If we run the kappa test on the variables whiatomting to Table 3.1
show substantial correlation (word length, frequencyic@xSurprisal, structural Sur-
prisal, forward transitional probability and backwardisaional probability), we find
that the condition number comes outlkas: 15.18. As a guideline, Baayen suggests
that a condition number between 0 and 6 suggests no collipeaiound 15 suggests
medium collinearity and a condition number above 30 indisgiotentially harmful
collinearity.

The correlations between our predictors are hence slighdlyigh, so we will ex-
plore whether we can reduce them by residualizing. We refimiby running a linear
regression between the predictor we want to residualizetlaagredictors that it is
correlated with. If we residualize word length against wisedjuency, forward transi-
tional probabilities against frequency, backward traosdl probabilities against both
frequency and forward transitional probabilities, anddak Surprisal against word
frequency, forward transitional probabilities and stawat Surprisal, correlations be-
tween the resulting residualized predictors are remowemiTable 3.2.

Residualization of predictors however changes the ing¢gion of coefficients in
the regression model: the model is for example not estimatia effect of word length
on reading times, but the part of the word length effect teahdependent of word
frequency.

Finally, it is also important to keep in mind that we do not essarily have to re-
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residual residual residual residual
word word forward backward lexical
length frequency trans prob trans prob surprisal

word frequency 0.01

resid forward tp -0.16 -0.03

resid backward tp -0.11 -0.02 0.04

resid lex surpris 0.11 0.05 -0.03 -0.11

structural surprisa 0.00 0.05 -0.19 0.08 -0.00

Table 3.2: Correlations (according to Pearson test) between residualized explanatory

variables.

move collinearity between variables which we are not irdte@ in. As long as they
are not correlated with the variables that we are interastatiey will not change the
coefficient and significance estimates of the predictor frest. If we are only inter-
ested in a subset of the predictors, a safe and conservagitleris to first estimate
a model including all variables that we are not interestedimd run a second model
with the residuals from the first model as the response Mariabhis way, there are
no possible correlation effects between explanatory kbegain the first and second
model.

3.2.4 Dealing with Repeated Measures

Repeated measures refer to situations where measurementslkected under the
same conditions multiple times. For our data, each subgact the whole corpus, and
thus provided many data points. It can therefore be expebtadhe measurements
taken from the same subject are related in some way, thuatwiglthe assumption
that errors are independent. Indeed, we have shown in 8&tl01.4 that the length
of fixation durations, saccade sizes etc. depend on thedubjal that some subjects
show stronger effects of some characteristics of the wdrals dvthers.

Lorch and Myers‘ (1990) compare three ways of dealing witleagégd measures
data. The first method simply averages over subjects sotbi is just one data point
for each item. This is also done in the traditional quasigtibg where regressions
are both run on the aggregated subject data points and oagadgd item data points.
Effects are then only accepted to be significant if signifoeais reached in both tests.

Lorch and Myers (1990) argue that averaging over subjea®igyood practice for
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regressing reading times: When subjects are averagedheuvatiability associated
with subjects is eliminated, and subjects are in fact tebatea fixed effect. Also, pa-
rameters such as landing position and launch distance tegreshown to significantly
influence reading times but are not available when subjeetaweraged out. When us-
ing this method, Type 1 errﬁget inflated. However, the mathematical problem of a
non-normally-distributed response variable is less geiéin this case, because the av-
eraging of the reading times causes the data to be more stmdanormal distribution
(cf. Figure 3.22, as opposed to the more skewed distribinifigure 3.3). Therefore,
the models based on this data could be argued to be mathatyatnore reliable. A
disadvantage of averaging over subjects is that we lose poeagctors specific to the
actual reading of that text by a specific human.

Average total reading times per item

40
1

Frequency
20
|

10

I T T T 1
0 100 200 300 400

Total reading duration

Figure 3.22: The distribution of total reading times when averaged across subjects.

Figure 3.23 shows other ways of model inspection for theasgjon with averaged
subjects. The upper two plots show the distribution of nesisl against fitted values.
Ideally, there should be no pattern in the data, in partriculee data points should
not lie within a triangular shape. The bottom left subfigunews a quantile-quantile
plot. If the points deviate from the straight line, this medhat the data is skew (in
the case of reading time data, it is skew to the right, and weetbre see a deviation
from the linear line towards the top). Finally, the last sgbfe in Figure 3.23 shows
the leverage of the data points. From this plot one can readhfluence of specific
data points on the parameter estimates. The most influguiiais are those that have

SA Type 1 error is committed if we reject the null hypothesisentit is true, and Type 2 error is
committed if we accept the null hypothesis when it is false.
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Residuals vs Fitted Scale-Location

b o5

9259
0323

100 200 300
1

Residuals
|Standardized residualsl

0.0 05 10 15 20 25

-100 0

Fitted values Fitted values

Normal Q-Q Residuals vs Leverage

2500 029 .
© - 0323 © o o

570 7

Standardized residuals
Standardized residuals
2
1

o~ 0
i oo - - - Cook's distance e
T T T T T T T T T T T T

-3 -2 -1 0 1 2 3 0.00 0.05 0.10 0.15 0.20

Theoretical Quantiles Leverage

Figure 3.23: Error plot for regression of averaged total reading times.

a large Cook’s distance. When a point is very influential, siheuld try leaving this
point out of the model to see whether the estimates changeasulally or not. We’'ll
get back to outlier removal in the next section.

An alternative method is to run the regressions on the iddafiobservations and to
include the subject variable into the regression (effetyitreating it as a fixed effect).
But, as Lorch and Myers (1990) point out, this method alsddea inflated Type 1
error (although to a lesser extent than when averaging uhjaests){ Lorch and Myers

1990) therefore recommend to run separate regressioreafdr subject. However,
“?ichter ’(ZE%) pointed out that there are some problemstivélseparate regressions
method, because the data set is split up into subsets andsidetss reliable because
of smaller data set size. Furthermore, variabilities ofdbparate regression estimates
are not taken into account when running the t-test on thessgsn coefficients, which
can also lead to biased results. RichErl(ZOOB) insteadme@mds to use hierarchical

linear models.

In hierarchical mixed effects models, all data points atera into the same re-
gression equation, which has two (or more) layers. Paditpwere entered as a sep-

arate level from the items in the model, foIIowi‘nq Ric 1tq{06) recommendations

for the treatment of reading time data (this is a generatisaif an approach initially

proposed by Lorch and Myers (1990)). However, such a desightroe slightly better
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suited for situations where the nesting between randonetsffe inherent in the data,
e.g. in some experiment where children would be nested wateols, which would
in turn be nested under cities.

Mixed effect models with crossed subject and item randoecedf as explained in

Baayen et al. (2008) have recently become the new standdine ifield. The differ-

ence between these models and hierarchical models is #rattiical models assume
a nesting between subjects and items effects, whereas Baagedels “cross” sub-
jects and items effects. In such mixed effects models witissed random effects,
separate intercepts and slopes are estimated for eachnigmaah subject, if neces-
sary (i.e. the model can of course be simplified if slopes dohetp to explain the
data). This means that the model can then determine whethehere is a significant
effect of word length on reading time which is common to abjsats, i.e. the random
slopes give the model a way to adapt estimates to each suthestallowing for a
situation where one subject’s reading times are effectee rsivongly by word length
than another subject’s reading times. This work makes uskeolmer implemenLa—
., 2008;

tion of mixed effects models, which is part of the Ime4 pa&'k%@aayen et al
‘Bates and Sarlﬁr, 2007).

For our data, random effects under item were not estimateddweeral reasons.

Firstly, estimating a separate intercept and slopes fon &am (i.e. for each word
in the corpus) is very likely to massively over-fit the dataack word was only read
by 10 subjects, and many of these data points are not prasehé imodel due to
track loss and skipping. Therefore, there simply aren’uginodata points for sensibly
estimating an intercept and slopes under item. FurtherntbeeDundee Corpus is
different from typical psycholinguistic materials in ttsntences were not constructed
to test a specific effect. Therefore, the text in the Dundeg@ocorresponds more
to a representative sample of the English language thaoalgxperimental materials
do. Finally, it is in practice not possible to include randortercepts and slopes for
both subjects and items on our large data set because of ypegsirictions, non-
convergence of the model and extensively long run times. aiiqular, the model
cannot estimate more than two slopes under subject if egtithje intercept for itemis
included. We consider the slopes under subject to have erble¢ioretically motivated
explanatory (and less over-fitting) effect on the data, aeddfore include slopes under
subject instead of random effects under item in the regyassialyses reported in this
thesis.

Compared to traditional quasi-F statistic analysis, mig#ects models are more
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robust and conservative, which is why they should be prefertHowever, for very
small data sets, the quasi-F test can be more powerful,atectdan effect more eas-
ily than a mixed effects model. This thesis analyses a vagelaata set, and thus
focuses on the use of mixed effects models. Estimating rarglopes for each sub-
ject makes model estimation very slow, and can lead to nomezgence or the model
running out of memory if there is a large number of predictord interactions, which
are also included in the model as random effects. We fourtdttisstoo computation-
ally expensive on the Dundee data set to include interagti@random slopes under
subjects.

3.2.5 OQutlier Removal

Outliers are points that are very atypical compared to teeakthe data. The problem
with them is that they can have a strong influence on modehasibns and lead to
exaggerated or wrong estimates that don't reflect the patterthe rest of the data
set. We remove all data points that have too high leverageerbge is estimated as
the difference in model estimations with and without eaclhef data points, called
the difference in fits (dffits). When there’s a large diffezernn estimations by just
removing a single point, there is reason to consider thatt@s an outlier. Consider
for example the plot in Figure 3.24 which plots the differemtfits for each point of a

model for the Dundee Corpds. BaayL:n (2008) suggests totbeale differences in fit
and then use a cutoff at 2.5 or 3 for removing points with hegletage, which is what
we did for all regression models presented in this thesis.

3.2.6 Model Selection

Model selection refers to the process of choosing the mbdéhtest explains the data,
i.e. choosing among the explanatory variables those thkéraasignificant contribu-
tion to explaining the variance seen in the response variabl

A complete model would include all explanatory variabldkraulti-way interac-
tions between thégmnd all random slopes of explanatory variables under atlaan
effects, including also random slopes for interactions.

One method to get to the model that best explains the dataispeby-step remove

SInteractions between variables are when one variable rateithe effect of another explanatory
variable. For example, we might find that beyond the maincésfef word length and word frequency,
frequency effects are stronger for short words than for lwogds.
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Figure 3.24: Leverage of all data points for a model of low-level predictors on the

Dundee Corpus data.

from the complete model all predictors that do not signifigamprove model fit,
starting with multi-way interactions and ending with theimpredictors. Here, it is
important not to remove any main effect that is also a compbimean interaction.
Alternatively, one can use additive model building, stagtwith an empty model and
step-by-step adding predictors if they improve model fingigantly.

Different versions of models can thereby be compared bytatiag the log like-
lihood, degrees of freedom, Bayesian Information Crite(iBIC) and the Akaike In-
formation Criterion (AIC) for each of the modelg? is used to decide whether one
model is significantly different from the other. The BIC antCAscores combine both
model fit and degrees of freedom of the model to calculatees¢avith BIC penalising
additional degrees of freedom more strongly than AIC. A nh@dd more predictors
will usually always fit the data better than one with less teds, therefore, it has to
be determined whether it is worthwhile to include the presticgiven the amount of
the gain in model fit. So larger log likelihood is better thawér log likelihood scores,
fewer degrees of freedom are better than many degrees dbireeand lower AIC and
BIC scores are better than higher ones. If two models areigoifisantly different,
the one with fewer degrees of freedom is to be chosen, ancyf &he significantly
different, the one with lower AIC (usually also coincidingtivlower BIC) is chosen.

A mixed strategy for model selection was used, becausentpsssible to estimate
the complete model for our data set due to failing convergeara excessively long
run times. For the models reported in this thesis, we staridda model including
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all predictors as main effects, then added all possiblerpiimaeractions (but no other
multi-way interactions) and all slopes under subject (wstete the model building
also the other way around, adding slopes first and then titers, but got identical
results). Then any main factors that did not significantlgtdbute to the model were
removed step-by-step (except, of course, for those maior&athat are part of an
significantly contributing interaction or slope). The fimabdel contains only main
effects, interactions and slopes that were significantrimurtiors to the model.

3.2.7 Discussion

This section provided background about multiple linear@sgion models with fixed
and random effects. We have discussed how to avoid violagssgmptions of re-
gression models by changing the distribution of the respaasiable and removing
correlation between explanatory variables, and have mt@ivdecisions of how these
issues are dealt with in this thesis. Automatic methods éonaving outliers from
the analysis have also been motivated and discussed. Fudfiee we have given an
overview of how to deal with repeated measures and concltiteda model with a
by-subject random intercept and by-subject slopes aredsiesolution for our data.
We would like to take the last point up again for reflectiontia sections showing
the distributions of fixation durations in the Dundee Corparsl the discussion about
the assumed normal distribution of the data, we have coedldlat skipped words
should be excluded from the data. This does however mearshioat and frequent
words, which are often skipped, are more difficult from thenpof view of the model
than they would be if skipping was factored in. It seems walhtite bearing in mind
that the difficulty of a word is also reflected in the skippiage: As we have said, it is
not possible to include the raw skipped values in the regresand averaging across
subjects, which would take care of the problem of combinirgtion durations and

skipped words, was ruled out based on argumentati&;n in (Land Myer&, 1930).

There is no obvious perfect solution to this problem. In fédocé problem seems
to lie at a deeper level: we should not try to directly fit diffiily estimates to reading
times. Instead, there is an intermediary step which whichaveemissing: a model
which translates processing difficulty into reading timasgounting for skipping of
short frequent words even if they are unexpected, and aydi-effects on following
words. Explanatory power of the explanatory variables wanbst likely be improved
a lot this way. However, such a model is outside the scopei®fthD thesis.
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3.3 Conclusions

This chapter has discussed the data set used for the expésimethis PhD, the
Dundee Corpus, and the method for analysing it, linear meféects models. We
were able to show that the reading characteristics obsémtbe Dundee Corpus data
are in line with previous findings. The data needs some me@nahg up than would
be the case in a typical lab experiment due to the materidldeiag controlled and
containing e.g. numbers, abbreviations and special cteasac

The regression models reported in Chapters 4, 5 and 9.2fgitactices concern-
ing residualization of explanatory variables, repeate@suees treatment, outlier re-
moval and model selection as discussed in the second pdrisathiapter. While we
ran models on both log-transformed and raw reading timealfoegression analyses
conducted in this work, this thesis will usually report misden raw reading times, as
results were equivalent, but raw reading times are easiatdrpret.






Chapter 4

Case Study: Processing Difficulty in

Naturally Occurring Relative Clauses

The goal in this chapter is to provide a proof of concept fongishe Dundee corpus
as a resource for evaluating theories for syntactic praogsdt focuses on a very
specific and relatively frequent structure, which has besrstigated and discussed

extensively in the literature, (e.g., King and Just, 199&ative clauses. Being able to
find the well-established results in the corpus is a gooctathn that it is possible to
use the Dundee corpus as a complementary resource fogtéstiories, in addition to
experimental test suites.

Early results of the work reported in this chapter were presgat CUNY 2007
and published at CogSci (Demberg and Keller, 2007).

4.1 Empirical Findings in Relative Clause Processing

Experimental results show that English subject relatieests (SRCs) as|in (1-a) are
easier to process than object relative clauses (ORCs) dskih Experimentally, this
difficulty is evidenced by the fact that reading times onoedgR1 in the SRC are lower
than reading times for the corresponding region R2 in the (&lﬂﬁg and JusIL 19&)1),
see Figure 4.1 for the original experimental results, olgtivia self-paced reading.

The SRC / ORC effect has also been found in a range of otheiesttmbe a reliable

effect in English (Gordon et al., 2001; Traxler et al., 2088)well as other languages
Mak et al., 2002; Friederici et al., 1998). In recent wa rlkaLmL (2010) has shown
that object relative clauses cause larger difficulty thdrest relative clauses both on
the embedded verb regioat{ackedin sentences from Example (1)) and on the NP

77
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region in the relative clauséhe senatoy. In this experiment, we however focus on the
embedded verb region only.

Q) a. The reporter whiattackedk; the senator admitted the error.
b. The reporter who the senafattackedk, admitted the error.

Reading Times for SRC vs. ORC (Gibson, 1998)
460 T T T T

SRC ——
FaN ORC ----

440+ :
420+ N
400 g

380

Reading time in msec

360 *

340 ‘ : :
The reporter who attacked the senator admitted the error.

who the senator  attacked

Figure 4.1. Results from the relative clause self-paced reading time experiment by

‘King and Jus 1991&.

The size of the effect has been shown to also depend on fasiated to the
ORC noun phrase, e.g. animacy, semantic similarity to athgties in the context and
topicality (Gennari and MacDonalh, 26&8; Gordon et‘al.,QdTDraxler et aI.J 20&5;

Reali and Christiansen, 2&07).

The difference in processing difficulty on the embedded wedion in subject
vS. object relative clauses cannot be explained by lexaabfs (as the words in the
two conditions are exactly the same) or higher syntacticiguity in the ORC con-
dition (in fact, there is less ambiguity at the ORC embeddexd than at the SRC
embedded verb). Findings such as these are explained bggsiog theories that
capture the complexity involved in computing the syntadapendencies between the
words in a sentence. The most prominent such theory is Depegd_ocality Theory
(DLT), proposed b{/ Gibs% (19&8, 2000) and explained in ndetail in Section 2.2/2.

DLT not only captures the SRC / ORC asymmetry while taking extcount a notion

of topicality (by counting discourse referents but not peed pronouns for calculat-
ing integration cost), but also accounts for a wide rangetloéiocomplexity results,
including processing overload phenomena such as centredsfimnty and cross-serial
dependencies.
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While DLT has been validated against a large range of expariah results, it has
not been shown previous to this work that it can also sucakgshodel complexity
phenomena in naturally occurring text. Here we aim to test'®lpredictions on
naturally occurring subject and object relative claus#sarathan for isolated example
sentences manually constructed by psycholinguists.

4.2 Experiment on RC Embedded Verb

4.2.1 Materials

For our data analysis, we used relative clauses from the @&un@orpus
dKennedy and Pyntle, 20‘05), see Section 3.1 for a detailesptation and discussion
of the corpus. We extracted all relative clauses headedhny whom which, where

that, and by PPs such der which, and manually checked all sentences for whether
they were indeed instances of relative clauses. We endedthb02 relative clauses
which we manually annotated for the position of the relatilaise verbal region and
the integration cost incurred at the RC verb. In relativaisés with auxiliaries or
modals, we extracted the main verb of the relative clauseaus® this is where in-
tegration cost occurs according to DLT. In the case of pedtie constructions, we
extracted the inflected form of the predicative vbé. The data contains about 25%
object relative clauses and 75% subject relative clauses.

Reading times were computed for the different measures fiftegion time, first
pass time, total reading time), as well as the total numbgxations in regions R1 and
R2 for each item and subject. Linear mixed effects modelsyitie reading measures
as a dependent variable included only data points with txatiuration> 0 in the
model, due to the reasons discussed in Section 3.1.1. Treeee3046 data points for
the total reading time analysis, 2608 data points for firsitfon duration and first pass
duration and 4056 data points in the regression estimatingper of fixations.

4.2.2 Regression Procedure

The predictor we are most interested in for the study of meicg difficulty in rela-
tive clauses is DLT integration cost (for a definition, seet®®(2.2.2). However, as
discussed in Section 2.1.2, it is well-known that readintes in eye-tracking data are

1Regression results turned out to be equivalent with andowitbthese predicative items. These
forms were often cliticisediho’ll, he’s) and were therefore unlikely to receive any fixation).
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influenced not only by high-level, syntactic variables dabdy a number of low-level

variables that have to do with the physiology of reading, lamgr level linguistic pro-

cessing effects such as lexical access etc. In this studyneleded the predictors

listed in Table 4.1. All of these predictors were centreel. fihe mean for a factor was

subtracted from each value) to reduce collinearity.

RELATIVE PRONOUN

RELATIVIZERTYPE
BIGRAMPROBABILITY
LEXICALSURPRISAL
STRUCTURALSURPRISAL
WORDLENGTH

SENTENCEPOSITION

WORDFREQUENCY
PREVFIX

FREQOFPREV

LAUNCHDISTANCE

LANDINGPOSITION

predictor value range description
INTEGRATIONCOST -1.44 — 5.56 manually annotated integration cost
RELATIVECLAUSETYPE SRC, ORC

that  who(m) relativizer of the relative clausé&3REP which

which,  where summarizes prepositions followed hyhich,

PREP which

such af which

WHNP, WHPP, alternative coding for RLATIVEPRONOUN

WHADVP
-3.3-2.74
-7.4-13.6
-2.1-93
-3.29-6.7
-15.6-45.4

-3.6-1.9
yes, no

-53-11

-2.0-8.7

0.00003 - 0.5

that groupghat, which, who(min WHNP
logarithmic; estimated from the BNC
estimated from Roark (2001a)
estimated from Roark (2001a)
in characters

the position of the word within the sente
(counted in words)

logarithmic, estimated from the BNC

the flag marking whether the previous w
had been fixated

the frequency of the previous word to mg
spill-over effects

difference from current to previous landing
sition in letters

squared word landing position relative to v

nce

ord

del

po-

vord

length to model the IOVP effect

Table 4.1: Predictors for the linear mixed effects models for reading times on the RC

verb, and their value ranges after centring. Frequency estimates are per million words.

For each of the continuous dependent variables (totalmgdutne, first fixation du-

ration, first pass duration), we ran separate mixed effieetiiregressions that included

the independent variables, interactions and random slopesr subject, as described

in Section 3.2. Final models were determined using the meelekction techniques
explained in Section 3.2.6.
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4.3 Results

4.3.1 Total Reading Time

The distribution of total reading times in the embedded vedion turned out to be
very skew, and significantly different from the normal disiition, while log trans-
formed reading times were not significantly different fromamal distribution. We
therefore ran all models on the log transformed readingdime

The final model for log transformed total reading times idelst NTEGRA-
TIONCOST, FREQUENCY, WORDLENGTH, FREQOFPREV, LAUNCHDISTANCE,
LANDINGPOSITION as main fixed effect, an interaction between word length and-
ing position WORDLENGTH:LANDINGPOSITION and a random intercept and random
slope for REQUENCY under SJBJECT.

Random slopes under item did not improve the model. As poiot¢ before, thisis
potentially due to over-fitting. According to the Bayesiaformation criterion (BIC),
models including random slopes under item were consistextttd worse than models
not including random slopes under item. Furthermore, agtivo or more random
slopes under item at the same time would lead to non-conveegef the model.

We removed outliers from the model by identifying pointsiwiiirge leverage, as
explained in Section 3.2.5. The results for fixed effectsheffinal model are shown
in Table[4.2. Centring the predictors lead to a big reduciiooorrelation for some
variables — compare correlations between fixed effectsreedad after centring in
Table 4.3. To make sure that the remaining correlations wetranfluencing our factor
of interest, NTEGRATIONCOST, we fitted a model including all other factors and then
ran a regression oNITEGRATIONCOST on the residuals. Regression coefficient and
significance level on residuals were exactly identical whth main model ones, so we
conclude that the remaining level of collinearity does rfté@ model interpretation
regarding NTEGRATIONCOST.

The main effect of relative clause type did not significanthprove the model,
and was thus removed from the final model. However, integmatiost, which has
previously been shown to correctly predict the difficultgunred in relative clauses,
and can be regarded as a more fine-grained measure than SR@lé ORC flags,
significantly improves model fit and reaches significance pssitive predictor for
total reading times: the model adjusts its estimation afltegading time upwards for
items with higher integration costs. Random slopes fogirggon costs under subject
and item did not improve model fit and therefore were not idetliin the final model.
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Predictor Coefficient Significance
(INTERCEPY) 5.43 Fxk
INTEGRATIONCOST 0.01 *
WORDLENGTH 0.03 kk
WORDFREQUENCY -0.07 *kx
FREQOFPREV 0.01
LANDINGPOSITION -0.19 *x
LAUNCHDISTANCE -0.01 e
WORDLENGTH:LANDINGPOSITION -0.12 e

p<0.1,*p<0.05 *p< 001, * p< 0.001

Table 4.2: Log-transformed total reading times for the embedded verb in relative clauses

— coefficients and their significance levels for a reduced model based on a complete

model including main effects, two-way interactions and slopes for both items and sub-

jects.
(Intr) IntegCost Length Freq LDist Surpr LandPos
raw predictors:
INTEGCOST -0.234
LENGTH -0.437 -0.081
FREQ -0.712 -0.032 0.307
FREQOFPREV -0.504 0.304 -0.103 -0.040
LANDPOS -0.141 0.057 0.452 -0.069 0.004
LAUNCHDIST 0.143 -0.011 0.077 0.031 0.019 0.002
LENGTH:LANDPOS 0.092 -0.062 -0.421 0.076 0.021 -0.938 0.012
centred predictors:
INTEGCOST -0.004
LENGTH -0.069 -0.079
FREQ -0.259  -0.030 0.307
FREQOFPREV -0.032 0.303 -0.102 -0.040
LANDPOS -0.235  -0.018 0.058 0.024 0.071
LAUNCHDIST -0.008 -0.011 0.079 0.031 0.020 0.031
LENGTH:LANDPOsS 0.007 -0.061 -0.420 0.076 0.02- -0.246 0.013

Table 4.3: Correlations between fixed effects of the fitted model (i.e. these are not the

correlations between explanatory variables) for raw and centred versions of predictors.
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Integration costs are significantly higher for ORCs (meaa39) in our data than
for SRCs (meas 1.18;t = 19, p < .0001). From this, we conclude that we can find
the SRC / ORC asymmetry effect in corpus data, when measiirimigh the more
fine-grained integration cost measure rather than just@@ SORC flag.

The results of a regression model using non-transformedingdimes are very
similar to the results from the model with log-transformedding times, but some
significance values are slightly different. As the non-sfanmed reading time model
is easier to interpret, the next section will explain whag thodel estimations mean
using the non-transformed model, as shown in Table 4.4.

Predictor Coefficient Significance
(INTERCEPY) 262.54 Fxk
INTEGRATIONCOST 4.44
NPTYPE=PRON -11.51 *
WORDLENGTH 8.53 il
WORDFREQUENCY -19.57 bkl
FREQOFPREV 2.65
LANDINGPOSITION -63.60 **
LAUNCHDISTANCE -2.78 ol
WORDLENGTH:LANDINGPOSITION -34.14 ol

*p<0.05 *p<0.01, * p<0.001

Table 4.4: Total reading times (not log transformed) for the embedded verb in relative

clauses.

During model estimation, the estimation algorithm of thedelotries to weigh
each predictor such that the best fit with the dependenthiar{aere, the total reading
times) is obtained when adding up all weighed predictorst usenow go through
how the reading time for a word is estimated given the valddbe predictors and
the model estimates. The intercept is 262.54 (see Tablewlhddh means that a verb
has a predicted base reading time of 262.54 ms. One wouldaithéd.44 times the
(centred) integration cost at the verb in ms, add 8.53 tirnegdentred) word length
in ms and subtract 19.57 ms for each log frequency unit of tbedw The launch
distance is the distance in letters between the currentdixand the previous fixation.
Hence, when the eye moves to the right, the launch distareca hagative value. The
negative coefficient for launch distance thus means thatgelolaunch distance leads
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to longer reading times (2.78 ms for each letter-distanCie¢. squared relative landing
position value (fixation positions at the edge of a word haleeger value than fixation
positions toward the middle of the word) is multiplied by &3.and subtracted from
reading times. The large value for landing position is cdusgethe fact that landing
position is calculated relative to word length, then ceshtred then squared, so values
only range from 0 to 0.5, while most other factors have a largege — for an overview
of the distribution of the explanatory variables, see Chaptl. Finally, the interaction
between word length and landing position is added to themgaane estimations as
the product of centred word length, squared relative lagpdosition and the coefficient
-34.14. This means that the IOVP effect is stronger for longds. Neither lexical nor
structural Surprisal came out as a significant predictohandata set.

The model also contains an intercept and a slope for frequamaer subjects. The
random intercept under subject means that the model essraatifferent base reading
time for each subject — some people are faster readers whibecarpected to spend
less time on a word on average than others. Fitting a frequeam@dom effect under
subject means that for each subject, we allow for a slighiffereént effect of word
frequency, which means that the model estimates in how tr eabject is affected by
differences in word frequency. Rare words might slow dowmseoeaders more than
others.

4.3.2 Early measures

The distribution of early measures is not as skew as theilslision of total reading
times, we are therefore going to report models that use radimg times as the re-
sponse variable.

The model for first fixation duration was determined in the saray as de-
scribed for the total reading time model. The final model aod the predictors
WORDLENGTH, PREVFIX, WORDFREQUENCY, SENTENCEPOSITION, LANDING-
PosITION, LAUNCHDISTANCE and an interaction between, again, the length of a word
and the relative landing position of the first fixation on inIPWORDLENGTH turned
out to significantly improve the model when added as a randopesunder item.
Again, centred versions of all explanatory variables weseduto remove collinearity,
and data points with atypically high leverage were removenhfthe final model. The
resulting model is shown in Table 4.5.

In first pass times, there was no significant effect for freqyenf the last word, but
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Predictor Coefficient Significance
(INTERCEPY) 247.75 Fxk
INTEGRATIONCOST 9.00 *
WORDLENGTH 9.63 ok
WORDFREQUENCY -7.09

PREVFIX -41.88 ol
LAUNCH DISTANCE -1.18
SENTENCEPOSITION -1.13 *

*p<0.05 *p<0.01, * p<0.001

Table 4.5: Final model of first pass durations for the embedded verb in relative clauses

— coefficients and their significance levels.

instead an effect of whether the last word had been fixateg\{Pix). Furthermore,
we did not find an effect of any interactions, or landing positin first pass times.
INTEGRATIONCOST came out as a significant positive predictor of reading times
first pass reading times, confirming the effect seen on tetding times. Results for
log transformed reading times as a response variable yig¢ldesame results. There
was no significant effect of either structural or lexical |Bisal.

On first fixation times, there is no significant effect of int&gon cost, but it re-
mains in the model as a random effect under subject whichf&gntly improves the
model. The lack of a main effect of integration cost in firsafirn times is not surpris-
ing, given that related work has usually only found a rekadffect of relative clause
type on late measures such as total reading time, but notsiriixation time, which
is a very early measure. Significant predictors for first fo@ttimes included only
low-level explanatory variables. Again, model fit was nopnoved by adding lexical
or structural Surprisal as a predictor of first fixation times

Regression Model for Number of Fixations In the above regression analyses, data
points where no fixation had taken place within the definibbthe dependent reading
time variable were not included in the analyses. In a laslyaig | therefore tested
whether relative clause type is predictive of how often thedded verb region is
fixated during reading. We therefore ran another model vegrethident variable BM-
BEROFFIXATIONS and the usual predictors, except those that are indireatats of
the number of fixations, such aaUNCHDISTANCE and LANDINGPOSITION.

The model resulting from model selection is not very inteéngs Only word length
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and frequency came out as reliable predictors for the numb@xations on a word
(as expected, long words are more likely to be fixated thamt sinees, and frequent
words are fixated less often than infrequent ones). In addiskipping probabilities
are almost identical for subject and object relative clautigey amount to about 36%
for first pass skipping (i.e., the word is skipped before adatorthe right is fixated)
and 25% for total skipping (i.e., the word is never fixated).

4.4 Discussion

As expected, a significant proportion of the data is exptaimelow-level factors such
as word length, the frequency of a word and oculomotor-edlatfects such as fixation
landing position and launch distance. We were not able todmdsignificant effect
of lexical or structural Surprisal on the critical region.passible explanation for this
lack of effect is that Surprisal has been argued to make iacbpredictions for the
embedded verb of English relative clauses, predictingahvarb in the ORC condition
should be easier to read than a verb in the SRC condition.nGhis expectation of
Surprisal not being a good predictor for reading times iatre¢ clauses, it is maybe
not astonishing that no significant effect was found in tlgsezgiment.

DLT integration cost however has been argued to correctlgghthe SRC/ORC
asymmetry, and we did find a significant effect of DLT integmaicost in total reading
times and first pass times. This effect cannot easily be mqiaaway by e.g. spill-
over effects, as predictors relating to the difficulty of fireceding word such as the
frequency of the previous word and whether it had been fixatemte included in
the models as explanatory variables, but did not cause tegration cost effect to
go away. We did not find a statistically significant effect nfegration cost in first
fixation durations, which indicates that the effect must byeeth also by refixations on
the critical region.

The results presented here provide evidence for proceskifegences between
subject and object relative clauses in naturally occurs@gtences in context. While
no main effect of the binary distinction SRC / ORC was fouhds thapter has argued
that the statistically significant positive integratiorsteffect is a more fine-grained
measure of the processing difficulty differences in sulgect object relative clauses.
We showed that integration cost at the embedded verb of atiiglative clause is
significantly higher than at the embedded verb of a subjdative clause, and that
higher integration costs lead to longer reading times, wimcturn reflect larger pro-
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cessing difficulty. The integration cost effect occurredatal reading times and first
pass times, but not first fixation times, which is in line witleyious results experi-
mental results on SRC / ORC processing from the literatute.fi@dding that the more
fine-grained measure of integration cost, which takes iot@an aspects of topicality,
was a far better predictor of reading times than a simple SRRC flag, seems also
very compatible with recent findings of reduced object redatlause difficulty for
object relative clauses in context, see Section 4.4.1.

Having replicated well-established experimental findiaggshe difference in pro-
cessing difficulty between subject and object relative sésun English, the Dundee
Corpus seems to be a valid and valuable resource for te$iagies of sentence pro-
cessing in addition to traditional controlled experiments

4.4.1 Related Work on Contextualised Relative Clause Proce  ssing

Since we first ran initial experiments on relative clausetheéDundee Corpus, some
other groups of researchers have also published work aidgeshe question of
whether the traditional relative clause findings hold fontextualised text or is an
artefact of the single-sentence presentation in expetahdasigns.

Mak et al. (2008) argued that the processing difficulty obseiin object relative

clauses is due to wrong topicality when the relative clawsespresented without a
suitable context. They argue that in naturally occurring,tenlike experimental sen-
tences, object relative clauses are chosen to fit the topictate of the discourse,
and that difficulty occurs when violating this topic strugtuas is the case with ob-
ject relative clauses presented without context in expemiisn Mak et al. found that
the processing of object relative clauses was greatlyitaigtl if they were licensed
by the preceding discourse structure. This finding fits wiih formulation of DLT

integration costs in that integration costs are calculatéerms of how many new dis-
course elements intervened between an argument and its He¢lae NP in an object

relative clause was the discourse topic, the NP is usualgrsomal pronoun and thus

does not cause any integration cost. Simil&rly, Reali anﬁts@@seH(ZOO?) showed
that relative clauses in naturally occurring text oftenéavrelative pronoun as the
noun phrase, and that processing such frequently-ocgupatterns of ORCs is eas-
ier than the object relative clauses used in psycholinguesiperiments, that typically
have a full noun phrase. In his 2007 CUNY poster, Roland @) argued sim-
ilarly that the difference in processing difficulty betwesubject and object relative
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clauses is due to experimental design and disappears wladiveeclauses are pre-
sented in context. These findings are seemingly in contvastrtpublication at CogSci
dDemberg and KeIIQ, 2007), where we did find a significant Gffficulty effect for

relative clauses in context. Douglas Roland has since @gtiaelative clauses from

the Dundee Corpus and argued that our findings are due to ke sintier Rolanh,

2008) and failure to use a random slope for relative clauge tynder item (Roland,

2009). We were not able to replicate Roland’s null-resujtsdmoving the outlier

sentence from our data, presumably due to the fact that Rblad extracted a slightly
different set of sentences from the corpus.

All challenges put forward by Roland have been addressdtkianalyses reported
in this chapter: we have checked all automatically extchotdative clauses by hand,
to make sure they are all indeed relative clauses, and gieartmat critical regions are
annotated correctfy Furthermore, we have added prepositional and adveriiarg
relative clauses to increase the amount of data pointsadlaifor the object relative
clause case. Any data points with large leverage are remivged the data set as
outliers, and we included slopes for random effects of subjéhere they improve
model fit. Concerning random slopes under item however, wadahat model fit
and number of data points per item indicate that includimgloan slopes under item
would lead to problems of over-fitting the data. We find thagreif we include it, such
a slope neither improved model fp & 0.99), nor does it change the outcome of the
integration cost main effect.

4.5 Conclusions

We were able to show that the integration cost component peBeency Locality

Theory ((DLT)‘ Gibsor{ 199%, 2000), correctly predicts eiffinces in processing com-
plexity for subject and object relative clauses. The coxipteffect was tested on the
embedded verb of the relative clause and lead to elevatelihgeeimes in the ORC
condition.

When an early version of this experiment was first publishbi, was the first
time a theory of sentence processing had been tested onrdataah eye-tracking
corpus. Since, other researchers have started using treeB@orpus and the Potsdam
Sentence Corpus (which is a collection of sentences ratla@rd corpus of naturally
occurring text) for similar studies.

2Big thanks to Frank Keller and Roger Levy for helping me wiifstchore!
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While this chapter has only dealt with one constructionafireé clauses), we be-
lieve that our corpus-based approach constitutes an iaqmonew methodology for
evaluating models of sentence processing. Such modelsprermusly tested exclu-
sively on data obtained for isolated, manually construseatences in controlled lab
experiments. The validity of the models can be enhancedderdble if we are able to
show that they scale up to model reading data from an eykHagcorpus of naturally
occurring text. This task is tackled in the next Chapter ¢f thesis, where DLT and
Surprisal are tested on the complete data of the Dundee €orpu






Chapter 5

Broad Coverage Evaluation of DLT and

Surprisal

This chapter evaluates two previous theories of sentermeepsing, DLT and Sur-
prisal, on the Dundee Corpus. Experiments on relative elus the last chapter
showed that a well-known effect, the SRC/ORC asymmetry @aaldserved also on
naturally occurring relative clauses from the Dundee csypnd that DLT integration
cost correctly predicts the data, while Surprisal did notérd{ we want to extend the
comparative evaluation of integration cost and Surprisahé full range of construc-
tions in the Dundee Corpus. The main question we want to answehether these

two prominent theories of sentence processing, which hega bhown to successfully
model a range psycholinguistic effects, also predict psicgy difficulty on naturally

occurring text.

This chapter reports four experiments. The first experinegatuates integration
cost on the whole data set, and the second experiment asahtsgration cost in
more detail on the types of words where the bulk of the preaistare made: nouns
and verbs. The third experiment evaluates two versions girisal, lexical Surprisal
and structural Surprisal on the whole data set. The lastrarpat presents a compar-
ative analysis of Surprisal and DLT integration cost as jteds added to the same
baseline model. In the last part of the chapter, implicatioom these experiments are
discussed.

The material described in the chapter was presented at ANDARP and published
in Cognition (Demberg and Kell‘er. 2008a).

91
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5.1 Motivation

As described in Section 2.2, a number of different theoriesyatactic processing
complexity exist. However, this study will focus on DLT andrfrisal, as these two
approaches are maximally different from each other. Ini@agr, they make com-
plementary assumptions about the source of processinglermypDLT’s integration
cost captures the cost incurred when a head has to be irgdgrath the dependents
that precede it, see Section 2/2.2. Surprisal, on the othred,laccounts for the cost
that results when the current word is not predicted by theqalimg context, see Sec-
tion/2.2.4. Therefore, integration cost can be regardedaslavard looking cost (past
material has to be held in memory and integrated), while i&alis a forward-looking
cost (syntactic predictions have to be discarded if theynarenger compatible with
the current word). This observation leads to a general ecapiprediction, viz., that
integration cost and Surprisal should be uncorrelated sandld account for comple-
mentary aspects of reading time data. The present studyesilthis prediction.

While DLT and Surprisal have been evaluated against a rahgeperimental re-
sults, so far ndoroad coverageevaluation of theories of syntactic processing com-
plexity has been carried out. Existing studies rely on lapeexnents, which have
the advantage of giving the experimenter full control over éxperimental setup and
the materials, and are of established reliability and vglidHowever, this approach
also has its drawbacks. It typically involves the preseoadf artificially constructed
sentences containing a narrow range of syntactic struetéiso, the same structures
occur many times in a given experiment, raising the possiloif habituation effects or
the development of strategies in participants. The seatetabe tested are often pre-
sented in isolation, i.e., without an appropriate textuaitext, potentially leading to
behaviour that is different from normal reading. Finallgjyoa small number of items
can be tested in the typical psycholinguistic experimenktT @nd Surprisal effects
have successfully been obtained in such a experimentahggtbut these method-
ological limitations leave open the possibility that théeefs are rare or absent when
arbitrary words in large amounts of naturalistic, contaeksed text are considered.

The aim of the study presented in this chapter is to addrésgtbblem and pro-
vide a broad coverage evaluation of DLT and Surprisal on thled2e Corpus, a large
collection of newspaper text for which the eye-movemendm@of 10 participants is
available, see Chapter 3.1. From this corpus, a range ofragking measures can
be computed, which can then be evaluated against the gosdicif theories of syn-
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tactic processing complexity. Such broad coverage stwdkdd results that hold for
naturalistic, contextualised text, rather than for isedb¢xample sentences artificially
constructed by psycholinguists. Chapter 4 showed how iddal phenomena, such
as the subject/object relative clause asymmetry can betddtan naturally occurring
text. The aim of the broad-coverage evaluation presentedschapter is to show that
corpus studies can also be used to systematically testi¢semfrsyntactic processing
complexity. Such studies provide a source of evidence thabborates experimen-
tal results, but also yields new theoretical insights, asakes it possible to evaluate
multiple theoretical predictors against each other ongelastandardised data set.

5.2 Predictors of Processing Difficulty

In this study, we are primarily interested in how far two éxig theories, DLT (see
Section 2.2.2) and Surprisal (see Section 2.2.4), can atdouthe reading times in
broad-coverage text. We implemented the inteftion apsponent of DLT, based on

the dependency parses from the MINIPAR parser (Lin, 1998) calculated Surprisal
based on the Roark parser (Roark, 2001a). We then autotthatiakculated difficulty
predictions by the two theories for each word in the DundegCa

Reading times in eye-tracking data are influenced not onlyidly-level, syntactic
variables but also by a number of low-level variables, botguistic ones and oculo-
motor ones, as discussed in Section 2.1.2. Together withtiar between readers,
these low-level variables account for a sizable proportibthe variance in the eye-
movementrecord. It has also been shown that informationtahe sequential context

of a word can influence reading times. In particular, McDdraaid Shillcock (2003b)

present data extracted from an eye-tracking corpus (a enwipus than the Dundee
Corpus used here) that show that forward and backward ti@mel probabilities are
predictive of first fixation and first pass durations: the leigthe transitional prob-
ability, the shorter the fixation time. For a more detaile@laration of transitional
probabilities, please refer to Section 2/2.5.

In this study, we are interested primarily in syntactic msging effects such as the
ones captured by DLT integration cost and Surprisal. Weefbee need to make sure
that these metrics account for variance in the eye-movereeatd that is not captured
by the low-level linguistic and oculomotor variables. Tedally, this can be achieved
by running mixed effects models which include both the lewel and the high-level
variables as predictors, as well as partitioning out subj@gance, see Section 5.3.1.2.



94 Chapter 5. Broad Coverage Evaluation of DLT and Surprisal

5.3 Experiment 1: Integration Cost

The aim of this experiment is to provide a broad-coverageotfeGibson’s DLT by in-
vestigating whether integration cost is a significant pretiof eye-tracking measures
obtained on a corpus of naturally occurring, contextudlieat.

5.3.1 Method
5.3.1.1 Data

For our data analysis, we used the English portion of the Ben&€orpus
Kennedy and Pynte, 2005), whose characteristics havedssamibed in Chapter 3.1.
Before carrying out our analyses, we excluded all cases iohwthe word was the first

or last one of the line, and also all cases where the word Wiasvied by a any kind of
punctuation. This eliminates wrap-up effects that occuinatbreaks or at the end of
sentences. Furthermore, we excluded all words that wergegian of four or more
adjacent words that had not been fixated, since such regiers e@ither not read by
the participant or subject to data loss due to tracking syrand all strings including
digits, special symbols or several upper case letters. [Ehisis with ~ 383k data
points, of which about 240k were fixated at least once, andni¢lwabout 200k were
fixated during first-pass reading.

5.3.1.2 Statistical Analysis

The statistical analyses in this chapter were carried dogusear mixed effects mod-

els kPinheiro and Batés, 2000). These models can be thotightaogeneralisation of
linear regression that allows the inclusion of random fec{guch as participants or
items) as well as fixed factors. The fixed factors can be disqsich as whether
the previous word was fixated) or continuous (such as wogLigacy). The models
reported here include a random intercept and slopes ung®re®T, as suggested in

‘Baayen et all (2008), see Section 3.2. However, intercepslapes for tEM were not
included in the models, as there are too big risks of ovengtthe model: there are no
repeated items in the sense of a psycholinguistic expetintgach item (i.e. word in
the corpus) was only read by 10 subjects, and in many caseshi@s 10 data points
are available to the regression model due to track loss apgisk. Hence, an analysis
including random effects by item does not seem applicabthigsetting; refer back
to Section 3.2.4 for a more complete discussion.
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A separate mixed effects model was computed for each of ttee ttlependent
variables (first fixation duration, first pass duration, am@ltreading time), including
low-level explanatory variables as well as transitionalyabilities and integration cost
as predictors. Minimal models were obtained following thedal reduction methods
outlined in Section 3.2.6.

In the remainder of the chapter, we will give the coefficieantd significance levels
for those predictors that remain in the minimal model. Alltbése coefficients are
statistically significant, with the possible exception odimeffects, which are only
removed from the minimal model if there is no significant ratgion that depends on
them.

5.3.1.3 Implementation

Non-syntactic Predictors The non-syntactic predictors used were word length in
characters (WWRDLENGTH), word position in the sentence ESTENCEPOSITION),
whether the previous word was fixatedrfE/I0USWORDFIXATED), the distance
between the previous fixation and the current fixatiomuyNCHDISTANCE), and
the square of the position of the character on which the egdslan the word,
relative to word length (RNDINGPOSITION). The square of the centred rel-
ative word landing position was used to model the IOVP effesge Section
3.1.2.2. These values can be read off directly from the Den@erpus (with
the exception of BNTENCEPOSITION which we calculated after automatically
determining sentence boundaries for the Dundee Corpu3. tetne predictors
logarithmic word frequency (WRDFREQUENCY), logarithmic word frequency of
the previous word (REVIOUSWORDFREQUENCY), forward transitional probabil-
ity (FORWARDTRANSITIONALPROBABILITY), and backward transitional probabil-
ity (BACKWARD TRANSITIONALPROBABILITY) need to be estimated from a training
corpus. We used the British National Corpus (BNC) (Bur%aﬁBS) and estimated
unigram and bigram probabilities using the CMU-Cambridgsmguage Modelling
d, 1997). For the bigram naa@ny of the bigrams
from the Dundee Corpus were not observed in the BNC trainatg.dlo avoid having

Toolkit dCIarkson and Rosenfel

to assign a bigram zero probability just because it did notioin the training data,
we smoothed the bigram probabilities, i.e., some of the gdvdity mass of the seen
events was redistributed to unseen events. We used theWiigk smoothing method
Witten and Bell, 1991), which is predefined in the CMU Toatllior a more detailed
discussion of estimating word frequencies, see Sectia2.3.1
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Integration Cost It is not feasible to manually compute values for the prextiot-
tegration cost | TEGRATIONCOST) for the whole Dundee Corpus, given its size. We
therefore relied on automatic methods which can handlege lamount of data (but
are potentially error-prone). We parsed the corpus withwgoraatic parser and im-
plemented a function that uses these parses to assignatitegcost values to the

words in the corpus. The parser used was MINIPAR (Lin, 1988)road-coverage
dependency parser for English. MINIPAR is efficient and hasdgaccuracy: an eval-
uation with the SUSANNE corpus (Sampson, 1995) shows tlzathiteves about 89%
precision and 79% recall on dependencies (Lin, 1998). A nlégecy parser was cho-

sen because the dependency relationships that it retugrexactly what we need to
calculate integration costs (see Figure 2.3 for an example)

A practical issue was that tokenization in the Dundee coipaien different from
the tokenization used by the parsers. Therefore, it is sacgdo realign the parsed
text with the Dundee corpus segmentation. If a word in thed®ercorpus corresponds
to multiple words in the parsed version, we have to combiedltleories’ predictions
for those two words into a single prediction for that tokerslit up the Dundee token
into two bits. We here decided to combine the predictionsviar different words into
a single value and use the Dundee corpus tokenization.ratteg costs of two words
that were just one token in the Dundee Corpus were combinesinbgle addition,
because the relevant quantity is the combined integratshaf the two components,
which means that e.g. averaging would not be an appropriatsure.

In our implementation, integration costs are composed@tudst of (a) construct-
ing a discourse referent and (b) the number of discourseergethat occur between
a head and its dependent, excluding the head and the depé¢heerselves. This re-
quires discourse referents to be identified in the corpususes the approximation
that all words that have a nominal or verbal part of speechligmurse referents. Us-
ing part of speech tags assigned by the parser also allowsdifdrentiate between
auxiliaries, modals and full verbs, and to automaticallgnitify nouns that are parts
of compound nouns. It is important to note that two versidngtegration cost exist
in the literature: one based L)n Giblso%’s (2000) DLT, and Hrkex version based on

‘Gibson’s (199%) syntactic prediction locality theory, agecessor of DLT. The differ-

ence between the two versions concerns nouns; here, we a$laa‘m‘=ibson (2000)

version of integration cost (though we conducted some @xgerts with the 1998 ver-
sion, see Sectian 5.4.3). DLT has later been extended aigkceio provide a more
extensive account of noun phrases (e.g., Warren and Gi@l), but this revised
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version of DLT has not been formalised, and thus would be twarplement without
making additional assumptions.
We evaluated our integration cost implementation usingoatsbxt that had been
hand-annotated with intfgr_a(l[ion cost values by Asaf BathraThe text was also
. 2

used in e.g. (Roark et%

our automatic annotation tool performs. We found that thegration cost values as-

09). This evaluation gives ussiimate of how well

signed automatically to the 764 words in the evaluation vexte correct 83% of the
time. Further analysis revealed that the automaticalligassl integration cost values
were significantly correlated with the manually assignedsofPearson’s = 0.697,

p < 0.001). This result needs to be regarded as a lower bound. &Jtiilk Dundee

Corpus, the evaluation text was not a newspaper text. Rathleasis a manually con-

structed story created in order to contain sentences wgh imtegration cost. The
sentences in the evaluation text are often long and cometicand therefore hard to
analyse with our automatic tool. Mean integration cost mekaluation text was 0.7,
while in the Dundee Corpus it was 0.55.

5.3.2 Results

In Experiments 1 and 2, we will only consider results for fpass durations in detail.
The results for first fixation durations and total times areabty similar, and will
only be discussed briefly. We will return to this in Experirh8nwhich provides a
comparison of the results for the three eye-tracking meador a model that contains
all the predictors used in this chapter (see Section 5.5.3).

Table 5.1 shows the coefficients and significance levelsmdddavhen running lin-
ear mixed effects models on first pass durations extracted the Dundee Corpus.
The models includes all the non-syntactic predictors amegnmation cost, and were
computed over all words in the corpus, as well as significateractions. Collinear-
ity analysis by inspection of correlations between fixe@&# after fitting the model
showed that bigram forward transitional probability wagetated with unigram word
frequency, and that backward transitional probability e@selated with forward tran-
sitional probability and unigram frequency. We therefasidualized forward transi-
tional probability by calculating the residuals of forwarénsitional probability in a
regression against word frequency, and residualized backtvansitional probabil-
ity by regressing against both word frequency and forwaadditional probabilities.
There is also some collinearity between word length and vireguency, and between
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the frequency of the last word and the flag for fixating it. Aedé variables are not
of direct interest in our study, and don't strongly correlatith any of our predictors
of interest, we did not attempt to remove this collinearéy, it shouldn’t affect our
conclusions. For a full correlation table between fixed afidor the model in Table
5.1, see Table 5.2. We also removed outliers, as discusseecition 3.2.5. We ran
the model both with just a random intercept under subjectsveith the full range
of random slopes (all main predictors) under subject. Tkalte were equivalent in
terms of coefficients for the main effects. Significance galtended to be a bit lower
for the model including random slopes under subject, butesiained strongly sig-
nificant atp < 0.001 with the exception of residual forward transitional lpability
which did not reach significance any more. We here report théewithout random
slopes, because the model with random slopes showed hilgtecoities between pre-
dictors, even if these predictors had been residualizeor&efr are not significantly
correlated at all. Furthermore, there were very strongetations between a number
of fixed effects ( < 0.8). Confidence in the results of the simpler model rests on the
fact that main effects remained unchanged with respecetatidel that includes ran-
dom slopes. Collinearity can lead to inflation of coefficgeeanhd significance values,
and to unstable results with coefficients jumping betweegn @ositive and negative
values. Therefore, a model with high collinearity cannoirierpreted reliably. On
the other hand, collinearity must not bother us as long asesdot affect the pre-
dictors we're interested in. Therefore, we conducted arsemalysis, which can be
regarded as very conservative: A model including slopesusdbject was first fit-
ted for all predictors except the one we are interested irenTh model with just the
predictor of interest, i.e. JusNITEGRATIONCOST and a slope ofNTEGRATIONCOST
under subject was fitted on the residuals of the first modeils Way, it is guaranteed
that the fixed effect of the predictor of interest is not clated with any of the other
predictors. Results of this model, which confirmed the g$igaint negative effect of
integration cost, are reported in Section 5.6.

Our findings confirm many effects also found by other reseaschirable 5.1 shows
an intercept of approximately 243 ms. This can be regardéuedsase reading time of
an average word, to which the value for each predictor migty the coefficient for
that predictor is added to obtain the predicted reading tonthat word. For example,
the coefficient of WORDLENGTH is approximately 8 ms. As the predictor was centred,
this means that for a word which is one letter longer thanayeran additional 8ms
is added to the estimate. The fact that the coefficient aROLENGTH is positive
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means that longer words have longer reading times, a badiadim the reading liter-
ature. We furthermore observed a negative coefficient fgauiithmic word frequency
(WORDFREQUENCY), which means that more frequent words are read faster ésan |
frequent words.

The variable REVIOUSWORDFREQUENCY was included in the analysis to ac-
count for possible spill-over effects, where a previousialift word causes longer
reading times on the current word. Indeed, we found that algefrlequency of the
previous word was a significant negative predictor of regqdime: if the previous
word is rare, reading times are expected to be longer on tirerduword. We also
find that the presence of a fixation on the previous woRE(ROUSWORDFIXATED)
reduces reading time on the current word by 35 ms, i.e., firdime is longer when
the previous word was skipped. There is also an effect ofregueelative landing
position (LANDINGPOSITION), whose negative coefficient indicates that reading time
decreases if the word is fixated near the beginning or the etiis-reflecting the
IOVP effect. Furthermore, we observe a small effect fauNCHDISTANCE. A
smaller value of launch distance reflects a longer laundamte from the left. This
is associated with longer reading times, as reflected in dyative coefficient, thus
following expectations. It has been claimed that readeedpup while they move
1993). Ousdppmrt this finding: we
obtain a small negative coefficient for the position of therdvavithin the sentence

through a sentenc% (Ferreira and HendeAson,

(SENTENCEPOSITION), which means later words are read faster.

For residual forward transitional probability @RWARDTRANSITIONAL-
PROBABILITY), we observed a negative coefficient. This is a bit harder to
interpret, due to the fact that it doesn't relate to the titgorsal probabilities
directly, but just to the part of the transitional probailwhich cannot be ex-
plained by unigram frequencies. When this transitionalbphility that goes
beyond simple frequency is high, reading times are shodieras reflected by
the negative coefficient. This facilitation predicted byward transitional prob-
abilities is in line with McDonald and Shillcock’s (20d3b)asults. However,

‘McDonaId and Shillcoék‘ (200£b) also find a negative coefficiéor backward
transitional probability, while in our data residual baceka transitional probability
(BACKWARDTRANSITIONALPROBABILITY) shows a small positive coefficient,
which means that words which have a higher backward transitiprobability (which
can not be explained by unigram frequency or forward traoread probability) are
predicted to lead to slightly longer reading times.
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Predictor Coefficient Significance
(INTERCEPY) 241.83 Fxk
WORDLENGTH 8.22 il
WORDFREQUENCY -13.00 ok
PREVIOUSWORDFREQUENCY -6.24 il
PREVIOUSWORDFIXATED -35.54 ol
LANDINGPOSITION -18.20 faal
LAUNCHDISTANCE -0.70 ol
SENTENCEPOSITION -0.24 ol
FORWARDTRANSITIONALPROBABILITY -1.97 el
BACKWARD TRANSITIONALPROBABILITY 1.03 ol
INTEGRATIONCOST -1.58 ol
WORDLENGTH:WORDFREQUENCY -2.93 el
WORDLENGTH:LANDINGPOSITION -18.64 il

*p<0.05 *p<0.01, * p<0.001

Table 5.1: First pass durations for all words in the Dundee Corpus: coefficients and
their significance levels for a model that includes all predictors as main effects and all

binary interactions, minimised using the AIC.

While the coefficients for the non-syntactic predictorsénglausible interpreta-
tions that are consistent with the previous literature adig, the result for the in-
tegration cost predictor ITEGRATIONCOST) is disappointing: we obtained a signif-
icant negative coefficient, which means that higher intiégmnacost leads to shorter
reading time, contrary to the prediction of DLT.

The same significant predictors were obtained when we rardreiects models
for first fixation duration and in total reading times (we otthie tables here), with
one exception: for first fixations, there was no effect of wiemgth and no effect of
integration cost.

One potential explanation for the lack of an effect of ingggm cost may be the fact
that (following Gibson), we assumed identity as our intégrecost function, i.e., I(n)
=n. Itis possible that there is a logarithmic relationshaéeen integration cost and
reading time (e.g., similar to that between frequency aadirgy time). We tested this
by re-running the analysis reported in Table/ 5.1 with thegrtion cost function I(n)
=log(n+1). However, again a significant negative coefficien INTEGRATIONCOST
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(Intr)  Len Frq Frg-P Fix-P Dist LPos SPos FTP BTP IC L:Frq
Len 0.003
Frq 0.005 0.453
Frg-P -0.018 -0.088 0.047
Fix-P -0.031 -0.086 0.018 0.423
LPos -0.020 0.126 -0.006 -0.062 -0.283

Dist 0.010 0.069 0.033 -0.129 -0.405 0.198

SPos -0.001 -0.005 0.010 0.005 0.036 -0.036 -0.012

FTP 0.004 0.235 0.157 -0.003 0.021 -0.026 0.006 -0.014

BTP 0.003 0.138 0.118 -0.016 0.008 0.013 -0.013 -0.010 0.011
IC -0.002 -0.027 0.190 -0.009 -0.002 -0.007 0.003 -0.0313®.0.117

Len:Frqg 0.016 0.594 0.020 -0.073 -0.023 -0.017 -0.003 0.0m243 0.128 -0.057
Len:Lpos 0.004 -0.436 0.085 0.003 -0.128 0.116 0.131 -0.1003 0.001 -0.020 -0.235

Table 5.2: Table of correlations between fixed effects (this is different from correlations
between explanatory variables, which are reported in Table |5.7) for first pass durations

for all words in the Dundee Corpus.

was obtained (though model fit improved slightly).

The model also contains two interactions: between wordtleagd word fre-
guency, and between word length and quadratic relative \arding position. The
negative coefficient for the word length — frequency intececmeans that words that
are both long and frequent have slightly faster reading,tamd correspondingly short
infrequent words would have longer reading times than ptediby just word length
and frequency alone. The negative coefficient for the wondtle — landing position
interaction means that the IOVP effect is more extreme fog words: when a word is
long and is fixated at the very beginning or end of the wordjireatimes are predicted
to be shorter.

When we fitted mixed models for first fixation times and totaids, we again
found the same pattern of results as for first pass time, wigheixception that the
INTEGRATIONCOST effect was not significant in first fixations.

5.3.3 Discussion

In this experiment, we fitted mixed effects models on theireatimes for all words in

the Dundee Corpus, and found that integration cost is afgignt negative predictor
of reading time, i.e., that higher integration cost valuesespond to shorter reading
times, contrary to the prediction of DLT. This result can Bplained by the fact that
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DLT only provides a partial definition of syntactic processcomplexity: integration
costs are only assigned to nouns and verbs. All other words & integration cost
of zero, while there are very few nouns or verbs with an irgggn cost of zero (only
non-head nouns in compounds).

We therefore further investigated the relationship betweading time and inte-
gration cost. We re-ran the mixed effects model in Table B.&lbwords in the corpus
and included integration cost as a factor, i.e., as a dsgnetdictor. When the DLT
predictions are entered into the regression as categeatags, separate coefficients
are estimated for each integration cost value.

These separate coefficients allow us to assess the influémeaas with an inte-
gration cost of zero: the negative overall coefficient faegration cost as a continuous
variable may be due to the fact that words with integratiost €care problematic, be-
cause not all of them may be covered by the theory. Therefaseinteresting to
see whether there is an overall positive trend for words dhatassigned an integra-
tion cost. Figure 5.1 plots integration cost values agahwit model coefficients and
shows a general trend of higher integration cost valuegesponding to larger coeffi-
cients (i.e., increased reading times), as predicted by. Dh€& figure also shows that
the coefficients for integration cost values one to nine a&gative, i.e., the reading
times for words with these integration cost values is sihahi@n the reading time for
words with zero integration cost (which the model takes adthse value and assigns
a coefficient of zero). This finding indicates that words viittegration cost O can still
generate difficulty, but that this difficulty is not capturleg DLT, which only makes
predictions for nouns and verbs. This result also meansthieaturrent coverage of
DLT is clearly not sufficient for naturally occurring text. ddt words in the corpus
have integration cost values between zero and nine. Intfectargest influence on the
regression coefficient comes from words with integratiost €(approx. 125,000 fix-
ated words) and integration cost 1 (approx. 84,000 fixatedisjo This explains why
we found an overall negative coefficient of integration ¢oskable 5.1 (whereNTE-
GRATIONCOST was entered as a continuous predictor), even though higtegration
cost values generally correspond to higher reading timEggiore 5.1.

As Figure 5.1 shows, the coefficient estimate for words wéttozntegration cost is
higher than those of words with slightly higher integratamst. Since DLT tradition-
ally only makes predictions for verbs and nouns, it wouldrideresting to find out at
what other word types a similar cost might be incurred. Towdgether some types of
words take longer to read than others after factoring outéoel effects, we computed
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Figure 5.1: Coefficients for the factor integration cost in a mixed effects model on the

words in the Dundee Corpus.

residual reading times on the Dundee Corpus by building a&deffects model that
contains all the non-syntactic predictors, and subtrattedeading times predicted by
this model for the observed reading times. We analysed tegseby partitioning them
according to the words’ parts of speech (POS). We found tfjattves, prepositions,
sentence adjectives, and expletives have mean residaithgeames larger than zero,
which means they are read more slowly than would be expeaeatding to word
length, frequency, and the other non-syntactic predictone data therefore suggests
that it could be interesting to extend DLT in a way that mak@®ssible to also assign
an integration cost to those word categories.

5.4 Experiment 2: Integration Cost for Verbs and

Nouns

In Experiment 1, a negative coefficient for integration aeas obtained when fitting a
mixed effects model to predict reading times for all word¢he Dundee Corpus. We
concluded that this finding is due to the fact that DLT doesmake integration cost
predictions for words other than verbs and nouns. In thegptesxperiment, we will
explore this link further by providing a detailed analysisregration costs for nouns
and verbs.
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5.4.1 Method

Data, statistical analysis, and implementation used wersame as in Experiment 1.

5.4.2 Results

Again, we will focus on results for first pass durations.

Nouns We first fitted a mixed effects model for the first pass duratitor all the
nouns in the Dundee Corpus (49,761 data points for the eabsares, 57,569 data
points for total durations) that included all predictorsnagin effects and all binary
interactions, as well as intercepts and slopes undsJ&CT, minimised using the
AIC. Integration cost was not a significant, positive préaliof reading time in this
model.

When the data set was restricted further, viz., to nouns mati-zero integration
cost (45,038 and 51,613 data points respectively), a sigmifj positive coefficient for
integration cost was obtained. Furthermore, we found tletehfit improves slightly
when using the logarithmic integration cost function I(n)Jog(n + 1) compared to
when using a linear one. We further investigated why thecefbé integration cost
on nouns was only present if nouns with zero integration w@se excluded. This is
particularly puzzling as it is rare that nouns receive aegration cost of zero; there
is only way for this to happen in the corpus: the first word ofimaoun compounds
and pronouns. We re-ran the model in Table 5.3, but includedquns (an additional
4,840 data points for the early measures, 6,108 data paintstal durations), despite
their integration cost of zero. Again, a significant, pegitcoefficient of integration
cost was obtained. First parts of compounds were relativetyuent in the Dundee
corpus: there were 7,121 data points for total durationsGahl8 data points for the
early measures; a large proportion of these cases congisigebper names (such
people’s names or titles). We believe that these first patsrmpound nouns must be
responsible for the wrong integration cost estimations.

The coefficients of the model including nouns with integratcost greater than
zero and pronouns are listed in Table 5.3. The significantipesoefficient for inte-
gration cost in this model means that nouns with higher nattégn cost take longer to
read. As there seemed to be some collinearity between attegicosts and frequency
for nouns, we residualized integration cost. This did nange either the size or sig-
nificance of the effect. The reported model also excludetlessitby automatically
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Predictor Coefficient Significance
(INTERCEPY) 263.19 Fxk
WORDLENGTH 10.78 il
WORDFREQUENCY -16.64 ok
PREVIOUSWORDFREQUENCY -8.38 il
PREVIOUSWORDFIXATED -47.25 ol
LAUNCHDISTANCE -0.35 *
LANDINGPOSITION -27.57 fal
SENTENCEPOSITION -0.17 ol
FORWARDTRANSITIONALPROBABILITY -1.97 el
BACKWARD TRANSITIONALPROBABILITY 3.26 ol
log(INTEGRATIONCOST) 7.12 K
WORDLENGTH:WORDFREQUENCY -4.90 Fkx
WORDLENGTH:LANDINGPOSITION -15.43 il

*p<0.05 *p<0.01, * p<0.001

Table 5.3: First pass durations for nouns (with non-zero integration cost), and personal
pronouns in the Dundee Corpus: coefficients and their significance levels for a model

that includes all predictors as main effects and binary interaction, minimised using AlC.

excluding all data points with high leverage from the model.

We fitted mixed models for first fixation durations and totahés, and found
the same set of significant predictors, with the followingeptions: for first fixa-
tions, there was no significant effect of W(RDLENGTH, and the effect of NTEGRA-
TIONCosT was small, and there were no significant interactions. Heweve did find
a significant positive effect for integration cost in thealdtmes analysis.

Verbs Just as for nouns, we fitted a mixed effects model for the faisslurations
for all the verbs in the Dundee Corpus (the model again iredudll main effects
and all binary interactions). No significant, positive daént for integration cost
was obtained in this model. We re-ran the model with verbs éRhibit a non-zero
integration cost, and with a logarithmic instead of a linedegration cost function.
Again, integration cost was not a significant, positive prext of reading time.

We then fitted a model that included the part of speech of thie &s a predictor.
The rationale behind this is that verb reading time may diffe part of speech, e.g.,
inflected verbs are read more slowly than infinitives. Thiglelanly included verbs
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with non-zero integration costs and used a logarithmiggiration cost function. We
found that this time, integration cost was a significant,ifpes predictor of reading
time (though the size of the coefficient was smaller than tans).

In order to further investigate the integration cost effibett we found for verbs,
we computed residual reading times for this data set. Oresidwals, we then fitted a
model that includes a predictor that indicates the part eésh of the dependent that
is integrated at a given verb (or sequence of parts of spéeahliiple dependents are
integrated). The coefficients in this model indicate whiepehdents lead to higher
or lower integration costs, see Table|5.4. We observe tegbyedicted by DLT, the
integration of nouns (parts of speech NN, NNP, NNS) or adv@plart of speech RB)
leads to longer reading times, unless there is also an anx{l\UX) that occurs before
the verb. The auxiliary thus seems to facilitate integratbnouns at the verb.

5.4.3 Discussion

In Experiment 1, we saw that DLT integration cost does nostiirte a broad-coverage
theory of syntactic complexity, in the sense that integratiost failed to emerge as a
significant, positive predictor of reading time on the whol¢he Dundee Corpus. We
hypothesised that this is due to the fact that DLT only maketia integration cost
predictions, viz., for nouns and verbs only. In the presgpeement, we investigated
this further by analysing the performance of DLT on verbs aodns in more detalil.
We showed that integration cost is a significant, positiezlfmtor of reading time
on nouns with a non-zero integration cost, and thus suppoet®ypotheses in DLT.
However, this result reflects only effects on a small amo@ith@data: In its standard

form (Gibson, 2000), DLT does not make very interesting jmtezhs for nouns. Most

nouns have an integration cost of 1, because a discourgemefs built. The only
cases in which nouns can receive an integration cost griaerl are in constructions
such agequest for permissigrwherepermissionis analysed as the head of the NP,
genitive constructions likéhe Nation’s criminals and copula constructions. In the
latter, nouns are considered to be the head of the phrasentegtdte the verlbe
This means that the integration cost for the noun dependseonumber of discourse
referents intervening between the noun aed

We also investigated the two cases in which DLT assigns agiiation cost of zero
to nouns. The first case is pronouns, which DLT assumes tditgdesold discourse
referents, not incurring a cost. We extended our model bludueg pronouns (as
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Dependents Coefficient Significance N
PRP-AUX-NN -81.45 o 15
PRP-AUX -76.24 o 13
NNP-AUX-AUX -62.41 o 21
RP -62.34 * 12
NNP-AUX -59.52 * 17
PRP-MD -56.44 * 17
NNS-AUX-AUX -35.65 * 57
NNS-MD-AUX -30.75 *x 110
PRP-AUX-PRP-AUX -29.72 ol 184
NN-MD-AUX -25.35 ol 153
PRP-AUX -22.64 el 700
PRP-AUX-RB -21.75 * 133
AUXG -20.26 * 121
NNP-AUX -19.05 x 301
TO-PRP -16.97 ok 723
NNP 12.01 o 1372
NN-RB 22.26 * 127
AUX-NNP 66.11 * 15
VBP 67.69 * 10
RB 75.88 o 15
NN-NNS 76.43 ok 25
PRP-MD-PRP-MD-JJ 105.4 * 65

Table 5.4: First pass durations for verbs (with non-zero integration cost) in the Dundee
Corpus: coefficients for the verbal dependents and their significance levels for a model
fitted on residual reading times. Abbreviations in the table refer to part of speech tags
used by the Penn Treebank annotation: AUX: auxiliary, PRP: personal pronoun, NN:
singular or mass noun, NNP: proper noun, singular, RP: particle, MD: modal, NNS:
plural noun, RB: adverb, AUXG: auxiliary present participle, TO: preposition to, JJ:

adjective, VBP: non-third person singular present verb.
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the only nouns with zero integration cost), and still fouhdttintegration cost was a
significant, positive predictor, which provides evidenoethe DLT assumption that
pronouns carry zero integration cost. The second case ofrzgration cost is noun-
noun compounds, for which DLT assumes that the first nounrgnoo integration
cost. However, when we fitted a model on all nouns (includimg dnes with zero
integration cost), we failed to obtain a significant coedintifor integration cost. This
indicates that the DLT assumption of cost-freeness for tisé fioun of a noun-noun
compounds is incorrect. Rather, we have to assume that@usscreferent is already
being established when the first noun in the compound is erteed, i.e., this noun
should incur a non-zero cost.

At this point, it becomes important which version of DLT isedsto compute in-
tegration cost values. In contrast to mmoowmmed in this thesis, the
Eii?on @8) version of DLT assigns higher integratiort€tisnouns that occur after
their head noun. In order to test how crucial this assumpspwe implemented the
1998 version and conducted the same experiments as witt00@\&rsion, but this
failed to yield an improved fit on our data set.

For either version, we observed that DLT only makes a restticange of predic-
tions for nouns: with few exceptions, all head nouns aregassi an integration cost of
1. Arguably, this limits the power of the theory in explaigireading time data for noun
phrases in a corpus, which are often complex. This problanddme addressed by ex-

tending DLT along the lines suggested by Warren and Gibs002R They provided
evidence that processing complexity at the verb variesth@hieferential properties of
the NP to be integrated, as expressed by the NP’s positiomeo@ivenness Hierarchy
Gundel et al., 1993). Warren and Gibson (2002) find that derily increases from
pronouns to names to definite NPs to indefinite NPs and therst@gest that a con-

tinuous integration cost metric needs to be developeddhkastthe givenness status of
the integrated NP into account. This would result in a widerge of integration cost
values for the nouns in the Dundee Corpus, potentially ngakipossible to explain
more variance in the reading time record.

In addition to looking at nouns, we also investigated thatrehship between read-
ing times and integration cost for verbs and were able to ghahintegration cost is a
significant positive predictor of verb reading times. Thasult was only obtained for
a model that includes the parts of speech of the verbs as atioadtipredictor. This
indicates that integration cost can predict processirficdify for verbs, but that this
effect is variable across parts of speech.
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As verb integration cost is at the heart of DLT (which presliehly limited varia-
tion in noun integration cost, see above), we investigdtisdésult further. We fitted a
model on the residual reading times that included the p&dpeech of the dependents
to be integrated at the verb as a predictor. This analysisated the following pat-
tern (see Table 5.4): positive coefficients were obtainedhfe integration of nominal
dependents (indicating that this integration leads togase reading time), while nega-
tive coefficients were obtained for the integration of aaxies (which means that this
integration decreases reading time). This result has argsting implication for DLT.
On the one hand it confirms the DLT assumption that an integraiost is incurred
at the verb when nominal dependents are integrated. On liee lond, it shows that
this does not extend to cases where an auxiliary precedasdheverb. A possible
explanation is that the relevant integration cost is notiiredd at the main verb, but at
the auxiliary itself, which integrates nominal dependeamig thus incurs a non-zero in-
tegration cost (DLT assumes that auxiliaries are cosifien the auxiliary is then
integrated with the main verb, it facilitates integratibeece the negative coefficient),
as the main work of the integration of the nominal dependkeassalready happened
at the auxiliary. Note that this assumption is compatibléhwgiyntactic theories such
as Head-driven Phrase Structure Gramear (Pollard an&i 884),.which assume that
auxiliaries inherit the subcategorization frame of themrmaarb, and that dependents

are unified (integrated) into the subcategorization frantlessauxiliary. In this context,

it is interesting to note thgt Warren and Gibs‘on (éOOZ) foamdading time effect for
auxiliaries. Auxiliaries following definite NPs were readre slowly than auxiliaries
following pronouns. This result in consistent with our fings in the Dundee Corpus,
i.e., that auxiliaries, and not just main verbs, show irdégn cost effects. However,

Warren and Gibson (2002) interpret their finding as a spdiaffect. Clearly, more

experimental work would be needed to test the effect of @anéls on reading times
on the main verb, and integration effects on auxiliaries.

5.5 Experiment 3: Surprisal

Experiments 1 and 2 indicate that there is evidence that Dtégration cost is a pre-
dictor of reading time in the Dundee Corpus. However, DLTradrbe regarded as a
broad coverage model, as we found integration cost effadiswehen the our model
was limited to verbs and certain nouns. The present expatitres the aim of eval-
uating Surprisal as an alternative model of syntactic eicg complexity. Unlike
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DLT, Surprisal is designed to make predictions for all warda corpus, on the basis
of a probabilistic grammar. We will test two versions of Susal (lexical and struc-

tural), and compare them against non-syntactic prob#bipsedictors of reading time
(forward and backward transitional probability).

5.5.1 Method

Data and statistical analysis were the same as in Expersiesatd 2. For calculating
the Surprisal values for the words in our corpus, we parsediimdee Corpus with
an incremental parser which returns a prefix probabilityeach word in the corpus,
i.e., the probability in Equation (2.5) from the Section.2,2here repeated as equation
(5.1) for convenience:

P(Wy - W) = ZP(T,Wlmwk) (5.1)

P(wWy---Wiki1)

=—lo
S g (W1 W)

= IogZ P(T,wg---W) — IogZ P(T,w1---Wgy1) (5.2)

We can then use Equation (2.6), here repeated as EquatR)riqmbtain the Sur-
prisal value for a wordvy. 1: we subtract the logarithmic prefix probabilit
from the logarithmic prefix probability fowy,. The parser used WM&@EOM)
incremental top-down parser. This is a probabilistic parséned on Sections 2 — 21 of
the Penn Treebank (Marcus e{ Lal., 1993), a corpus of Englidtirom the Wall Street
Journal which has been manually annotated with phrasetsteutrees. The parser

achieves a broad coverage of English text and has a preeismnecall of 85.7% for
labelled bracket (Roar[,QZ—()(})la). As the Dundee Corpuscalssists of newspaper
text, we expect a similar performance on the Dundee Corpus.

Again, there was a mismatch between tokenization of theepansd the Dundee
Corpus. Just as for integration cost, we decided to combumpriSal predictions by
addition. Surprisal captures the amount of probability snaisanalyses that are not
compatible with the current input given the prefix. Two wowdsich are one token
in the Dundee corpus (likere’ll) carry the same information as two separate adjacent
tokens veand’ll , and thus rule out the same structures, such that the Sairpfise’ll

is exactly the same as the Surprisal@plus the Surprisal ofl (see Equation (5.3)).

Sci1+Si2 = —logP (Wi 1|wy---Wk) + —logP (Wi 2|Wy - -Wky 1) (5.3)
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_logP(wy---Wiei1)  logP(wy-- Wi 2)
P(wy - - W) P(Wy- - Wii1)
= —logP(Wy---Wgy1)+10gP(wg - - - W) —

logP(Wy -+ - Wict-2) +10gP(Wy - - - Wic-1)

= logP(wx--- W) —logP(wy - - - Wiy 2)
P(wy - Wi, 2)

P(wq - - - W)
= —logP(Wi1, Wis2|Wa - - - W)

= —log

= Sr1k+2

Surprisal was estimated in two different ways. The first igrsvas fully lexical-
ized, i.e., it takes into account the exact words of a strihgmvcalculating structural
and lexical probabilities. This lexicalized version wagadbed using the default con-
figuration of the Roark parser. The second version was natdbzed, i.e., it only

used the structural probabilities. This structural modid described in (Roark et al.,

2009)) does not take into account word frequency or the dbaof a word being

assigned a specific POS tag (i.e., there are no lexical rdilgpeV — wrote). This
structural version of Surprisal helps us to factor out ety effects.

5.5.2 Results

Table 5.5 shows the coefficients and significance levelsmédavhen running a mixed
effects model on first pass durations in the Dundee Corpusn Experiment 1, this
model was computed over all words in the corpus, and includedon-linguistic
predictors as well as lexical Surprisal {KICAL SURPRISAL), structural Surprisal
(STRUCTURALSURPRISAL), and forward and backward transitional probability.

Table 5.5 shows that structural Surprisal is a significamditjve predictors of read-
ing time (high Surprisal leads to longer reading time). Tbefficient for SRUC-
TURALSURPRISAL is small, but this has to be interpreted in the context of dreye
of this predictor: the values for structural Surprisal rarigpm 0 to 16, with a mean
Surprisal of 2.4.

Residualized lexical Surprisal BXICAL SURPRISAL) has a negative coefficient in
Table 5.5, which means that the proportion of lexical Swadrivhich is not captured
in either unigram frequency of a word, transitional proligbor structural Surprisal
made incorrect predictions of reading times: larger redibkxical Surprisal is equated
to faster reading by the regression model. The same effectiga found in a model
without structural surprisal, where lexical surprisal veasy residualized with respect
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to unigram frequencies and forward transitional probtedi Residualized forward
transitional probability (i.e. the part of forward transrial probability that cannot be
explained by simple word frequencies) was a significant tnagpredictor of reading
time (higher probability means lower reading time), thugss§gng expectations. As
detailed in Section 5.2, forward transitional probabilign be regarded as a simple
form of Surprisal that only takes into account the immedaietext (the preceding
word). Residual backward transitional probability has aifpee coefficient.

We fitted mixed effects models for total times, which alsovebd a positive effect
of structural Surprisal and a negative effect of residealitexical Surprisal. Structural
Surprisal has a larger coefficient in the total time model.

In the first fixation model, the interaction between word krand frequency did
not come out as a significant predictor of reading times.Heunhore, VORDLENGTH,
BACKWARD TRANSITIONALPROBABILITY and SRUCTURALSURPRISAL were not
significant predictors for first fixation times. On the othend, FORWARDTRANSI-
TIONALPROBABILITY was attributed a larger negative coefficient in the first fot
model.

The same models were also fitted with random slopes (inajuciire each for lex-
ical and structural Surprisal) under subject. Results wasein Experiment 1, very
similar, with significance values generally being a bit lovier all predictors, and
similar high correlations. Section 5.6 reports modelstdiig random slopes under
subject for all three reading measures, where the comelatioblem is solved.

5.5.3 Discussion

This experiment showed that Surprisal can function as adbcoaerage model of syn-
tactic processing complexity: we found that structuralfgisal was a significant, pos-
itive predictor of reading time on arbitrary words in the Di@e Corpus. This sets
Surprisal apart from integration cost, which does not makseiptions for all words in
the corpus, and for which we only obtained significant effext verbs and nouns.

We failed to find a corresponding effect for lexical Surprisghis indicates that
forward transitional probability and structural Surplitseken together are better pre-
dictors of reading times in the Dundee Corpus than lexicgb&al, which combines
these two components. Forward transitional probability loa regarded as a simple
approximation of Surprisal (see Section|5.2), and our tesutlicate that this approxi-
mation is sufficient, at least when it comes to predicting&aeling times in the corpus.
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Predictor Coefficient Significance
(INTERCEPY) 241.96 Fxk
WORDLENGTH 8.40 il
WORDFREQUENCY -12.49 ok
PREVIOUSWORDFIXATED -35.55 ol
FREQOFPREV -6.12 el
LANDINGPOSITION -18.22 *x
LAUNCHDISTANCE -0.70 ol
SENTENCEPOSITION -0.24 ekl
FORWARDTRANSITIONALPROBABILITY -1.73 ol
BACKWARD TRANSITIONALPROBABILITY 1.00 ol
STRUCTURALSURPRISAL 0.49 ol
LEXICAL SURPRISAL -0.63 rk
WORDLENGTH:WORDFREQUENCY -2.87 il
WORDLENGTH:LANDINGPOSITION -18.78 il

*p<0.05 *p<0.01, * p<0.001

Table 5.5: First pass durations for all words in the Dundee Corpus: coefficients and
their significance levels for a model that includes all predictors as main effects, and all

binary interaction, minimised using the AIC.

Structural Surprisal, on the other hand, takes structuaabilities into account,
but disregards lexical probabilities, and therefore isgaigicant predictor of reading
time, even if forward transitional probability is also erte into the model. We con-
clude that structural Surprisal is able to explain a compbirethe reading time data
that neither transitional probabilities, nor any of theasthon-syntactic predictors can
explain. This is evidence for Hale’s (2001) and Levy’s (2pBgpothesis that the in-
cremental disconfirmation of syntactic hypotheses by theguaan explain processing

complexity.

Our Surprisal results are corroborated by a number of laieceg of work.

‘Ferrara Boston et al‘. (20‘08) found that structural Surprgsa significant predictor
of reading times on the Potsdam Sentence Corpus. The PotSdatance Corpus
differs in a number of ways from the Dundee corpus: it usesffardnt language
(German) and it consists of unconnected sentences, whidhmanually constructed
for experimental purposes, rather than taken from natucadturring text. Also, it
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is smaller in terms of items (144 sentences), but largerrmdeof participants (272
participants) than the Dundee corpus. It is therefore emging that our results

are consistent with Ferrara Boston Jt a‘.’s (2008), in gpitthese corpus differences.

Ferrara Boston et al‘. (20‘08) did not test lexical Surprigahtegration cost on their
data set, but they compared two versions of structural &aipestimated either using
a context-free grammar (i.e., in the same way as in the prasedy), or using a de-
pendency grammar. In both cases, the Surprisal estimatesarsggnificant predictor

of reading times. Furthermore, Roark et al. (2009) also daimat structural Surprisal

calculated by the same parser as used in this thesis cgrpeeticts reading times on

the Bachrach corpus. Additionally, Frank (2009) found asigant positive effect of

structural Surprisal on the Dundee corpus, both using trelRparser and using an
SRN. Both of Frank’s models were trained on POS-tag segsence

5.6 Experiment 4. A Comparative Model of DLT and

Surprisal

5.6.1 Method

To give a comparative overview of the syntactic predictassussed in this chapter
and to address issues of collinearity in models includingloan slopes, we fitted a
baseline mixed effects model that includes only the predsaivhich are not of interest,
their interactions and random slopes under subject, and fitted separate models
for the three predictors we are interested in, integratiost,clexical and structural
Surprisal, on the residuals of the baseline model. The ddgarof this method is
that all predictors are fitted on the exact same data, andthleat are no possible
effects of collinearity on the effects we're interested furthermore, we do not need
to separately residualize syntactic predictors agaiimgratorrelated predictors.

5.6.2 Results

The results for the baseline model as well as the models grsiduals are given in
Table 5.6. We will start by discussing the columns for firssgpimes, which showed
that integration cost, structural Surprisal and lexicalpisal are all significant pre-
dictors of reading time. However, the coefficient sfEGRATIONCOST was negative,
confirming that integration cost is not a broad-coverageipter of reading time (as
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First Fix First Pass Total Time

Predictor Coef Sig Coef Sig Coef Sig
(INTERCEPY) 205.50 ** 241.18 *** 254.07 ***
WORDLENGTH 071 * 8.11 7.36 ***
WORDFREQUENCY -6.33 ***  -12.34 ** 1580 ***
PREVIOUSWORDFREQUENCY -3.11 -6.19 * -6.35  ***
PREVIOUSWORDFIXATED -1095 ** -33.66 * -35.60 ***
LAUNCHDISTANCE -1.63 ***  -0.75 -0.86
LANDINGPOSITION 8.31 ** -18.00 -21.39 ***
SENTENCEPOSITION -0.05 ** -0.24 **  -0.28 ***
FORWARDTRANSITIONAL PROB -1.59 = -1.97 277 ***
BACKWARD TRANSITIONALPROB 071 ~* 1.18 1.36 **
WORDLENGTH:WORDFREQUENCY  -1.15 ***  .3.06 ** -415 ***
WORDLENGTH:LANDINGPOSITION  rem - -19.21 **  .1859 ***
INTEGRATIONCOST -0.18 -1.72 ¥ -2.82
LEXICAL SURPRISAL -0.04 -0.15 * -0.16
STRUCTURALSURPRISAL 0.11 0.56 ** 1.21

*p<0.05 *p<0.01, * p<0.001

Table 5.6: Coefficients and significance levels for models of first fixation times, first pass
durations, and total reading times for all words in the Dundee Corpus. The models
include all predictors that are not of primary interest, interactions between them, and
their slopes under subject. Predictors of interest and their random slopes under subject
were run in separate models on the residuals of the basic model. Predictors marked

“rem” were removed from the regression as they did not significantly reduce the AIC.

shown in Experiment 1). FurthermoregkiCAL SURPRISAL has a small negative co-
efficient, meaning that words with higher lexical Surprisiabw longer reading times,
which is not what is expected according to Surprisal thebuy iy line with the finding
of Experiment 3). Note however, that the negative effetgragutlier removal, was not
significant for total reading times. FinallyTEBUCTURALSURPRISAL is confirmed as
a significant positive predictor of first pass reading times.

Turning to the results for first fixation times (see Table 5¥%¢ again found a
significant negative effect of forward transitional proli# and a small positive effect
of backward transitional probability. The interactionweéen word length and landing
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INTEGRATION WORD LEXICAL STRUCT. FORWTRANS

CosT FREQ SURPRIS SURPRIS ProB
WORDFREQUENCY -0.25
LEXICALSURPRIS 0.17 -0.57
STRUCT.SURPRIS -0.07 0.04 0.36
FORWTRANSPROB -0.20 0.62 -0.66 -0.10
BACKTRANSPROB -0.26 0.62 -0.53 0.04 0.68

Table 5.7: Correlation coefficients (Pearson’s r) between the predictors, for fixated
words (N = 237,163

position was removed from the model, as it did not improve ehéit and word length
turned out to be a much smaller, just marginally significareidpctor. None of the
syntactic predictors significantly improved model fit.

The results for total reading times (see also Table 5.6¢lgngplicated the results
for first pass times; again integration cost, and structsuaprisal were significant pre-
dictors. However, the effect of lexical Surprisal (whichdharong polarity anyway)
failed to reach significance. The coefficient for integmatapst was negative, also
replicating the findings for first pass times. Note thaUNCHDISTANCE and LAND-
INGPOSITION only reflect data from the first fixation on the word. We triedémove
it from the model for this reason, but model fit got signifidgntorse as a result, so
we decided to leave itin.

5.6.3 Discussion

Results for regression on residuals for the sentence Bimgpmeasures shows that the
effects found are very stable also under this conservatyeomeasuring. Estimating
each of the syntactic predictors on the residuals of the $m®eline model also brings
up the question of how similar the predictors integratiostcstructural Surprisal and
lexical Surprisal are to each other. Do they capture ovprapparts of the variance in
the data or not? Would one predictor explain away the oth@os&ddress this issue,
we computed correlations between integration cost and iffexeht incarnations of
Surprisal (Iexical and structural Surprisal, forward aadkward transitional probabil-
ities), and word frequency. The result is given in Table alF'correlations are statis-
tically significant except for the pair WRDFREQUENCY-STRUCTURALSURPRISAL
(even small correlations are significant due to the largebmrrof observations).
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As expected, forward and backward transitional probahdlie highly correlated.
Furthermore, the lexicalized measures (lexical Surperdltransitional probabilities)
are highly correlated with word frequency. The high corietabetween lexical Sur-
prisal and forward transitional probability confirms théuition that these two mea-
sures are in fact both incarnations of Surprisal, but of tedsht level of granularity.
On the other hand, structural Surprisal is not significantyrelated with the other
measures, including word frequency (though there is a wealelation with lexical
Surprisal). This confirms that structural Surprisal reaiyptures structural probabil-
ity effects, without taking lexical probabilities into amant. Crucially, Table 5.7 also
shows that integration cost is orthogonal to Surprisal &eddther frequency-based
predictors: there is no strong correlation betweeNHGRATIONCOST and any of the
other predictors. This finding holds even if we compute datiens only for the verbs
in the Dundee Corpus (not shown in the table): the correldieiween integration cost
and structural Surprisal is approximately® for verbs, while the correlation between
integration cost and lexical Surprisal is approximate@10for verbs. This confirms
that integration cost and Surprisal are orthogonal: ifeheas a relationship between
them, it should manifest itself on verbs, as verbs are theswith the largest variation
in integration cost (compared to nouns, which mostly haveggration cost of one,
and the other words, which have an integration cost of ze®atso Section 5.4.3).

The lack of correlation taken together with the fact thabhgigant effects are found
both for Surprisal and DLT integration cost is supportinglence for our hypothesis
that both DLT and Surprisal capture relevant aspects ofgasing difficulty, but that
these aspects are complementary. This result sugges toatplete theory of sen-
tence processing complexity needs to include two mechanisnbackward-looking
one as proposed by DLT, and a forward-looking one as propeg&urprisal. When
a new word is processed it incurs two types of processing tostcost of integrating
previous material with the new word, and the cost of discaydilternative syntactic
predictions that are not compatible with the new word. Thst fiype of cost cor-
responds to locality effects that have been observed axtdynsgn the literature (see
a)z;on@&. The second type of cost corresponds toactiity effects which have
been reported recentlk/ (Koniecﬂly, zbbo; Vasishth and t&DOB). In order to cap-
ture both types of cost (and yield broad-coverage resultamoaye-tracking corpus),

it is necessary to develop a unified model that encompasskeshsoprediction of up-
coming material and the subsequent verification and integrarocesses, as the one
described in the later chapters of this thesis.
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5.7 General Discussion

An important point to consider in this evaluation is the fiueit the predictions of both
DLT and Surprisal depend on the grammar formalism that theyoperating on. In
DLT, syntactic structures (head—dependent relation€roehe the amount of integra-
tion cost that is incurred by a given sequence of words. Whige are many clear
cases of what constitutes the head, the dependent and #tiemdbetween them can
be subject to debate in the linguistic literature. We assheare that the dependency
structures output by MINIPAR forms the basis of the integratcost computations
(see Section 5.3.1.3). MINIPAR uses one particular codificeof dependency gram-

mar (Sampson, 1995), and it is therefore conceivable thatesults would change if

we computed integration cost using a parser that makesexdiff set of representa-

tional assumptions.

It is important to note that Surprisal also requires repregenal assumptions.
The definition of Surprisal in Equation (2.4) does not memsgntactic structures ex-
plicitly. However, in order to compute the conditional patidity in this equation,
prefix probabilities have to be obtained, which requires rmimg over all possible
analyses of a string. The number and type of these analy#eatiffer between gram-
matical frameworks, which entails that representatiosatienptions do play a role for
Surprisal. In this work, we only investigated the predins®f one type of syntactic
representations, viz., those of Roark’s (2001a) parseciwdgenerates Penn Treebank-
style structures. It is possible that other syntactic medell yield different Surprisal
estimates and fit the reading time data more closely, or naitfefent aspects of the

data. (This has been investigateél by Ferrara Bosto# EtQﬂéQZWho compare depen-
dency and phrase-structure versions of Surprisal.)

Apart from its theoretical contribution, this chapter ateakes a methodological
contribution to the field. To the best of our knowledge, thekiaescribed here was the
first time that theories of sentence processing have betutes broad-coverage data
extracted from an eye-tracking corpus. Since the methodadfiation on eye-tracking
corpora has subsequently been adopted by a number of peotiie research com-
munity kFerrara Boston et ul., 20&)8; Frzink, 2609; Wu H @IJ,&Q. We believe that the
corpus-based approach presented here constitutes arntamipoew method for evalu-

ating models of sentence processing. Such models are tyrtrested exclusively on
data obtained for isolated, artificially constructed seoés in controlled lab experi-
ments. The validity of the models can be enhanced consilyafaie are able to show
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that they scale up to model reading data from an eye-traacongus, which contains
naturally occurring, contextualised sentences. Furtbeemthe use of eye-tracking
corpora has the advantage of convenience and flexibilitpaikes it possible to study
arbitrary syntactic constructions, provided that theywaufficiently frequently in the
corpus. There is no need to run a new experiment for everytcmti®n or every
hypothesis to be investigated.

While the corpus-based approach has great potential, #nedemitations as well.
The fact that naturally occurring sentences are used meang ts much more diffi-
cult to control for confounding factors. We have attempidhtlude all potentially
confounding factors as co-variates in mixed effects modalss controlling for the
influence of these factors. However, it is possible thatelsge some confounds that
we have failed to identify, and therefore they could introglartefacts in our models.
In an experimental setting, the experimenter will oftenstauinct materials so that they
are matched across conditions, i.e., the sentences oiigy difthe aspects that the
experimenter wants to manipulate, an are identical in akoways. This reduces the
possibility that there are confounding factors that havebs®n taken into account.
Another limitation of the corpus-based approach is datesgmess. No corpus can be
so big that it contains all syntactic structures that an grpenter might want to get
data on. For example, if we want to investigate prepositiphease attachment, then
there is a good chance that there are enough relevant seatenthe Dundee Cor-
pus. If we want to investigate doubly nested relative clausa the other hand, then
probably there are not enough tokens. This situation is ex#se if we want to study
structures that are ungrammatical or cause serious piogetisruption. These proba-
bly do not occur in the corpus at all. To summarise, expertalefata and corpus data
have complementary strengths and weaknesses, and shouseédbén conjunction to
maximise the evidence for or against a given theoreticatipos

5.8 Conclusions

In this chapter, two theories of syntactic processing cexipt were evaluated against
reading time data extracted from a large eye-tracking cm#p}jbsok’s(1994;—290?)0)
Dependency Locality Theory (DLT) and Hale’s (2001) Surali§ he goal of the study
was to investigate whether the two theories provide aceyetdictions for arbitrary

words in naturalistic, contextualised text (as opposeditthcally constructed experi-
mental materials, presented out of context and repeateg times).
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We found that DLT’s integration cost was not able to provigading time predic-
tions for the Dundee corpus as a whole. This was largely dubedact that DLT
only assigns integration cost values to verbs and nounsntieians that the majority
of words in the corpus have an integration cost of zero. Hewewe were able to
show that integration cost is a significant predictor of negdime if the verbs and
nouns in the corpus are analysed separately. When we tekliedrBdictions against
the verbs in the Dundee corpus, we found evidence that tbgration cost definition
for auxiliaries needs to be revised: verbs that integratewiliary and a nominal de-
pendent exhibit a reduced difficulty compared to verbs tindy mtegrate a nominal
dependent. For nouns, we found that compounds need to bstigeted further — our
data suggests that integration cost might already occinedirst noun component in
a compound, and not just at the head as current theories \assidane.

In the second part of this chapter, we evaluated the predE@f’?ﬂe’s @1)
Surprisal measure on the Dundee corpus. We computed Salriprisvo ways: lexical
Surprisal was estimated using a probabilistic parser ttilidas lexical (word-based)
probabilities as well as structural (rule-based) prolids. We found that only struc-
tural Surprisal was a significant positive predictor of iegdimes. This result shows
that structural Surprisal is a good candidate for a broadi@ye model of syntac-
tic processing complexity; it generates accurate numlgprealictions for all types of
words in the corpus, not just for nouns and verbs, as integrabst does.

Our findings regarding lexical Surprisal indicate that dyfuéxicalized parsing
model does not offer an advantage over a structural one. Hawhis does not mean
that there is no role for lexical information in modellingacBng times. The experi-
mental literature offers broad evidence for the fact thatesece processing relies on
lexical information, such as subcategorization frameuesgries (e.g., Garnsey et al.

1997); Trueswell et al. (1993)) and thematic role prefeesn(e.g., Garnsey et al.
1997); Pickering et All (2000)). Recent probabilistic miscbf human sentence pro-
cessing have attempted to integrate such information \wihstructural probabilities

generated by a parsér (Narayanan and Juersky, EOOZ;‘M@P It seems likely that
these models (which are effectively structural model auget with a limited form

of lexical information) would yield a more accurate accoahteading times in the
Dundee Corpus.

A central finding of the last experiment was the fact that 8sgband integration
cost are uncorrelated, both for arbitrary words in the csyjand for verbs (for which
DLT makes the bulk of its predictions). This result suggéistg a complete theory
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of sentence processing complexity needs to include two amesims: a backward-
looking one as proposed by DLT, and a forward-looking onerapgsed by Surprisal.
The next chapter of this thesis proposes a way to combine thgsects, while also
observing the psycholinguistically motivated mechanisihgcrementality and pre-
diction in human sentence processing.






Chapter 6

A Theory of Explicit Predictions

This chapter proposes a new theory of human sentence progegsich explicitly
models prediction during language comprehension.

The first part of this chapter explains the theory’s undedyassumptions, incre-
mentality, full connectedness, prediction and verifiaatidhe theory is conceptualised
as a ranked parallel processor and aims to make predicti@sover all types of
words. The theory furthermore provides a natural way of antiag for both a for-
ward and a backward looking process, which bear similartbesurprisal and integra-
tion cost. Section 6/2 outlines the linking theory, whichides processing difficulty
predictions from the parsing process. Section 6.3 dissugbih of the existing gram-
mar formalisms can be used or adapted most easily to modasthanptions made by
the theory, in order to be used as a basis for a parser whicAutamatically generate
syntactic analyses that follow the outlined assumptions.

Parts of this chapter have been first presented at CUNY 2008,a#®% 2008 and
TAG+9 2008.

6.1 Fundamental Assumptions and Properties

The fundamental assumptions of the proposed theory ac#isiricremental process-
ing with full connectivity, prediction in combination with verification mechanism,
and ranked parallel processing.

123
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6.1.1 Incrementality

There are different interpretations of what “incrementalggssing” on the syntax level
means. The most general interpretation is that it involedstb-right processing on
a word by word basis. But then the question arises, how “cetapthat processing
has to be — are the syntactic relations between the all pgedesords fully specified
even if final evidence for dependencies can be expected yoameur later on in the
sentence? In the less strict interpretation of incremgmtatessing, words can be
partially connected and these partial structures storealsiack until further evidence
for how to connect them is encountered. The strongest formooémentality, which
we will refer to asstrict incrementalityor full connectednessentails that all words
which have been preceived so far are connected under the sarnaetic root node,
which means that all relations have been specified compléélcourse, competing
analyses can exist in parallel).

In this section, we will review evidence for full connecteds. First, we summarise
the discussion in the literature, which took place in theyed®’s, about incremental
interpretation and the relationship of syntax and semanétso known as thstrict
competence hypothesi§Ve then review empirical results from psycholinguistie re
search about the degree of incrementality in human senf@ocessing.

6.1.1.1 Incremental Interpretation and Strict Competence

One of the most fundamental questions in the design of ayh@®@yntactic process-

ing concerns the relationship between syntactic procgssit semantic processing,
because many psycholinguistic experiments observeionlgmental interpretation
which means that theemantic®f the partial sentence has been composed based on the
words that have been perceived at a certain point. Claimstayotax are based on c-
command relations, as i‘n (Sturt and LombaLdo, 2005), rdgament (Kamide et LI.,
), pre-head garden pathing in head final languages (#astt al., 2004) or co-
reference and binding (Aoshima et al., 2007; Yoshida e28D9), see below.

In the literature, there is an extensive discussion of wéreithis necessary to as-
sume syntactic connectedness in order to achieve incraimetgrpretation. Steedman

(2000) argues for thstrict competence hypothesihich essentially means that only
syntactic constituents can receive an interpretation,hengrounds that it would be
necessary to assume a more complex design of the human girggegstem if it had

separate mechanisms for dealing with incomplete strustiNete however that the no-
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tion of constituents is more general in Steedman’s work thanost standard linguis-
tic definitions. It refers to constituents licensed by Comalbory Categorial Grammar
(CCG), where each syntactic constituent can be directketinto a semantic interpre-
tation.

On the other hand, Shieber and Johnson (1993) argue thaadaatom-up parser
where syntactic structure has not yet been connected, canffigent for incremen-

tal interpretation. They showed this using Synchronouse T&djoining-Grammar
(STAG) as a formalism, which constructs syntactic and séimanalyses simultane-
ously. However, in order to produce the necessary infoonat create the semantic
relationships not yet expressed in the syntax, additiorzalmmery is needed.

A simpler model requires the syntactic relationships to $taldished in order for
the semantic ones to be made, hence tightly coupling thastyniand semantic pro-
cessing, as e.g. in CCG. In this thesis, we assume the simgbiéionship, where all
observed incremental interpretation is based on connegtgdctic structures.

6.1.1.2 Experimental Evidence Supporting Incrementality with Full Connected-

ness

Recent evidence from psycholinguistic research sugdesttinguage comprehension
is largelyincrementali.e., that comprehenders build an interpretation of acyer@ on

a word-by-word basis. This is a fact that any cognitively neded model of language
understanding should capture. Full connectedness is ag&ralaim. It means that
all words must be connected into a syntactic structure apaiyt in the incremental
processing of a sentence. Evidence for full connectedr@ses from findings such
as the one presented by Sturt and Lombardo (2005), see Esi@ipl

Q) The pilot embarrassed John and put himself in an awksituation.
The pilot embarrassed Mary and put herself in an awkwandtson.

The pilot embarrassed John and put him in an awkward situat

2 0o T p

The pilot embarrassed Mary and put her in an awkward sitoat

The experimental items are constructed in order to test @raler default mismatch
effect in condition (1-b), where the pronoun herself refeask tothe pilot If peo-

ple have connected all parts of the syntactic structure tetelyg at this point, the
c-command relation between tpdot and the pronoun should be established. In the
experiment, the gender mismatch effect occurs directlynwthe reflexive pronoun
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is encountered (and not just at the end of the sentence)gestigg that the syntactic
c-command relation link must have been created at the péiptaressingherself

Conditions (1-c) and (1-d) were included to rule out a strcadty-blind strategy for
connecting the pronoun, in which the pronoun would be cotetketo the first noun in
the sequence.

More evidence for connectedness comes from visual worldiesuike the one by

Kamide et a%. ‘(20&3). In their study, participants listenedentences like the ones
shown in Example (2) while looking at a visual scene thatuded four objects, three
of which were in a transitive relationship (e.g. a cabbadera and a fox with respect
to the "eat” relation), and a distractor object. They fouhdttpeople would gaze at
the cabbage upon hearing a sentence like (2-a) before lgdtearing the second noun
phrase, and would respectively gaze at the fox in senteil@gtb). This means that
people were anticipating the correct relationship betwbermare and the eating event.
One can therefore conclude that role assignment has be@vedtat the point when
the verb {risstin example sentences (2)) is processed. If we assume thsyiteectic
relations have to be established before role assignmerteparformed, the evidence
from these experiments suggests full connectedness aéthe v

(2) a. Der Hase frisst gleich den Kohl.
The Hare-nom will eat soon the cabbage-acc.
b. Den Hasen frisst gleich der Fuchs.
The Hare-acc will eat soon the fox-nom.

Evidence from experiments on Japanese furthermore imdichat humans build
compositional structures by connecting NPs in a gramnisticanstrained fashion in
advance of encountering the verb, which is the head of thesea and establishes the

connection between the NPs (Aoshima et al., 2007).

Further evidence comes also from an English eye-trackingeraxent
dSturt and Yoshicg, 20&)8). In (3-c) the negative elemerdroroands and thus licenses
use of the worceverlater on in the sentence. This is not the case for senteraes li

(3-a), where processing difficulty can thus be expectedsgbttint where the mismatch
is detected. Reading times are indeed found to be longenéarbrdeverin condition
(3-a). This indicates that the structural relations nesgs®r computing the scope of
negation in sentences like (3) were available early dutiegrocessing of the relative
clause, in particular before its verbal head had been psedesThus, the modifiers
everor nevermust have been immediately incorporated into the structure
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(3) a. Tonydoesn't believe it, but Vanity Fair is a film whiclever really want
to see.
b. Tony doesn't believe it, but Vanity Fair is a film which | reweally want
to see.
c. Tony doesn'’t believe that Vanity Fair is a film which | eveally want to
see.
d. Tony doesn't believe that Vanity Fair is a film which | neveally want to
see.

How easily the all words can be connected at each point in tinger one root in
practical parsing depends strongly on the grammar formalised. We will review
the ability of different established grammar formalismsb& used for incremental
parsing in Section 6.3.

6.1.1.3 Experimental Results Challenging Strict Incremen  tality

While the above phenomena provide evidence for a strongedagjrconnectedness,
there are also findings from other studies that suggest éma¢isce processing is not
fully incremental, or at least that the valid prefix propemyeaning that only analyses
that are compatible with the interpretation so far are feéd, is not always observed
by humans. Local coherence effec@re often interpreted as evidence that humans
adopt a locally coherent interpretation of a parse, or egpee interference effects
by locally coherent structures which are however not corbfgatvith the incremental
interpretation.

Tabor et al.‘(2004) showed that participants are slower &d @bject-modifying
reduced relative clauses (RCs) like the one shown in Exafdplevhen the RC verb
is part-of-speech ambiguous than when the verbs POS tagishiguous.

(4)  The coach smiled at the player tossed a frisbee by ...

In the example sentence, the waodsedcould be a simple past form or a past partici-
ple form. If the ambiguous wortbsseds replaced by a word that is unambiguously
a past participle, such alsrown the sentence becomes significantly less difficult. See
Section 9.1.6 for a more detailed discussion of the studig fEsult is problematic for
any fully incremental framework because the main-verbrprtation is incompatible
with the global context and should thus be ignored by thegssar, and hence not in-
fluence reading times. Local coherence effects have beeessfally modelled using
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a bottom-up CCG parsér (Morgan e{ EI., 2010) which does hemest implement full
connectedness.

A different account was proposed by GibEMO%), who sstggaat difficulty
arises because the top-down global syntactic analysiscisnflith the bottom-up part-
of-speech disambiguation, which are being done at the samee These two analyses
would compete and cause conflicts if they do not match. Heestgd a formalisa-
tion of the difficulty as inversely proportional to contartiependent probability of
the POS-tag given the word multiplied by the smoothed syiatagpectations. This
explanation does not necessarily require building up aessmtation for the locally
coherent string, and could still be reconcilable with imeemtal processing (and the
valid prefix property). Bicknell et al. (2008) tested thigioyhesis on the Dundee Cor-
pus, and found supportive evidence for processing diffrcaitising from conflicting

global interpretation vs. POS tag bottom-up analyses.

Other psycholinguistic effects that can be interpretedvageace against full con-
nectedness, and in favour of keeping unconnected striscarmind for later inter-
pretation are reported i% (Frazier and CIifth, 1396; TeMdZOO?k Swets et al., 2d08).
These studies suggest that modifiers like relative claugesrdy attached when nec

essary. In order to account for these kinds of local coherefiflects within an incre-
mental framework, it seems necessary to assume that peopktisnes remember the
interpretation of a prefix imperfectly.

6.1.1.4 Discussion

The theory proposed in this work assumes full connectedieegsite the indication of
the existence of local coherence effects (which may findragkplanations that may
be compatible with incrementality, such as imperfect mgmoointerference from pre-
syntactic processes). Connectedness provides a natdralegant way of explaining
why humans predict upcoming linguistic material (see ®ecfi.1.2 for a discussion
of evidence of prediction): predictions are needed in otdenaintain fully connected
structures. Another challenge is the difficulty of arguing & specific degree of con-
nectedness, in particular since each study only makes €lalout connectedness at a
specific word in a specific construction. The theory propdss@ therefore assumes
the most simple and extreme interpretation of incremdwtdilill connectedness.
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6.1.2 Prediction

“Prediction” here refers to the process of forming expéotet about upcoming input.
Evidence for prediction mainly refers to short-lived pitins affecting only the next
couple of words. The plausibility of prediction in sentermmemprehension has been
discussed with respect to what the benefits of predictionavibe, given that making
predictions must also be related to some cognitive effdiis $ection first summarises
the discussion in the literature of the relationship betwgediction and integration,
and then presents recent experimental evidence for pi@ualict

6.1.2.1 Prediction vs. Integration

Facilitatory effects have been observed for highly prexdits words, which are read
faster. However, for many of the experiments, it can alsapeed that this facilitatory
effect stems from easier integration of predictable wordhk the context.

People have therefore asked the question, whether a poeedirbcess can be mo-
tivated — how would predictions help language comprehertsitf they don’t, why
assume this additional mechanism? Some have argued thatgmakdictions seems
like a waste of a lot of processing effort, given that inpugasng to come up soon any-
way: making predictions would unnecessarily take procgssesources away from
processing current input. Arguments that promiscuousigtied is computation-

ally inefficient have for example been made by Charniak ()98®ger et al. (1994);
Jackendoff (2003); Marslen-Wilson and Welsh (1978).
On the other hand, several groups of researchers have afguéte existence

of prediction in sentence processing, and have pointedhatitoienefits of generating
predictions during comprehension are more rapid compsabenand robust interpre-

tation of ambiguous or noisy input (Pickering and Garrod)20 They argue that the

language production system is used during comprehensigerterate these predic-
tions.

Evidence from word naming studies, where the task was to reamerd that re-
flected the expected predictions (also referred to as fahwaerences) of a short
text, indicates that predictions are very short-lived, a&slitatory effects were only
found directly after the sentence which was supposed tgedrighe predictive in-

ference (Keefe and McDaniel, 1993) but not when additionatemals or a pause

had intervened between the trigger sentence and the naaskgRotts et al., 1988;

Singer and Ferreira, 19‘83). Recent evidence for predictiferences comes from
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Altmann and KamideI (2007) who found in a visual world expenithat participants
looked to an empty glass on hearing “The man has drunk”, batfidl glass when
hearing “The man will drink”. Further evidence for the eriste of prediction comes

also from the direct study of brain activatio%s. Federm@é07) presents evidence for
the existence of parallel predictive and integrative pssogy in language comprehen-
sion based on event-related potentials (ERP) tracked gllaimguage comprehension.
Results indicate that top-down predictive processes aaegsed in the left brain hemi-
sphere while bottom-up integration processes take platteeinight hemisphere. The
evidence for predictive processes stems from experimantsgiag that a strongly con-
straining (and hence strongly predictive) context leadsttonger N400 effects when
the anticipated word is not encountered than weakly congtigacontexts. Integration
based accounts cannot account for the detected differsnoéegration ease was bal-
anced based on pre-tests with Cloze probabilities, angrati®en-based theories would
therefore predict the same integration difficulty in bothiexts. Federmeier concludes
that prediction seems important for language comprehenbid that it is also related
to some processing cost and that the ability to make predistieteriorates with age,
showing that prediction effects are weaker for older adults

6.1.2.2 Experimental Evidence for Prediction

Recent studies provided evidence that humans predictfilie gentence that have not

been preceived yet based on what they have heard so fan stgdies by Kamide et al.
2003); Tanenhaus et éJl. (1995); van Berkum et al. (Zd@utsand Clifton (2006);
Yoshida et aJI. (2009). The study by Kamide et al. (2003), seantples (2) earlier in
this chapter, provides not only evidence for connectediesgslso for prediction. Par-

ticipants’ anticipatory eye-movements to the correct argnt of the verb (as opposed
to some other object on the screen) indicate that humansedepng the upcoming
argument, at least to the level of its semantic sort. Sineligreriments have also been
,20&2)
Evidence for predicting a specific lexical item was found IMERP experiment

conducted for English, where the same effect was shL)wn (et a‘.

dvan Berkum et al., 2005), where subjects heard Dutch stthi@ supported the pre-
diction of a specific noun, see Example (5). To probe whethisrrtoun was antici-
pated at a preceding indefinite article, stories continuddawgender-marked adjective
whose suffix mismatched the upcoming noun’s syntactic gedgectives that were
inconsistent with the predicted noun elicited a differenhERP effect, which disap-
peared in a control condition where no specific noun couldrbdipted based on con-
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text. Similarly, prediction-inconsistent adjectiveswéal readers down before the noun
in self-paced reading. These findings suggest that peopladaed predict upcoming
words in fluent discourse, and, moreover, that these peatligbrds can immediately
begin to participate in incremental parsing operationsil&r results were found for
English in a study on the use of “a” vs. “an” as an indefiniteed®iner (Delong et ;I.,
2005), who found larger N400 effects for indefinite articleat mismatched the ex-

pected upcoming noun (e.d:he day was breezy, so the boy went outside to fly an...
where the wordite was most expected).

(5) context:De inbreker had geen enkele moeite de geheime familieldwismtien.
[The burglar had no trouble locating the secret family gafe.

a. consistent:Deze bevond zich natuurlijk achter een ggggimaar onop-
vallend schilderijey
[Of course, it was situated behind a gigbut unobtrusive painting]

b. inconsistentDeze bevond zich natuurlijk achter een gegtgmaar onop-
vallende boekenkagin
[Of course, it was situated behind a kig but unobtrusive bookcagg |

Another piece of evidence for prediction is tegher. .. orconstruction. Results

by Staub and Clifton (2006) show that hearing the weittier triggers prediction of

or and the second conjunct: reading times on these regionsshereer in theeither
condition, and participants also did not misanalyse digjons at sentence level as
noun disjunctions in the condition wheegherwas present. As an example, consider
the sentence in (6). Here, the regionan essays processed more quickly in (6-a)

than in (6-b).

(6) a. Peterread either a book or an essay in the school nmegazi
b. Peter read a book or an essay in the school magazine.

As ‘Cristea and Webde‘r (1997) point out, there are a numbepmétauctions with
two parts where the first part can trigger prediction of theose part, similar to
either...or A related form of prediction is syntactic parallelism; eximental find-

ings by Frazier et al. (2000) indicate that the second canjofa coordinate structure

is processed faster if its internal structure is identioahiat of the first conjunct. This
can be seen as a form of prediction, i.e., the parser pretietstructure of the second
conjunct as soon as it has processed the coordinator.
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Very recentI)A, Yoshida et a‘. (2009) argued that in a studsi@ting constructions
in English, the parser predicts sluicing structure and tisesnformation to resolve
anaphora binding. Examples for experimental items fronsthdy are shown in (7).

(7 Nicole’s father heard several stories during the hgligarty, but it's not clear

a. which story of himself from the party her grandfather Ilmeeao terribly
upset over.

b.  which story of herself from the party her grandmother bezao terribly
upset over.

c. over which story of himself from the party her grandfatbecame so
terribly upset.

d. over which story of herself from the party her grandmotbecame so
terribly upset.

At the point ofherself participants exhibited longer reading times in condit{@b),
because of the gender mismatch betwieerselfandNicole’s father This means that
they must have predicted a sluicing construction at thetpafipprocessingherself
which in turn means that the structure uphirself must have been completely con-
nected at that point. In a structurally-blind interpredati or an account where the
sluicing construction has not been built up and connectesl gender mismatch ef-
fect cannot be explained. Furthermore, they must haverated the pronoun directly
when it was processed, thus being able to resolve the arephuting. If the pronoun
had not been integrated directly, we would only expect a letfect. In the control
conditions (no gender mismatch as in Example (7-a), or nicisly as in sentences

(7-c) and (7-d)), reading times on the critical region wesesignificantly longer.

6.1.2.3 Verification

Whenever syntactic structure is predicted, we assumetthall be necessary to val-
idate these predictions and to match up the predicted steugtith what is actually
encountered later on. The idea of verification bears siiti#arto integration in DLT,
where arguments are integrated at the heads. Under the ptssarof full connect-
edness, these heads are usually predicted earlier on. iEvgueeal results on locality
effects can be re-interpreted in terms of processing diffiancurred through verifi-
cation. This aspect is evaluated in Chapter 9.1 based oruthspkcification of the
prediction theory and its implementation, (see SectioraB@® Chapter 8).
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6.1.2.4 Grain Size of Predictions

An important open problem in any theory of prediction is tentfy the grain size

of the predictions. Should a specific word, semantic sost, jlue part of speech, or
the syntactic structure be predicted? It may also be negessadapt the prediction
level to the type of prediction cue seen. A related questdmow far into the future

predictions are made: just the next word, the next phrasthetmext possible end of
sentence, even further?

One possibility would be to predict what's necessary in ptdebuild a plausible
and grammatical sentence under the full connectivity apsiom Such a notion of
prediction would be conservative in that it predicts onlyawvs minimally necessary
to satisfy the assumptions of producing fully connectedcs$tires. Prediction necessi-
tated by the connectedness assumption can happen e.gegwzasre two dependents
but no head has been seen. The two dependents can only bectszhimto a single
structure, if their common head (or at least a structurertigatires a common head for
them) is predicted. Similarly, when a grandparent and al@rié seen, but not the par-
ent, then the connecting structure between grandparerdtaldchas to be predicted in
order to achieve full connectivity.

Based on the experimental evidence outlined adove (Karmidé,éoo\?), predic-
tions should also be generated based on a word’s subcatatjoni frames. For pre-
dictions which are generated through subcategorizati@ptactical question arises
of how to exactly define the subcategorization frames. THerdnce between argu-
ments and modifiers seems to be gradual rather than catiedganguists have tried to
differentiate between obligatory and optional constitaen language, such as in the
X-bar theory, but it has been found that the distinction i®nously difficult also for

humans (e.g. in annotation, as can be seen in the disagrebatereen argument and

modifier annotations from different resources such as PaogBPalmer et al., 2003)
vs. FrameNet (Johnson and Fillm‘ore, 2000) and VerbNet (gigpal., 2000), as dis-
cussed e.g. i‘n McConville and Dzikovska (2008)).

Another possibility is to always predict all possible stures (based on the gram-
mar). Prediction grain size then mainly depends on the shagendependence as-
sumptions of the grammar rules, and could potentially leachéking a very large
number of very detailed predictions. The frequent genematif very detailed pre-
dictions however seems cognitively implausible due to #igd prediction space this
would create. Another question is the abstraction levepfedictions. Should one
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predict just the existence of an NP, or its internal struestor its head? Clearly, more
research is needed to learn more about the granularity digtien that humans make.

6.1.2.5 Discussion

While it is still controversial whether explicit predictidakes place in human sentence
processing, and whether it occurs on a regular basis durmgepsing or just in very
specific situations, we think that the evidence is well cotiyte with a prediction
account. As discussed in the previous section, it is howdifcult to pin down a
specific level at which prediction happens based on the segso far — these results
cover too few data points in the full space of where predrctiould happen. This gap
should be filled by conducting more experiments that carrmforediction grain size,
and does not pose a fundamental problem to the concept atpoed

6.1.3 Serial vs. parallel processing

Serial processing means that only one single analysis sepsed at a time, usually
entailing that the parser must have some kind of back-tn@gckiechanism so it can
go back to an earlier point in the sentence and resume pingesgh an alternative
analysis once it is clear that the current analysis is ndilgieSerial processing is diffi-
cult to reconcile with some findings such as unforced reamalyJnforced reanalysis
means that people can adopt an interpretation first which tthen revise in favour
of another analysis before having encountered a point irséinéence where the first
, 1989). In
serial processing the processor cannot compare its cuareysis to possible alter-

analysis has become impossible or ungramma{ical (SteednhAltmann

natives, and therefore is theoretically not able to givepiirufavour of an alternative
one. Instead, one would have to assume that rewrite-rulegetatriggered, or that
something causes the current analysis to be abandoned awl ane to be started.
The notion of rewrite rules may be problematic because obteehead of also having
to rewrite role assignments and other semantic interpoett this seems rather com-
plex. On the other hand, it also seems difficult to pin downtvdaaises a parse to be
abandoned in unforced reanalysis cases. Given just thadiyntomponent, it is not
clear how to decide on a threshold for when the parse is to@hddhould be given
up in the absence of material to normalise probabilitiesrega Instead, one would
have to assume some conflict for example between the semaetigretation and the

syntactic analysis to trigger reanalysis (Frazier and@iif1998).
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Under parallel processing on the other hand, changingdregations is straightfor-
ward: since several paths are followed at the same time,ameampare their proba-
bilities / plausibilities and change to the more likely omay given point. A complete
parallel parser that follows all possible analyses at eadht jin time is however also
implausible, given processing difficulty effects as seemanden path sentences: a
fully parallel model would have the correct interpretatavailable as well, and there-
fore should not lead to the difficulties observed in gardeh pantences. Therefore, a
conceptualisation as ranked parallel parsing has beeresteghas an alternative to se-
rial parsing. In a ranked parallel parser, analyses witk @ probability or rank are
discarded. In a garden path sentence, the correct analgsisl Wwave been discarded
and reanalysis would be initiated when none of the currantyntained analyses are
compatible with further input. The parser might then didcamalyses less readily in
a second run (under the assumption that the reader pays teméan, and hence al-
locates more resources to the parsing process, which wefl&tt in more memory
allocation in the parser).

Discussion

People have found it notoriously difficult to come up with dé& answer concerning
serial or ranked parallel processiJ‘lg (LeMlis, 2&)00; Gibsuhl%earlmutte#, 20&)0). We
here assume ranked parallel processing. In addition to #raary restriction imple-

mented through a finite beam of maximally maintained analyser theory models a
limited memory also by restricting the number of prediciomaximally maintained for
each analysis (we also show in Section 8.2.3 that nothingrimeyhis limit is needed
for parsing text like the Wall Street Journal).

6.1.4 Broad-coverage

Theories for syntactic processing are usually inspiredliseovations from very spe-
cific structures, such as garden path sentences, relativeed, verb-final construc-
tions, centre-embedding, ambiguous PP-attachment, igimtessing, case ambigu-
ity, direct object vs. sentence complement ambiguity, eted often rather extreme
versions of these structures were used to find reliabletsffec

But in order for a theory to claim that it is a theory of syntagirocessing in hu-
mans, it should not only be able to explain the pathologidsuiman processing, but
also account for processing facilitation and behaviour @nde variety of structures.
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Theories should be evaluated on material that humans etesountheir daily lives
and not exclusively on unnatural special cases, such agwggaths or difficult con-
structions that push the border of what humans can processnportant question to
ask is therefore whether the existing theories scale uptiorally occurring, contex-
tualised text, and whether syntactic structures have amasuarable influence on such

contextualised reading (Brants and Crocker, 2000).

The aim in this thesis is therefore to develop a theory ofeserg processing that
makes predictions for a wide variety of structures, inst#ddcusing on very specific
sub-constructions.

6.2 Design of the Sentence Processing Theory

A main goal of this thesis is to construct a cognitively plalesmodel of human sen-
tence processing, i.e. one that adheres to the specifisatigitined in Section 6/1,
such as incrementality, connectedness, making predg{esfar as humans do), and
verifying them against upcoming events. Furthermore, weeptualise sentence pro-
cessing in a parallel framework and specify that the theboukl be general enough
to scale up to naturally occurring text, in order to accowntdifficulty incurred when
processing broad-coverage text, as well as explain wedbéshed experimental psy-
cholinguistic findings.

Given these basic design decisions, we here define the Italelba the parsing pro-
cess and processing difficulty. We thereby also take intoatowhat we learnt from
the broad-coverage analysis of previous theories, as shisduin Chapter 5: we ob-
served that the forward-looking aspect of surprisal andbiekward-looking aspect of
DLT integration cost explained complementary bits of thecessing difficulty found
in the corpus. Furthermore, literature on these theor®s falund them to explain a
different set of experimental findings. Therefore, our tiygaroposes to draw from
both theories and unify them in a single concept of procegdifficulty. We formulate
processes in terms of cognitively plausible constructshsas memory restrictions,
activation and decay.

6.2.1 Processing Difficulty

We propose that processing difficulty be calculated incraaily as the sentence un-
folds. Difficulty occurs through surprisal. If the perceaivimput is incompatible with
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analyses that had a lot of probability mass and thus viokexpgctations, difficulty
ensues.

Secondly, difficulty arises at integration time, when vatidg predicted structures
against what is actually encountered. The amount of difffaggnerated in verification
depends on (a) how difficult the prediction was and (b) on hewently the prediction
was made: if the prediction has decayed a lot, more diffi@dises than when a struc-
ture was predicted very recently. In our parsing model, wetiherefore need to keep
track of when a structure was predicted, and we do this thréinge stamps There
are lots of different ways people have proposed to quangfyagl in previous work,
e.g. counting distance in words, distance in terms of leekEmbedding, number of
intervening discourse referents, amount of memory intenfee by related items etc.
Any of these accounts could be implemented within the seet@nocessing theory.
As a first approach, we here use the simple measure of distangerds. A time
stamp for a prediction is set to the number of the word at witehprediction was
triggered. Predictions can also be reactivated if they aeelun other operations such
as substitution or adjunction.

Point (a), whether the verification of a prediction is mortficlilt when the orig-
inal prediction was difficult, is also controversial: On thee hand, very frequently
occurring predictions should be very easy to verify, as tsgr does this very often
and structure matching should be easy. On the other handcahd argue that if a lot
of resources are spent on a complex prediction, this shdsdoe remembered better
and hence easier to verify. This would point to using a véeialecay factor, or more

sophisticated memory retrieval model, e.g. as suggeshee\/ini‘s and Vasishth (2005).

Intuitively, the difference between a traditional surptiaccount and the theory
proposed here is that some of the probability mass (and hibecexact time when
surprisal effects occur) can be shifted to different pothisng the processing because
prediction trees are integrated before the full tree wotihewise be seen. This means
that part of the cost of integrating the prediction tree thi structure is “paid” earlier
through the forced commitment of connecting structureslethe rest of the probabil-
ity mass (the size of the “rest” depends on prediction granity| i.e. how completely
a structure was predicted) is “paid” during verification.aidition to the nodes of the
verification tree that were not predicted in advance, sotffieulty is also incurred for
remembering the predicted nodes, to the degree that tleglighion has decayed. Note
however, that despite these verification costs, previquegicted structures are gener-
ally easier to integrate than structures that were not predi(in particular if they were
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“completely” predicted all the way down to the lexical heawdl dull subcategorization
frame of the verification tree), because the surprisal obentering a predicted word
is very low.

Analyses can also be forgotten (pruned) from the set of aralyhich are main-
tained in parallel if their probability falls out of the begas would happen for garden
path sentences), or when they would require the processoaitatain a very compli-
cated predicted structure that contains more nodes thamedl by a memory threshold
(thus explaining centre embedding phenomena).

The model proposed in this thesis has two mechanisms thatiatfor processing
difficulty: the part that is related to surprisal quantifiae difficulty of the parser in
terms of updating its representation of the analyses astitersce unfolds. The verifi-
cation process predicts difficulty based on a memory redtignocess for remembering
and integrating newly encountered structure with previopisedicted structure. These
two types of processing difficulty thus model theoreticalifferent aspects of human
sentence processing.

A formalisation of this linking theory with respect to the TAG parser which
we describe in Chapter 8, is spelled out in Section 8.7. Wéuate the sentence
processing theory in Chapter 9.

6.3 Suitability of Grammar Formalisms

In the first part of this chapter, the underlying assumptionghe sentence processing
theory: incrementality with full connectedness, pargtiedcessing and prediction in
combination with a verification mechanism, were motivatad autlined. In order
to build a broad-coverage model that implements these gdsams, the parser, and
hence a grammar formalism that the parser is based on, hasatddto accommodate
these assumptions. While it is probably possible to tweglgaammar formalism such
that it acts as if it was implementing the desired constsaisbme formalisms might
be inherently more suitable than others, in that the adaptateps required are less
difficult to realise. We here compare five grammar formalisRrebabilistic Context
Free Grammar (PCFGs), Combinatory Categorial Grammar (CTx@e-Adjoining
Grammar (TAG), Dependency Grammar (DG) and Dynamic Syrd&) (

Given the specifications of the sentence processing thinarglesirable properties
of a grammar formalism to use for the implementation of thesory are incremental-
ity and connectedness, as motivated in the first part of thépier. Furthermore, it
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is desirable that the formalism distinguishes betweenmgyis and modifiers, such
that subcategorised arguments can be predicted, but medifien’t. Another impor-
tant point especially with respect to a final broad-covemgduation of the theory is
tractability of parsing algorithms for the grammar fornsaii. A further criterion is
easy linking of semantic interpretations to the syntadtigcsure, which is motivated
by the incremental interpretation hypothesis and easyéatension to, and integration
with, a semantic module. Finally, the generative power efftimalism can be used as
a further argument for psycholinguistic suitability: arffalism that matches the gen-
erative power observed in human languages is inherentlg plausible than one that
over-generates (i.e. produces structures that are notvassen human languages) or
one that under-generates, (i.e. cannot account for alleoptfenomena encountered in
human languages). Further psycholinguistic criteria@raatch the degree of lexical-
ization in the human processor (even though evidence ferishgsontroversial: There
is both evidence for (Staub, 2007) and against (Mitc@lbﬁhe immediate use of
lexicalization information in verbs, and it's been argukdttlexicalization may only

come in at a later stage of the processing). Finally, the doofdocality is an aspect
to take into account, which becomes particularly relevanihfodelling the processing
of idioms and non-compositional multi-word expressiomsparticular in relation to
the link to a semantic interpretation for such structures.

An overview of these criteria and how formalisms satisfynthés shown in Table
at the end of this chapter. The remainder of this sectidrdiscuss each of the
criteria for each of the grammar formalisms.

6.3.1 Probabilistic Context-Free Grammar

Probabilistic Context Free Grammars are most commonly fmedatural language
processing applications among the grammar formalismsisésd here. There are lots
of resources and algorithms with well-known propertiesiady so that is of course an
argument in favour of using a PCFG.

Incrementality / Connectedness Top-down parsing and left-corner parsing with
left-transformed PCFG grammars allows to realise increatgy with full connect-
edness in a PCFG parser.

For psycholinguistic plausibility it is relevant to chooae arc-eager left-corner
parser rather than an arc-standard left-corner parseheaart-standard left-corner
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parser would lead to asymmetric predictions for the difficwf left- vs. right-
branching structures, while arc-eager left-corner pgrsuould only predict centre
embedding to be more difficult and hence model psycholiriguessidence better
, 199&; Res%ik, 1592).

Thompson et AI

Argument vs. Modifier Distinction A PCFG can satisfy this criterion if a suitable
grammar is chosen. For example, rules including modifieailshbe binarised to
express that thADJ is optional within theNP. So a rule like

NP — DT ADJ N
should be replaced by a set of rules like the following:

NP — DT NP’
NP — ADJ NP’
NP — N

while it is necessary that a verb keeps all the requirediesiih the same rule:
VP —V OBJ OBJ2

Furthermore, rules would need to be lexicalized — a formalike TAG or CCG seems
to do this more naturally.

Tractabilit A top-down fully connected incremental parser has beeneamphted
(Roarﬂ;, 2001b), both as a generative model (Rdark, 3001@)&1&& discriminative

parsing algorithm‘ (Collins and RoaAk, 2&)04). The discriative model is however

not suitable for estimating prefix probabilities (which isenled e.g. for calculating
surprisal).

Semantic Interpretation A semantic interface could be designed that uses the incre-
mental output of Roark’s parser and links it to a semanticaggntation.

Lexicalization ~ Not fully lexicalized in the sense of CCG or TAG, but can usstees
for stronger lexicalization.

Domain of Locality ~ Very local, no long dependencies or larger tree structures.
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the pilot ~ embarrassed Mary  and put herself  in an awkward situation
S/(S\NP) S\NP CONJ (S\NP)/PP PP
S\NP

o>

S\NP

>B

S

Figure 6.1: Binding would only occur after full processing of second conjunct according
to CCG derivation. However, the empirical finding is that humans experience difficulty

of gender mismatch as soon as they hit the reflexive pronoun.

Generative Power  Only context-free, so less powerful than the human procdsso
been argued to be based on languages that contain contesxtiseconstructions.

6.3.2 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) is a linguisticallpren expressive gram-
mar formalism‘(SteedmaJn, 2600). In CCG, the language-Bp&oowledge about the
grammar is stored in the lexicon. There is then a finite setilekrthat allow the lexi-

cal categories to combine. A detailed discussion of CCG amdihcould be used for
incremental, fully connected parsing is available in ApglieA|

Incrementality / Connectedness CCG was originally designed as an incremental
formalism, and it is often claimed that CCG supports fullgremental derivations
because of its very flexible notion of constituents. Besal@®rmal form derivation
(which is the derivation that uses least rules), non-stahdanstituents can be com-
bined via the application of composition. CCG supports allagses as constituents
that are licensed by the grammar, $nd SteedJnan kZOOO) cthahthe constructions
supported by CCG are the ones that can be shown to be inelgretrementally by

humans.
However, there is also evidence for cases where conne@gdngentence process-
ing is stronger in humans than under a CCG derivation. Wdlpescussed the in-

crementality study by Sturt and Lombardo (2005) in expenitakitems (1) in Section
6.1.1.‘ Sturt and Lombarho'g (2005) experiment shows an plaof where standard
CCG is not incremental enough to explain empirical findirsge(Figure 6/1), because

it would only construct the syntactic connection betweerself andpilot at the end
of the sentence.
Other examples of constructions where CCG is not increrhentaugh for fully
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connected parsing include object relative clauses, saedrigy2. Hence CCG would
have to be modified, e.g. by changing some of the categonesrder to make it
suitable for strictly incremental parsing, especiallyttoe object relative clause which
is one of the important evaluation cases in this work. It wasabvious how to do
that without changing the generative power of CCG and cguser-generation (see
Appendix A for more detail).

the woman that every man saw
NP/N ~ N (N\N)/(S/NP) NP/N N (S\NP)/NP
N/(N\N) NP -
TONP/NWN) S/(S\NP)
NP/(S/NP) " S/NP(S\NP)/NP)
NP/ ((S\NP)/NP)
NP g

Figure 6.2: Example of incrementalized derivation for object relative clause in CCG. It

is not possible to make a fully incremental version inside the ORC NP “every man”.

Generative Power  CCG is mildly context-sensitive and hence more powerfuhtha
PCFGs. It can explain many linguistic phenomena, e.g. Da&lal dependencies.
CCG can also capture long distance dependencies betteCHas.

Tractability — Tractability for CCG depends on whether the unary operatigype-
raising and geaching are lexicalized or not. Best caseatpdity is O(n®). However,

implementations of CCG, in particular the C&C parser (Clankl Curran, 2004) are

very fast (it uses a discriminative model though). Hockeiemand Steedman’s (2002)

parser uses a generative model, and also achieves redpextabracy and speed.

Semantic Interpretation ~ CCG has a direct interface to semantic interpretations) eve

though the semantic interpretations are slightly nondsesh ‘ Baldridge and Kruij‘ff
(2002) suggest annotating CCG lexical categories with aatitgdwhich indicates

dependencies and would be stable against type-rai%ingk el Curra‘n‘ (2067) de-
scribe how to convert CCG dependencies into grammaticafioalships in Depbank
style. The conversion requires some amount of hand-writtégs to transform the
CCG dependencies into Depbank dependencies, as well agichaome manual an-
notations of the dependencies in the CCG lexicon and pastegsing for matching
templates.



6.3. Suitability of Grammar Formalisms 143

An incremental CCG derivation can directly account for hgemantic interpre-
tations of the sentence at each point. It should not be a@mobd get from the CCG
semantics to semantic roles.

Arguments vs. Modifiers ~ Arguments and modifiers are distinguished in CCG,
one can identify modifiers by the fact that they vyield the sacaegory
that they take (which corresponds to auxiliary trees in TAB) CCGBank

Hockenmaier and Steednun (2007), heuristics were usedstmgliish arguments
from adjuncts, but new annotation in particular for NPs hasrb added since
dHonnibaI and CUI’I’&A‘I, 2067; Honnibal et Lal., 2010).

6.3.3 Tree Adjoining Grammar

Tree-adjoining grammar (TAG) was developed by Joshi efl8I7%) as a linguistically

inspired grammar formalism. While CCG and PCFGs are strévgiting formalisms,
TAG is a tree-rewriting formalism. Like CCG, TAG stores atidwledge about the
grammar in the lexicon, which contains tree structurese Bteuctures for words can
be linked together to form a sentence using two differentatpens, substitution and
adjunction.

There exist a number of different versions of TAG, which aferred to in the the-
sis. The most important ones drexicalized Tree Adjoining Gramm@#ércTAG), where
each tree in the lexicon must have at least one lexical andA&G grammars for a
number of different languages have been created — the high#dsem is the XTAG
effort for English ‘(The XTAG Research Gr(Mp, 2 Ol.)l'AG-spinaldShen and Joshi,

2005), where all LTAG trees only have “spines” (i.e. the platim the lexical anchor

to the root of the tree) but no substitution or foot nodes. Apraach to defining a
version of TAG which allows for full connectednesddgnamic Version of TAGDV-
TAG; Mazzei et al., 2007). Finally, a related but less powkversion of TAG isTree

s, 1995), which also has the twa basi

Insertion GrammarTIG) (Schabes and Wate

(9%

operations of substitution and adjunction but is suffidiengstricted to only derive
context-free languages. LTIG (Lexicalized TIG) trees asebbset of LTAG trees, ex-
cluding all those LTAG trees where the foot node in an aumilteee is not the leftmost
or rightmost child in the tree.

Incrementality / Connectedness Standard TAG or LTAG do not allow for incre-
mental fully connected processing. However, the Dynamrsida of TAG constitutes
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an incremental, fully connected version of TAG. The proldeancountered in CCG,

concerning lack of connectedness for ORC relative clausdscaordination do not
occur in DVTAG, see for example Figure 6.3.

2
.-x"rwv N
y S A
fl-l-{-' 5\"'\.
e ph and WE|
The Elat Vv HE
arbarrassad

Futb
\ L
Mw .'5-:\ 555":55‘
/[‘-]l:> FF
(e} hirealf in a.very
awkward
aitnation

Figure 6.3: TAG derivation for Sturt et al's experimental sentence; graph taken from
Mazzei (2005).
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Generative Power  The generative power of LTAG has been argued to be weakly
equivalent to the generative power of CCG, and is stronger the generative power
of CFGs ‘(\ﬁjay-Shanker and Weir, 1994).

Extended Domain of Locality =~ Another asset of TAG is its extended domain of lo-
cality. This means that TAG can e.g. capture the exact safosdration frame of a
verb in one rule (the verb’s elementary tree) instead ofgiseveral syntactic rules
S— NPVP,VP—V NP, or has to lose th& P node in a ternary rul8§ — NP V NP,

as one would have to do in a PCFG. Furthermore, a tree in theokexan have two
or more lexical anchors, thus encoding idioms like “kick thecket” as one entity,
together with its semantic interpretation.

Tractability ~LTAG is parsable inO(n®), just like CCG. However, maintaining the

valid prefix property (VPP) require®(n®) processing time, see Joshi and Schabes

1997) for a more detailed discussion. In practice, TAG @argand their context-
free cousins TIG parsers, which can parseim?)) achieve good parsing accuracy

and speed. There is already an incremental LTAG parseradai(Shen and Joshi,
M), which is based on spinal LTAG. The performance is 6B0% f-score for de-
pendencies. However, it does not construct fully connestecttures. Unfortunately,
no parser for DVTAG, the strictly incremental version of TAGs been implemented,
due to a large lexicon. There also exists a LTIG parser imptesd as a generative
ﬁel (a generative model is necessary for calculatingxppebtibabilities) (Chiang,
2000).

Arguments and Modifiers The LTAG bank was converted from the Penn Tree Bank
and contains added information from PropBank, so it can bamasd to be similar to
the amount of knowledge to the (heuristically disambigdp&CGBank.

Semantic Interpretation ~ The dependency structure which can be used to calculate
the semantic interpretation is directly available throtigd derivation tree. For more
detailed discussions, see (Mazzei et al., 2007; Kuhlmabdi/ 2

Psycholinguistic Plausibility Lexicalized Tree Adjoining Grammar has been ar-
gued to be psycholinguistically plausible regarding aspet language acquisition
(the substitution operation is learnt before the adjumctiperation), and disfluencies

in language production (Ferreira, 2005).
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Further notes: Pre- vs. post-modification There is an asymmetry between pre-
and post-modification in CCG in terms of the operations negddich does not oc-
cur in TAG. To our knowledge, whether pre-modification andtpmodification are
computationally equivalent in human sentence processistijian empirical question
— some insight might be gained from French, which has bothgmd post-nominal
adjective@. The reason for the asymmetry is that for pre-modificatiog, an adjec-
tive before noun, there is no type-raising necessary iremental processing. On the
other hand, for post-modification it is necessary to perfamadditional type-raising
operation (or to introduce an ambiguity in the supertag efrtbun phrase that is being
modified, if type-raising is lexicalized), see Figure 6)dhd (d). CCG uses one more
operation for post-modification than it does for pre-modificn, while TAG uses the
same amount of operations, see Figure 6.4(a) and (c). Whihikalifference causes
processing difficulty predictions to be different betwelea pre- and post-modification
depends on the linking theory.

NP+ N — NP + N

NP/N N/N N
PN S TN 7/ />B
DT N|] ADJ N* DT N NP/N
ADJ N|

(b) CCG pre-modification
(a) TAG pre-modification

NP + N - NP NP /N N N\N
—>T
Pl PN N N/(N\ﬁ)
DT N N*  ADJ DT N - B
NP/(N\N)
PN N
N ADJ NP

(c) TAG post-modification (d) CCG post-modification

Figure 6.4: Comparison of pre- and post-modification in TAG and CCG

IHowever, these are not semantically and distributionallyiealent, therefore some other language
where the pre- vs. post-modification position can be variedenfreely might provide better evidence.
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6.3.4 Dependency Grammar

Dependency grammar originates from the WOAk of Tes%@). Dependency gram-
mars are by definition lexicalized, since only words can bdesan the tree. This may
also make the parsing task easier because no new nodes hae@tstulated. The
“missing” phrase structure also means that the formalistess expressive, i.e. it is
underspecified whether a modifier modifies the whole phragesbrthe head of a
phrase.

Incrementality / Connectedness Incremental deterministic dependency parsers like
the MALT parser (Nivrls, 2004) have received a lot of attemiio recent years. How-
ever, the MALT parser uses a stack and does not support follexiedness. In very

recent work, Menzel (2009) proposed a fully connected menagtal dependency parser

within the framework of Weighted Constraint Dependencyr@rars. The difficulty
with full connectedness in dependency parsing is that ther@o non-terminal nodes.
Therefore, if e.g. the head of two dependents has not yetdmsm some empty node
must be predicted for these two nodes to depend on.

Argument vs. Modifier Distinction Labelled dependency arcs may specify the ar-
gument / modifier status of a dependent.

Semantic Interpretation ~ Ease of semantic interpretation depends on whether the
connections are labelled with their functionalities. léyhare, semantic interpretation
is straightforward.

Tractability and Implementation In practice, deterministic dependency parsers like

Nivre (2004) have been shown to be fast and achieve conyeetiicuracy. An in-

cremental (not fully connected) Nivre-style dependenag@awith a small beam has

been implemented by Marisa Ferrara Bos{on (Boston ét a3 ®urprisal is calcu-

lated based on this parser.

Generative Power  Mildly context-sensitive languages are described throzrgiss-

ing dependencies (Kuhlmann and Mohl, 2007).
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6.3.5 Dynamic Syntax

Dynamic Syntax is a grammar formalism designed to direatRect the left-right

(time-linear) sequence of natural language procesgingwﬁéen et JIJ 20&)%, 2001).

Incrementality / Connectedness The formalisms is conceptualised as an incremen-
tal formalism, and is fully connected, i.e. each word is gnéted into the structure
directly, there is no stack.

Arguments and Modifiers Dynamic Syntax differentiates between arguments and
modifiers, arguments are predicted (their head introducescairement” of having
them) while modifiers are not.

Semantic Interpretation DS builds up a propositional structure instead of a standard
syntactic tree, so it directly reflects the predicate-argoinstructure of the sentence.

Tractability and Implementation There exists a Prolog implementation of a Dy-
namic Syntax parser and generator by Matt Purver. The paseord-by-word in-

cremental‘ (Purver and Kempsi)n, 2004). The implementeddexiowever is tiny and
there seem to be serious coverage and tractability issuesould likely be much
harder to obtain a version of the Penn Treebank to train a Dyn&yntax parser on
than for any of the other grammar formalisms, for which sumtiverted treebanks are
already available.

Generative Power The DS derived trees are characterisable in context freester
(since they are only functor/argument binary trees) busistem as a whole is char-
acterised as context-sensitive in a general sense. HowWexraial characteristics seem
to be unknowp.

Domain of Locality ~ Similar to TAG. Lexical packages can include several lex@me
and the actions can construct or annotate arbitrary traetate.

2Comment based on personal communication with Ronnie Cann.
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6.3.6 Discussion

Table/ 6.1 summarises the suitability results accordindhéoimportant requirements
for the suggested sentence processing theory. All of thampear formalisn@ can be

processed incrementally, however, fully connected pingshas only been shown
to be possible for PCFGs (Roark, 2001a), in DVTAG (Mazze20 DG (Menzel,

2009) and DS (Kempson et al., 2001), although for DVTAG andridSmplementa-

tion that would scale up to broad-coverage processing itai@, and for dependency
grammars, no fully connected parsing procedure was avaiithe time when | con-
sidered this question for this work. All of the grammar fotisias support the dis-
tinction of arguments and modifiers, and a link to a semaeficasentation can also
be established for all grammar formalisms, but in CCG and DS an integral part
of the formalism. Psycholinguistic plausibility has bedairmed for most strongly for
Tree-Adjoining Grammar, see comment in Section 6.3.3. T&\faithermore the only
formalism beside DS to support a larger domain of locality.

criterion PCFG CCG TAG DG DS
incrementality + + + + o+
full connectedness + - + + +
arg / mod distinct + + + + +
tractability + + + + -
link to semantics | (+) + +) (+) +
generative power | — + + +
domain of locality| — - + -+
lexicalization - + + NA -—

Table 6.1: An overview of selection criteria by grammar formalism.

Taken together, the criteria seem to be best fulfilled by @pteatl version of TAG,
possibly similar to DVTAG. We decided against PCFGs due ¢artmaller generative
power and small domain of locality. CCG was ruled out due ® iticrementality
problems outlined above. At the time, dependency grammamaanly ruled out for
lack of a fully connected parsing strategy, but also becafighe small domain of

3The above list of grammar formalisms is of course not an estialist of all existing grammar
formalisms. Other incremental formalisms include Left @égative Grammar (LAGﬂ (Hausgsér, 1@86),
and the a proposal for incremental structure buildin@ b;h iéﬂiﬁzo% . Further established grammar
formalisms include HPSG (Pollard and Sag, 1994) and LFGs{e, 2001).
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locality. Finally, Dynamic Syntax was ruled out based orthility problems. The
only implementations for DS are in Prolog and operate ondaogliage fragments.

6.4 Conclusions

In this chapter, we have motivated the properties that aorghof sentence processing
should implement: incrementality, full connectednessglieit prediction in combina-
tion with a verification mechanism and parallel processihg.addition, the theory
should be specified and implemented such that an applicatibroad-coverage text
is possible.

We then explained the mechanisms of the proposed senterwesging theory and
outlined how processing difficulty is incurred. A more folrdafinition will be given
in Section 8.7.

The last part of the chapter reviewed alternative gramnrandtisms with respect
to how well they conform to the specifications set out in omtsece processing theory,
and argued that Tree-Adjoining Grammar (TAG) would be magable. Challenges
posed by the choice of TAG are that a fully connected parseariancremental ver-
sion of TAG did not exist, and that the existing incrementaision of TAG, DVTAG,
requires further conceptual modifications to achieve grgagycholinguistic plausibil-
ity, in particular with respect to prediction grain size.€Ble issues will be addressed in
Chapter 7, which discusses a psycholinguistically mogidatersion of TAG (PLTAG),
and Chapter |8, which describes the implementation and &wafuof an incremental
fully connected predictive parser for PLTAG. Finally, thengence processing theory
suggested in this Chapter will be evaluated in its incaomaltiased on the incremental
PLTAG parser in Chapter 9.



Chapter 7

PLTAG: A psycholinguistically

motivated version of TAG

The last chapter outlined a new theory of sentence proagsgich assumes strictly
incremental processing and contains an explicit mechafosmrediction and verifi-
cation. An implementation of this theory must be based oraangnar formalism and
parser that also adhere to the theory’s assumptions. lchiister, we describe a spe-
cially developed grammar formalism, PLTAG, which is a styiencremental variant
of Tree-Adjoining Grammar (TAG).

In the first part of the chapter, we motivate and define the mamgar formalism,
and compare it to standard TAG. In Section 7.3, more detaiésign questions con-
cerning predicted entities and prediction granularitypah relation with the sentence
processing theory described in the previous chapter, aoeisised.

Parts of the material presented in this chapter have beerispet as

Demberg and Keller (2008b) at the TAG+9 workshop.

7.1 Limitations of Standard LTAG

7.1.1 An Introduction to LTAG

Tree-adjoining grammaJr (Joshi ed ial., 1975) is a tree-tavgiformalism. TAG stores
all knowledge about the grammar as little tree structuraldedelementary treessee
the trees in Figure 7.1(a) - (c) as an example. Here, we wiyl @tk about Lexicalized
TAG (LTAG), where all elementary trees have at least laxécal anchor i.e. at least
one leaf is a lexical item. There are two types of elementagst initial trees (see

151
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Figure 7.1(a) and (c)), aralxiliary trees(see Figure 7.1(b)). Auxiliary trees are used
to for a language’s recursive structures, and are diffdrent initial trees in that they
contain exactly ondéoot node (marked with the * symbol). A foot node always has
the same category as the auxiliary tree’s root node. Bothiaryxand initial trees can
have zero or morsubstitution node@marked with the, symbol).

Elementary trees can be linked together to form the symtatticture of a sentence
(see Figure 7.1(d)) using two different operationghstitutionandadjunction

S
VP P
NP P NP] VP
| AP  VP* |
Peter | \%
(a) initial tree often |
sleeps

(b) auxiliary tree
(c) initial tree with substitution node

S
/\
NP VP
| P\ sleeps
Peter AP VP P
| | Peter often
often V

| (e) derivation tree

sleeps

(d) derived tree

Figure 7.1: Examples for TAG elementary trees.

The substitution operation integrates an initial tree vatBubstitution site of the
same category. For example, the initial treeMeterin Figure 7.1(a) can be substituted
into the substitution node in Figure 7.1(c). The adjunctiperation can be thought of
as two substitution operations: an internal node with agmatematching the auxiliary
tree’s root node category is selected. The tree is cut aptraigpoint and the auxiliary
tree is substituted in at this node. Then the lower bit of the ts substituted into the
auxiliary tree’s foot node.
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The derivation tree (see Figure 7.1(e)) encodes how theesitary trees were in-
tegrated with each other to construct the derived tree.

7.1.2 LTAG and Incrementality

Using standard LTAG with a lexicon of the typical linguistlly motivated tree struc-
tures (like shown in the top row of Figure 7.2), it is not paésito derive even simple
sentences such &eter often reads a boakcrementally. According to LTAG deriva-
tion rules, a derivation always starts with a tree whose cat¢gory is S. Therefore,
the derivation can only start with the first word of the senteif it happens to be a
sentential head, which is not the case for most English seaese Even if this rule
about starting with an S-rooted tree was relaxed, and apasadjusted accordingly,
the wordsoftenand a would still be out of order in our example sentence, see the
derivation in Figure 7.2.

NP VP NP D‘T
NP} VP a
LTAG N\ Peter AP VP D} NBN
V. NPy often book
réads
initial(subst) substitution adjunction  substitution substitution
» Vg y '
NPy VP NP K NP VP NP VP NP VP
l/ NP} peterV NP} PeterA‘P \ PeterA‘P ﬁ’\ PeterAP VPR
reads reads ofter’ NP¥ oftenv. NP oftenv. NP
relads rgadsDﬂ NN réadsDT NN
bbok A bbok

Figure 7.2: The most incremental derivation possible using LTAG for the sentence Peter

often reads a book.

The next section proposes a new version of TAG, called Ps$ychaostically mo-
tivated LTAG (PLTAG), which can overcome this limitationy providing predictive
structures -oftencan be integrated witReter, because the missing structure of their
common head, a verb, is predicted.
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7.2 The PLTAG Formalism

PLTAG extends normal LTAG in that it specifies a lexicon ofcadledprediction trees
in addition to the canonical lexicon (which contains lekimad initial and auxiliary
trees). The role of the prediction trees is to provide thecstre needed for connect-
edness, i.e. predict structure that is otherwise part ef kates, hence the name “pre-
diction tree”. The canonical lexicon is very similar to oth&AG lexica. Cases where
PLTAG analyses differ from XTAG (The XTAG Research GrouppQ2panalyses are
discussed in Section 7.3.

The prediction lexicon consists of elementary trees whietugually unlexicalized
and where each node has a special marker indicating thabtihe ia predicted. The
markers on the nodes consist of a superscript and / or a spiysehich indicate its
predictive status. The super- and subscripts are usedssitnithe features in Feature
structure based TAG (FTAG, siee Vijay-Shanker and H)shié)wa root node only
has a subscript, while substitution and adjunction nodes baly superscripts. Inner

nodes have both subscripts and superscripts. The reasmotofoot and substitution
nodes only having half of the indices is that these nodelsr&@d to combine with
another tree in order to constitute a complete node. For pbanf an initial tree
substitutes into a substitution node, the node where theyirdegrated becomes a
complete node, with the upper half contributed by the stiigin node and the lower
half contributed by the root node of the substituted treeil&rly, in adjunction, the
node where the adjoining operation is going to take placeoisdn up into its upper and
lower half. The upper half combines with the auxiliary treetrnode into a complete
node, while the lower half combines with the auxiliary treetfnode into a new node.
A fully indexed tree is shown in Figure 7.3. Note that unlikeFigure 7.3, nodes of
canonical trees, or of complete derived trees are not atatbeeth indices in PLTAG.
The indices are only used to mark predicted nodes, and a@veghas soon as a node
is verified.

PLTAG allows the same basic operations (substitution afahation) as normal
LTAG, the only difference is that these operations can akls@jplied to prediction
trees. In addition, PLTAG has a verification operation, wihicneeded to validate the
nodes previously introduced by the integration of a preaiictree.

Verificationis an operation that removes prediction indices from thé&ptese for
all nodes that it validates, and can introduce additiondleisdbelow the last node on
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AP3 VP3

| P

often:2 V3 NP3

| N
reads:3 DT;  NN2

| |
a4 book:5

Figure 7.3: The indices at the tree nodes indicate which word each node comes from

originally (words are numbered 1 to 5).

the sping of the prediction tree or to the right of the spine (this riestvn to the right
side of the spine reflects the asymmetry of incrementalifpe elementary tree used
in a verification operation (also referred to as veefication tre@ must be a canonical
tree, and must match (we’ll define this later in more detdilpeedicted nodes with
the same index, and no other ones. In brief, a verificatianrratches the structure of
a prediction tree if the two trees have all nodes in the sarderpwith the exception
that the verification tree may contain additional nodes atdbttom of the spine or to
the right side of the spine.

Figure 7.4 provides examples for each of the three opematibhe operations are
discussed in detail in the context of the PLTAG parser inise@&.3.3.

A valid PLTAG derived tree for a sentence is a tree structunelwmust not con-
tain any nodes that are still annotated as being predictia ef them have to have
been validated through verification once the input string liesen fully processed. As
in other versions of TAG, the derived tree for a sentence nwycantain any open
substitution or foot nodes.

Psycholinguistically motivated Tree Adjoining GrammatL.{RG) can thus be
defined as a tupl& = (SN, T,I,A PI,PAF):

S the non-terminal symbol that is the root of a derived tree
N: the set of non-terminal symbols

T: the set of terminal symbols

I: afinite set of initial trees

1The spine of a tree is the path from the root to its anchor teif,usually coincides with the head
of that tree.
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NP is substituted into S resulting in S
Mary NP VP NP VP
| N | N
Peter V NP| Peter V NP
| | |
likes likes Mary

(a) substitution

VP adjoins into S resulting in )
RN RN /\
AP VP~ NPS VP NP \V/=S
| | | P
often Mary Mary AP  VPs
oft|en

(b) adjunction

S verifies S resulting in S
NP| VP NP VPS NP VP
Vv NP‘L Mal’y AP VPS Mary AP VP
| | B
meets often

often \% NP|
|

meets

(c) verification

Figure 7.4: Examples of PLTAG operations.

A: afinite set of auxiliary trees

Pl: a finite set of initial prediction trees

PA: a finite set of auxiliary prediction trees

F: a set of indices that mark the non-terminals on predictieas

All trees that can be generated by a PLTAG are composed affirem |, A, Pl and
PA, through integration using the operaticadjunction substitutionandverification
starting with the first word of the sentence and proceedingeimentally (see Section
7.2.1 for a definition of a PLTAG derivation). The languagegm@ted by a PLTAG is
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the set of all terminal strings on the frontier of the treest ttan be generated by the

grammar.

7.2.1 Derivations in PLTAG

LTAG derivations are defined as starting with an initial tvéleose root node is an S-
node, and then applying the standard substitution and etifjumoperations such that
elementary trees are always integrated into the partiaitivdd tree. An LTAG deriva-
tion is complete when every leaf node of the derived treebsllad with a terminal
symbol.

A PLTAG derivationon the other hand, starts with the tree of the first input word
and then applies substitution and adjunction operatiom®LITAG, the new elemen-
tary tree can either be substituted or adjoined into theglgriderived tree, or the
partially derived tree can be substituted or adjoined intoglementary tree. If substi-
tution or adjunction is applied to@arediction treethe nodes annotated with prediction
markers in the resulting tree will have to be validated ushegverification operation.
This means that for each integration of a prediction treeetlinas to be a verification
operation later on.

A partial derivationfor wordsw;..w; in PLTAG contains only lexicalized leaves
to the left of the rightmost lexical anchor. I.e. it must nontain any leaf nodes with
prediction markers or open substitution nodes before wgr(see Figures 7.5 and
7.6). If the partial derived tree is an auxiliary tree, iteffonust be to the right of the
lexical anchor. A PLTAG derivation is complete when evefleode is labelled with
a terminal symbol, none of the nodes in the tree is markededigiive, and the root
symbol of the derived tree is S.

OK: S not OK: S
N Ut ///////A\\\\\\\l
P P NP VP
DT NN ADIJP VP SN T
| | | DlT NlN ADJP; VP,
The man JJ
The man TN

| ADVPZ  ADJP?
never | |

ADV3 AN
|

never

Figure 7.5: Example of a tree with an unverified prediction nodes.
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OK: S not OK: S
NP VP NP VP
N PN PN /\
DT NN VP NP| DT NN B NP
| | | | |
The man VB The man | N

| saw DT| NN
|

W
sa people

Figure 7.6: Example of a tree with open substitution nodes.

In order to better illustrate the intuitive relationshigween LTAG and PLTAG, we
compare the derivations of the senteReger often reads a boak LTAG vs. PLTAG.
As we have seen earlier, the most incremental LTAG deriwatte can generate has
several words in the wrong order (see Figure 7.2). The waadandbookare not in
incremental order, becauséienanda are only inserted later. The PLTAG derivation,
on the other hand, integrates all trees in correct increah@mtler, but makes use of
prediction trees (marked with the indicgands), see Figure 7/7. The derivation starts
with the initial tree forPeterand then substitutes it into a prediction tree. This means
PLTAG would predict thaPeteris the subject of a verb phrase. The auxiliary tree for
oftencan then be adjoined into the predicted VP node. Next, thdigiren can be
validated: in fact it is compatible with the upcoming vedads Given that the verb
is transitive, it subcategorizes for an NP, and we predat it fact a determiner and
noun might be coming up next, by substituting a predictier tnto the NP substitution
site. The determineat is then substituted into the DT prediction node, and finddky t
predicted noutbookis encountered and the prediction verified.

A

NP NPS VUPSNPS VPS NP VP NP VP NP VP NP VP
| ] VA Y VA W AN v
Peter peter PeterA‘P VPs PeterA‘P VY PeterP‘\F’ \% PeterA‘P yD\ Peter/-\‘P VR
~.
- “ooften N oftenv NPt oftev. NPs  oftev. NPs  ofterv NP
AN A
- réads‘a_ re:;ds Df NNPs rezids Iif NN’ réadsDT NN
> ) 4 & pbok

initiai(subst) substitution adjuhction verification substitutiorsubstitutionverification

SR T
Peter NP} VES AF’AVP* NP| VP DT?A g o ° DT} NN
| /\ bbok

often V NP

réads

Figure 7.7: The derivation for the sentence Peter often reads a book with PLTAG.
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The correspondence between an LTAG and a PLTAG derivationtistively
straightforward. Let’'s go from the LTAG derivation to the TAG derivation (see
Figure 7.8): For each misplaced (wrt. the incremental Qrttee, we have to use a
prediction tree instead, which matches the shape of thenatigree, such that the
original tree can later verify the prediction tree. The “pléxed” tree can then be
moved to the correct incremental position for its lexicattaor, and will be integrated
into the derivation using the verification operation. Hertbere are the same number
and shapes of canonical trees in both derivations, and tleejpmed together using
the same operations, except that in a PLTAG derivation aigited tree and a corre-
sponding verification operation is added for each out-dioitem. The function of
the verification operation is to replace each predictioa byits verification tree, such
that in the final derived tree doesn't contain any predictiees or parts of them.

Similarly, we can convert any PLTAG derivation into an LTA@rivation by re-
placing each prediction tree by the canonical tree thafigsrit. The final derived
trees for LTAG and PLTAG are identical (compare final derivegbs in Figures 7.2
and 7.7).

NP /V\P NP D‘T
NP} VP a
LTAG al PLter AP Ve o) NN
V NP} oiler bbok
réads
initial(subst) substitution adjunction substitution substitution

oo L,

mmal(subst) substitution adjunction verification substitutionsubstitutionverificatior

PLTAG ‘ /f wP /i NPs i
peter NP} VPS AP/\VP* NP} VP DT?/\NNé 2 DT} NN
| /\ bbok
often V NP}
réads

Figure 7.8: A LTAG vs. PLTAG derivation for the sentence Peter often reads a book.
Note the relations between trees and operations in the LTAG vs. the PLTAG derivations,
as indicated by the arrows: each LTAG derivation step that was in correct incremental

order can be expressed by the same tree and same operation in the PLTAG derivation.
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7.2.2 Equivalence of PLTAG and LTAG

Equivalence between two grammar formalisms means thatdvathmar formalisms
assign the exact same structures to the same strings, drttiefiacover the same set
of strings.

1. PLTAG should not over-generate with respect to LTAG.
2. PLTAG should not miss out on any analyses that LTAG can geee
3. PLTAG should assign the same analysis to a sentence asnorAG would.

The first point, no over-generation, is easiest to show:esewery predicted node
has to be matched by a canonical node, only analyses that@tsigely made up of
canonical nodes (and no remaining prediction nodes) amepéed. So the prediction
trees do not introduce any additional structure, and heaceat accept any sequences
that are not accepted by LTAG.

The second point depends on the prediction lexicon. If wenddfie prediction
lexicon such that for each tree in the canonical lexiconrethexists an exact copy
with all nodes marked as predicted in the prediction lexjebis trivial to show that
PLTAG can generate all analyses that LTAG can generate: Weojder the LTAG
trees by their lexical anchors and allow the predictiongiteebe used when needed for
connectivity. In the end they will all be verified by the idatly-looking canonical
tree. We are thus guaranteed to be able to obtain the sanvedi&ee for the string of
words.

The argumentation for the third point, whether analysegasd to a sentence by
PLTAG vs. normal LTAG are the same, is similar to the previatgumentations. It
requires thaall and no moreanalyses be found, and hence the same questions about
prediction tree design are relevant as for the second point.

Theorem: For each LTAG grammar, there exists a PLTAG grammar such ttiet
derived trees from the LTAG grammar are identical to theg@erived with the PLTAG
grammar (given an adequate PLTAG prediction lexicon).

Note that in statistical processing (in particular if it@lavolves beam search) we cannot guarantee
that the identical set of analyses remain in the beam, orttteainalyses will be in the same order.
Via the probabilities of the prediction trees, some anaysay be ruled out early on for being too
improbable although they later turn out to be perfectly foveprobabilities are different because of the
distinct operations of integrating a prediction tree arahtherifying it as opposed to directly integrating
the canonical tree.
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7.2.3 Predictions in PLTAG

In PLTAG, prediction occurs in two cases: when required bynsetivity, and when
required by subcategorization. At the end of this sectiloa gxact shape of prediction
trees used in this work is discussed.

7.2.3.1 Prediction through Connectivity

As we have seen in the examples above, canonical element@y ¢an not always
be connected directly to a previously built syntactic dinee. Examples are situations
when two dependents precede a head, or when a grandpareatdild have been
encountered, but not the head of the parent node. This hapfmennstance, at the
integration of the second determiner in an ORC [Tke= senator that the reporter at-
tacked, admitted the errpms illustrated in Figure 7.9. The elementary treetfw
cannot directly be combined with the preceding relativeiséastructure. The inter-
vening structure will only later be provided by the treestfte nounsenatorand the
verbattacked If we want to maintain connectivity at this point, we thenef need to
predict this intervening structure (see the right hand sielein Figure 7.9).

Because natural language contains recursive structhers, dre in theory infinitely
many ways to connect two trees. Although embedding deptlbeanfinite in theory,
we here assume that it is finite and indeed very small due talilmns of human
memory. In our example in Figure 7.9, two prediction treesrareded to achieve full
connectedness. As mentioned earlier in this chapter, geztinodes are marked with
unique indices, indicating which nodes should be verifietheysame tree. The nodes
that will eventually be verified by theeporter-NP tree have inde&2, and nodes that
will be verified by the tree anchored attackedhave indexSl. Prediction trees can
be pre-combined, like the one in our example, for efficier@asons during parsing —
this issue will be discussed in Section 8/4.1. Alternayivelo prediction trees, one
containing the nodes with indesd and the other one with nodes index@&icould be
integrated into the prefix tree with two substitution opienag.

7.2.3.2 Prediction through Subcategorization

Another source of predictions are the lexicon entries tledves via their subcatego-
rization frames. Subcategorization in TAG is expressedudfn substitution nodes,
which have to be filled with an argument in order to yield a daentence. Each
open substitution node that is to the right of the rightmestdal anchor constitutes
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(@)

predicted structure

A{
}C\ substitution S
WHNP S /;2\

‘ S2 VPgi
DT

h
that tLe D'lfz NI\E§

substitution
() A&
&‘%
WHNP 1
that W/\/P\N
attacked
2 NNS% 2'3\
DTy ’\ﬂN

verification senator

)
the

Figure 7.9: Prediction and Verification

a prediction during the parsing process. Modifiers are gdlyenot predicted in our
framework, unless they are needed for connectivity (seéd@e€.3.3 for a more de-
tailed discussion of this issue).

We exploit TAG’s extended domain of locality in order to ctrost lexicon entries
with more than one lexical anchor. We can use this to explesdiptive facilitation
for either ... orand related constructio#s (Staub and CIthon 2006; for aendetailed
discussion of generating such lexicon entries, see Sett®a).

For theeither ... orcase, we assign a lexicon entrydibherwhich predicts the oc-
currence the conjunctioor, as well as predicting a coordinate structure that combines
two entities of the same category, see Figure|7.10(a).

When processing aeither ... ordisjunction in PLTAG, processing ar will be
facilitated compared to a simpte construction. For the sequenPeter read a book
or, theor occurs unexpectedly, and can be attached either at the NPdeat the
S level (see Figure 7.10(c), (d)), leading to an ambiguiticWwhvill have to be resolved
later on. For the sequené®ter read either a book oon the other hand, the word
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(a) lexicon entry for "either" (b) derivation at "or" in either—cs
S

NP /\
NPV
A D
DT NR CCs: NP PeterY NP

i I read
either org}
DT Ng CC NPR

either a book or

(c) ambiguity at "or" (d) lexicon entries for "or"
adjunction S
S———
A s cC S
NP /V& or

| NP
Vv NP
Peter) XX T
NP* CC NR

read a book |

Figure 7.10: Extended domain of locality for expressions that trigger predictions.

or was predicted already aither, and will therefore be less costly to integrate: the
probability of or given the predictectither structure is higher than the probability

of or given the structure withowither. In addition, there is no NP/S-coordination

ambiguity, see Figure 7.10(b). A formal evaluation of thase is reported in Chapter

9, Section 9.1.2.

7.2.3.3 Controlling Prediction Granularity

The PLTAG formalism itself does not make any claim or pose @syriction on the
shape of the trees in the prediction lexicon (except that thest contain more than
one node, like all TAG trees). However, since each of thesdiption trees will have
to be verified by a tree from the lexicon later, any trees thaitld/contain more nodes,
or nodes that are in an arrangement that does not exist iratienal lexicon, could
never possibly be verified, and thus never lead to a valid L. @Arivation. Therefore,
it makes sense to only include prediction trees into theiptied lexicon that are the
same or smaller than the canonical LTAG trees. Predictesstthat lack nodes to the
right of their spine can still be verified by a canonical treattincludes those nodes
(because the lack of those nodes has not possibly affeaedktivation so far, due to
the incrementality constraint).

Of course, this opens the question of how big exactly a ptieticree should be.
The prediction tree sizes determine in fact the predictimmglarity during parsing. If
we decide to always use complete copies of canonical tnestsnjarked as predictions,
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prediction tree: Ay canonical tree: A
BK| CfK Ek Bl C D| E

c

Figure 7.11: Example of a compatible prediction and verification tree, as defined for use

in our system.

this would mean that we would always predict upcoming stmas which are needed
for connectivity down to the lexical item, and that we woudd &xample predict full
subcategorization frames for verbs before having seendteidentity. This level of
granularity would not only seem implausible psycholingjaally, but it would also
mean that we predict much more detail than necessary foreobimity reasons, and
would lead to a larger prediction lexicon. Instead, we wiéigict upcoming structures
only as far as required by connectivity or subcategorinatigiowever, this is a pre-
liminary assumption, as the optimal prediction grain sizeemains an open research
question.)

We therefore define that prediction trees have the same ssprees from the
canonical lexicon, with the difference that they do not eamsubstitution nodes to the
right of their spine (the spine is the path from the root neddé anchor), and that their
spine does not have to end with a lexical item, for an exangge,Figure 7.11. An
exception to this rule are nodes that lie on the path betweerobt and the foot node.
If a node to the left of the spine is missing in the predictiet it can not be matched
against the verification tree, and hence not be verified by dang so would violate
the incrementality assumption (the additional substtutiode in the verification tree
would not be filled at the time of processing the verificati@es lexical anchor).

7.2.4 Comparison to DVTAG

The Dynamic Version of TAGDVTAG) was developed by Alessandro Mazzei in his
PhD thesis (Mazzgi, 2005). Like PLTAG, it was motivated bystoucting fully con-
nected analyses. The problem was solved slightly différemthis version of the for-
malism: instead of predicting tree structures in a preadicstep and having a predic-
tion lexicon, the parts of the tree structures that woulddrteebe predicted in PLTAG
are pre-attached to the canonical lexicon entries, seadigil2(a). The sentence
Peter often reads a bookould then be derived as shown in Figure 7.12(b).
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The most important theoretical difference lies in the fhett twhat is predicted in
PLTAG is not marked as predicted and hence is not subjecteoification mechanism
in DVTAG. Furthermore, prediction granularity in DVTAG isfiiéerent from PLTAG:
in DVTAG, a larger number of more detailed alternative dinoes is generated. In
his thesis, Mazzei states that 6 million tree templates vegteacted by converting
the 1,226 XTAG templates to DVXTAG templates. This means tha size of the
grammar virtually explodes in DVTAG. This huge size of thamgmar makes it very
challenging, if not impossible, to implement a broad-cager DVTAG parser.

S s VP s Vv, NP , NN
AP VP* reads DT NN book
NP VP | | |
| P often a noun
Peter \Vi Npl

transitive-verb

(a) Some example lexicon entries in DVTAG.

S Ead S — S
NP VP NP VP NP VP
Peter Peter Peter  Ap VP
v NP| AP Up
transitive-verb ﬁl T often V  NP|
often % NP| |
| reads
transitive-verb
= S _ IS
NP VP NP VP
Peter  \p VP Peter  ,p VP
often v NP often v NP
reads DT NN reads DT NN
| | | |
a noun a  book

(b) A DVTAG derivation.

Figure 7.12: A lexicon and derivation example in DVTAG.
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7.3 Lexicon Design and Open Questions

This section discusses some general questions concetrengesign of the lexicon,
focusing on linguistic and psycholinguistic aspects @atthan implementational is-
sues). As explained in the previous section, predictiopedée on subcategorization
frames of the lexicon entries. Furthermore, the shape afdéttees also influences the
degree to which additional structures for achieving cotimiég are needed — if lexicon
entries have the form as in DVTAG, connectivity is achievethaut prediction trees.

7.3.1 Predicting a Sentence at the Beginning

An example for an open design issue that also affects theti@fiof a PLTAG deriva-
tion is whether a sentence node should always be postulated beginning. In psy-
cholinguistic terms, are people always predicting thay i@ going to process a sen-
tence? And do they do it in all situations? Both when readirgpak and when in
just casual discourse (where in fact many utterances ar@N#bker fragments of sen-
tences)? This would have consequences for the predictampusred by connectivity,
and hence the processing difficulty predicted by the linkivegpry. This issue also de-
pends on the question whether e.g. the utterance of a sirgjlehNuld be considered
as just being an NP, or in fact an elliptic sentence. For tHBABL derivation shown in
Figure 7.8, always postulating a sentence would requiragihg the order of the first
and second trees. More generally, it means that a verbqii@ditree (and possibly
other structures like an NP structure if the first word is a&dwetner) would have to be
predicted in all languages which are not verb-first. At thvtself, verification cost
would occur, meaning that a verb should be the more diffithé,longer the phrase
before the verb. On the other hand, this might be out-weidfyetie forward-looking
component which expects a verb more and more strongly agttiersce unfolds.

In future work, it would be interesting to tease apart theseaspects and test them
empirically.

7.3.2 Size of Lexicon Entries

At the either..orexample in Figure 7.10, we have seen how lexical entries twith

anchors (one of them being predicted) can influence the gifeds. An important
guestion is how to automatically and consistently decidelwlkexicon entries should
have multiple anchors and which ones should not. Hand4seiethem without an
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objective criterion will obviously lead to inconsistengiehich may weaken claims
about the predictions of the theory for naturally occuriimgad-coverage text.

The problem of automatically learning the size of trees aafobmulated in terms

of data-oriented parsing (Bod et‘ aLI., 2603). The criteriondeciding on tree size
in a DOP framework are made based on the co-occurrence plitbalof words or
inner nodes in a syntax tree. If a pair of words (lé#her andor) occurs together
much more often than would be predicted by the “unigram” dietpy of the words
eitherandor, they will be encoded in the same tree. For the incremerdaatdivork
it is thereby also particularly relevant which word is moredictive of the otherOr
certainly is not as strong a cue for the occurrenceitifer aseitheris for or. So if
the first word of such a pair would be highly predictive of tlee@nd one, we could
define a threshold and include all those constructions hm#dexicon as a tree for the
first word which includes the predictive lexicalized entrytioe second. At a more
fine-grained level, this could also be done for internal mod¥ similar approach has

recently been described by Cohn et al. (2009), who used gammetric Bayesian

model for inducing Tree Substitution Grammars.

7.3.3 Arguments and Modifiers

Another question related to lexicon entry sizes is the miision between arguments
and modifiers. Currently there is mostly evidence of argusering predicted: ex-
periments targeted at detecting syntactic prediction liystr to show prediction of
, 199£$b). The
distinction between arguments and modifiers in practiceowsdver often difficult to

obligatory phrases or words, (ng., Kamide e{ al., ZbOB;Bﬁmkum et al.

make for humans and laborious to annotate, indicating tteatistinction is gradual
rather than a categorial one. Even though we assume in dimdinheory that argu-
ments are predicted, while modifiers are not, some initiedece (Arai et all,joj)S)
indicates that modifiers can be predicted in a context wheg are required by dis-
course.

Distinguishing modifiers from arguments impacts stattLP in formalisms
which make conditional dependence assumptions based aarghenent / modifier
distinction. For example, the probability of a specific ppgitional phrase under a VP
is dependent not only on the verb, but also on its other argtsnehile the probability
of an adverbial phrase that modifies the verb (i&morrow) may be independent of
the verb’s other dependents.
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7.3.4 Free Word Order Languages

The plausibility of our “minimal” predictions which only pdict arguments that come
before the head of a phrase, but not the ones after can alsgelsaned. In English,
the syntactically most obligatory argument, the subjecpdsitioned before the verb,
while all other arguments usually occur after the verb. hal predictions thus pro-
vide a convenient way for generalising over intransitivetvansitive vs. ditransitive
verbs. In languages that have more head-final constructaoms/ or where several
arguments can be arranged in any order before the verb, wilwod up making
more precise predictions and thus change the predictiorutaaty level with respect
to English. This does not seem very desirable.

A possible solution would be to assume a multi-set represent for these argu-
ments in free word order languages, rather than postulatany alternative structures,

as has been suggested for CCG (Hoffman, 1995; Baldridge2)2@0 multi-set rep-
resentation would mainly affect lexicon size and difficytiyedictions made by the
linking theory due to the prediction and verification medeam In the verification
mechanism, the function that tests for compatibility betwe predicted tree and a
verification tree would have to be modified such that the \eaiibn tree can match a
compatible multi-set representation.

7.3.5 Traces

The notion of traces has its origin in Government Bindingptige Traces are phoneti-
cally empty elements that are connected in the syntactictstre. Traces are used in
some syntactic theories to account for e.g. wh-movemenpasdives. However, the

existence of traces is controversial. gee (Sag and Fodﬁli,) I6r a detailed discus-
sion of linguistic as well as psycholinguistic evidence dod against the existence of
traces. This thesis assumes the existence of traces.

In the final version of this work, only traces encoding A-neavent (including
parasitic gaps), passives, control verbs and null compitmezs were used, while
placeholders for ellipsed material, right node raisingpletives, and other pseudo-
attachments marked in the Penn TreeBank were ignored.mesabptions for traces
in relative clauses, passive constructions, rising andrebconstructions, extractions
(including long-distance extractions) and parasitic gaesdiscussed in Appendix B.
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7.4 Conclusions

This chapter suggested new variant of tree adjoining grameoa#led Psycholinguis-
tically Motivated TAG (PLTAG). Its most important propees are that it allows for
strictly incremental derivations, and supports a psyctlistically more plausible
prediction grain size than DVTAG. PLTAG models the processkprediction and
verification explicitly, and for doing so introduces preitha trees, which are simi-
lar to canonical TAG trees but can be unlexicalized treed,aanew operation called
verification.

We have shown the equivalence between PLTAG and standar | 8Ad ex-
plained how the formalisms can be mapped onto one anotheth&lieaddressed some
design questions that are relevant for using the formalsengpecific setting, such as
with a particular grain size for prediction trees, or apgtion for languages that have
different properties, such as more flexible word order, fiomglish.

The formalism was designed to meet the specifications oféheace processing
theory outlined in Chapter 6. An implementation of the folista, including an auto-
matically converted tree bank, automatically induced o&rad lexicon and prediction
lexicon and a probabilistic, broad-coverage parser wilhkesented in Chapter 8.






Chapter 8

An Incremental Predictive Parser for
PLTAG

The incremental predictive parser proposed in this chaptpiements the restric-
tions and requirements lined out in Chapters 6 and 7. Thiptehalescribes the
conversion of the Penn Treebank to a format that is comgatth PLTAG, the
induction of a lexicon from the transformed treebank and dbsign of the pars-
ing algorithm and its probability model. We found that in ¢tfee, the lexicon ex-
tracted from the Penn Treebank did not contain any TAG treatwere not TI&

trees. Similarly, other recent parsers like the Chiang Qj&[hrser is only a TIG
e Anﬁm?,) and the C&C
(Clark and CurraJn, 2007) have been shown to parsg esatusively context-

parser, and recently, CCG bank (Hockenmaier and St

parser

free ruIes‘(FowIer and PeAn, 2&)10). To parse English bas#tearontext-free lexicon
extracted from the Penn Tree Bank, itis only necessary tdledrees that also satisfy
the condition of being TIG trees. Therefore, the PLTAG inmpémtation described in
this chapter is actually only an implementation of a PLTIGspa

In the last part of this chapter, we evaluate parsing perdoice. The parser de-
scribed here is to our knowledge the first fully incrementad aredictive parser. Fi-
nally, the linking theory, which maps the parser actions tocpssing difficulty, is
formalised and its implementation described.

171G stands for Tree Insertion Grammar, for more informaten Sectioh 6.3.3.

171
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8.1 Treebank Conversion

In order to implement a parser for PLTAG, the first step is teate a resource of
PLTAG syntax trees, which can be used for training and tgdtwe parser (training
data is needed because we here describe a supervised palerAG. Supervised
approaches generally achieve higher accuracy than unssperones). An existing
big tree bank is the Penn Treebank, however its format ibtjigifferent from PLTAG
trees, mainly in that tree structures are flatter than TA€strd he Penn Treebank struc-

tures have already been converted to TAG structures inquewvvork by (Xia et al.,

2000), whose procedures we follow in this work. We decideddnovert the Penn

TreeBank ourselves instead of using an existing conve&ltfeebank in order to to
add the NP annotation froLn Vadas and CJrJa—ngaZOW), andotxtra prediction tree
lexicon more easily.
As a first step, the NP annotation fr$m Vadas and Cu#ran &Mﬁi)added to the
Penn Treebank annotation, thus disambiguating the flat Nietates. Next, depen-
dents were marked as either arguments or modifiers of a helolying annotation
from PropBank (Palmer et Lal., 2003). Finally, all nodes ia ttee were marked as to

whether they are the head child of their parent node, usitiglatly modified version

of Magerman’s head percolation tab‘le (MagerH\an, 1994) s §hction will discuss
how the flat structures from the Penn Tree Bank were disamateguin order to be
proper PLTAG derived trees, and how special cases like iauei$ and copula con-
structions were handled.

After conversion, the resulting PLTAG treebank can also $eduo automatically
induce the canonical lexicon and the prediction lexicomgg®rted in Section 8.2.

8.1.1 Disambiguating Flat Structures

The structure of the Penn Treebank is flatter than the tymtalcture of PLTAG

derived trees. In PLTAG, a new internal node is introduced (ke root and foot
node of an auxiliary tree) whenever an adjunction operatiites place. Therefore
a PLTAG tree has typically many binary branches where thenPeeebank uses
flat structures. We assume right branching structures (foexample, see Figure
8.1), following previous efforts of converting the Penn dank into binary formats

Hockenmaier and Steedman, 2007). However, the heuristiglat-branching does

not always lead to correct results, and has been shown torbeytarly problematic
for NPs.
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NP — NP

/’\ /\
DT ADJ N DT N

| | | | PN

a big tree a ADJ N

| |
big tree
and VP = VP
ADV VBP NP ADV VP
| | | | PN

often VBD NP
| |

saw Peter

often saw Peter

Figure 8.1: Binarisation of flat Penn Treebank structures into right branching binary

structures for PLTAG.

Noun phrases (NPs) and quantifier phrases (QPs) are uswssilgnad a com-
pletely flat structure in the Penn Treebank. While the nouragd annotation by
‘Vadas and Currar% (20b7) has remedied this to a certain dxyeintroducing disam-
biguating nodes to mark left branching inside NP phrasegst toranching remains
implicit, and there is thus an asymmetry in the annotationdtt vs. right branching.
We therefore introduce additional nodes in NPs to denotd bganching, see Figure

8.2.

NP = NP

DT NP-newnode
DT NML NNP | TN
| P | the  NML NNP
the Agenc TN |

NNP NNP gency NNP NNP Agency
| | | |
Environmental Protection Env. Prot.

Figure 8.2: Introducing explicit right branching.

Furthermore, quantifier phrases were unfortunately nandsguated in the NP
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annotation, even though they suffer from the same problebeofg annotated very
flatly (see example tree structure in Figure 8.3). Heussdie used to cope with these
cases.

QP — QP
TS /]\
PN | PN
$ 45 to $ 50 $ CD to $ CD

o o
$ 45 $ 50

Figure 8.3: Structural disambiguation of Quantifier Phrases.

The most common case of inaccurate right branching streigemaining in the
treebank even after NP annotation concerns coordinatectstes. We try to recognise
scopes within coordination automatically and introducertiissing nodes (see Figure
8.4). For sentence-initial modifiers suchlag, and a new POS tag was introduced
(CCSIM), in order to distinguish this case from proper camation within a sentence.
If we were operating more on a discourse level, these sesti@it@al conjunctions
could be handled in the same way as normal conjunction.

NP NP
D|T N|N C|C N|N N|N DT NP
the fish and chips meal | /\

the NP NN
T~
NN CcC NN Mmeal

| | |
fish and chips

—

Figure 8.4: Structural disambiguation of coordinated phrases.

8.1.2 Auxiliary Treatment

In the Penn Treebank, auxiliaries and modals have the sarefgspeech tag as full
verbs. Following the standard head percolation rules, #ineyherefore determined to
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be the head of phrases since the algorithm is not able todigsh them from regular
verbs. A heuristic for detecting auxiliaries and modifie@swmplemented in order
to assign them a different POS tag 'AUX’, which then enableslexicon induction

algorithm (see Section 8.2) to encode them as an auxiliagy ee Figure 8.5.

tree from Penn Treebank: S
NP VP
/\ PN
DT NN VBZ VP

The government has VBD

failed
default tree: S final tree after heuristics: VP
/\ /\
NP| VP AUX VP*
/\ |
VBZ VP| has
|
has

Figure 8.5: Auxiliaries and modals are assigned a special POS-tag 'AUX’ to distinguish

them from full verbs and correctly extract an auxiliary tree template for them.

8.1.3 Copula Treatment

The standard XTAG analysis of copula constructions intoedua new initial tree for
each predicate, and an auxiliary tree for the copula, saa€&®8.6(a). We did however
not adopt the standard XTAG analysis for PLTAG, because iild/¢ead to a larger
number of lexicon entries: every predicate would be anedtaiith the full S-NP-VP-
structure. Instead, the predicate noun is assigned theatyldP tree template, see the
tree forfishin Figure 8.6(b). This can be achieved by introducing a spdvDS-tag
for copula verbs. However, there are some cases, where tio¢edion of the treebank
forces us to assign the XTAG-entry structure to the NP: lruFég8.6(c), the word
director must be assigned a sentence structure because no tracéelemdnt for the
copula is annotated.



176 Chapter 8. An

Incremental Predictive Parser for PLTAG

S and VP
/\ PN
NP] VP vV VP*
N |
V  NP-PRD is

| N

¢ DT NP
| |
a fish

(a) XTAG analysis of copula constructions.

S is analysed as S and NP
/\ /\ N
NP VP NP| VP DT NP
Paula VBZ NP-PRD COP NP-PRD & fish

| PN |

is DT NP is

| |
a fish
(b) PLTAG analysis of copula constructions.

S - S
NP_SB{\VP NP-SB]  NP-PRD
PRP NP
| AUX VP P
He | /\ DT, NN

WS vBN S . |t

irector
| /\
named NP-SBJ NP-PRD
| |
trace-1l NP
/\
DT NN

the director

(c) Exception case for PLTAG analysis of copula construngio

Figure 8.6: Treatment of copula constructions in PLTAG.
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8.1.4 Remaining Problems

The treebank conversion algorithm assigns complete stegto ca. 97% of all trees
in the Penn Treebank. Some of the remaining three percerded tvere only partially
converted and may miss some leaves (this mainly affecteisees that include FRAG
(for fragment) nodes. Among the 97% of complete conversithese is a small num-
ber of sentences where punctuation marks or some modifiers @dne wrong order
in the tree, due to the fact that modifiers in TAG cannot adjoia node between two
arguments of a node.

8.1.4.1 Modification occurring between two arguments, or be tween a head and

its argument

The biggest cause of not being able to segment the tree tgraee modifiers which
occur in-between two arguments, or between a head and it (see Figure 8.7).
In standard TAG, such cases are handled by introducingiadditVP nodes that the
modifiers could use as an adjunction site. In our implemantatve inserted a VP
node above each VB, VBD, VBG, VBN and VBZ node that is diredibyminated by a
VP. This step creates additional attachment sites, andhearhiave a potentially nega-
tive effect on precision of a parser using these structitesever, the introduction of
these additional nodes improves coverage substanti@bguse it then allows to de-
rive sentences with modifiers that occur in-between argisnéfte found that on the
training data, the introduction of these additional VP reooeduced trees that could
only be transformed to a wrong attachment order by more tBéf. 2

S

T

NP-SBJ-1 VP
|
NN
I
asbestos
AUX VP
|
was
VBN NP-arg PP-mod PP-arg PP-mod
used trace-1 N NP N NP IN NP
RN TN in  the  50s

N modest amounts N making  paper

Figure 8.7: Problematic case of a modifier occurring between a head and its arguments.
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8.1.4.2 Punctuation Disambiguation

Another tricky case is punctuation. In the literature alqmarsing, punctuation is usu-
ally raised in the tree as far as possible, or simply remoRe@ason why punctuation
treatment is difficult is that it is often used inconsistgr(this is in particular also
true for the Penn Tree Bank data). However, punctuation doetsin useful informa-
tion, and it has been shown that it is beneficial to use it atleasome form (e.g. as
a feature) to inform the parser. As this thesis focuses onelting human process-
ing and evaluation on text which contains all punctuatiomk®awe decided to try
to keep punctuation marks if possible. However, the questias then whether they
should be modifiers or arguments. Treating all punctuatiarksnas arguments helps
to prevent the problem of having a modifier (the comma) betw®e arguments.
On the other hand, treating punctuation as arguments leaasruch larger lexicon,
and poor generalisation performance. For example, sexvi@mal punctuation is prob-
lematic as an argument to the sentence for sentence-legadination, causing the
lexicon entries for verbs not to generalise across sentewed coordination vs. un-
coordinated phrases. Removing any sentence-final puratyuats well as brackets,
guotation marks and dashes is thus an effective way to signilly reduce lexicon

size. It is a well-established way of dealing with punctoatisee also (Collins, 1999;

Bikel, 2004).

In the final version of the treebank converter, heuristics ased to identify
apposition-like insertions and introduce a new node witegary ‘APP’ with the first
comma as its head, and subcategorising the apposition asddeomma (see Fig-
ures 8.9 and 8.8). All other punctuation was removed if atibginning or end of a
sentence, or treated as a modifier.

NP
/\
NP* APP
, ADJP| |

Figure 8.8: Treatment of commas in appositions.
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S = S
NP , PP , VP /\
PN N /\ VP
DT NN IN NN VBD Pp |
| | | | | VP
the yield for example rose IN/\NP /\

| | /\ VBD
by 5% /'\
TOSe
/\

the yleld | |

by 5%
I I

for example

Figure 8.9: Example of three modifiers (two commas and a PP) occurring between the
argument and a head. Correct order can be achieved by introduction of an additional

node 'APP’, and adjoining the apposition with either the NP or the VP.

8.2 Lexicon Induction

After converting the Penn Treebank into PLTAG format, andpithg some of the
annotation as described in Section 8.1, the resulting PLT&€bank can be used to
induce a PLTAG lexicon. As described above, we annotatettaneformed structures

with head information from an adapted version of MaqermémSM) head percolation

table. The head information is necessary to segment thefdrahe sentence into
the two types of lexicon described in Chapter 7: the candtéséon entries, and a
prediction lexicon (similar to the canonical lexicon, bubstly not lexicalized).

8.2.1 Creating the Canonical Lexicon

The creation of the canonical lexicon is based on the praeadikscribed ir{ (Xia et LI.,
M). Each node in a tree from the PLTAG tree bank must betatgtbwith a flag
indicating whether it is its parent’s head child or not. Rertnore, each lexical anchor
must be annotated with a flag stating whether it is a modifi@ncargument.

The algorithm then determines the spine of an elementagytlyestarting at each
lexical leaf of the tree and checking its ancestor nodes fogther they are the head
child or not. Whenever a node is encountered that is not tad hkild of its parent,
the algorithm checks whether the lexical anchor is a modfi@n argument. Ifitis an
argument, the node is cut into two halves. The upper half ikethas a substitution
node, and the lower half constitutes the root of the elenmgritae. For example,
consider the sentendde Italian people often vote Berluscahiown in Figure 8.10(a).
The algorithm would for example check the parenfTokfor whether it is the head
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child of its parent nod®lP and find that it is not. It would then check whetfdreis an
argument or a modifier and find that it is an argument, and thereut theDET node
into two halves, thus creating the substitution site in fleenentary tree fopeopleand
the root node for the elementary tre€Tdfe see Figure 8.10(b).

1
Thet 5
ADJ N3 V2 |\‘u:g
| | - _
ltaliard  peopled vote3  Berlusconi

(a) PLTAG tree showing which part of the tree
will result in which lexicon entry.

DET N NP VP S NP
The ADJ N* DET| N ADVP VP* NP| VP Berlusconi
| | | PN
Italian people  often V NP
|
vote

(b) Lexicon entries extracted from the above tree.

Figure 8.10: Generating lexicon entries from the PLTAG tree bank.

If the lexical anchor is a modifier, the parent node is cut iti fiae lower half is
going to become the elementary tree’s root node), and thegtdioot node has to be
identified by checking the parent node’s head child (andetedhchildren) for a node
of same category as the parent. The foot node is then alsa balfi The upper half
constitutes the new elementary tree’s foot node, and therltnalf is joined with the
parent node’s upper half to form a complete node. This hagppethe worddtalian
andoftenin Figure 8.10(a). At the worttalian, theADJ node is not the head child of
its parentN. As Italian is a modifier, we cut the parent noblento its upper and lower
half, and find that its head child also has catedeérgnd also cutit in half. The colours
and indices in Figure 8.10(a) mark which part of which nodievientually belong to
which elementary tree. Figure 8/10(b) shows the elemeititaeg extracted from the
example sentence.
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8.2.2 Creating the Prediction Lexicon

As defined in Chapter 7, prediction structures can be urddéixied, and can basically
have any shape. As discussed in Section 7.2.3.3, only thledé&pon trees that match
the structure of some canonical tree can yield valid PLTA@vd&ons. Therefore,

only the subset of possible trees which are in the lexicoproned versions of them
can be of any use to the parser. We can further restrict thisysgefining the desired

level of generalisation (also discussed in Section 7.p.3 e prediction trees used in
this work include the tree structure to the left but not toriight of the spine, cutting

off any unary nodes at the bottom of the spine.

One way of generating such trees would be to transform thieesritom the canon-
ical lexicon. But a large set of prediction trees risks to etile parsing algorithm very
slow because it creates a very big search space. We theregirt the set of pre-
diction trees to structures that turn out to be necessarintsementally parsing the
PLTAG tree bank. As mentioned earlier on, prediction treesi@eded for connectivity
whenever two dependents precede a head, or when a grantgadenchild have been
encountered, but the head of the parent node has not beenlsemir example sen-
tence this happens at the woliltldian andoften A systematic way to find these cases
is by calculating theonnection patlat each word of the tree, and then subtracting the
nodes from all elementary trees whose lexical anchor hake®t seen.

Connection paths were defined and used for calculating cbinitg for DVTAG

by Lombardo and Sturt (2002). A connection path for wasds. . wy, is the minimal

amount of structure that is needed to connect all wards . w, into the same syntactic
tree. The amount of structure needed at each word for thersegithe Italian people
often vote Berluscoris indicated in Figure 8.11 by the structure enclosed in ifodss.

Figure 8.11: The connection path at each word.
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We then use the connection paths and our knowledge of howethtersce tree
can be decomposed into the canonical elementary treesaardee which parts of
the structure are included in the connection path for woevgs .w,, but which are
not part of any of the elementary trees with fegt ..wy,. In Figurel 8.11, this occurs
twice: firstly whenltalian has been read, and the determiner and adjective can only be
combined by predicting that they must be part of the same pbuase, and secondly
atoften when the VP and S nodes have to be predicted.

As can be seen in Figure 8.12, there is some structure needd#uef connection
path which is part of an elementary tree whose lexical anblasrnot yet been pro-
cessed. The nodes required by the connection path but wactoapart of elementary
trees with already seen anchors constitute the prediaté@) see Figure 8.12. These
prediction trees differ from the trees in the canonicaldexiin that all their nodes are
marked as prediction nodes, and in that they are not nedgdsaicalized.

It can happen that nodes from two or more different elemgritaes are needed
by the connection path. In this case, we generate a pre-caaiprediction tree (see
Section 8.4.1). A pre-combined tree has unique indicesdden that originate from
different elementary trees, and is equivalent to geneyaggveral single prediction

P
ADYPZ‘ v
4
oftery 5
N % Y5 '\‘ng
[ \ 5 .
ltaliard / peopled vote2  Berlusconig

NP3
/VP< —_ /\
DET3 N3
3
ADYPﬁ Vs
4
oftery s
N, Ys l\‘IPE
‘ o
peopled votez Berlusconig

Figure 8.12: “Subtracting” the seen lexicon entries for the and Italian from the connec-
tion path structure at the word Italian leaves us with the connection bit, from which we

generate the prediction tree, as shown on the right hand side.
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trees and integrating them later online.

The prediction trees generated by the connection path metr® simplified by
removing unary nodes that were originally introduced tigloadjunction from the
right side. This makes the trees smaller, reduces lexicon and prevents us from
predicting the exact points of modification in a tree.

8.2.3 Lexicon Induction Statistics

Based on the argument/modifier decisions based on PropBahkpeecial treatment
of punctuation our extraction algorithm generated 600@ipt®on tree templates and
17000 canonical tree templates (i.e. unlexicalized treé@)ere were 146k unique
canonical lexicalized trees (counting simplified categ®rie.g. using NP instead of
NP-SBJ). We obtained these numbers after trying to makeethedn more compact,

by treating all relations annotated as “Support” in PropBas modifiers, and also
treating as arguments words annotated as “-(VOC), (DIRQG), (MNR), (PRP),

(TMP), (CLR)” in PropBank. The number of tree templates asited in this first ver-

sion of the converter is considerably higher than the nurobieee templates extracted
in related work (Xia et al. (ZOOOr;Lh‘en (2001) extractedul&®00 templates). This
gap is due to differences in the treatment of punctuationteawes, as well as differ-

ences in the set of non-terminal categories used. The lexgsh led to very low cov-
erage of the grammak(60%). In order to increase coverage, the following changes
were made:

e using fewer categories (NN, NNS, NNP, NNRPSNN; VB, VBD, VBG, VBN,
VBP, VBZ — VB; JJ, JJ, JJR, JJS JJ; RB, RBR, RBS— RB; NML, NAC,
NP, NX — NP; WDT, WP, WP$— WP; PRP, PRP$- PRP)

e treating all punctuation marks except when in appositike-tonstruction as
modifiers

e removing sentence-initial and sentence-final punctuatiarks
e removing all traces and null-elements except ‘0’, *’, *T*
e removing the top empty category of the treebank sentences

After these measures, the size of the extracted lexicon veais than halved to 7100
tree templates (thereof 2000 unique ones) and 2800 prexlicges, achieving a cover-
age of more than 90% on Section 23 of the converted Penn Trele (Baseen during
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training). Lexicon size can be further reduced by usingesiatjunction instead of

the adjunction operation, as in (ChiaL;g, 2000), whose etdddexicon contained only

2100 tree templates, and by introducing commas as headsitibautrees in coordi-
nation, as done in (Chen, 2001). For a good analysis of diffieextraction strategies
and their effects on lexicon size see CAen (2001).

The average ambiguity per lexical item is 2.45 trees per Vi@rthe later version
of the lexicon. The distribution is not even but follows thgZdistribution as can
be expected for language data. There are a few words witlofalgferent trees (in
particular common function words like “and” (578 trees)i™@19 trees), “as”, “in”,
“but”, “is”, “$”, “of”, “for”, “to” (between 100 and 200 different trees each, see Figure
8.13).

Ambiguity of Extracted Lexicon (log—log scale)

o and

500

o or
© &0 in. but
o'is

o OOO

50 100

Numbper ot trees with same lexical entry

o |
N
o |
—
o 4
[QV L ]
— L]
T T T T T
1 10 100 1000 10000
Rank

Figure 8.13: The distribution of ambiguity in the PLTAG lexicon.

Among the derivations where prediction trees were needettlier to achieve con-
nectivity, 89.3% of cases used one prediction tree (at g tivitrout intervening canon-
ical trees), in 10% of cases, 2 prediction trees had to be cwdlbefore connectivity
was achieved, and in less than 1% of cases were three poedictes needed. There
were no instances in the Penn Treebank where more than Snezeseeded.
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8.3 The Incremental Parsing Algorithm

Given the lexicon entries and the PLTAG treebank for tragrand evaluation, we next
describe the incremental parsing algorithm. The parsirggesiy of the incremental
PLTAG parser is related to an Earley parser. Alternativatsgies, for example top-
down parsingm , 1991) would not lead to incremental RETderivations as the
parser would have to start with the sentence node, whosealexinchor is the head
of the sentence; and the head of the sentence is most often ieenfirst word of a

sentence. Bottom-up TAG parsi%ng (Vijay-Shankar and JE&%&) on the other hand,
would not lead to fully connected structures.

The implementation of the parser uses a chart to store andvesthe parallel
partial analyses at each word (see Section 8.4.3 for mosdlslen the chart). The
chart allows to aggregate similar analyses during the bgattase and only calculate
complete derived trees when search is completed for thestnttees. To limit the size
of the chart (both in terms of the number of different chatties and the number of
analyses in one chart entry), a beam is implemented to ordp kiee best analyses
and prune analyses with low probability. As a further measaincrease efficiency, a
supertagging step (see Section 8.4.5) for choosing preditrees is interleaved with
the parser steps. The supertagger selects the most prgrmpigdiction trees given
the context, such that the parser only has to try to integhata best prediction trees
instead of all trees from the prediction lexicon at each,stdpch dramatically cuts
down on the search space.

The high level parsing algorithm (shown in Algorithm 1) wer&s follows: When
processing a new input wongk, the algorithm retrieves all possible elementary trees
ew, for wi (line 2) and tries to combine them with all analyses covetiregprefix of the
sentencw,. .w_, (line 6). It then retrieves a subset of the prediction tréies (16-18;
the subset is determined by the a super-tagger, see Sectiéi), &nd tries to combine
the prediction trees with all analyses covering wordsw; (line 20). The prefix trees
are stored in a chart (see lines 2, 13), which will be disaligs&ection 8.4.3. To cut
down on the search space and only follow the most promisiadyses, prefix trees
that have too low probability are pruned (lines 9 and 15).

The operations for combining the trees consist of adaptesiores of the standard
LTAG operations plus a verification operation. Note that werfd that all auxiliary
trees that we extracted from the Penn Tree Bank satisfy thieitten of TIG trees,
i.e. their foot nodes are the innermost or outermost leaefauxiliary tree. We will
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Input: canonical and prediction lexicon,
input sentencev; ... Wy,
frequency count from training
Output: prefix tree for wordsv; ... wy
1 foreachword w in wy ... w, do

2 retrieve prefix tree$fw,..w_, } from chart
3 get elementary treelg,, } for w; from lexicon
4 foreach By, w_, do
5 foreachey, do
6 try to combineBy,..w,_, With &y,
7 end
8 end
9 prune resulting treey, _w
10 foreach By, w, do
11 expand future fringes if necessary
12 combine with trees with same fringe
13 insert into chart
14 end
15 prune again
16 get prediction tree$my} from lexicon
17 foreach By, w, do
18 selectn bestrtout of {1k} (super-tagging)
19 foreachtout of the selected onel®
20 try to combin€By, .w, with 10
21 end
22 end

23 repeat lines 9-15 fofBw,..w } and{Ti}

24 end
Algorithm 1: The PLTAG parsing algorithm.

keep referring to the formalism as PLTAG in this thesis, etfeugh the operations
defined in our parser only handle (and for English only nedthiudle) PLTIG trees.

As we have defined in Section 7.2.1, a PLTAG derivation staitts the first word
of the sentence. Partially derived trees are always prefestri.e., they span a prefix
of the sentence. The upcoming elementary tree may sulestit@djoin into the prefix
tree (as in standard TAG), but also vice versa. We distigthisse cases by having
Up andDown versions of the parser operations. The elementary tree totbgrated
with the prefix tree can either be a prediction tPe@ a canonical tre€E. For example,
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manner | element. tree into prefix treeprefix tree into element. tregif matching pred
operation| Substitution| Adjunction | Substitution| Adjunction | Verification
canonical| Subst DownF | Adj DownF Subst UpF Adj UpF verif
predict Subst DownP | Adj DownP Subst UpP Adj UpP NA

Table 8.1: Parser operations table for an incremental PLTAG parser.

Adj DownP is the parser operation that adjoins the prediction tree tim¢ prefix tree,

while Subst UpF substitutes the prefix tree into a canonical elementary see a list

of all operations in Table 8.1.

The parsing algorithm does not allow two prediction operatito be executed in

a row, to avoid an overly large search space. Cases whera ifrade more than one

elementary tree need to be predicted to achieve connededag in the case of left

recursion) are covered if they have been seen during tigaiaind are thus available

as pre-combined prediction trees in the lexicon (see Se&ié.1). The verification

operation can only be applied if the prefix tree contains ipted nodes which match

the structure of the canonical elementary tree.

8.3.1 The Concept of Fringes

An important property of incremental parsing is that forlepartial derived tree, only

a small part of the tree structure is available for substitytadjunction and verifica-

tion operations, as no operations before the last lexicah@nare possible, and any

insertion of lexical material beyond the next substitutsite or predicted beyond the

lexical anchor would necessarily lead to a violation of @roentality later on, and not
constitute a valid PLTAG partial derivation as defined int®ec7.2.1. We call the part
of the tree that is available for substitution or adjunctibacurrent fringe It contains

all nodes on the path from the last lexelp#o the tree’s next ledf, 1 (excluding their

common ancestor). Paths from the lgaf; to In.2, Inio to | 3 etc. are referred to as

the tree’duture fringes The last future fringe is the path from the rightmost leathaf

tree back to its root.

An elementary tree’s current fringe is the path from its noodle to the first leaf.

We write a fringe as two lists, one list for nodes from the leafthe way up that are

open for adjunction to the right, and the second list for théas on the branch down

to the next leaf with nodes open to the left for adjunctionrtikermore, we mark the

existence of a substitution node, which is technically #s¢ ¢lement of the second list,
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with a colon at the end of the second list (anil: if there is no substitution node). We
can then also define the list past fringesas those parts of the tree that were current
fringes at previous points in time, i.e. paths between to¢ aad the first leaf, the first
leaf and second leaf etc. up to the path from the previousdetife current leaf. For
example, consider the tree shown in Figure 8.14(a):

R D R
S | T
A B R* d A B R*
| b) N
a C E| a C E|
| |
D| D
(@ (|;|

Figure 8.14: Example Trees for explaining the concept of fringes.

When first retrieving a tree from the lexicon, none of the é&sahiave been pro-
cessed. Therefore the past fringas empty, and the current frindeis [|[R, A, a] : nil.
The future fringes would be a list of fringes:

P=[aA]B,C|:D|, [D|,C|[]:E], [El, B|][R«]:nil, [Rx,R][]:nil].

Once lexical iterra has been processed, the formerly current fringe shifts ihatdist

of past fringes, Kl = [[][R, A, @ : nil]), the first slice of the future fringes becomes the
new current fringe@ = [a,A][B,C] : D |), and the future fringes consist of the remain-
ingfringesP=[[D |,C][]:E |, [E[,B]J[R«]:nil, [R«,R][]:nil]). If we then combine
the tree achored iawith the tree shown in Figure 8.14(b) which has past friHge ||
current fringeC = [|[D, d] : nil and future fringe$ = [[d, D]]] : nil], we obtain the tree
shown in Figure 8.14(c). The algorithm can efficiently decichether trees (a) and (b)
can be combined by checking their current fringes. The otifrenge of tree (a) after
processing non-terminal(C = [a,A][B,C] : D |) contains a substitution node with the
same category as the root category of tree (b), which is teerfode on (b)’s current
fringeC = [][D,d] : nil. When integrating trees (a) and (b), their fringes are cowbi
such that they yield the fringe of tree (c). When tree (b) iss$iiuted into nod® | of
tree (a), their fringes must heinedto yield the fringe of tree (c).
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Joining Fringes  The fringe joining operation ‘+’ appends the lists of the tinioges.
This operation can of course only yield a valid fringe, iheit the first list of the second
fringe is empty, or if the second list and substitution notithe first fringe are empty,
and if the node where they are joined, i.e. the last node ofitsiefringe and the first
node of the second fringe have the same category. Thesetiomsdire satisfied in
our example for the current fringes of trees (a) and&b\|[B,C|: D | +[][D,d] : nil.
Remember that the substitution node is technically parhefsecond list in a fringe.
As substitution nodes are only the upper half of a completteepand root nodes are
only the lower half of a complete node, the second list of #ewoad fringe is appended
onto the second list of the first fringe, and the substitutiode melted together with
the root node, yielding fring, A|[B,C, D, d]| : nil. The future fringes of trees (a) and
(b) must also be joinedd,D][] : nil +[D |,C][] : E |. In this case, the second list and
substitution node of the frist fringe are empty, so the femgatisfy requirements and
the first list of the first fringe can be prepended to the sedongde, yielding resulting
fringe [d,D,C][] : E |. Node halves for the root node and the substitution nodes are
again melted together into a complete n@leWe will refer back to this concept of
joining fringes when discussing parser operations in 8a@i3.3.

When trees (a) and (b) from our example have been combinedre¢ (c) and
non-terminald has been processed, the resulting past fringe is Bhas[[][R A, @] :
nil,[a,A][B,C,D,d] : nil], the current fringe C isd,D,C][] : E | and future fringes
consist ofP = [[E |,B|[R«] : nil,[R«,R][] : nil]. The operations in our incremental
algorithm will make use of the fringe concept, and the rufescsfied in Section 8.3.3
take care of correctly putting together fringes when iraéigg two trees.

Note that if the past fringes, current fringe and futuredes of a tree are flat-
tened and appended, we obtain the depth-first traversal @fda tree, also re-
ferred to as left-to-right tree traversal in the classiaga@eFAdjoining Grammar paper
in dRozenberg and Salon%a, 1997, Section 10.1). For treth{g)eft-to-right traver-
sal would correspond to the ord&; A, a,a,A,B,C,D,d,d,D,C,E | ,E |,B,R«,R«,R].
Each node is visited exactly twice, once when integrationmperformed on its left

side, and once when operations can be applied at its right(sfccourse, no integra-
tions can be applied at terminal symbols). DistinguishiagMeen whether a node is
visited for the first or second time is important for adjunotoperations: an auxiliary
tree with the foot as its rightmost child can only adjoin istanode that is open for
adjunction from the left (i.e. on the second list of the fefgwhile an auxiliary tree

that has its foot node as its leftmost child can only integaith nodes that are open
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for adjunction to the right and hence in the first list of a §ign Because a fringe is
defined as the path from one leaf to the next, it always costaghmt-open nodes first
(from the way up from the left leaf), and then left-open no(l@s the path down to
the right leaf), which is why the chosen two-list-notatioorks well for displaying
the nodes in the order they are visited by depth-first tralessl operations maintain
the correct order of nodes in the fringes, because all thgpooents from a new tree
that are inserted into the old fringes are themselves vapttdfirst traversal orders,
and they are inserted into the integration points where riestare joined together,
updating both the left-visible and right-visible parts hretresulting node order. We
will show that the parser operation guarantee to correclyntain fringes in Section
8.3.4.

8.3.2 A Parsing Example

For illustration of how the algorithm works, this sectionlivgo through an example
sentence and discuss the necessary parsing operationsid€oRigure 8.15, which
shows the start of an incremental PLTAG parse for the seat€he reporter that the
senator attacked, admitted the errd/hen the first wordthe, is encountered, there is
nothing to integrate it with, so we apply tiseart operation. The current fringe after
the operation begins at the lexical anclioe In the figure, it is indicated by the red
dashed line and shown in the fringe notation that was digclissthe previous section.

Next, at the wordeporter, the prefix tree from Figure 8.15(a) fits together with
the new elementary tree (b) by performing a substitutiomatpe (this is determined
by checking the compatibility of the two trees’ fringes. Base the prefix tree is
substituted into the elementary tree (and not the elemeiriae into the prefix tree)
and is a canonical tree, this iSabst UpF operation. The fringe of the resulting tree is
given below the right hand side of Figure 8.15(b) and in@idan the tree by the red
dashed line.

Next, we read the wordhat and, after checking fringes, find that the prefix
tree from Figure 8.15(c) has an NP node that is open to thd, righich means
that the auxiliary tree fothat (also Figure 8.15(c)) with its NP-foot node as the
leftmost child can adjoin at this point. Since the auxiliarge is a canonical
tree, we apply operatioAdj DownF. The resulting tree and fringe (again, indicated
by the red dashed line) are given at the right-hand side ofirBi@.15(c). Note
that adjunction of left-footed auxiliary trees has an dffen the past fringe. The
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past fringe for the prefix tree wag[NP,DT,the : nil, [the DT|[NN,reporter : nil].
Adjoining to a right-open node means that we have to find thié $&de
of the node in the former fringe and combine it with the cutrdérnnge of
the tree which is being integrated. This yields the correeiv rpast fringe
[[[INEBNPDT,the : nil, [the DT|[NN,reporter :nil]. The fringe up to the node at
which the integration took pladee portert NN, NP|, is combined with the first future
fringe of the elementary tree, yieldinge portet NN, NP|[RC, WHNRthat] : nil. (For
the correct calculation of the derivation it is not necegdar the algorithm to main-
tain correct past fringes, since these will not be used amgnibis however crucial to
maintain correct current and future fringes.)

When processing the wotthe, we find that the current fringes of the trees can-
not be combined. Here’s where the prediction trees comeplayp The algorithm
can take (and will try to do so after each input word) predictirees from the pre-
diction lexicon and try to integrate them into the prefix tré@ne of the prediction
trees in the set is the pre-combined prediction tree showkigare/ 8.15(d). Note
the indices; and», which indicate which nodes should be verified by the same tre
later. The prediction tree can be substituted into the opdastgution node of the
prefix tree (hence we use operatiSabst DownP). But because the prediction tree
does not have a lexical anchor, the current fringe is noteshi instead, the fringes
of the prediction tree replace the integration point in thefig tree current fringe,
resulting in the new current fringghat, WHNP[S;, NP : DT?, and future fringes
[[DT?JINNZ] : nil, [NN2,NP[VP]:nil, [VPL S, RCNP|[:nil]. Now, the current
fringe of the new prefix tree actually contains a DT-sub#sttunode and can thus be
combined with thehetree, using operatioBubst DownF. After fringe combination,
the fringe is shifted to after the last lexical anchor, “thad shown in Figure 8.15(¢e),
indicated by the red dashed line. The current fringe of tlediptree now ends with
a prediction node, and is therefore a candidate for verifingtve cannot shift fringes
before this predicted node is verified — we could howevemiate other words into
the current fringe before verification).

For the following word,senator there exists a canonical tree in the lexicon that
can verify all predicted nodes with index The indices of the validated nodes on
the fringes are removed, and the fringes are updated wheessary (i.e. wherever
the verification tree contains nodes that are not contaimégel prediction tree). This
is done by replacing the leaves of the prediction tree by treesponding nodes in
the verification tree. So the current fringe is updated fione DT2][NN2] : nil to
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a) "the", Start b) "reporter”, SubstUpF

P P "~

D‘T D‘T ‘ N
- \ 7 |

the the DTy NN — DT NN
DT /

[the, DT][]:nil k reporter the reporter

the

[reporter, NN, NP][]:nil

c) "that", AdjDownF
NP

P
}P\ NP c )C\
br l\ﬂN WHNP S DT N WHNI{’ \\fsl
the _reporter the reporterthat -
that

[that, WHNP][]:S
d) "the", SubstDownP, SubstDownF
NP NP

A A
NP /C\ the reporter

the reporteyyHNP S| WH /
that /Sﬂ\ that /NP3 VP;
NP; VP3 ‘ ,
DT DT/ ) NNj
|
DTF  NN3 the
lz 2 [that, WHNP][S;, NF}]:DT2
e) "senator”, Verification f) "attacked", Verification
NP NP
/\
the reportelRC the reporteiRC

S
ZN /\
thé\ﬂ that g‘{
N VP
P
}Ai/l Ao VT
DT} N S
Tz‘ NI\EJ% DT |\1|\|\\\ attacked*trace*

) |

| senator | ' [senator, NN, NPY[VPY:ni
the the senator'

[the , DTINN%:nil

Figure 8.15: Incrementally parsing an object relative clause with PLTAG.

[the DT|[NN,senator : nil and the first slice of the future fringe is changed from
[NN2,NP3][VP}] @ nil to [senatoyNN,NPL VP : nil. The next wordsenatoy has
an elementary tree that matches the predicted nodes wiglx indee Figure 8.15(f).
The future fringe resulting from the verification operatistarts from the lexical an-
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chorattacked yielding current fringdattackedV|[NP, «tracex] : nil and future fringe
[[xtracex, NBVP,S RC,NP|[| : nil]. Note that it would be grammatical (and indeed,
quite likely in this case) to next encounter a word that iraégs with a position on
the future fringe, after the trace. Because the trace is gtyeatement, both fringes
should be available for integrating the next word. Therefarsecond analysis is cre-
ated, which is an exact copy of the first but whose curreng&istarts after the trace,
yielding current fringdxtrace«, NPVP,S RC NP|[] : nil and an empty future fringe.

8.3.3 Formalisation of the Parser Operations

The parser can choose between five parser operatBuist(DownF, Subst UpF,
Adj DownF, Adj UpF, Verification) for combining a prefix tree with a canonical
elementary tree, and four operations for combining a predi with a prediction tree
(Subst DownP, Subst UpP, Adj DownP, Adj UpP). In addition, there is th&t art op-
eration which processes the tree for the first word in theesmat Taken together,
these operations implement the PLTAG grammar operatiatjargation, substitution,
and verification) as operations on fringes. For efficien@soms, we only keep track
of the trees’ fringes during search, and build the deriveddrduring retrieval of the
n-best analyses. The role of the parsing operations is tagtee that valid prefix trees
are generated by checking all preconditions are satisfisdd@tegrating a tree, and
to correctly calculate the current and future fringes ofrémulting trees. The input of
the parser operations are the fringes of the prefix tree amegzitary tree, and a list of
the prefix trees that have been previously integrated iregtefix tree, but have not
yet been verified. This listis necessary as some of the nddbe prediction tree may
not be present on the current or future fringe at the time dfigation, but are needed
to check whether the prediction and verification tree match.

The following paragraphs describe the parser operatiomsne detail. The prefix
tree3 and the elementary treecan each be represented as tuples T and T’, see Table
8.2.

A parser operation takes the two tuples for the Emfd generates the tuple for
the resulting tree as spelled out below. All operations Wl explained by listing
their preconditions for integrating two trees, and theicgkation of the resulting tree’s
current and future fringes.

2In fact, just the fringes and the position of the word thatséniy processed are enough as C and X
can be determined automatically given the trees’ fringes.



194 Chapter 8. An Incremental Predictive Parser for PLTAG

Tuple for representing parser operations:

C the category of the tree’s root node

X indicates the position of a tree’s foot node. Values aré¢rightmost leaf), I
(leftmost leaf) and -’ (no foot node for initial trees)

[ index of last subsumed word, '-’ for elementary predicttoze

F a tree’s current fringe, can also be expressedsag B |:S, see Sectian 8.3.1
1.m l.o

P The tree’sn future fringes.

1.n

Other definitions:

E the indexk as a subscript or superscript marks predicted nodes.

L denotes the last canonical anchor of a tree, if it is part foinge, always last

node on second list in a fringe
N a node
TXT' tree Tisintegrated with tree T’

S merge fringes in correct order
+ join fringes, see Section 8.3.1

Table 8.2: Definitions for the specifications of parsing operations.

Start

[ X (CX==Vr;1; [][1”0871, L] : nil; 1F>n)

C X, 1; P
( If ZF.)n)

Preconditions of th&tart operation are that the elementary tree must not be a predic-
tion tree. It can be either an initial tree, or an auxiliametiwith its foot to the right
(expressed aX = — Vr in the formula), and it must not have an open substitution
node to the left of the lexical anchor. To check these coowléti the operation must
verify that the elementary tree’s current fringe ends witkxacal anchoi. Finally,

this condition can only apply if there is no prefix tree andribenber of the word pro-
cessed is 1. The operation then sets the new current frinthe tiirst future fringe of

the elementary treB, and future fringes t&.. .

SubstDownF

(C; X; 1..; [ﬁm][ll?()] .S fn) X (C; —;i+41; [][1..371’” :nil; F;)
(C; X; 1.i+1; P+P; P...P)
1 1 2 n

cat(S) =C'
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X1 [ANB]:S P) » (C; =i+ [ B L:nil P

. cat(§ =C
C X, Li+1, P, P P4+P, P) S
1 2n7-1n 1 2n

C C
I C’
- -
| |‘_' §

! C,
A £ 0w
(a) initial tree with|P| =1 (b) initial tree with|P| > 1

Figure 8.16: lllustration of the SubstDownF operation. The red dashed lines indicate
the current fringe. The names of the nodes in the figure do not correspond directly to
the variable names in the formulae. This also holds for the other figures in this section.
The S node in the right hand side of the formula is depicted as C’ in the figure (following

the equivalence condition cat(S) = C'.

Preconditions for th&ubstDownF operation are that the elementary tree must be an
initial tree, therefore there is no foot node (marked -asih the formula). For the
prefix tree, it does not matter whether it is an auxiliary toeeot: TheX marks its
status as underspecified). Furthermore, the prefix trebstisution nodeS must have
the same category as the root node of the elementanCtrelm order not to violate
incrementality, the first leaf of the elementary tree mugtledexical anchor (indicated
in the formula by the.’ on the current fringe).

To correctly calculate the current and future fringes ofrémulting tree, two cases
are distinguished: the future fringe of the elementary t@#®ains has length I;() or
length> 1 (|P/F‘>’>1). If the length of the future fringe is one, the current friengf the
resulting tree is made up of the future fringe slice of thereatary tree, joined at the
substitution site with the first future fringe of the prefiedr Otherwise, the current
fringe of the resulting tree is simply equal to the first fi@tdiinge of the elementary
tree, see Figures 8.[16 (a) and (b). In both cases, the ldasifthe future fringe of the
elementary tree needs to be joined with the first slice of titeré fringe of the prefix
tree, as indicated by the ‘+', see Section 8.3.1 for an exgilan for how fringes are
joined.
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SubstDownP
(CiX: Lii [A][B]:S P) ™ (Ch— = [I[BY]:S% P¥)
1..m 1.0 1.n 1.0 1. ’
: TeR—r K cat(S)=C
(C X 10 [A][B]:S+[|[B}]: 9% P ,Pi+P, P)
1..m 1.0 1.0 1."=1 n 1 2.n
C
 Ck
+’/ /A/,E Lt;»
\\Sk¢
) Ck
kO
‘\S{K

Figure 8.17: lllustration of the SubstDownP operation. The red dashed lines indicate

the currently accessible fringe.

Preconditions for th&ubstDownPoperation are that the elementary tree must be an
initial tree, indicated by ‘—’ in second position of the elemtary tree tuple. Prediction
trees are not lexicalized. Therefore, we do not accountrigraalditional words in the
input string (as shown by the-° in the third position of the elementary tree tuple).
The indices at nodes in the elementary tree make the requiiegtiction status of the
elementary tree for thBubstDownPoperation explicit. The inner nodes have both an
upper and a lower index and the substitution nodes only hppernindices. Again, the
root node of the elementary tree must have the same categting gubstitution node
Son the current fringe of the prefix tree. As opposed taShbstDownFoperation, the
elementary tree is allowed to have an open substitution as@«first leaf, as indicated
by the disjunctions’k’).

The fringe of the resulting tree is made up out of the curnengé of the prefix tree,
joined with the current fringe of the elementary tree. Thiife fringes consist of the

first’ — 1 future fringes of the elementary treB’¥ | then followed by the elementary
1.n-1

tree’s last future fringe which is joined with the prefix tiefirst future fringeP’ t+ P.
" 1
The last part of the resulting tree’s future fringe is the msthe prefix tree’s future

fringes P . Down-substitution with prediction trees is illustratedrigure 8.17.
2.n

SubstUpF
(C; —; Li; [A][:nil; [)) X (C; X141, H[Pc/y]:g; [A"][B” L"]:nil, P")

1.m 1.n"" 1.0 2.
. cat(S)=C
(C; X5 1.i+-1; Fz”; 3P’) (S)
..Nn
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Figure 8.18: lllustration of the SubstUpF operation. The right branch of the elementary
tree might of course be much more complex than the one of the example tree shown

here. P’ is spelled out here as [ A” ][ B” ,L"] : nil.
1 Lo

Preconditions of th&ubstUpF operation are that the future fringes of the prefix tree
must be empty. The elementary tree must have the substitntide as a first leaf,
which matches the root node of the prefix tree, and a lexicelh@nas the second
leaf. To make this clear in the formulf is spelled out a{;ﬁ;’”] [1%/"'//] :nil. After
combination of the trees, the current fringe starts at tkie&anchor of the elementary
tree, see Figure 8.18.

SubstUpP

(€ = L [AJQnil ) 2 (C5 X (B8 PR

. o
(C; X5 L A il +Fl>’k; zp//b cat(S") =C

1.m

Figure 8.19: lllustration of the SubstUpP operation.

The preconditions for this operation are, again, that theréfringes of the prefix
tree are empty, that the elementary tree is a predictior{@asemdicated by thbindices
on its nodes) and that it has a substitution node on its cufreilge with the same
category as the prefix tree’s root node. In a substitutiardot node of the elementary
tree and the substitution node of the prefix tree are mergedisingle node, and the
future fringe must thus be updated by joining the prefix seerrent fringe{lfgm] []:nil;

with the elementary tree’s first future frin@ié'lj. The future fringes of the resulting tree

are the future fringes of the elementary tg@ék, see Figure 8.19.
..
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AdjDownF  (foot in auxiliary tree to the left)

(C; X; 1..i; [1'16\1'?J+€m][180] S P) M (C 1 i +1; [][Ed,c*]:nn; P)

cat(A) =C'
C; X; 1.i+1; P+[ A ][B]:S P) (j>
2 j+l.m l.o 1.n
C; X; 1..i; LA, X (C: Il i+1; B’ ,C'x]inil; P
( [1_.'1.0:1%“ 1(B]:S P) X ( +1[I[B,C'+] \P/\>2) ety
X LiTL Py PP A J[B] SP) P
2 1w j+1.m 1.0
C
N
/N
A‘// \\S:
I
(a) auxiliary tree withP| = 2 (b) auxiliary tree with|P| > 2

Figure 8.20: lllustration of the AdjDownF operation for auxiliary trees with the foot as
their first leaf. The red dashed lines indicate the current fringe. Note that the C’ in the

prefix trees corresponds to the A in the formula, as indicated by cat(A) = C'.
] J

(foot in auxiliary tree to the right)

C; X; 1..i; X (Crpi41; )[BT onil; P
( [1An] [l jB 1 JB j+1 0] S 1Pn) ( * [] [l..o’ ] l..2) cat(B) —c
C X;Li+1, P+ B |:S PaP) 7
1 j+l.0 n 2
C; X; 1..i; X (Cr;i41; B’ ,L’ nil; P
( [AIL BB B B ]S P)w( +L0[B,L] \P'\>2) e C
CXLi+L P, P P BI:SP @F”) P
1 —2w-1 j+1.0 n

The preconditions for applying thdjDownF operation are that the elementary tree is
a canonical auxiliary tree with no substitution site befisseanchor, and that the fringe
of the prefix tree contains a possible adjunction site fortindliary tree. The function
cat(A) = C’' means that the category of the adjunction giteas to match the category
of thje elementary tree’s root node. Note that we do o;lly amsTIG auxiliary trees
here (i.e. trees whose foot node is not the left- or right4ubsgd).

The fringes of the resulting tree are calculated as follo@snsider first the case
where the foot node is the leftmost leaf of the auxiliary tr€ke current fringe of the
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Figure 8.21: lllustration of the AdjDownF operation for auxiliary trees with the foot as

their rightmost leaf.

resulting tree is the second future fringe of the auxiliaset(starting at the lexical
anchor). If there are no further future fringes, the elerasntree’s current fringe
is joined with the prefix tree’s current fringe after the aujtion site, and the future
fringes of the resulting tree are simply the same as theduturges of the prefix tree.
If the auxiliary tree has more than two future fringes, theuieng current fringe is the
elementary tree’s second future fringe and the future &sngf the resulting tree start
with the future fringes of the auxiliary trefli X The last future fringe is joined with

the prefix tree’s current fringe after the adjunction §ite-[ A ][lB] : S The rest of
" j+1.m l.0

the resulting tree’s future fringe is made up of the futunege of the prefix treeP .
1.n

When the foot node is the rightmost leaf of the auxiliary ttee calculation of the
resulting tree’s future fringe is slightly more complicateThe current fringe of the
resulting tree starts with the elementary tree’s futurmage'sP’ If this fringe ends with
the foot node (in theP’ case), the resulting tree’s current fringe continues with t
nodes after the |nte‘gratlon no@e Otherwise the future fringes (up to the second last

one) of the auxiliary tree constltute the future fringeshd tesulting tree. The second
last fringe is joined with the prefix tree’s current fringeeafthe integration node.

The adjunction operation inserts the nodes on the path fharidot node to the
root node of the auxiliary tree at the adjunction gt the resulting tree, see Figure
8.21. Because each node occurs exactly twice]in the frinfestiee, first as open
to the left and later as open to the right (as depth-first traxetsal visits each node
twice), the prefix tree’s future fringe that contains theuadgion site node open to the
right must be updated by inserting the last fringe of the learyitree. This is noted in

the formula asP ¢ P'.
1.n
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AdjDownP  (auxiliary tree foot left)

CX L0 [ ALA A JBI:S P) X (Cli+1 ([ B (CY%]:nil; P

1.j-1"] j+1.m 1.0 /
cat(A) =C
C; X; 1.i; , P/k, % k,P/k P :
( [1..'1'6\71 jA]+ 1K o ok k+[1+1 m][l 0] S i ) j

(auxiliary tree foot right)

. . Ieope . /Kl - k- prk
(G X; L.0; [1An][1 I13 1 I? j+1. o] S an) KC L H[Pdk] S5 ll.:.)n’k)

cat
C; X; 1.i+1; B ,B B K] : nil; P K P B |]:S Pa@aPL j
( - [lAn][l..jfl j]+[][1..o’k] 2 - l+[j+l..0] S,l..n@ n/k)

Figure 8.22: lllustration of the AdjDownP operation.

The AdjDownP operation works the same as tAdjDownF operations, except the
auxiliary tree must be a prediction tree, and may have dulisth nodes before the
anchor. When calculating the current and future fringeb@fésulting tree, the current
fringe starts at the current fringe of the prefix tree, i.dsinot shifted to after the
anchor of the auxiliary tree, as no lexeme was processedxamge of the operation
is shown in Figure 8.22).

AdjUpF

(C;r; 1.0; [A][ B ,Cx]:nil; P) X (C; X' =rv—;i+1;[][ B ,B, B ,U':nil; P)
1.m l.o-1 1 1.j— 1 j J+l 0’ 1./

(C; X/; 1Li+1; PoP; P )
1 1 2.

cat(B)=C
j

Preconditions for applying th&djUpF operation are that the prefix tree must be an
auxiliary tree with the foot node as its rightmost leaf, anattthe length of the future
fringe must equal one. Furthermore, the category of thexaireie’s foot and root node
must be compatible with a node on the elementary tree. Tineegiary tree must be a
canonical tree, and must not have any leaf to the left of ¥ie& anchor. It may itself
be an auxiliary tree (with foot to the right).

When the prefix tree is adjoined into the elementary treectieent fringe of the
resulting tree is the first future fringe of the elementaeetrThe current fringe of the
resulting tree however also contains the elementary tfaaige after the adjunction
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Figure 8.23: lllustration of the AdjUpF operation. The red dashed lines indicate the

current fringe.

site. Note that the future fringe of the prefix tree contalresppath from the foot node
to the root node. This fringe needs to be joined with the riftinge of the elementary
tree at the adjunction site (for nodes accessible from gig)i See this effect in Figure
8.24, where the first slice of the future fringe of the eleraentree only contains two

C nodes, while the future fringe of the resulting tree after dtiperation contains three
C-nodes. The future fringe of the resulting tree is the samihasest of the future

fringe 2?;1' of the elementary tree.

AdjUpP
C:r; 1. Cx«|:nil; P) X (C; X; —; || B KBk B K:5 Pk
( [lAm][l..oBflv %] |1°) ( [][1_‘j71k7 j k7j+1“0,k] l‘_n,k) B
T 1 - —r K- ok K cat(B'y) =C
(C X 10 [A]LB .Cnil+[ B K:S pa P [ j
1.m 1l.o-1 j+1..0 1 1.

Figure 8.24: lllustration of the AdjUpP operation.

The AdjUpP operation is very similar to thAdjUpF operation, the only difference
being that the prediction status of nodes needs to be takeroteand that the leaves
before the anchor can be substitution nodes. As in the ofieations with a predic-
tion tree, the fringe does not have to move beyond any anchor.
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Verification
X1 Lk | /. X/. ; 1. B/ - g- =4 A B// L// | =%
(€ X L [1Am”1?’o’ i F.)n) (X i+ H[ ] S 101 [1 n‘(/][ J:ni =N n’) m(e, N

C X; 1. I+1PEB P, PEB P, P) all
i+1 1 |+2n2n

5 VA
A TN A é N

Figure 8.25: lllustration of the Verification operation. The red dashed lines mark the

current fringe.

Verification is the only operation during which the prediction status abde can be
changed. It can only be applied if the last node of the fringe the upcoming leaf)
is marked as a predicted node (if there was an open substitntde, it would have
to be filled first in order not to violate incrementality lat@m). There exist no “up-
" and “down-" versions of this operation because verificatis only triggered by a
constellation where the prefix tree contains a configuratigorediction nodes that is
compatible with the node configuration of a canonical eletagrirees (we denote this
using the functiom(e, N )) TheVerification operation removes prediction markérs
andy from all nodes that are validated. This can of course affexptediction statuses
of nodes in the past, current and future fringes (the abovauta does not explicitly
show the prediction status changes on the fringes; thisdidem in the® operation
applied to the future fringes of the prefix and verificaticgess). Theb symbol means
that the future fringes are merged together correctly byamepg prediction nodes
with canonical nodes in the correct order, adding any aattiiinodes (i.e. substitution
nodes to the right of the spine which are part of the veriftcatree but were not part
of the prediction tree), and keeping track of the adjunditmt were made to the
prediction spine before, as well as adding any remainingesad the prefix tree’s
future fringes. The reason for tireoperator showing up twice is due to the fact that if
the right side of the spine contailns any nodes that are nboptire original prediction
tree, there will be additional fringe slices. Thereforelyqrart of the originalP fringe
will be part of the current fringe, and part of it will be pusht® the future fringe. For
an example of the verification operation, see Figure 8.25.
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Dealing with Traces and Empty Elements One exception to the choice of where the
current fringe starts occurs at traces and empty elemeftes. @pplying all operations
as usual, the resulting fringes are checked to determingéhwhthe next leaf (the last
node on the current fringe) is a trace or null-element. If'shthe case, the analysis is
copied and in the copy, the current fringe is shifted to thst future fringe.

8.3.4 Proof that Operations produce only valid PLTAG Deriva  tions

This section demonstrates that the operations specifiedegiroduce valid PLTAG
derivations by showing that they are designed to satisffath@wving start and end con-
ditions, as well as invariants for partial derivations, efhare taken from the PLTAG
derivation definition from Section 7.2.1.

e Start Condition for Derivation
At the start of a derivation, PLTAG only allows the use of caical trees, but
no prediction trees. Since the lexicon of canonical treeBLRAG and LTAG
are the same, the first tree must be a valid partial LTAG deoma PLTAG in
addition requires that the initial tree must not have anynapstitution trees to
the left of its anchor, and that, if it is an auxiliary treee foot must be right of
its spine.

¢ Invariants that hold for partial derivations
1. The current fringe of a derived tree is always the path betwthe last

processed word and the next leaf.

2. If the past fringe, the current fringe and the future ferage flattened and
appended, the order of nodes corresponds to the depthdasttspath of
the partial derivation.

3. A partial derivation tree that covers wokgl as the most recently processed
word also covers words;..w;.

4. In a partial derivation, all leaves before wavgare lexicalized (i.e. canon-
ical, not feet, and not substitution nodes).

5. For all prediction markers with the same index, their nammust either
remain constant after introduction, or be equal to O (aféification).
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e End Condition for Derivation
At the end of a valid PLTAG derivation, there must not be anglesomarked as
predicted, and no open substitution nodes or foot nodes.

How do the rules maintain these conditions?

We here discuss the rules presented above with respect tthegwuarantee yielding
valid PLTAG derivations. All tables contain three rows, doethe prefix treg3, one
for the elementary treeand one for the resulting tree

Start

The Start rule (repeated here for convenience of reference), ongwallcanonical
trees. It requires the first leaf to be a lexerhg &nd the foot node, if it exists, to be the
rightmost leaf. It therefore satisfies the start conditierseated above. Furthermore,
the flattened and appended fringes of the initial tree musghyition be in depth-first
search order. This operation maintains this order, andgatisfies invariant 2.

[ W (CX=-=vVr; 1, [][1”0871, L] : nil; fn)

C X;1, P P)
1 2.n

past fringe current fringe  future fringe
B
€ - B ,L]:nil P
H[l..ofl ] 1.n
r| ][ B ,L]:nil P P
l.o-1 1 2.n

The new prefix tree resulting from the operation covers exactly wevgd(satisfy-
ing invariant 3). The current fringe is shifted to the patteathe first lexical anchor,
hence invariant 1 is also satisfied. Trivially, due to thetstandition, there are no
open substitution nodes or predicted nodes beforeNgéhvariant 4); invariant 5 also
holds since no prediction trees have been used so far.

SubstDownF
The SubstDownFoperations handle the substitution of a canonical treeantatch-

ing substitution node in the prefix tree. (Here, the proceshown for| I|3’ , but the
P|>1

same argumentation can be easily adapted to the| F9'%{319)
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SubstDownFsatisfies the invariants by maintaining the fringe condifiovariant 2):
The prefix tree’s flattened and appended fringes are in the satker as the depth-first
search of the tree, and the same is true with respect to theeatary tree. The oper-
ation combines these fringes such that the resulting frailge maintains the correct
order: The nodes on the resulting fringe which originatesifthe elementary tree are
in the same order as before, and they are inserted into tfig pee at the integration
point. The ‘+’ operation combines nod&gwhich only has an upper half) and node
Al( (the root of the elementary tree which only has a lower half) bne single node.
The same happens at the point when the integration point occles for the second
time in the fringe, where the last node of the fringe is/fewhich is the right hand
side of the elementary tree’s root node, is combined V\?itHitBEnode inP, the right
hand side of the prefix tree’s substitution node. '

(C; X; 1..i; [A][EO] 'S fn) X (C; —;i+1; [][1..§L1’ L' :nil; P )

1.m [P'|>1 ’
- cat(S)=C
C; X; 1Li+1, P, P ,P+P, P) (5
1 2n-1n 1 2.n
past fringe current fringe future fringe
B H [A][B]:S P
1.n 1.m 1.0 1.n
€ - [ B ,L]:nil P’
1.0-1 1.
r| H, A][B]:S+[][ B ,L]:nil P’ P P+P, P
1.n 1.m 1.0 l1.0-1 1 2n-1n 1 2.n
=H,[A][B,S+B, B | L]:nil
1.n 1.m1l.0 1 2.0-1

The prefix tree covers wordsg;..w;. It does not have any open substitution nodes
or predicted leaves before the leaf with wargd and the leaf following this node is
the open substitution node During the operation, this open substitution node is
filled, and we know from the elementary tree that this tree's fieaf contains the
lexical anchor fow;;1. Therefore, the operation guarantees that no substitnbde
or predicted leaf can exist betwean andw;. 1, and thus satisfies invariants 3 and
4. The resulting current fringe I?/ which we know to be the path from_.; to the
next leaf, thus satisfying invariant 2. The operation doatsahange anything in the
prediction index annotation of the nodes of the two treescaénvariant 5 is also valid
after the operation.

SubstDownP
Next let us consider a substitution operation which intcedua prediction tree. Again,
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we assume that the prefix and elementary trees have fringesriect depth-first or-

der, and themselves satisfy the invariants. As inSbbstDownFoperation, the nodes
remain in the same order and are inserted into the prefix tirgefat the integration

point, thus maintaining invariant 2. Because the elemgritae is a prediction tree,
the current fringe is not shifted and thus maintains the ytede’s properties of sat-
isfying invariants 3 and 4. The current fringe of the resigtiree starts at the last
processed word, and due to the update of the fringe with #raehtary tree fringes, it
contains the path from that word to the next leaf, thus satigfinvariant 1. All nodes

introduced by the elementary tree contain indices, ancethreices are not modified
by the operation, thus maintaining invariant 5.

(€ X L0 [A][B]:S P) X (C; — — [I[BA]: S PY)
1.m 1.0 1.n 1.0 1. /
: Te— Ta— cat(S)=C
C X; Li; [A][B]:S+][|[Bg]:S% Py ,Pr+P, P)
1..m 1.0 1.0 1n—-1 n 1 2.n
past fringe current fringe future fringe
B H [A][B]:S P
1.n 1.m 1.0 1.n
el - I8 : S Pk
1.0 1.
rl H  [Al[B]:St[[BY:S* P P4P P
L.n 1.m l.o 1.0 -1 n 1 2.n
[AllB,S+B,B}]:s*
1.m 1.0 1,54
SubstUpF

In up-operations, the prefix tree is integrated into the elstary tree. Therefore the
fringe from the prefix tree is inserted into the elementagg tiringe at the integration
point. The past fringe now begins with the elementary treaisent fringe, joined at
the substitution node with the first past fringe slice of thmefig tree, and followed
by the remaining past fringe slices from the prefix tree. Thia current fringe of
the prefix tree is merged with the first slice of the elementaag’s future fringe. All
nodes remain in order (see table below), and invariant 2us #atisfied. Invariants
3 and 4 are guaranteed to hold because the elementary tneet camtain any open
substitution nodes or predicted leaves before the intiegratte, and because the first
future fringeF;’ has to have the forrfﬁ;/] [1%" L”] = nil, i.e. the next leaf must be the
lexical anchor, and the current fringe switches to the pwsiafter that leaf. Hence
there is no possibility to introduce an open substitutiodenor predictive anchor, and
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the current fringe again describes the path from the lagtdéanchor ) to the next
leaf, thus satisfying invariant 1. As in the other subsibtoperations, all indices
from prefix and elementary tree are copied to the resultieg, @®nd invariant 5 is also
maintained.

(C; —; Li; [A][]:nil; [)) X (C; X141, [][R’y]:S’; [AH”E;/’LH] :nil, P/,)

1.m 1. 2.n
. cat(S)=C
(C; X5 Li+1; P P (S)
2 3.
past fringe current fringe future fringe
il
B H (Al i !
/ : A// B// L// : I P/
& l ml‘.z.”o'] s [l..n”][l..o’" J:mi 2.
r| [J[B]:S+H,H,[A]]:nil+[A”][B",L"] :nil P’ P
1.0 1 2.n 1.m 1.n" 10" 2 3.
DB ]:S+H.H.[ A A+A" A'|[B" L] :nil
1.0 1 2n 1m1m 1 2.n" 1.0

The proof for operatioisubstUpPworks analogously.

Adjoining Operations

Next, let’s consider an adjunction operation. In adjunctibis slightly more difficult
to fit the fringes of the participating trees together in tberect order, because of the
additional path from the root to the foot node. We do not warga through every
operation one by one because they are all very similar, arid qut AdjDownP as
an example. We distinguish the cases where the foot is tlmermigst child of the
elementary tree from the case where it is the leftmost one.

AdjDownP  (foot left)

When a tree with its foot to the left is adjoined into a prefixety the operation must
happen at the right side of the adjunction node. To maintarcorrect order of nodes
in the past fringe, it is necessary to find the left side of tgiaction node inside
the past fringe, and cut the node into its upper and lowerdsalnserting the current
fringe (i.e. the path from root to foot node) of the elemeptaee. The insertion at the
left side is symbolised b% to indicate that the insertion takes place at the left side

i
of nodeA. The rest is reasonably straightforward: the path from déiséleaf node up
j

to the integration sit¢ A ,A] is joined with the first slice of the future fring?’ﬁ.
1-1j

Here, of course we only use the lower half of adjunction nade combine it with
J
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the right hand side of the foot node, which is the first nodehefF}"lj. The future
fringe is then composed out of the remaining fringe slicesifthe elementary tree,
whereby the right hand side of the foot node is melted withughyeer half of the right
side of the adjunction nod&, followed by the rest of the prefix tree’s current fringe

[ A B] S, and the future fringe of the prefix tree. This way, the nodeb&p in
j+1.n 1.

depth- flrst search order on the flattened version of thetiegutinges, and invariant
2 is satisfied.

C: X; 1. 'S X (C i+ 1 B/ k cky] inil; P K
( [1..)?\—1”1'6\’j+ém][1?0] S 1F.>n) ( * [][ k’ *] 1..n/k)

: cat(A) =C'
(G %5 1.4 [1..'1'5\71"?\]—H:l)/k 2.n e 1k lr:://k—i_[ul m][l o] S P) (j)
foot left past fringe current fringe future fringe
B lHn [1..'1'&\71’ 'JA’ j+é.m] [1?’0] S 1'.:.)n
€ l I, B j.C%s] il P
' 1|j|n6AB l [1..oBi1/E’C/k] il [1..'1'611"?] N E/i 2..5/71i’|:',ﬁ+ [j+€\..m] [Eo] :an
J

The bit of fringe which we insert into the history] [g B’ E,C"‘*] nil) does not
contain any substitution nodes or predictedves which is |mportant for invariants
3 and 4. The prediction nodes are not changed, thus satisiiysariant 5, and will
eventually be turned into canonical nodes by the verificatiperation, even if they are
not present on the current or future fringes any more. Aseatgn theSubstDownP
operation, this operation also guarantees that the cuiniege cannot be shifted over
any open substitution sites or prediction leaves — it costéine path from the last
lexical anchor (still the same as in the prefix tree) to the next leaf, thus satisfying
invariant 1.

AdjDownP  (foot right)
If the foot is to the right, we will have to do an operation damto thed operation
A

j
on the past fringe, but to the future fringe. Since the adjondakes place at a node

that’s open to its left, we’ll have to find its right hand sidetle future fringesl,P ,and
..n

insert the path from the foot node to the root noléll’({,(the last slice of the elementary
tree future fringes) there. Again, we can see r;‘rom the friogker that the current
fringe contains the correct path (invariant 1), and thatdberect depth first search
order is kept (invariant 2). Again, invariants 3, 4 and 5 aveviolated.



8.3. The Incremental Parsing Algorithm

209

(C:Xi1.0; [A]l[ B B, B ]:S P) ™ (Cirit1[[B:S% P'Y)
10 1.j-1 ] j+1.0 1.n 1.0 in cat(B) = C

(C; X; L.i+1;[A][ B ,B]+[[BK:nil; PE,P +] B ]:S P @Pf j

1ln1.j-1] 1.0 1n_2"-1 "j+l.0 1n
footright | past fringe current fringe future fringe

:S

B 1.n [lAn’ ] [l..jBff jB’ jJE..o] 1|..3n
£ B'K: S P K

l ] [1..0/"] ) 1ok )
r B'K:S° P kP 'SP

lHn [1An] [1?j]+ml..o’k] l..n’72k7 n’flkJr[jJE..o] S’ n/k? l!.Dn

The last operation to be examined and discussed in dedriBcation.

Verification ~ The Verification operation may look fairly complicated — so how does
it implement the invariants? Thiy operators guarantee to maintain the same order of
nodes in the past fringe (since prediction and verificatiea tnust have the exact same

shape to the right of their respective spines, as testedday(th N|I<() function). In the
all
past fringe, the only thing that changes is that inéx removed from nodes. In the

current and future fringes, correct order is again enfolmethe® operator, but here,
additional bits of fringes that are present in the verifmatiree but not the prediction
tree, are inserted, any additional branches (and assdd®éteof fringes) that end in
substitution nodes to the right of the spine are inserteldeatorrect matching position
in the prediction tree. At the end of the verification operatithe correct node order in
the fringes is therefore guaranteed (invariant 2), andhditiesk disappear. Invariant 5

is guaranteed to be satisfied by thee, NK) function: all indices from the same original
all
prediction tree are verified and thus removed at once, andheo mdices are affected.

The prefix tree did not contain any open substitution nodésadmodes before the
word anchomwy;, but the leaf followingw;, which is visible on the prefix tree’s fringe,
is a prediction leaf. The elementary tree does not contayrpeediction leaves itself,
but may contain open substitution nodes before the lexioaharw;, 1. Invariant
3, saying that there must not be any open substitution noetesdow; 1 is satisfied
because we know that any substitution nodes to the left ofpiee that are open in
the verification tree were already filled while processingdgav;..w;, otherwise they
would appear on the current fringe, and the current fringdefprefix tree would still
be inside the prefix tree’s future fringes. The open suligiititnodes to the left of the
spine in the elementary tree therefore get all filled duriegfication. Invariant 4 is
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satisfied because the prediction tree Ib{@fs verified against the matching fringe in
the verification treel.”. The current fringe now contains the path from the last kxic
anchor ") to the next leaf, which means that invariant 1 is satisfied.

C F; 1. LY 2 nil; X (C; F;i+1;[][B]:S;, P ,JA"][B",L"]:nil, P
( [1Am][1$o d 1'..Dn> ( N [][1..0’] 101 [1..m’/][1..o” ] i’+l..n’)m(8 NK)
C F, 1i+1,PoP; P® P ,P) "all®
1 i'+1 1 +2.n2.n
foot right past fringe current fringe future fringe
LK] : nil
B lHn [lAm] [1?07 k] l!.Dn
€ - [B']:S P OIA B L] onil, P
1.0 G W e W i'+1.0
r B']:S P
1Hn@k[][1..d] Ok 1.i-1
[ A][B,LE] : nil @ [A")[B",L"] : nil Po P ® PP
1.m 1.0 1 i+l 1 i"+2.n2.n

End Condition

Finally, the end condition for valid PLTAG derivations sapat a derivation is com-
plete when there are no more open substitution sites orgir@adinodes, and the root
node is S. This becomes true when we reach a point where e fiuinge is empty,
and the last node on the current fringe has cate§oBince there are no more predic-
tion leaves on the fringe, all nodes that were annotated avitndex must have been
validated during verification procedures, because sirgleoler nodes would conflict
with them(e, Nl'(‘) function. The operations that integrate a prediction tfeays add

all
at least one fringe item that is a prediction leaf, but thanrent fringes cannot move

over it except during verification. Therefore, all predictitrees introduced with these
rules must have been verified and no prediction nodes caibpobs left invalidated
in the tree. Furthermore, the operations guarantee ttsahéver possible to have open
substitution nodes to the left of the last anchor. Sinceetlz@e none on the current
fringe either, the condition that no open substitution rsodee left on the fringe is
satisfied.

8.4 Optimisations for the Implementation

The introduction of the concept of a fringe is a first step tckimg the algorithm
tractable, because it is not necessary to store the whas tharing the search phase
of parsing, but just the current and future fringes. Thedeapace is however much
bigger in the PLTAG parser than in other parsers, becaussigtian trees are not
lexicalised and can thus be used at any point in the sentence.
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8.4.1 Restricted Use of Prediction Trees

An obvious optimisation is therefore to restrict the userediction trees. Otherwise,
nothing prevents the parser from integrating predictimﬂ;rinfinitel@ without ever
processing the next word.

In the implementation presented here, the prediction ¢exis restricted to predic-
tion trees needed to parse the training set. A further oésini is to only allow them
in constellations that were observed during training. Tiheaatage of that further re-
striction is that we can pre-combine prediction trees, aardforbid the algorithm to
integrate two prediction trees in a row, thus cutting downtloe search space even
further.

Only allowing one prediction tree to be integrated at a timn@éver leads into the
dilemma of either requiring an infinite set of (pre-combipprediction trees (for left-
recursive constructions as shown in Figure 8.26), or aougptightly lower coverage
of the parser. For example, the sentence “I love Peter'&faticousin’s cat.” shown
in Figure 8.26, can easily be parsed non-incrementally,ithr avparser that allows to
integrate several prediction trees in a row, as any deceet-gexicon will contain all
elementary trees needed for this sentence. In order to fassseentence incrementally
with the restriction of using maximally one (pre-combingadgdiction tree at a time,
a structurally exactly identical case has to be containdtientraining data to allow
for the combination of six prediction trees, so that threansoand three possessive
markers can be predicted for correctly integratieger.

Because of recursive rules, embedding can in principle tiatiely deep, thus re-
quiring infinitely many prediction trees to be applied in sesgsion in order to parse
a sentence. However, such structures do not usually ocawaturalistic examples of
language usage. We found that in the whole of the Penn Trkebamost five pre-
diction trees had to be applied in a row for connectivity, andh a case only occurred
once. In more than 95% of cases, only one prediction treecdet

From a psycholinguistic point of view, we can argue for lesihuman memory and
could therefore constrain the size of prediction tree coratidns to a specific number
X. We would then avoid the infinity problem. Combinations oddliction trees that
were not seen in the training data but contain less than xigired trees could be
generated automatically by combining all prediction tré@so with themselves), a
maximum of X times. Note however that we would run into prétéyg combinatory

3In case of a parser using beam search, the limit would be thaew trees can be added without
falling out of the beam width during pruning.



212 Chapter 8. An Incremental Predictive Parser for PLTAG
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NNP POS NN
| | |

S father

Peter

Figure 8.26: PLTAG parse tree for a sentence with left recursion.

NH + NR — NH
/\ | _ /\
NP NPK, NN NP NPX
N TN |
NP | POS NP<| PO NN

Figure 8.27: An Example of prediction tree indexing.

explosion of the prediction lexicon’s size even if the maaimumber of prediction
trees that can be combined is restricted.

As explained in Section 7.2, all the nodes in a predictioe tee marked with
indices. When prediction trees are combined, we have to maleethat the different
parts of the trees are assigned indices that reflect whick nad part of which tree
originally. It is then very easy to keep track of which node=ad to be verified at
once, and guarantee that the prediction tree will be fullyfieel. For an example of
prediction tree pre-combination, see Figure 8.27.
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An alternative would be to postulate a lazy prediction sggt This lazy prediction
strategy would only try to use prediction trees if the treesrmot be combined other-
wise. However, this entails that we would have to let the gragl® backtracking, since
some analyses may need prediction even though there arcaptilgses (or analyses
that only later turn out to be false) which do not necesspageliction. In the case of
a lazy strategy, predictions would only occur through catingy and subcategoriza-
tion.

8.4.2 Arguments vs. Modifiers

Arguments and modifiers are distinguished based on the RrdpBnnotation and
more detailed PTB annotations, which contain markers sachGLR” for “closely
related” etc. For cases where the PTB annotation differs fitee PropBank annota-
tion, the constituent is assigned modifier status, becaseohn size would increase
significantly if all of these cases were encoded as argumArgsurce for identifying
arguments of nouns is NomBank. However, the relations aedtas arguments in
NomBank tend to be semantic arguments, which are not rejgiyetactically, and
thus would lead to a much bigger lexicon and increased dataspess problems. We
therefore decided not to use the NomBank annotation.

8.4.3 Chart parsing

Chart parsers and the CKY algorithm were particularly sesfié because they calcu-
late combinations of grammar rules only once and re-usetsiies for different anal-
yses. In our incremental algorithm, a similar procedurelmimplemented in order to
avoid calculating integrations between trees with identcrrent fringes repeatedly.
The chart for the incremental algorithm consists of a tabtk the wordsw; ... wy,
on the one dimension, and a list of chart entries containmajyages that share the
same current fringe (but can have different future fringas)shown in Figure 8.28.
For simplicity, the chart in Figure 8.28 only shows the caotriginge but not the future
fringes in the chart cell. Storing analyses with differaritfe fringes in the same chart
entry leads to a range of house-keeping issues, as theedifferture fringes must be
associated with the correct subset of operations thatextd@hem, in order to retrieve
correct analyses at the end of the search. For example, aveigbw attachment
decision can impact on the order of nodes in the future frimgele the current fringe
of the analyses is identical. So for some time, the two aealysll be treated the same,
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but once the future fringes that contain the nodes in diffeoeder due to the previous
high/low attachment have moved onto the current fringesdtanalyses will end up in
different chart entries and different operations may applthem. At the end of the
search phase, when the n-best trees are constructeditialdo associate the analysis
with the high attachment future fringe with the original Inigttachment operation in
order to build valid trees. This situation is hinted at inufig 8.28 in the third row in
the column with the secontthe Another analysis also points back to the same chart
entry (as indicated by the red arrow), but was generated &alifferent analysis. The
best analysis must thus always follow the path indicatedhleybiack arrow, and the
other one the path indicated by the red arrow. In order toectlyr identify the best
analysis, it is necessary to update the probabilities dradllyses within a chart entry
at every step, i.e. not just one probability per chart efitiy,as many probabilities as
the number of analyses that the chart entry contains (kgepock of the probabilities
of all analyses is necessary anyway in order to calculatexppeobabilities at each
word).

In practice, this is implemented as follows: firstly, treesrieved for the current
wordw; are combined in all possible ways with prefix tr¢gsi_1, and the probability
and construction history of each resulting analysis is tgmlaThe probability of an
analysis is stored at the last future fringe, in order to@ttty associate each analysis
with its maximum probability. Furthermore, a pointer to #lementary tree anchored
in w; and a pointer to the previous partial analyis;_1 are created, in order to be
able to retrieve correct trees at the end. The analyses anestirted based on their
probabilities and pruned according to the beam width (#ihe pruning step shown
in line 9 of Algorithm 1). Next, the remaining analyses ardedito the chart, thereby
shifting the current fringe if necessary and combining amglygses with same current
fringe to the same chart entry. For example, consider a simigierminer elementary
tree (current fringe§[DT,the : nil and future fringe[the DT](] : nil]) being integrated
with a chart entry with current fringd/,VP|[NP] : DT |, and two alternative future
fringes, sayDT [,NRVPR S]] : nil and[DT [,NRVRVPR S]] : nil. As discussed in
Section 8.3.3, the correct current fringe of the resultieg ts a combination of the first
future fringe of the elementary tree and the first futuregerf the prefix tree. In our
implementation of the parsing operations, the step of cambithe future fringe of the
prefix tree with the elementary tree’s future frindiae DT][] : nil is performed after
pruning (for efficiency reasons), when inserting the aredyato the chart. However,
this means that two new current fringes are generdtéd DT, NPVP, 9] : nil and
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Figure 8.28: A chart for parsing the example sentence from Figure[8.15/ The chart is
shown after completion of the search phase. The black arrows show the sequence of
operations and elementary trees needed to find the best parse for the sentence. The

(red) dotted arrows show an example derivation path for a different analysis.
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the DT,NPVPRVPR Y[ : nil. As these fringes are different, they need to be stored in
different chart entries. We refer to this delayed joinindghad elementary tree’s future
fringe with the prefix tree’s future fringe as "expansion&ésline 11 in Algorithm
8.3.3). Itis also possible that many of the analyses turnt@mbave the same current
fringe after expansion, in which case they are stored in éimeeschart entry. If there
are more expansions into different current fringes thantidal current fringes, the
number of chart entries can be larger than the beam. We drerperform another
pruning step (Algorithm 8.3.3 line 15) to again cut the numifeanalyses down to the
beam width.

When search is completed, the bagtees are retrieved by following a chart en-
try’s back-pointers to the partial derivations and eleragntrees used to construct the
analysis. However, since one chart entry can have diffdtgate fringes, only some
of the back-pointers stored in a particular chart entry arematible with a particular
solution. Here is when the construction history (i.e. thefgos to the elementary trees
which were integrated to construct the analysis) comesplaty: only previous chart
entries that are compatible with the elementary trees orcdnstruction history are
followed, see the black full vs. red pointed lines in Figur2&3

A cognitively more plausible parser would not have a sepasaarch and tree con-
struction phase, but construct full derived trees instdadst maintaining the fringes.
The chart is thus more of an engineering step, which we hygsigb would not be nec-
essary if the probability model was based on as much experi@md world knowledge
as humans have available, because good analyses coulddemchore accurately, and
thus a much smaller beam would be sufficient, which in turnmaehat it would not
be a problem to store the derived trees for all analyses.

8.4.4 Tagging

Currently, the parser operates on gold-standard tags. Totamafull incrementality,
it would be necessary to use a fully incremental tagger witlpoeview, or to let the
parser retrieve the elementary trees based on the lexemebthie POS tag. This
would of course increase the ambiguity that the parser hdeabwith. On the other
hand, using a separate POS-Tagger without preview would wvierse POS-tagging
results than state-of-the-art taggers, and can thus betexpt also have an impact
on parsing quality.
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8.4.5 Supertagging

Many TAG and CCG parsers use supertagging to cut down on #retsspace during
parsing. Supertagging is also referred to as “almost pgirsind basically consists of
choosing a small set of elementary trees to be integratedcat word, so that in the
case of the supertagger choosing just one tree per wordatlang process would only
consist of joining the trees together. Supertagging thaeases the efficiency of the
parsing task significantly.

Maintaining incrementality in parsing means that the sigggrer should not be
allowed to have any preview. However, lack of preview hasighental effects on
supertagging quali@/

In the incremental PLTAG parser, the combinatory explosioato a large number
of trees to be integrated at each word is particularly grbgeause prediction trees do
not have any lexical anchor. The average ambiguity for natidgg a prediction tree
is thus the size of the prediction tree lexicon (i.e., 2800using the full prediction
tree lexicon, or 700 for using only prediction trees thateveeen more than 5 times
in the training data), while the average ambiguity for cacaintrees is 2.5 trees per
type, and about 50 trees per token in parsing (since frequertts have lots of read-
ings and very rare words are treated as unknown words foomeas smoothing, and
can therefore also have a large number of readings). Naoesmental parsers, which
do not operate with any unlexicalized trees, thus incur aisggntly lower level of
ambiguity. In order to keep parsing times manageable, figiiout that it is necessary
to select a subset of most promising prediction trees. Sadnhthe parser presented
here does do supertagging, but only for prediction treesitufes for the estimation
include the current fringe of the prefix trédg and the POS tag of the next waiig, 1
to give a small look-ahead, which is important for superiaggerformance. See the
full probability model of the supertagger in Formulal8.1.eThok-ahead of knowing
the POS tag of the next word does not necessarily compromesementality, if we
assume that the POS tag was determined without preview.ek dowever make the
interpretation of prediction weaker: predictions causgdsbbcategorization frames
are made more eagerly (after processing the head that sgbcaes them) than pre-
dictions necessitated for maintaining a fully connectedcstire, which are only made
when the next word is perceived and processed enough tavdeteits POS tag. In
general, it seems cognitively plausible to assume that prédictions are made that

4Personal communication with James Curran.
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have proven useful in past experience, and are promisirenghe current context. It
does however also mean that an additional process is assatmagachan parsing: a fast
heuristic component that selects promising predictiorse@an local information in
addition to a deeper parsing process.

S (1 fg,tws1) = 1 (8.2)

where P(T[| f[37tW+1) = P(T[| fro, )\TI> P( fT[7)\TII| vatW-i-l)

= prediction tree f =fringe t=POStag

3 = prefix tree A\ =category of spine leaf node

In order to alleviate data sparseness, a prediction tres idirectly conditioned on
the fringe of the prefix tree and the next word’s POS tag. Adstthe probability of the
prediction treatis estimated conditional on its fringe and the category efdiitegory
of the last node on its sping; it's fringe and last spine node’s category are in turn
conditioned on the fringe of the prefix tree and POS tag of the word.

Probabilities are estimated using maximum likelihoodnaation.

~ freq(m, fr, An)
ZT[ f req(T[: fT[7 )\TI>

f req( fTD )\TD fB7 tW+1)
St dA, | req( fr, A, fB, twi1)
In order to further reduce data sparseness, we estimaterdbalplity on an al-

P(11 fr, Ary)

FA)( fm )\n‘ fB7tW+l) =

phabetically ordered set of unique categories of the cufrgmge instead of the exact
current fringe of the prefix tree. For example, instead ofdiooning on the fringe
[DT,NPNRVPRVPRVP S]] : null, we would condition ofDT,NP,SVP} : null. The
idea behind this probability model is that the order of naddess important than the
identity of the nodes themselves as possible integraties.si

For smoothing, the Brants smoothing method, described aic®e8.5.1, is ap-
plied. We use one level of backoff for estimatiRgfr,tn| fg,tw+1) On just the most
probable integration poirltfB instead of the fringep
T%XP( fro,tn Ny, twi1)
The reason for using the probability of the most likely intgn point instead of the
product of all possible integration points is that a fringéwmore different categories
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should not have a lower probability of a particular tree adi@ into it than a fringe
with the same category on it but fewer different other catiego

The supertagger is integrated directly into the parseerAétrieving the prediction
trees, the supertagger model is used to select the 10 bestftnreeach prefix fringe,
which the parser then tries to combine with the partial esedystored in the chart.

8.5 Probability Model

This section defines a probability model for the PLTAG parkepecifies how PLTAG
derivations are assigned probabilities. The probabiktyneate of a partial derivation
at wordw; is the product of the probability estimate of the prefix tregering words
w1..Wi_1 and the probability of integrating the elementary tree fordwy; using one
of the PLTAG parsing operations.

Probabilities for elementary treesare estimated from sections 2 — 21 of the Penn
TreeBank. To address data sparseness caused by unseenavenas, the probability
model has to be smoothed. We present two different smoothwdgls, and discuss
backoff steps used in smoothing. Backoff steps are used aotnmg to get an ap-
proximate probability estimate for unseen events by usisigidar (but more general)
event.

For ease of reference, see the overview of the mathemayicddas that will be
used for the definition of the probability model in this chagh Table 8.3:

The details of the probability estimates for each parseradjma differ slightly, and
are outlined in the paragraphs below. The general patténe isame for all operations:
the probability of an elementary treds conditioned on its integration sitg; in the
prefix treef3, and is normalised with respect to all alternative elentgntiees that
could be integrated at this site. The conditional probgbdf an elementary tree given
the integration site is thereby estimated as the indepérmuebabilities of the tree
templatets conditioned on the integration sitgs, and the probability of the lexical
anchorA¢ conditioned both on the tree templateand, in order to capture bilexical
probabilities, the lexical anchor of the head child of theegration site nodag.

P(e[ng) = P(Teng) x P(Ae[Te, Ag)

Furthermore, the integration point noggis approximated by the tree templatgthat
originally introducedhg, its lexical anchoiy, its categoryc,, the position ofy within
Ty, denoted asi,, and the “trace marktm, which is a flag for whether the first and /
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elementary trees (subsumest, o, M)

initial trees (subsumes)
auxiliary trees (subsumes)
prediction trees
prefix tree

tree structures

(can be subst or adj nod¢

1%
N

integration point node

position ofn within n’s elementary tree
category of integration point node
atree’s head leaf (subsumeg,w,t)
category ah (for prediction trees)
word lexemes

POS-tags

trace mark

- £ /NN >0 55 A4 9 q o

3

Table 8.3: Mathematical symbols used in the definition of the probability model.

or last node on the current fringe is a trace or null element.

P(WB) = P(Tm)\ﬂ?Cﬂ,nn?tm)

The sentence processing model also includes a procedufiactoring in decay. This
is however not part of the probability model itself, but oé tinking theory, and will
be discussed in Section 8.7.

Probabilities for Tree at First Word

The probability of integrating a particular elementaryetanchored in the first word
using theStart operation is normalised with respect to the set of alteveaiementary
trees that can occur at the beginning of a sentence. In ar@dleviate data sparseness
issues, the probability of the elementary teeeonditioned on the start of sentence
symbolSOSis broken down into the probability of the tree template af dlemen-
tary treetg given theSOSsymbol, and the probability of wonds being the anchor of
tree templata:. The probabilities for these two conditional events ar@rested us-
ing maximum likelihood with frequency counts from the tiam section of the Penn
TreeBank.
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Y P(e[SO =1 (8.2)

€

where SOSis start of sentenceR(g|SOS = P(T¢|SOIP(We|Te)

freq(te, SOS
>t freq(te, SO9

|S(TS|SO$ =

freq(we, Te)

P<W8|T€) = ng freq<Wg,Tg)

Probabilities for SubstDown Operations

The probability of substituting an initial tree into the aysubstitution site of the prefix
tree is normalised with respect to all possible initial &rélgat could be substituted at
this site, i.e. with respect to all initial trees with the samot category.

ZPS(GMB) =1 (8.3)

o

Whel’e Ps(0|r]B> — Ps(To—|Tr],)\r], nr],Cr],tm) P()\O'|TO'7)\F])

Ag = (g if Ois prediction tree. Ag = Wg,ts if 0is non-prediction tree.
Ay = (g if Bis prediction tree. An = wg,tg if Bis non-prediction tree.

freq(tg, Ty, An, Ny, Cy, tM)

8.4
S, freq(te, T, An, Ny, Gy, tm) (8.4)

If)S(TO'|TI']7)\I']7 an,Cn,tm) =

freq(Ag,1g,An)
S, fred(As, g, Ap)
We estimate the probabilities as outlined in equations 8dt&5 because treat-

ing the tree template conditioned on the prefix tree and tkiedBzation of the tree

|5()\0|1’0,)\r]) = (8.5)

template as independent events alleviates data sparsesgss. A very similar model
for estimating TAG tree probabilities for parsing has alsei successfully employed
in |Chiang’s (2000) TIG parsers. The estimation of the ldxecanponent shown in
equation 8.5 is identical for all parser operations, thaneeft won't be repeated in the

following equations.
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Probabilities for SubstUp Operations

The probability of an elementary treg(can be either initial or auxiliary tree) that is
integrated into the prefix tree usingsabstUpoperation is the probability of the prefix
tree being substituted into the first substitution node eféfementary tree (i.e. nor-
malization is based on the category of the first substitutiode of the elementary

tree).
Z Ps<8mB) =1 (8.6)
€
where P(g[ng) = Ps(Te|Tn, An, N, Cn, tM)P(Ae|Te, Ay)
Ae = (¢ if €is prediction tree. Ae = Wg,te if €is non-prediction tree.
Ay = (g if Bis prediction tree. An =wg,tg if Bis non-prediction tree.

freq(te, Tn,An, Ny, Gy, tM)
S, freq(te, tn, Ay, Ny, Gy, tm)

ﬁS<T8‘Tﬂ7)\I’]7 an,CrI,tm) =

Probabilities for AdjDown Operations

The probability of an auxiliary tree being adjoined into threfix tree is normalised
based on the category of its root node and the possibilityrtbauxiliary tree of that
type is adjoined to at all.

ZPa(O(|r][3)+Pa(NONE|r]B) =1 (8.7)

a

andP(NONEng) = Pa(NONETy, Ay, Ny, €y, tm)

Ao = (o If ais prediction tree. Ao = Wq,tq if a is non-prediction tree.
Ay = (g if Bis prediction tree. An =Wg,tg if Bis non-prediction tree.

A Y allngnodes with no node ad joinel€d(Tn, An, Ny, Cn, tm)
Pa(NONE|Tr]7)\r]7nr]7Cr]7tm) = o f : A
ZaIIanodes req(Tn, n,nn,cn,tm)

Probabilities of AdjUp Operations

Similarly, the probability of an elementary treebeing integrated using an AdjUp
operation conditioned on the root category of the prefix ise®rmalised with respect
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to all elementary trees that contain a possible adjunciienvgth the same category
on their current fringe, and the possibility that the prefeetwill not be adjoined into
anything just now.

3 Pa(elng) +Pa(NONEng) = 1 (8.8)

€

Ae = (¢ if €is prediction tree. Ae = Wg,te if €is non-prediction tree.
Ay = (g Iif Bis prediction tree. An =Wwg,tg if Bis non-prediction tree.

freq(te, Tn,An, Ny, Gy, tM)
ZTg freq(TE7 Tr] ) )\r]7 nr] ’ Cr],tm)

Isa(T5|Tr]7)\r]7nr]7Cr]7tm) =

Probabilities for Verification

The probability of a canonical elementary tree being irdegnt using the verification
operation is conditional on the prediction trees that métetstructure of the canonical
elementary tree, and is normalised with respect to onlyetlodiser canonical trees that
are also compatible with the predicted nodes.

In order to capture the head-argument bi-lexical depenidsticat were not avail-
able at previous integrations involving the unlexicalizgédiction tree, the lexical
anchor of the verification tree is conditioned on the lexiezdd that the prediction tree
was originally integrated with.

S Ru(glmg) = 1 (8.9)

where Re|Tg) = R,(Te|Ti) P(A¢|Te, Ay, )

freq(te, m3)
ZS compat withr freQ(T8|T[{3)

P (Telp) =

8.5.1 Smoothing and Backoff-levels

When estimating these probabilities, there are data spessdssues. Many events
are only seen very rarely, or not at all during training. Hoere we do not want to
imply that an event that was not seen in the training data @ossible, and hence
it should not be assigned probability zero. The standardoggh to alleviating this
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problem is to use some kind of smoothing. In smoothing, sorabability mass from
the observed events is re-distributed onto unobservedsvénorder to do this in a
way that differentiates between more or less likely evahis common to use backoff
for smoothing, which means that we estimate the probalwlityg given event using
the probability of a similar event, usually by taking awayrof the conditioning
parameters (also referred to as deleted interpolation).

8.5.1.1 Backoff levels

The backoff-levels for PLTAG-parsing are adapted from @bié2000), see Table 8.4.

Backoff levels forP(tg| Ty, An, Ny, Cq, tm)

17 P(Te|Tq,An, My, €y, tm) no backoff

12 P(T¢|Tq,ty, My, Cn,tM)  removing the lexemey, from Ay

13 F3(rg|rn, Mn,Cn) removing POS tag, adj. position in fringe, trace marker
14 F3(rg|cn) conditioning only on category of integration node
Backoff levels forP(Ag|Te, Ap)

17 P(Ae|Te,An) no backoff

12 F3()\e|te,tr,) no bi-lexical probability, just integration POS tag

13 P(Ae|Te) probability of lexeme estimated based on tree strugture
14 P(Aelte) probability of lexeme estimated from POS tag only

Table 8.4: Backoff-levels for the incremental LTAG parser. The probability of a tree
is based on the product of two estimated probabilities, one for the tree structure, and
one for the lexeme given the tree structure. Both of these probability estimates are

smoothed separately, which means that they have separate back-off levels.

As has been shown before for other pars@BMZOM)axﬁxtal probabilities
(which are weighed in only in backoff level I1), have a veryadiimfluence on overall
parsing accuracy, presumably due to data sparseness.eHBLTAG parser, they only
account for .5% point accuracy gain.

8.5.1.2 Smoothing

For the parser presented here, we use standard smoothihgdedbd estimate unseen
events. Our smoothing methods use interpolated backo#revime values for different
backoff stages (as outlined in Table 8.4) are interpolatiis+means that for each esti-
mate, even if we have an estimate for the most specific contexiise the probabilities
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from the similar events as well and weigh all the probalesitusing interpolation fac-
tors. Standard smoothing algorithms for interpolatiomieen different backoff-levels
include e.g. Witten-Bell Smoothing and Kneser-Ney Smawgh(or a variant called
Modified Kneser-Ney Smoothing), and a smoothing algorithigioally developed
for POS-tagging by Thorsten Branm@ooox whidhea@d best performance
when compared to the other smoothing algorithms in a GernaaseP presented in

Dubey, 2004). For the parser presented here, two diffegerdothing techniques

were implemented and evaluated: Brants’ smoothing and rieothing technique

used in (Chiang, 2000), which is similar (but does not optarparameterization) to

the smoothing technique used in (Colli‘ns, 1999; Bi‘kel, 2004

A big difference between the smoothing algorithm is that Bnants’ algorithm
uses fixed interpolation parameters that are independethieatontext. This can be
advantageous if the data is too sparse to effectively estitha parameters in all nec-
essary contexts. It therefore doesn’t need a held-out sesfonating the interpolation
parameters, making the implementation a bit less comphax ¢hg. Modified Kneser-
Ney Smoothing, which achieved second best results for Dsli&grman Parser. In
Brants’ Smoothing, the interpolation parameters (one éxled for each backoff level
to weigh the influence of that backoff level) are estimatesgeldaon increasing the
interpolation weights for a particular backoff level if tHaackoff level estimates the
conditional probability best (in terms of maximising it)rfthe events observed dur-
ing training. The algorithm for the estimation of the intelgtion parameters;..A4 is
shown in Figure 8.29. The smoothed probabilities are estichas:

P = A1X1 +A2X2 +A3X3 + AgXg

wherex;..x4 are the different backoff levels shown in Table 8.4.

The smoothing model used in many other parsers, such as thiesCoarser
Collins, 1999), Dan Bikel's reimplementation (Bikel, 20Gand David Chiang’s TAG
parser (Chiang, 2000), assigns a different smoothing tereath different context.

The smoothing terms are calculated on-the-fly, using tHevimhg formula to calcu-
late interpolation terma:

whered; is the frequency of the context at backoff levak seen during traininglf =
0), andu; is the number of unique outcomes for that context duringniingj, i.e. how
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Input: Map containing tupleste, Ty, Ay, Ny, Gy, tM), (T, An, Ny, Gy, tM),
(Tes Tn, tn, My, Cn, 1M, (T, tns My, Cn, M), (Te, Tn, My, Cn ), (Tns M Cn),
(T, Cg), (Ca), and their frequencies
Output: Estimate for interpolation parametéﬁs— Aa
1 N1, A2, A3, A3, Ag = O;
2 foreach (te, Ty, An, Ny, Gy, tm) with freq((te, Tn,An, Ny, Cq,tm)) > 0 do
freq((Te,Tn,An,Mn,Cn tm))—1

if freC](<Tr],)\r],nr],Cr],tm>> >1

dl = freq((tn,An,ny,Cn,tm))—1
3 0 if freq((ty,An,Mn,Cq,tm)) =1
freq((te, Ty ty,My,Cy tm) -1 .
d2 — freq((rn,ntn?nn?cn,tm»fl if freq(<Tﬂ7tﬂ7nﬂ7Cﬂ7tm>) >1
4 0 if freq(<Tr]7tr]7nr]7Cr]7tm>>:1
freq((te,tn,Nn,Cn))—1
d3 = freq((rn?nn?cn;)—l it freq((ty,m,cqy)) >1
5 0 if freq((rn,nn,cn>) =1
freq((te,c))—1 .
da_ ) TealgT if freq((cg)) >
6 0 if freq((cg)) =
7 switch max(d1, d2, d3, d4jo
8 casedl: A1+ = freq((Te, Ty, An, My, Cy, tM))
9 cased2: Ao+ = freq((Te, Ty, An, My, Cy, tM))
10 cased3: A3+ = freq((Te, Ty, An, My, Cy, tM))
11 cased4: A4+ = freq((Te, Ty, An, My, Cy, tM))
12 end
13 end
" A
14 )\1 = )\1—0-)\2—0})\34-)\4
PR
15 A2 = Xohaths
K= e
16 A3 = X thatha
" A
7 )\4 = )\1—0-)\2—03\34-)\4

Figure 8.29: Brants’ Smoothing for estimating the probability for tree structures

|3(T8|Tn,)\n,nn,cn,tm). The smoothing works analogously for estimating IS()\€|T€,)\H) :

many different cases were conditioned on this context. drimgerpolation is done via
arecursive term:

p=A1l14 (IA1) (A2l 24 (1= A2)(A3l3+ (1= A3) (Mgl 4+ (1 —Ag)1019))

A comparative evaluation of the two smoothing methods isidexd in Section 8.6.
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8.6 Parser Evaluation

The parser was trained on Sections 2-21 and evaluated ani$28tof the Penn Tree-
Bank (only sentences of length 40 or less were used for trgiand evaluation). We
report Parseval labelled bracketing scores with respettet@LTAG converted trees.
This means that our results are not directly comparable laiitblled bracketing scores
obtained on the unconverted Treebank. We have also expesoh&vith converting
our TAG structures to flattened tree structures where a ontagever has the same
category as a child. The flattened structures are a bit fldtser original Penn Tree-
bank structures. When evaluating on the flat structurespFes decrease by about two
points. This lower F-score is due to the fact that there anefdrackets in total. To

compare to other parsers, we also converted the output kthhmim (2000) parser
into this flatter format and found F-scores to also go down%ypdints with respect
to non-flattened tree structures.

Coverage Out of the 2294 sentences of section 23 of length 40 or less there 33
sentences (about 1.4%) that could not be successfully deavimto PLTAG format.
We therefore exclude these sentences from our analysithdforore, there were 140
sentences for which no parse could be found within reasenabke/memory usage
(10 min, 1.8 GB RAM), yielding a coverage of 93.80%. The reafw the failure to
cover a sentence can be that all valid parse have fallen dédfeam, that a necessary
prediction tree has not been selected by the supertaggiiatono grammatical parse
can be derived given the PLTAG lexicon learnt during tragnin

Parsing Accuracy  Table 8.5 gives the parsing results for the variants of tHBAEL
model that we evaluated. The baseline model selects the fnegstent parse for a
given sentence: it adds up the frequencies of all the caabaind prediction trees
for each parse and prunes low-frequency ones; the compéstevith highest overall
frequency is returned as the best one. This baseline moieh&s an F-score of 48.06
which serves to illustrate the difficulty of the task.

The full PLTAG probability model achieved an F-score of @wiith Witten-Bell
smoothing, thus clearly outperforming the frequency basel A significant gain is
achieved by replacing Witten-Bell with Brants smoothingsulting in an F-score of
72.05 (all other parameters were held constant, beam wadthdth smoothing meth-
ods was set to 101).
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Model Prec Recall F-score Cov
Baseline 44.39 52.38 48.06 85|1
WB smoothing |62.63 66.28 64.40 938
Brants smoothing72.73 71.38 72.05 938
Oracle 72.86 74.26 73.55 93|8
beam size=20 |70.06 72.02 71.02 81}3

Table 8.5: Parsing results for the PLTAG parser; Baseline: frequency baseline for parse

operation selection; WB: Witten-Bell; Oracle: correct prediction tree given

We also investigated the influence of bi-lexical probaieditand found that these
only have a small effect on overall parsing performancecivbinly decreased by 0.5%
when bi-lexical probabilities were removed from the modkesumably this is due to
data sparseness, as well as the fact that PLTAG lexiconesndiie relatively large
and already encode argument positions. The small effecile{ital probabilities is

consistent with previous results (Bikel, 2004). Intemsgly, an extremely small beam

size of only 20 chart entries with maximally 20 analyses percentry yields very
similar results in terms of accuracy. However, only 81% ofteaces can be assigned
an analysis using this small beam width, see Table 8.5.

Parsing speed for our parser increases superlinearly inthwer of words, see
Table 8.30, which shows parsing times for a constant bearthvatimaximally 400
analyses. Even though the parser only tries to combine glinconstant number of
fringes (bounded by the beam width) against a limited nunolbetementary trees at
each word (bounded by how many elementary trees the leximotains for a specific
word, or, respectively, by the number of trees the supeeiagffers to the parser),
parsing times are not linear in the number of words. This @explained by the fact
that the fringes tend to get longer, thus providing more ipdssdjunction sites at the
end of longer sentences. Note that parsing speed would ble Inngizer if supertagging
was introduced for canonical trees, thus strongly redutilegnumber of elementary
trees that can be combined with prefix trees at each word.

8.6.1 Prediction Trees and Supertagging

The size of the prediction tree lexicon, and the set of ptexdidrees selected by the
supertagger, influences parsing performance.
Let’s first consider the coverage of the prediction lexicdm:section 23, about
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Empirical Parsing Times with Bounded Parallelism
(<= 400 analyses)
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Figure 8.30: Empirical processing times as measured on a 2GHz, 1GB RAM machine.

4.5% of the sentences do not need any prediction trees torsedyaand for 92.5%
of the sentences, all the required prediction trees werne isethe training set with a
frequency of more than five (our frequency cut-off). This methat we cannot parse
the remaining 3.5% of sentences correctly even if all theiredg canonical trees have
been seen. Furthermore, the supertagger might not setecbthect prediction tree,
and the parser would thus not be able to use the correct picadicee even if it is
contained in the lexicon.

But how well would we do if the prediction lexicon containetlreecessary pre-
diction trees, and if we always selected the correct predidree? To quantify the
loss in F-score due to supertagging errors or missing ptieditrees, we evaluated the
parser using an oracle that always supplies the correcigbiettree. This increased
the F-score to 73.55, see Table 8.5.

8.6.2 Comparison to other Parsers

Our results are not directly comparable to parsers thabdeme the Penn Treebank
bracketing as our parser produces deeper tree structdoemad by PropBank and

Vadas and Curran’s (2007) noun phrase annotation. We trerebmpare to other

TAG parsers only, but these also differ in which variant of formalism they use
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(LTAG, spinal LTAG, LTIG), resulting in F-scores that aretriolly comparable.

Table/ 8.5 gives the F-scores of existing TAG parsers and aoespthem on the
dimensions that are psycholinguistically relevant (inceatality, connectedness, pre-
diction). The formalism that comes closest to ours in teringsgcholinguistic prop-
erties i:i, Mazzei et al.'gs (2067) DVTAG, for which however maplementation, proba-
bility model, or evaluation are available. All the other ampgches achieve a higher

F-score than our PLTAG parser, but at the cost of not beingemental (Chiang,
2000; Sarkar, 2001) or not building connected structurkserind Joshi, 2005). There
also exist incremental fully-connected PCFG parsers whidtieve better f-scores
than our parser (84.4 — 87.4). The best-performing péJl’S@llﬁ(]@ and Roark, 2004)
uses a discriminative model, which is unsuitable for catng prefix probabilities.
Kato and Matsubara’s (2009) parser is similar to Roark’0{2) incremental top-

down PCFG parser, which we used in earlier chapters to eealbarprisal. These
two parsers seem to come closest to our parser in that thegaemental, construct
fully connected structures on a word-by-word basis, andaugenerative model which
can be used for calculating Surprisal. They do however natfgdhe other require-
ments posed by our sentence processing theory, in particudelling of prediction

and verification processes.

Model incr con pred F
Mazzeietal. (2007) | + + + N/A
This work + + + 721
Sarkar (2001) - - - 7938
Chiang (2000) - - - 867
Shen and Joshi (200%) + - — 87.4

Table 8.6: Comparison of this work with other TAG parsers; incr: incrementality; con:

connectedness; pred: prediction; F: F-score; *: evaluated on dependencies.

8.6.3 Discussion

Differences in performance with other TAG parsers are Yikkele to the incrementality
restriction (incremental parsers generally have sliglutlyer performance), not doing
any supertagging for canonical trees, a large lexicon, ashase probability model.
The sparse probability model is due to the large lexicon aeddrger range of op-
erators (p/ Down versions of substitution and adjunction, and verificatiok¥urther
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effect of the prediction and verification mechanism is thangnlexical dependencies
are lost when prediction trees are integrated. Becausécpicedtrees are not lexical-

ized, the statistical model cannot condition on the lexeméonly on the prediction

anchor (i.e., an internal category or POS tag). At verifarative are not currently tak-
ing into account all dependencies between the current waidtze lexemes that had
been integrated into the prediction tree. An improvemergarsing performance is
likely to result from addressing this shortcoming. A disunative model could possi-

bly also yield improved f-scorses, but psycholinguisticasiges like Surprisal cannot
be calculated based on a discriminative model, as it camditon the words, while

Surprisal expresses in how far a word is unexpected.

This parser was however not designed for performance, hiedsasis for a psy-
cholinguistic model. In fact, many would have said beforat th parser like the one
presented here, which uses unlexicalized trees to makecpog in order to spell
out the structure needed to connect all words would not lotetoée at all. The 93.8%
coverage and 72.1 point f-score mean that the parser is uigdldsfor evaluating the
sentence processing theory it was designed for on broadamgeéext.

8.7 Formalisation of the Linking Theory

The desiderata for a linking theory: incrementality, castedness, prediction with
verification and parallel processing, were outlined in B&c6.2. Here, we formalise
the linking theory with respect to the implementation of HEAG parser.

During processing, the elementary tree of each new wgre integrated with all
previous structure(y,..w_,), and a set of syntactic expectations is generated (these
expectations can be easily read off the generated tree foiimeof predicted trees).
The trees (different prefix analyses and alternative eléangitrees) have probabilities
that express how good an analysis they are — from a psychiditngviewpoint these
probabilities can be thought of as the analyses’ prominenttee mind.

Each of the nodes of these predicted treéms a time-stampthat encodes when
it was first predicted, or last activated (i.e., accessed$el on the time stamp, a tree’s
nodes’ decay at verification time is calculated, under the assumption rixeently-
accessed structures are easier to integrate than morecdiezags.

In our model, processing difficultp is thus incurred during the construction of
the syntactic analyses, as calculated from the probasidf the elementary trees (this
directly corresponds to Haleian Surprisal calculated &ISIAG structures instead of
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over CFG structures, see the first line of Equation (8.10vagl This surprisal com-
ponent corresponds to the difficulty incurred through thesipg process. In addition
to this,D has a second component, the cost of verifying earlier ptied, which is
subject to a decag (see the second line of Equation (8.10)). While the verificatf
prediction trees happens as part of the parsing procefisutif is associated with re-
trieving previous predictions from memory, which is assdrteebe a separate process
from the parsing procedure. The overall processing ditiydDlat wordw; is therefore:

Dw = —log 5 P(Buw..w)+log 5  PBw.w y) (8.10)
BWl»»»Wi BWl---Wifl

—logy ()L™
U

Note that the prefix probabilitie{‘&_‘,BlmWi P(B1.w ), which are needed to calculate
Surprisal, fall out of the parsing process naturally, theattkstrict incrementality and a
generative model.

The verification cost component &f bears similarities to DLT integration costs,
but we do not calculate distance in terms of number of dissmtgferents intervening
between a dependent and its head. Rather, verificationsdstérmined by the num-
ber of words intervening between a prediction and its vetiion, subject to decay.
This captures the intuition that a prediction becomes leskless useful the longer
ago it was made, as it decays from memory with increasin@uigt. Furthermore,
verification cost depends on the probability of the predittiree, while integration
cost is independent on the probability of the structure eftiead. Larger structures
with more dependents tend to be less probable though, sathith verification cost
for complex argument structures can still correlate withphhintegration cost due to

several arguments needing integration.

8.7.1 Parameters in Theory and Implementation

The essence of the sentence processing theory proposed thehis is that humans
predict upcoming structure, and that verifying the presticttructure causes processing
difficulty (this is theoretically motivated by memory ravial costs for remembering
the prediction and integrating past information with thevrstéructures). An important
contribution of this work is to model the processes of preditand verification ex-
plicitly. These processes of prediction and verification gaprinciple be modelled
on top of a range of parsers and grammar formalisms, PLTAGQuggested in this



8.7. Formalisation of the Linking Theory 233

thesis is one implementation that realises the assumptiBaside basic implemen-
tational choices like the grammar formalism, there is a nemdb further factors and
parameters that modulate predictions of the theory:

¢ the decay factor
The decay factor determines the rate at which predictioasfargotten” and
subsequently incur higher cost at being retrieved and redtaainst a verifica-
tion tree. This also means that the decay factor influeneewéighing between
verification cost and the Surprisal component. With a lowagidactor, verifica-
tion costs could thus occupy a much larger value range thepriSal values and
hence be the main influencing factor in processing difficatgdictions. Simi-
larly, with a decay rate that’s very close to 1, verificati@sts would always be
very small, and hence hardly change the predictions madee@urprisal part
of the equation.

e ticking of the clock / how to calculate the distance betweeadand argument
As a simple assumption, we suggest to count distance in woud$hat is prob-
ably not the best measure. An alternative are e.g. discoefsents. Deciding
on how to count distance has a similarly big effect on préalist as the decay
factor. Another question is how time stamps should chand®uld they be
updated when something is integrated at them, thus accwiati re-activation
effects? This would correspond to a reactivation of the hetawhich a new
structure is integrated.

e beamwidth of the parser

Parsing beam width influences predictions not only in howllikhe parser is
to achieve an accurate parse in the end. It also influencesiSalrvalues in
that using a beam during parsing means that the prefix priiegocan only be
approximated, but not calculated exactly because not alyaes are constructed
and summed over when determining prefix probabilities ofiectire. Secondly,
the beam width also affects verification cost. The fewerys®s there are, the
fewer verifications need to be executed.

5Discourse referents have been shown to be an imperfect neeasiexopoulou and Keller (2007)
show that two types of extraction fromh-phrases can differ in processing complexity, even though
they involve the same number of intervening discourse eefist Based on this result, they argue that
the number of intervening syntactic heads (rather tharodise referents) is the crucial factor for de-
termining integration cost.
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e shape of trees in lexicon

Another variable is the shape of the trees. Here, we ass@wasiiape as moti-
vated by linguistic theories, using standard TAG treesh\aifew exceptions).
But linguistic theories also differ with respect to how stures are analysed,
what is regarded as a head etc. For example, if we regardetktheminer as
the head of a noun phrase, a noun phrase would not need todietpdewhen
encountering a determiner, and no verification would hapg®n encountering
the noun. Another aspect is the domain of locality, i.e. Whéxemes are stored
in the same lexicon entry. In its current implementatiory garticle verbs like
“show up” and “either..or’-like constructions are encodethe same tree.

e training data / probability model

The amount and type (i.e. what type of text is used for trginivhether it is from
the same domain as the target data that the model is to beags@lon) of train-
ing data has a direct effect on parsing accuracy. Low paesingracy means that
Surprisal estimates are imprecise because analyses aeaasd with incorrect
probabilities, hence also leading to incorrect estimatioichanges in probabil-
ity mass. In addition, verification costs are adverselyc#e if there are many
wrong analyses (in particular, analyses that seem vergtahed from a human
perspective) which contribute verification events and leadnjustifiably high
integration cost, or fail to assign high integration cosewehit occurs because
the correct analysis (or analysis preferred by a human afpibiat) has fallen
out of the beam.

8.7.2 Implementation of Surprisal Component

Surprisal is calculated as the difference between the ppefikability at the current
wordw, and the prefix probability at the previous wawd 1. The prefix probability is
by definition the sum of the probability of all trees covenmgrdsw; ..w,. Because the
parser is not doing a full search but using a beam and a sggertéor prediction trees
for efficiency reasons, prefix probabilities calculated dgiag up the probabilities of
all analyses that fall inside the beam is only an approxiomatio lessen the effect of
beam search as much as possible, we calculate prefix priviestat each word before
pruning (i.e. prefix probabilities are calculated betwéra 8 and line 9 in Section 8.3,
Algorithm/[1)).
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8.7.3 Implementation of Verification Cost Component

The intuition when formulating verification cost is to cafuhe cognitive effort ob-
served e.g. in English relative clause processing, lortguiie dependencies and centre
embedding. These locality effects suggest that people hfficulty when integrating
new material under certain conditions. The theory presenége explains these dif-
ficulties as a result of matching new material against preshopredicted structures.
However, the processing theory assumes a language proe¢$sonan performance
level, i.e. which is much better at language processing émgrcurrent parser, thanks
to more exposure to data, semantic and world knowledge &ichvinelp to make more
accurate predictions and analyses. If the implemented hinadkthese additional re-
sources, we hypothesise that it could accurately parsg asimuch smaller beam.

Beam size plays an important role for the estimation of \e&ifon costs — in the
current parser setting, about 400 different current fringee maintained at the same
time, many of them containing multiple analyses. If we addhgverification cost
for each verified tree, verification costs will sometimes kieanely high. When in-
specting these cases, it turns out that most of the veriiegin fact concern the same
original prediction tree, which mostly coincides with wihappens at the correct anal-
ysis. In addition, there are a number of “freak” analyses fe®m very far-fetched
from a human perspective and mostly have low probabilityeGithat they contribute
a disproportionally large amount of verification cost to tb&l verification cost when
verification costs from all analyses are summed up, it sebatsat better estimate of
the actually incurred verification cost would be to eitheighethe verification costs
by the probability of the analysis in which they occur, or tyocount the verifica-
tion cost incurred in the most likely analysis (which regsiwverification). Both of
these approaches are also more compatible with the assumydtparallel process-
ing than summing up the verification cost of all analyseseAiitnplementing both of
these approaches, it turned out that processing difficuéigliptions were very similar
(correlation ofr > 0.97), and it was hence undecidable which version is bettelidit
not make any difference in either the case studies or thedbrtogerage evaluation re-
ported in Chapter 9). We (somewhat arbitrarily) decide angithe difficulty estimate
based on the most likely verification.
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8.7.4 Discussion

The linking theory contains two mechanisms, the surprisadgonent which quantifies
difficulty incurred through unexpected events and the \eaiibn component which
captures memory retrieval effects when matching newly enyed structure against
predicted structure. Surprisal thereby directly falls otithe calculations necessary
for the parser’s probability model, while the decay effentserification cost are not
part of the probability model. In future work, it would be dable to integrate these
two theoretical components more closely: verification s¥giuld affect the choice
of which analyses the parser follows up on (i.e. what remainthe beam), while
memory retrieval processes should in turn affect the pgrgiocess, for example via
incrementally updating the parser’s probability modeg(Section 10.2/3).

8.8 Conclusions

This chapter started out by describing the conversion dPdren TreeBank into PLTAG
format and the automatic induction of the canonical PLTA%den and the prediction
lexicon. Next, an incremental parsing algorithm for PLTAGich incrementally de-
rives fully connected partial structures on a word-by-wbesis was presented. The
parsing algorithm has been proven to only produce valid R B&rivations. In order
to make the parsing process fast enough for broad-covemgmg, a number of steps
had to be taken to optimise over the implementation of thegit parsing algorithm.
These optimisations include restricting the use of preahidrees, pre-combining them
into larger prediction trees and introducing super-tagdor prediction trees in order
to select a small number of most promising prediction tréesthermore, a generative
probability model is proposed, which will enable us to gasdlculate Surprisal on a
word-by-word basis. Finally, we evaluate the parser on grenFreebank. It achieves
a coverage of 93.8% and f-score of 72.1%, making it suitairlefoad-coverage eval-
uation of the sentence processing theory proposed in Qhépte

The final section of this chapter presented and discussddrtim@lisation and im-
plementation of the linking theory. The final piece of resban this thesis, the eval-
uation of the sentence processing theory based on the iratamfully connected
predictive PLTAG parser will be reported in Chapter 9.



Chapter 9
Evaluation

This chapter describes the evaluation results for the @@gpeentence processing the-
ory using the incremental PLTAG parser trained on the Peaal@ank. We first discuss
the parser’s predictions for a number of established pdyangstic results and show
that the theory manages to model a wide range of effects, asidbcality effects in
relative clauses as well as prediction effects.

The second part of this chapter presents evaluation rdeultigficulty predictions
on naturally occurring broad coverage text, the Dundee @orphe evaluation method
on the broad coverage text is again linear mixed effects lepagdiscussed in Chapter
3. We then compare the predictive power of our theory to theriles evaluated on this
data in Chapter 5, DLT integration cost and Surprisal.

Parts of the material in this chapter have been published agS€ 2009
dDemberg and KeIIQ, 2069).

9.1 Evaluation on Psycholinguistic Case Studies

This section evaluates the proposed sentence procesgiory tbn a series of estab-
lished experimental processing results from the psycpalstic literature, and com-
pares the theory’s capacity of accounting for the expertaiemsults against other
sentence processing theories. The modelling resultstegpor the following sections
are based on a decay factor df= 0.9 and a beam width of analyses within1&
probability of the best analysis in order to get an adequatprsal estimate. The
number of time steps was set to the number of interveningsvarde probabilities for
the PLTAG grammar were derived from the Penn Treebank (clip@ 8).

237
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9.1.1 SRC/ORC asymmetry

One of the classic sentence processing results is the fitlthgubject relative clauses
(SRCs) as in (1-a) are easier to process than object retdéiuses (ORCs) as|in (1:b).
Refer to Section 4.1 for an overview on previous work on redatlauses. A recent
study b@%m) asked the question of where exactbyegring difficulty occurs
within relative clauses, after observing that theories Burprisal make different pre-
dictions from theories like Dependency Locality Theory. Wlboth theories predict
that object relative clauses are more difficult to proceas tbubject relative clauses,
DLT would predict the difficulty to occur on the embedded vefivase, while Sur-
prisal would predict higher difficulty to occur on the NP iretrelative clausmub
2010) found evidence for increased difficulty in both regipand hypothesises that
Surprisal-type theories and DLT-type theories predidiedént aspects of processing
difficulty (just like suggested in this thesis). Therefditas experiment is particularly
relevant for the evaluation of our theory.

Data

We evaluated our theory on the materials useﬂSta@ommdy, experiment 1.
The 24 sentence pairs are designed such that both condibortesin exactly the same
words, but with different word order such that one is a sulbjelative clause and the
other one is an object relative clause. These patterns dextirihe same as in the
traditional “The reporter thattacked the senator / the senator attacleebinitted the
error” sentences, see (1) for an example.

(1) a. The bus drivewho followed the kidsvondered about the location of a
hotel.

b. The bus drivewho the kids followedvondered about the location of a
hotel.

Method

We compare difficulty predictions from our theory to observeading time data from

Staub’s (2010) relative clause study. One problem of comgatifficulty predictions

directly with reading times is the missing link in our theafyhow difficulty is exactly
reflected on reading times: our model makes no claims aboutifbculty is reflected
in fixation behaviour and reading times, and is agnostic vasipect to how processing
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difficulty relates to different reading measures.

In other parts of this thesis, where multiple regressionppgliad to determine
whether an explanatory variable is a significant predictaeading times, the aspect
of skipping behaviour was taken out of the model by removihgkapped words, for
mathematical modelling reasons (see discussion in Segtibp). Given that we are in
this case study mainly interested in whether we can repliaagignificant difference,
and are not doing any regression modelling, taking bothiGiraturations and skipping
into account will give a more intuitive picture of the prosewy difficulty that partic-
ipants incurred during the experimerhamom) ugghtbl different reading
measures than were used in this thesisgioepast timesGo-past times are defined as
the sum of the durations of all fixations from the first fixatmma word (only counted
if the region to the right of the word has not yet been fixatedil the word is left to the
right. In particular, fixations to the left of the word thatdpeen after a regression out
of the critical region are also counted. Go-past times agdadtest measure reported
in M’s MO) study, and therefore presumably capitfreudty effects more com-
pletely than an early measBreln order to approximate a general notion of difficulty
from these measures, go-past reading times were multipligdfixation probability

(determined from 1-skipping rate from Staub (2010)), thioaiming average go-past
times.

Results

Figure 9.1(a) shows average go-past times from Staub’sdQZSlhdy. Numbers in
Figure 9.1(a) vs. 911(b) and 9.1(c) should not be directipgared quantitatively, but
rather qualitatively. Our model makes qualitatively cotrgredictions for all empirical

findings, see Figure 9.1(b): we predict no effect on relginamoun and main verb, and
indeed there was no effect on either of these regions in therimal data either. The

model also correctly predicts the larger difficulty on thebexided verb of the object
relative clause.

For the embedded NP, the model predicts differences in psiog difficulty be-
tween the conditions only on the first word of the NP, the deieer. This is because
the onset of the NP is unexpected, but once the start of thead®&en processed, a
noun is strongly expected. The longer observed readingstahthe noun in the ORC

in Staub’s study, first pass times showed no effect on them@ier, an inverse effect on the noun
region (first pass times were faster for the ORC noun tharh®BSRC noun) and a significant effect on
the embedded verb, with longer reading times on the ORC edduederb.
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(a) Empirical Data for Relative Clause Difficulty
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Figure 9.1: Staub (2010) experimental data vs. model predictions on the same materials
for the different regions of the relative clause. Significance for p < 0.001is marked as
*xx - Subfigures (b) and (c) show predictions for the embedded verb and noun regions

for the full PLTAG model and a Surprisal-only baseline model, respectively.
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condition can be explained as a spill-over effect from theweiner, where the disam-
biguation between subject and object relative clause scdtrs plausible to assume
a spill-over effect at this point because the determinerskgsped frequently (48% of
the time). As our model predicts processing difficulty buesiot include any compo-
nent for modelling how processing difficulty is reflected @ading times, we cannot
model this spill-over effect.
Figure 9.1(c) shows the model predictions for the SRC and G&€ences from
Staub (2010) for a baseline model which does not take intowattcverification and

only estimates processing difficulty in terms of Surpris&he incorrect prediction

of the Surprisal-only-baseline is consistent with Lev 8) observation that Sur-
prisal is unable to predict the ORC/SRC asymmetry corre€ity the embedded NP
region, predictions for the Surprisal baseline and a maugluding verification are
qualitatively the same, with slightly larger difficulty mheted by the model including
verification.

DLT integration cost makes the correct prediction of longeding times on the
ORC verb region, but does not predict any difference betvoeenlitions on the NP
region. It therefore also explains the data less well tharPQTAG model.

Evaluation on Relative Clauses from the Dundee Corpus

In Chapter 4, we have shown that DLT integration cost can wtcfor some of the
reading time variance observed on naturally occurringix@alauses from the Dundee
Corpus. Given that we have just shown that the PLTAG-basediqtion theory pro-
posed in this thesis can also account for the differenceangssing difficulty in sub-
ject vs. object relative clauses, the question arises otlvenet can also account for
the processing difficulty on the embedded verb of relatieisés from the Dundee
Corpus.

We ran a mixed effects model following procedures describegections 3.2 and
4.2, and included the predictions from the theory preseirtatiis work, which we
will refer to as RREDICTIONTHEORY, as one of the predictors in the regression model.
Because REDICTIONTHEORY is negatively correlated with WRDFREQUENCY, we
used residualizedEDICTIONTHEORY values in the regression models, i.e. the part
of PREDICTIONTHEORY which cannot be accounted for by word frequencies.

Residualized REDICTIONTHEORY was a positive significant predictor of reading
times on the embedded verb region of relative clauses botlodetransformed total
reading times and log-transformed first pass reading tifResbetter interpretability,
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Predictor Coef Sig
INTERCEPT 260.55 ***
PREDICTIONTHEORY 15.16 **
WORDLENGTH 8.82 x*
WORDFREQUENCY -20.57 **
PREVIOUSWORDFREQUENCY 5.68
LANDINGPOSITION -73.20 ***
LAUNCHDISTANCE -4.28 x**

WORDLENGTH:LANDINGPOSITION -27.92 *

Table 9.1: Final regression model for total reading times on the embedded verb of

relative clauses from the Dundee Corpus.

we report the result on raw total reading times, which ise@jent to log-transformed
total reading times, in Table 9.1. The reported model inetua random intercept and
random slope for WWRDFREQUENCY under subject (all other random slopes lead to a
decrease in model quality). Outliers were removed as useal $ection 3.2.5).

But does REDICTIONTHEORY work as well as NTEGRATIONCOST? Or does
it work even better in predicting reading times? In order neveer these questions,
we fitted a model that included all significant low-level p#drs and both REDIC-
TIONTHEORY and INTEGRATIONCOST as explanatory variables in a log-transformed
total reading time model, and compared this model agairshtadels, each only con-
taining the significant low-level predictors and one of tmedictors. We found that
removing NTEGRATIONCOST from the model including bothNTEGRATIONCOST
and RREDICTIONTHEORY did not significantly reduce model fip(= 0.16; in fact the
model including REDICTIONTHEORY and not NTEGRATIONCOST was slightly bet-
ter according to AIC and BIC). On the other hand, removiREBICTIONTHEORY
from the model including bothNTEGRATIONCOST and FREDICTIONTHEORY did
significantly reduce model fifo(< 0.01; AIC and BIC scores are lower (hence better)
for the model including REDICTIONTHEORY). This means that integration cost does
not have a significant explanatory value above and beyongr#dtictions made by our
theory. We conducted the same analysis on first pass reaniag and found the same
result.
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Conclusion

The full version of our model as trained on the Penn Treebaniectly predicts the
relative clause asymmetry pattern found in empirical gsidionger reading times in
the verb region of the verb and noun regions of the objectivelalause), as evidenced

by running it on the 24 experimental items from StaJub (201Dhe Surprisal-only
baseline of our model which does not associate the veriicatiechanism with any
processing difficulty cannot account for the results on theedded verb region.

Being able to replicate the relative clause data is paditylnteresting, as pre-
vious models either predict difficulty on the NP region (I®arprisal) or on the verb
region (like DLT), but not on both.

Furthermore, we showed the predictions by our theory alseectly account for
reading times in naturally-occurring relative clausesfithe Dundee Corpus, and that
they explain the data better than DLT integration costss Tinding provides further
support for our theory.

9.1.2 Either-or Predictions

The experiment reported i‘n (Staub and CIiHon, 2006) presievidence for prediction
in human sentence processing. The authors showed thawiiofjahe wordeither
readers predict the disjuncti@m and the complement that follows it; processing was
facilitated compared to structures that inclustewithout either. When either was
present in items with sentence-level disjunction, it prégd people from initially mis-
analysing the sentence for NP-level disjunction. Suchntespretations and following
corrections only occurred in the sentence-level condittbeneitherwas not present.

Data

For our evaluation, we used the 48 example sentences froAStEtufo and Cliﬁo‘n
2006) study. As an example, consider the sentences in Heaf2p Disjunction
occurs at the noun phrase level in half the experimentalst@ie in Examples (2-a)
and| (2-b) and on sentence level in the other half of the naseiike in Examples
(2-c) and (Zd)ﬂ Staub and Clifto‘n (2006) found that théN&+egion (marked in re-
cursive style in Examples (2)) is processed more quickéy first pass reading times
and go-past times were significantly shorter) in (2-a)/ard)(an in (2-b) and (2-d).

(2) a. Peterread either a bookan essayn the school magazine.
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b. Peter read a boak an essayn the school magazine.
c. Either the student read a bookhis friendwrote one.
d. The student read a book his friendwrote one.

When running our model on these sentences, probabilitiethéeither conditions
could not be estimated accurately because such udsithef ... or had not been seen
in the training data (Sections 2—-21 of the Penn TreeBankhande the model would
back off a lot and give very low probability to seeingfollowing either. Occurrences
of eitherin the Penn TreeBank are mostly “Either way' constructions. We therefore
added four sentences (one of each type) to the trainingmatang sure that the lexical
items used were different from the ones in the test sentefitessentences added to
the training data were:

3) a. The cat consumed (either) the food or the drink to g#dtedut.
b. (Either) Albert lost a mobile or his colleague nicked it.

Adding at least a minimal amount of training data seemsfjadtias one would not

expect a human whose only language exposure is the WalltStweenal, and who

hence has not experienced the useitifer...orconstructions to exhibit typical reading
time results on the experimental materials.

Results

Figure 9.2 graphs the predictions for the full model (Swalrand verification compo-
nents) for theeither . .. orsentences fran Staub and CIiA[an (2006). The graph shows
the go-past reading times found experimentally for the Bredgion in the Staub study,

compared to the sentence processing difficulty that our hpedicts for this region.
Our model was run on the exact same sentences and repliceteattern very well:
the presence ditherfacilitates reading at the post-NP in both the NP coordination
and the S coordination condition (the effect was the samie inahe experiment and
the model, so the two conditions are merged together in Ei§#). The graph shows
the model run with the same parameters as in the Surprisalenfetation condition
in the RC experiment. A Surprisal-only version of our modelwd predict the same
pattern, but with even lower difficulty predictions for tegher-conditions.
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Figure 9.2: Average go-past time, average PLTAG prediction and average Surprisal

baseline prediction for the or-NP region on the sentences used by |Staub and Clifton
2006). The difference between the no either and either conditions is significant at

p < 0.01 both for the model and in the experiment.

Discussion

Our model replicates the pattern found in the empirical wiideither-or processing
by Staub and Cliftdn‘ (2006). The results demonstrate thatPhlIAG model is not
only able to replicate locality effects, as shown in thetredéaclause experiment, but

also to capture prediction effects, which can be explaiye8uyprisal, but not by DLT.
As mentioned at the beginning of this section, the Staub difidiC(2006) study
not only found faster processing in tloe NP region but also less misanalysis for

sentence-level disjunction wheitherwas present. Our implementation can also repli-
cate this finding: In the sentence-lewsther case, the analysis predicting sentence
coordination clearly was the most probable analysis (bytirfi8s) when processing
or, which in turn also means that predicting additional suetto integrate the NP
as the argument of an unseen verb still leads to a more pmlallysis than if this
additional structure had not been predicted and the NP hedl inéegrated as an NP-
level disjunction. In the case wheedtheris not present, adjoining the structure for
or at the NP level is by far the most probable analysis (becauseei training data,
NP-level disjunction has been seen more often than S-lesindtion). This analysis
then allows for a direct integration of the NP into threstructure — having to predict a
future verb makes the sentence-level analysis even lesdyg likhen the NP afteor is
processed.
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Figure 9.3: The influence of the decay parameter on modelling results for the either. .. or

experiment.

Model predictions for this experiments depend also on thiarpatrisation of the
model. The most important parameter is the decay factoGiwgmon-linearly) deter-
mines how the Surprisal part of the model and the verificatiost are weighed, see
Figure 9.3. If the decay factor is low, the model assumespiatictions are forgotten
quickly, resulting in higher verification costs. Very higérification costs in turn lessen
the relative effect of Surprisal on model predictioneitherwas present, Surprisal is
very low whenor is encountered, in particular Surprisal is much lower tHagither
had not occurred previously. On the other handyrais integrated, some verification
cost occurs in theither condition, but not otherwise. Whether the model makes the
correct prediction thus comes down to weighing the diffeean Surprisal between the
conditions vs. the verification cost incurredaatin the either condition. For illustra-
tion see the model predictions for tkeéher..orstudy for the chosen decay parameter
0.9 in comparison to the extreme decay parameters of 1 (winichd correspond to
perfect memory) and 0, which would in turn mean that the readelld not be able to
remember any predictions as soon as the next word is pratesBegure 9.3.

The initial problems with this experiment, concerning thek of exposure tei-
ther.. orconstructions during training, highlight how much the mlibdg results also
depend on the linguistic materials used in training. Madglresults will be more
accurate and valid, if the model could be trained on a moredand proto-typical
language corpus than the Wall Street Journal.
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9.1.3 Anti-locality Effects

Anti-locality effects have been shown for a number of largps including German
Konieczny, 2000; Konieczny and Doring, 2003), Hindi (Mh and Lewis, 2006),
and recently, also English (Jaeger et al., 2010). Antiliceffects refer to the finding

that reading times can be shorter at the head when interyematerials were inserted
between the head and its arguments. Examples for antitipeffiects in German in-

clude experiments presented in (Konieczny, 2000) and @eamy and Doring, 2003).

The original experiment reported in (Konieczny, 2000) fouhat the verb in verb-

final constructions in German is read faster when more natgust one argument,
vs. an additional PP vs. a longer, modified PP) occurred befa verb. This finding
is contrary to the locality effect found in English centrelmdding and the SRC/ORC

asymmetry. A similar experiment was conducted by Konieamy Dorin ‘(2003),
who also controlled for length of the intervening materiatibeen conditions. An
example of their materials is shown in (4).

(4) a. Die Einsicht, dass [NP-NOM der Freund] [NP-DAT dem Kan] [NP-
ACC das Auto aus Plastik] verkaufte...
the insight, that the friend the client the car from plasttc ...
The insight that the friend sold the client the plastic car . .
b. Die Einsicht, dass [NP-NOM der Freund [NP-GEN des Kunpp¥ip-
ACC das Auto aus Plastik] verkaufte, ...
the insight, that the friend of the client the car from plastold, ...
The insight that the friend of the client sold the plastic.car

In materials following the example in (4), reading times be verbverkaufteare
shorter in (4-a) than in (4-b) even though the length of fetémg elements is exactly
identical. Surprisal can explain this finding as (4-a) rettrthe possible identity of
the head more strongly than (4-b). DLT would predict the gijeceffect as one more
argument is integrated in condition (4-a) than in conditfé+b). Similarly, the sur-
prisal vs. verification components of PLTAG would make oppg®redictions: while
the surprisal component would predict less difficulty atwbeb, the verification com-
ponent would predict larger processing difficulty at thebvieecause it required a less
probable prediction tree, which therefore at verificationet will also be more diffi-
cult to verify than a more probable prediction tree. Whethertheory proposed here
can correctly account for the observed effect is therefacenclusive at this point - it
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depends on the parametrisation of the model for German.

The English materials involve subject and object relatie@ises with one, two or
three optional PPs at the end, see Example (5+a) to (5-cHiRgimes were measured
on the region after the relative clause, i.e. the verb of tlagnrsentenceboughtin

example (5).

(5) a. The player [that the coach met at 8 oclock] bought thesao.
b. The player [that the coach met by the river at 8 oclock] i tige house...
c. The player [that the coach met near the gym by the river atl8ck]
bought the house...

Jaeger et al. (2010) found that reading times on the critegabn were faster the more

PPs had been inserted at the end of the relative clause. fitlisdican in principle be
explained by expectation-based theories such as Surfiisehuse the expectation of
the verb phrase grows stronger and stronger the more atéaxtbrare made, as fewer
syntactic alternatives remain), but not by locality-batfesbries. The theory proposed
here can potentially explain the difference in processiffgcdity because its Surprisal
component predicts faster reading times on the main verbe e verification cost
component predicts the same difficulty independent of thebrer of intervening PPs.
This difference to DLT integration cost predictions stemwsf the fact that the main
verb is not standardly predicted in PLTAG, and hence no eatifoin costs occur, while
DLT would predict increased integration cost for more PPsedaon the larger number
of intervening discourse referents between the main vedbtarsubject.
An open question is whether the theory could possibly erplae findings of

Jaeger et al.’s (2010) second experiment, in which any PPsawuirring inside the

relative clause are topicalised: in this case, the tomatbn of the PPs would trig-
ger the prediction of a verb and hence cause verificationlatest on in cases (5-a)
and (5-b), but not in (5-¢). The contrast between conditi®aa) and (5-c) would be
strengthened, but it is not clear whether the correct ptiedicould be obtained for
case (5-b).

We ran the parser on all the experimental items provided @& appendix of

‘Jaeger et aIJ (20&0), but the difference in difficulty prédies on the main verb did
not reach significance. Note also that the claim that Swapdan explain the differ-

ences (Levy, 2008) is based on a single example, and thatiSalrgalues that are

indeed very close: Levy reports Surprisal values of 13.871. 18P, 13.54 for 2 PPs and
13.40 for 3 PPs, which are supposed to account for quite iffgrences in reading
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times (510ms, 410ms and 394ms respectively). It is hencbtlidwhether Surprisal
can really account for the observed anti-locality effect.

9.1.4 Centre Embedding

Another well-known effect i€entre embedding/here an increasing number of nest-

ings soon makes sentence structures impossible to prasess, g. (Eady and Fodor,
1981; Chomsky, 1957). Consider the sentences from Gi@) in example (6):

(6) a. The intern [ who the nurse supervised | had bothereadhanistrator |
who lost the medical reports ].

b. The administrator [ who the intern [ who the nurse supedishad both-
ered ] lost the medical reports.

Sentence (6-b) has been shown to be considerably more Hitfiqgorocess than (6-a)
based on complexity ratings. In PLTAG, the more complex @ (6-b) would
incur higher verification costs than the easy condition)(6ecause two verbs would
have to be predicted simultaneously in (6-b), and high watifdn costs are incurred in
particular at the second vehHad botheredas the distance to the initial prediction site
is high. Furthermore, such double embedded structuresaegeand therefore higher
Surprisal costs are incurred than in the single embeddinditon. When running the
model on the example sentences in (6), the model replichtepreference for the easy
condition by predicting lower processing difficulty tham tbe difficult condition.

9.1.5 Facilitating Ambiguity

Another effect that our theory can account fofasilitating ambiguity as reported in

Traxler et al., 1998). The finding is that reading times carfdster under some cir-

cumstances in an ambiguous region than in an unambiguolesrégpnsider example
(7): the reflexive pronourhgrself / himselfin|(7-a) and (7-b) is unambiguous in that it
can only refer to the daughter / colonel respectively. Irt (7-c) howevehimself

is ambiguous as to whether it refers to the son or the colonel.

(7) a. The daughteof the colone] who shot herself, ; on the balcony had been
very depressed.
b.  The daughterof the colonej who shot himself; on the balcony had
been very depressed.
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c.  The sonof the colonej who shot himself; on the balcony had been very
depressed.

Reading times were found to be faster on theself / herselfand immediately
following region in the ambiguous case (7-c). This findingliicult to account for
under a locality or competition account. Howemmn@(plains how Surprisal
can account for this effect: the attachment of the relatigsese is ambiguous atho
— it might attach to thelaughter/soror thecolonel These two analyses are followed

in parallel, but one of them is ruled out in cases (7-a) and)(7Aeading to higher

Surprisal than sentence (7-c), where both analyses chbestitaintained, resulting in
lower Surprisal. The argumentation is exactly the same uthgeproposed theory, as
the verification component makes no adverse predictionthiedata.

Testing these sentences on the implemented theory is netbp®ss the parser
does not make any checks to see whetharself would matchdaughteror not. It
would hence not recognise the ungrammaticality of the Idacament in (7-a) and
high attachment in (7-b).

9.1.6 Local Coherence Effects

It has been observed that processing difficulty can somstoueur in sentences that

are neither ambiguous nor particularly compl‘ex (Tabor.LeLQa]O4). An example for
this is the sentence in (8ta), which has the same syntactiplexity as (8-b).

(8) The coach smiled at the player tossed a frisbee by ...

The coach smiled at the player who was tossed a frisbee by ..
The coach smiled at the player thrown a frisbee by ...

2 0o T o

The coach smiled at the player who was thrown a frisbee by ..

The important difference between the sentences is thata) (8e word sequendbe
player tossed a frisbeis a coherent string of words whetiee playerwould be the
subject of a main verbossedwhile the player thrown a frisbeeannot be interpreted
as such. While (8-a) can be expected to be the most difficatesee among the
sentences in (8), because reduced relative clauses ardiffimdt than non-reduced
relative clauses, and ambiguous verb forms are more difficah unambiguous verb
forms, the observed difficulty effect was stronger than \adnd expected by adding the
verb ambiguity and reduced relative clause effects. Thencomexplanation for the
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effect is that the locally coherent interpretatiorttod player tossed a frisbeeterferes
with the globally coherent analysis of the sentence, andtima®fore been argued
to provide evidence against a view of strictly incrementalcessing, as the locally
coherent analysis should not be calculated in the first plaasause¢he playeralready
has a different function in the sentence, and cannot pgskéthe subject ofossed
andtossedcannot be the main verb of the sentence, as there is alreadmaverb,
smiled

One explanation of the effect that would still be compatibith strictly incremen-

tal processing is the one suggested by Gibson (2006), whyestgythat the observed
effect might be due to a conflict between the top-down ansiyiich would require
thattossedoe analysed as the first word of a reduced relative clausb past partici-
ple), and a bottom-up analysis which would assign the mkshliPOS-tag tdossed
using a unigram model, resulting in predicting a verb in dexgast tense. The interac-
tion effects of the ambiguity of tossed and the reducedivelatould thus stem from
the incompatibility of the most probable POS-tag tmssedand the globally coherent
analysis.

From a PLTAG point of view, POS-tagging is not a step of jusiasding the POS-
tag. Instead, elementary trees are retrieved for each wbiné. implemented parser
currently uses gold-standard POS-tags to reduce the ampajuparsing, therefore
we cannot test the phenomenon at this point. However, ouleimgntation could
possibly account for the effect if super-tagging was intieetl for the retrieval of el-
ementary trees from the canonical lexicon. The explanationld then be that the
super-tagger would fail in the difficult cases to provide piaeser with the necessary
reduced relative clause tree in the first place, and diffrautiuld ensue from the parser
attempting to integrate the unsuitable tree(s) and omfaild succeed having to “ask”
the super-tagger for more alternative elementary trees pohktulation of a supertagger
for canonical trees would be a small theoretical step giban & supertagger for pre-
diction trees has already been introduced to the parserimodeoretically it would
however mean to assume a separate heuristic mechanismitioadd the parsing
process which quickly selects most promising syntactiecsires based on local in-
formation only. Such an approach would be less parsimorti@rsan architecture that
explains the same effect without local heuristics (e.gbbgom-up parsing model of

Morgan et al. (2010)), but it is conceivable that the humaglege processing system
also uses fast local heuristics in addition to a more inviingegration process.
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9.1.7 Digging-in Effects

Digging-in effects refer to the finding that a wrong synta@nalysis becomes harder
and harder to reanalyse the longer the ambiguous regionsi@nfexample, consider
the sentences in (9). Sentences (9-a) and |(9-b) are ipiiaibiguous at the NEhe
bookwith respect to whether the NP is an argument of the veite or the subject

of the main phrase, while sentences (9-c) and (9-d) are ech(se the verb already

has an argumenthe essay Subjects initially interprethe bookas an object oWrite
because itis a semantically very likely objectwaite and becauserite is more often
seen as a transitive verb than as an intransitive one.

It has been shown using acceptability judgements (FeragidaHenderson, 1991)
and reading times (Tabor and HutchiEéOM), that (9-b)ushmmore difficult than
(9-a) and the control condition (9-d). One would expect Yebbe a the most dif-
ficult condition anyway, as it is more complex than (9-b) anorenambiguous than
(9-d). However, Tabor and HutchiAs (2&)04) found a difficffect on the last word
of|(9-b) (an interaction between length and ambiguity befemcounteringrew) that

goes beyond the main effects of ambiguity and complexity.

(9) As the author wrote the book grew. (ambiguous, short)
As the author wrote the book describing Babylon grew. (gous, long)

As the author wrote the essay the book grew. (unambigsbost)

2 0 T g

As the author wrote the essay the book describing Babyienw.gunam-
biguous, long)

Our model can predict both the ambiguity effect and the cexipft effect, and would
hence predict that (9-b) would be the most difficult senteridewever, it does not
predict the effect to be super-additive, i.e. it does notjgtethe interaction between
ambiguity and complexity found in the reading time expenise

It is however conceivable, that the interaction effect isapurely syntactic effect
where the parser gets stuck with an analysis, but that tfieudif is due to semantic
effects that enforce the object interpretation in (9-b).r @edel trained on the Wall
Street Journal does not reflect the fact thabkis such a good object airite (bookis
only once seen as an objectwfite in the training material). For the model, sentence
(9-b) is hence less difficult than for us, who know that book ood object of write.
Consider for example senterice (10) which has the same wteuas sentence (9-b),
but with the ambiguous noun phrase being a bad semantictdbjebe verbwrite.
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(10)  As the author wrote the wind coming from the east stiegged.

(We are not aware of this having been tested, but it seemy tikat observed difficulty
effects on the last word would not go beyond the additivecefd the ambiguity and
complexity effects for sentence (10).)

9.1.8 Storage Costs

Storage cost (SC) is the second component of Dependencyityoldaeory. Evidence
for SC is reported in (Chen et al., 2005): if lots of open dej@ties need to be kept
in memory, processing is slower. This effect was found fobakdependencies, wh-

filler-gap dependencies and the expected PP argument forba Y& example for
the verbal dependencies is shown in (11). Reading timeseierikical region, which
is shown in italic print in (11), was slowest for the conditiwith two open verbal
dependencies (114a), next slowest was the condition withlong verb dependency
(11-b), slightly faster was the sentence with one short kendency (11-c) and
fastest the condition with no open verb dependency (11-d).

11 a. The detective suspected that the thief knewtti@guard protected the

jewelsand so he reported immediately to the museum curator

b. The detective suspected that the knowledgettieguard protected the
jewelscame from an insider.

c. The suspicion that the thief knew thiéie guard protected the jewels
worried the museum curator.

d. The suspicion that the knowledge thihe guard protected the jewels
came from an insider worried the museum curator.

The sentence processing theory presented here does nemttpattribute difficulty
to maintaining predictions in memory (even though such agmment could be added
easily, because the information which predictions havestahintained for how long
is readily available in the model). Neither the Surprisal the verification cost com-
ponent can account for the storage effect. We originallyidsit against attributing
difficulty to storing predictions because we were not ablérd a significant effect
of storage cost on the naturalistic data, when implemer@ifigon’s storage cost and
evaluating it on the broad coverage Dundee Corpus.
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9.1.9 Garden-Path Effects

While many of the effects discussed in this chapter so faoakgdetectable in reading
times (and some of them in acceptability ratinggyden path sentencesfer to a
situation where a reader (or listener, although gardengsttences are more common
in reading because intonation helps in finding the correadirey) becomes aware of
the difficulty of the sentence, often initially judging it grammatical, even though the
sentence is grammatical. The reader is initially “luredian initial very probable
interpretation which later turns out to be incompatiblehiite end of the sentence.

The most famous example is probably Bever’s (1970) sentsmoen in (12):
12) The horse raced past the barn fell.

The reader initially analysemcedas a simple past form and hence the main verb of
the sentence. However, this is incompatible wéh. For the correct interpretation of
the sentenceaced past the barmust be analysed as a reduced relative clause, and
racedhence as a past participle.

Garden path effects are usually not only caused by diffiguitactic constructions,
but are also dependent on semantics, i.e. they often carfsssintactically slightly
difficult structures that in addition are made very implalsigiven the semantics of
the sentence. For instanl:eﬁ%lg(zom) showed that tiffeisues when syntactic
and semantic interpretations are at odds. Our model so &8 Kot account for these
additional semantic effects, and therefore can't fullylakpmost garden path effects.

In order to explain the qualitative difference between aanprocessing difficulty
which people aren't even aware of and complete processiegkkiown, with some
people not being able to recover the correct analysis abatlmodel would assume
that the correct analysis has fallen out of the reader'srtéebeam” because it was
too unlikely when compared to alternative analyses. Hetite,sentence must be
re-analysed from scratch, which is only successful if emmoogemory resources (in
a human: concentration and cognitive abilities) can be naaddable for the larger
beam needed to process the sentence. This is a standardhiaotexplaining gar-
den path sentences with a ranked parallel parser, which weads suggested in
e.g. (Altmann and Steedman, 1988; Gibson, 1991).

wn
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9.1.10 Discussion

This section has evaluated, where possible, and othengsessed, the predictions of
our prediction theory on nine psycholinguistic case stsidi@ur theory can simultane-
ously account for Surprisal effects likgther..orprediction and facilitating ambiguity
effects, and locality effects encountered in relative sému(we have shown this for
both psycholinguistic experimental material and natyraticurring relative clauses)
and centre embedding. As our model is not implemented fom@ey it remains in-
conclusive, whether it can account for German anti-logadifects. Evaluation on
English anti-locality effects did not reach significances thherefore count them as
'not explained’ (and will also couAﬂTevy’@%bS) Surptigmedictions on the same
case as 'not explained’ in our comparison Table in Sectidnds it makes equivalent
predictions).

Furthermore, we have argued that our theory can predicegapdth effects and
potentially digging-in effects if combined with a semantiodel, and that it will be
able to predict local coherence effects if a super-taggesgth on words only and no
gold-standard POS tags) for non-prediction trees is adulétetimplementation.

Our model cannot currently account for storage cost effesten though a cost
function measuring the amount of predicted structure cbel@asily integrated with
our current processing theory. We defer a detailed sumnmmatg@mparison with other
theories to Section 9.4.

As a general note, we would like to emphasise that testingraxgntal materials
with the model trained on the Penn TreeBank can be probleraatihe experimental
materials often include unusual lexemes or rare constmsthat were not seen during
training on the Wall Street Journal texts. Not having entergd such events often
enough can lead to inaccurate parses, and hence wrong Ityféstimates, or biased
outcome due to slightly different distribution of some etgan the WSJ as opposed to
other text genres.
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9.2 Broad Coverage Evaluation on the Dundee Corpus

This section evaluates the PLTAG implementation of the psep sentence processing
theory on the broad-coverage Dundee Corpus. All paramgtersdecay, timestamps,
beam width) are the same as for the evaluation on case stluithedor the evaluation
of DLT integration cost and Surprisal, which was presenme@hapter 5, mixed effects
models are used.

9.2.1 Data

Using the PLTAG parser, we were able to parse about 80% of ¢tinédsnn the Dundee
Corpus. In the remaining cases, no analysis could be fouttdnithe parser’'s beam
width. This is a bit lower coverage (presumably due to déferes in text genre be-
tween the Wall Street Journal and the Independent) tharrtegpéor evaluation on
section 23 of the Penn TreeBank (93% coverage of senternidesistribution of dif-
ficulty predictions are slightly skewed, with a tail of raveyy large predicted difficulty
values, see Figure 9.4.

Histogram of Distribution of Predicted Processing Difficulty

Frequency
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Predicted processing difficulty based on PLTAG parser

Figure 9.4: Distribution of PLTAG difficulty predictions.

9.2.2 Results

We evaluated our PLTAG-based model on the Dundee Corpug tistnsame model
as for the broad-coverage evaluation of Surprisal and Didgiration cost, which in-
cluded all predictors that we are not primarily interestedas well as an intercept
and their random slopes under subject. Outliers were rechosimg the> 3 standard
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deviations in residuals criterion (cf. Section 3.2.5). Vgaia use the term REDIC-
TIONTHEORY to refer to the explanatory variable for our model used inréggession
models. REDICTIONTHEORY is a significant positive predictor of reading times be-
yond what other factors included in the baseline model cqutaéx This is true for
both first pass times and total reading times, see Table 9.2.

First Fix First Pass Total Time
Predictor Coef Sig Coef Sig Coef Sig
(INTERCEPY) 205.50 ** 241.18 *** 254.07 ***
WORDLENGTH 071 * 8.11 7.36 ***
WORDFREQUENCY -6.33 *** 1234 ¥+ 1580 ***
PREVIOUSWORDFREQUENCY -3.11 -6.19 * -6.35 ***
PREVIOUSWORDFIXATED -10.95 ** -33.66 * -35.60 ***
LAUNCHDISTANCE -1.63 **  -0.75 -0.86
LANDINGPOSITION 8.31 ** -18.00 -21.39 ***
SENTENCEPOSITION -0.05 ** -0.24 **  -0.28 ***
FORWARDTRANSITIONAL PROB -1.59 **  -1.97 277 ***
BACKWARD TRANSITIONALPROB 071 ~* 1.18 1.36 **
WORDLENGTH:WORDFREQUENCY  -1.15 ***  .3.06 ** -415 ***
WORDLENGTH:LANDINGPOSITION  rem - -19.21 ** -18.59 ***
PREDICTIONTHEORY 0.09 * 0.20 ** 0.33 ***

*p < 0.05, *p<0.01, ** p<0.001

Table 9.2: Coefficients and significance levels for models of first fixation times, first pass
durations, and total time for all words in the Dundee Corpus. The models include all
predictors that are not of primary interest, interactions between them, and their slopes
under subject. PREDICTIONTHEORY and its random slopes under subject were run
on the residuals of the basic model. Predictors marked “rem” were removed from the

regression because they did not significantly reduce the AIC.

Furthermore, there is a small significant effect on first foatimes. The REDIC-
TIONTHEORY effect on reading times seems very stable, we also find it imalsr
design regression model whereEbICTIONTHEORY is entered as a predictor without
residualizing or fitting slopes under subject, and also WARBDICTIONTHEORY is
used as an only predictor for reading times.

We can further analyse the difficulty predictions from thedty proposed in this
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First Pass Total Time

Predictor Coef Sig Coef Sig
PREDICTIONTHEORY-VERIFICATION  0.17 0.47
PREDICTIONTHEORY-SURPRISAL 0.36 ** 0.62 ***

*p < 0.05, *p<0.01, ** p<0.001

Table 9.3: Coefficients and significance levels for the Surprisal and verification compo-

nents of PREDICTIONTHEORY, regressed against the residuals of the main model from
Figure9.2.

work by taking a look at its two components, Surprisal andfieation cost. We find
that when fitted to the residuals of the model of other predsstboth of them have
positive coefficients, but only the one for the Surprisal poment reaches significance,
see Table 9/3. As was the case for integration cost, the cagidn cost component

assigns a cost of zero to many words.

9.2.3 Comparison to DLT and Surprisal

The predictions from our theory can be expected to be coechaith Surprisal calcu-
lated based on the Roark parser (see Section|5.5.1) and haghtsome correlation
with DLT integration cost. The full table of correlationstiseen different predictors
of sentence processing difficulty is shown in Table 9.4. Thengiest correlation exists
between lexical Surprisal and the predictions by our themsyexpected, whereas the
correlation with structural Surprisal is rather small. thermore, integration cost is
more strongly correlated with our theory than with eithettedf Surprisal measures.

INTEGRATION LEXICAL STRUCTURAL

Cost SURPRISAL SURPRISAL
LEXICAL SURPRISAL 0.19
STRUCTURALSURPRISAL -0.09 0.36
PREDICTIONTHEORY 0.26 0.53 0.10

Table 9.4: Correlation coefficients (Pearson’s r) between the predictors, for fixated
words (N = 157,538 that have been assigned a difficulty estimate by the prediction

theory model.

The theory presented in this work, and implemented usingABLWorks better
than Surprisal because PLTAG explains the data bettekidtAL SURPRISAL makes
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wrong predictions, meaning that higher Surprisal wouldl leafaster reading. Simi-
larly, we can argue thatFEDICTIONTHEORY works better thanNTEGRATIONCOST,

as INTEGRATIONCOST doesn’t make correct predictions on the broad-coverage dat
see also discussion in Sections 5.3/and 5.4.

STRUCTURALSURPRISAL does make correct predictions, and turns out to improve
the model similarly much asAREDICTIONTHEORY. To compare the two predictors,
both predictors and their random slopes under subject wadtedainto a first-pass-
durations regression model. We then compared the modektyithtural surprisal and
prediction theory to two separate models with only one offéotors. In both cases,
there was a small but significant decrease of model fit, andk8escore was exactly
identical. Similar values were obtained from comparinglttime models (the model
including ARREDICTIONTHEORY was one AIC count better than theRBJCTURAL-
SURPRISAL model, but this clearly is not a significant difference). @age grounds
we can't argue for either of the models over the other bas@behroad coverage data

alone.

A way in which the measures do differ is thaREDICTIONTHEORY aims to be a
more complete measure thanFUCTURALSURPRISAL in that it does account for lex-
ical frequency effects and integration effects, in additiostructural Surprisal effects.
Evidence for this is provided by the fact that when added taseline model which
only contains low-level parameters W#DLENGTH, PREVIOUSWORDFREQUENCY,
PREVIOUSWORDFIXATED, LAUNCHDISTANCE, LANDINGPOSITION, SENTENCE
PosITION, WORDLENGTH:LANDINGPOSITION, and random intercept and slopes
under subject (i.e. excluding WRDFREQUENCY, FORWARDTRANSITIONALPROB-
ABILITY and BACKWARD TRANSITIONALPROBABILITY ), PREDICTIONTHEORY can
explain more of the variance, and leads to much better mdad&\frer AIC and BIC,

p < 0.0001) than adding only T RUCTURALSURPRISAL to such a model. The models
are shown in Table 9.5.

To get a better intuitive impression of the explanatory powafkthe predictors,
it is also informative to consider the simplest possible glpdhere the measure of
interest is the only predictor of reading times. In such a eh@esponse variable
total reading times, subset of words that were not skippBHEDICTIONTHEORY
explains just over 2.2% of the variance in the data (repgrfwdjusted R-squared),
while LEXICAL SURPRISAL accounts for 1.9% of the varianceyTIEGRATIONCOST
accounts for 0.2% of the variance antRECTURALSURPRISAL only for 0.0005% of
the variance. (In comparison, the best single predictorsading times, word length



260 Chapter 9. Evaluation

Predictor Coefficient Significance
(INTERCEPY) 247.64 Frk
WORDLENGTH 17.65 il
PREVIOUSWORDFREQUENCY -5.77 ok
PREVIOUSWORDFIXATED -33.99 ok
LAUNCHDISTANCE -0.69
LANDINGPOSITION -23.26 el
SENTENCEPOSITION -0.62 el
WORDLENGTH: LANDINGPOSITION -26.15 ol
PREDICTIONTHEORY 0.85 ok
STRUCTURALSURPRISAL 0.6 el

*p<0.05 *p<0.01, * p<0.001

Table 9.5: First pass duration baseline model including only low-level predictors, and
predictors STRUCTURALSURPRISAL and PREDICTIONTHEORY separately estimated on

the residuals of the baseline model.

and word frequency, each account for a bit more than 6% of d@hniavce in the data.
Note however that the low overall level oPRalues is not a big concern to us — it
mainly reflect the fact that the data is very noisy.)

9.2.4 Discussion

Mixed effects analysis showed that difficulty predictionsh the theory proposed in
this dissertation can account for a significant proportibthe variance observed in
reading time data. The effect seems to be mainly driven bystirprisal component
of the model, but the verification component also makes alstoatribution in the
right direction. Future work should explore effects foundidg the analysis of DLT
integration cost in Chapter 5, affecting the processingeobs in the presence of aux-
iliaries and the processing of compound nouns, as well asartosnore words. A
straight-forward way to extend verification cost in the peepd model would be to
assign costs for the retrieval of each integration nodeéeatsof only the ones needed
to be retrieved for verification. We leave this to future work

When comparing broad-coverage predictions from the PLBaGed implementa-
tion of our theory with other theories, our theory clearlyprforms DLT integration
cost (estimated based on the MINIPAR parg(un. 1998))lexidal Surprisal (es-
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timated from the Roark parsér (RoJrk, Zodla; Roark ‘Jt a09p0 Furthermore, our
theory can account for a larger proportion of the variancthéendata than structural
Surprisal. We therefore conclude that the theory proposed imakes useful predic-
tions and has the largest explanatory power for naturaluing text among theories
compared in this work.

9.3 General Discussion

Taking together the evidence from the psycholinguistiessdies and the broad cov-
erage evaluation, the theory of prediction in human selt@nocessing presented in
this thesis has been shown to have very good explanatoryrgonspecific psycholin-
guistic phenomena such as Surprisal and locality effestaedl as difficulty encoun-
tered in naturally occurring broad-coverage text. As adtegt, we compare our theory
to alternative theories with respect to the phenomena sé&tlihere, see Section 9.4.

Before proceeding to the model comparison, We would likeote that the predic-
tions of our theory can be modulated by a number of paramatetslesign decisions.
For some of these factors, it was possible to make informedidas, while others
were based on assumptions coming from different sourcds asitinguistic theories
about what the elementary trees should look like etc, andesormas it was necessary
to guess or try out different parameters, for example forsilze of the decay effect
or beam widths for the parser. The difficulty predictionadtrongly depend on the
language model from the Wall Street Journal, which is a regpecialised part of nat-
ural English, with some otherwise frequent words appearamgly and some words
that are specific to financial affairs and economy being deghas very frequent by
the model even though they wouldn’t be for the average hurfiaa.same also holds,
to some extent, for syntactic structures. Furthermorera@eioto calculate Surprisal
we used the pruned probabilities, so this only constitutespproximation to the full
probability space. Finally, the model is also restrictedH®/complete lack of semantic
or discourse context, which is not only a different factargeedicting processing dif-
ficulty, but also influences sentence processing in thatfioeernation from a semantic,
discourse and world model could disambiguate syntacticgires and certainly helps
humans to rule out many of the implausible analyses gertebgtéhe parser.



262 Chapter 9. Evaluation

9.4 Comparison to Other Models

This section compares the explanatory power of the propssetgnce processing the-
ory with the sentence processing theories discussed ino8eZ2, and the recently
developed HHMM model, see below. Among these theories, mdigtion theory is
most similar to Surprisal and DLT integration cost.

The present model differs from Surprisal most importamlyhat it contains the
additional verification component. The Surprisal compaweéour model is quite sim-
ilar to Surprisal calculated on Roark’s PCFG parser, whicevident from their high
correlation ¢ = 0.60, Pearson’s product-moment correlation; note that thimber
differs from correlations shown in Table 9.4, as it refer$ydo the Surprisal com-
ponent of our measure). Differences occur through the usifefent formalisms, a
right-corner transformed PCFG vs. PLTAG, as well as impletaigonal aspects such
as beam widths. As shown in Table 9.6, these differencew alls model to correctly
account for the asymmetry in English relative clauses antte@mbedding on top of
what Surprisal can account for. Furthermore, the broagi@me evaluation showed
that our theory is better suited for explaining difficulty maturally-occurring text.
Others have also evaluated Surprisal on the Dundee Corparnédly et |.fgza>3)

Potsdam Sentence CorpLs (Kliegl et‘al., iOOG) and MIT neesby Asaf Bachrach
dRoark et al.
so far been shown to correctly predict broad-coverage mgéadnes.

, 2009), but only structural Surprisal estesanot lexical Surprisal, have

The relationship between our theory’s verification compu@ad DLT integration
cost is a bit more complex. DLT integration cost predictscessing difficulty based
on the number of discourse referents that occur betweenahé and its preceding
dependent(s). The relationship between the difficulty jotexhs and reading times is
for simplicity suggested to be linear Gibson (2000), whereerification cost in the
model suggested here depends on the probability of theghi@uliree that’s verified,
as well as the the distance of the initial prediction poinaswed in words and the
decay factor, and modulated further by reactivations thinaategration of other words
into the predicted structure. The correlation between Dit€égration cost estimations
and the verification cost component of our theory is 0.27 (according to Pearson’s
product-moment correlation; evaluated only on those wofdee Dundee Corpus on
which both theories make non-zero predictions). Our modal &plain prediction
effects likeeither..orprocessing, facilitating ambiguity and broad-coveragepssing
on top of what DLT integration cost can explain, see Table 9.6
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Theories EOP ERC EAL GRC FA LC DI SC CE BC
this work + + =) ? + ? ? -+ 4+
Surprisal + - =) + + — - - NA (#)
DLT — + — - - NA NA + + -
Memory&Activ. | NA + NA + NA NA NA + + NA
Entropy NA NA NA NA NA NA NA NA NA +
Competition NA NA NA NA (=) NA + NA NA NA
HHMM NA NA NA NA NA NA NA NA NA +

Table 9.6: Comparing explanatory power of different sentence processing theories
for empirical processing difficulty phenomena. EOP = Either...or prediction effects;

ERC = classical English SRC / ORC asymmetry; EAL = English anti-locality effect

Jaeger et al., 2010); GRC = Anti-locality effects in German Relative Clauses; FA =

Facilitating Ambiguity, LC = Local Coherence Effects; DI = Digging-In Effects; SC =
Storage Cost Effects; CE = centre embedding; BC = broad coverage; '+ means that
the effect can be explained, '=" means it cannot be explained, '?’ means that it can in
principle be explained (e.g. with the addition of a semantic model) but remains to be
shown, and 'NA’" means that, to the best of our knowledge, this effect has not been
tested for that theory. For ‘(-)’ refer to Sections[9.1.5 and

Lewis and Vasish{h’sl (2005) Memory and Activation modek(Section 2.2.8) is
in some ways similar to DLT integration cost, but uses a wedkivated psycholinguis-

tic account of human memory and activation of lexical itemisich allows it to explain
German anti-locality effects on top of what DLT can expldinwould be interesting
to integrate the psycholinguistically motivated architee for memory access into our
model.

Entropy and Competition models are more different from tloeleh proposed here,

see Sections 2.2.6 and 2.2.7. Entropy has only been testawad-coverage text, but
not on any of the phenomena evaluated here (as far as we are)aiMae competition

model is the only one among models compared here that camsticioy digging-in
effects, see Table 9.6. Competition models have also baanetl to account for facil-
itating ambiguity (Green and Mitchell, 2006), on the grouhdt some people would
choose the one analysis, and other the other one, such thihefanambiguous cases,

some penalty for maintaining the other analysis would benmed, but not in the am-
biguous case. However, under this interpretation, a lasg@nce between reading
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times would be expected for the unambiguous condition, whizs not been shown
to be the case. Due to this controversy, the field is marke@-asfor Competition
models in Table 9.6.

Concurrently to the model presented in this thesis, Schatlat. (2008) have sug-

gested a model which is motivated by incremental (thougtiuilyt connected), time-
linear and memory-restricted processing. Their parses asgerarchical HMM which
is right-corner transformed. The HHMM process itself hoer\vdoes not seem to
be a psycholinguistically well-motivated model. Parsinghwvihe HHMM is not lex-

icalized. ' Schuler et M (2008) found that a stack size of fewgenerally sufficient
for parsing most of the Penn TreeBank. This is comparablaitaesults in that in-
stead of using a stack, we connect fragments using predittes, and found that no
more than 5 prediction trees (and in most cases, 4 preditBes) are needed to parse

the PTBJ Wu et al.‘ (2010) derive psycholinguistic measuras ftheir HHMM parser
by calculating Surprisal and counting average stack deptisa parallel analyses for
each word, which bears similarity with DLT storage cost. Bof these measures
were found to be positive predictors in a regression modeletiog self-paced read-
ing durations on a corpus of four short narratives desigaewntain large integration
costs, by Asaf Bachrach. This is the same corpus used in thiik te evaluate the
implementation of DLT integration cost, see Section 5.3isTéxt is less well-suited
for evaluating a model of sentence processing than the Ru@depus as it does not
contain naturally occurring text, is more difficult to pave¢h a parser trained on news-
paper (see Section 5.3), and uses self-paced reading {e&l comments in Section
2.1.4.1) instead of eye-tracking as a measure of procesifiinmulty. Difficulty pre-
dictions from the HHMM model have not been evaluated on ampegrental data,
see Table 96.

9.5 Conclusions

This chapter has evaluated the predictions of the proagssificulty proposed in
Chapter 6, based on the implementation of the strictly imenetal predictive parser
described in Chapter 8 and based on the PLTAG formalism,ggested in Chapter 7.
We found that our theory can simultaneously account for robtlee empirical data
than alternative theories, in particular, it correctlygiots both Surprisal and locality
effects. Additionally, we compared our theory on broaderage text from the Dundee
Corpus, replicating the studies presented in Chapters %banmith our theory as an
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explanatory variable. We were able to show that our thecegipts reading times on
the embedded verb of subject and object relative clausésrtiban either Surprisal
or DLT integration cost, and that it can also correctly actdar processing difficulty
across the whole of the Dundee Corpus. We also showed thasitle to predict a
larger proportion of the variance in the reading time datahenDundee Corpus than
either Surprisal or DLT.

In conclusion, we find a wide range of empirical support for BUTAG-based
theory of prediction and verification in human sentence @ssmg, and show that it
has larger explanatory power than previous theories oesentprocessing.






Chapter 10
Conclusions and Future Work

This Chapter briefly summarizes the main contributions thast thesis makes, and
points out directions for further research.

The first claim of this thesis, that the evaluation of psyoimlistic theories on
broad-coverage data can be a valid additional resourcadditmal lab experiments
and that it can provide insights which cannot be obtaineoh fi@ditional experiment
data, was shown in Chapters 4, 5 and 9.2: Chapter 4 showeaitlestablished effect,
the subject vs. object relative clause asymmetry, can @sthbwn for relative clauses
from naturally occurring text. Chapter 5 compared two éxgstheories, Dependency
Locality Theory (DLT) and Surprisal on the broad-coveragepas and found that
DLT, while making correct predictions for verbs and somenmsywannot correctly ac-
count for the difficulty effect across all words. The corptigly furthermore indicated
that the role of auxiliaries and compound nouns needs touasiigated in more de-
tail. Section 9.2 provides supporting evidence for the th@ooposed in this work, in
addition to the evaluation on case studies, and comparésnEenprocessing theories
also with respect to how much of the variance in the reading tiata they can account
for.

The second claim, stating that Surprisal and Dependencslitpd heory explain
different aspects of sentence processing was shown in &haptvhere we found that
both theories can explain some of the data, but their priedgtare not significantly
correlated.

The third claim was that modelling prediction and verifioatprocesses is cogni-
tively plausible, and that it provides a framework for combg aspects from DLT and
Surprisal. The plausibility of prediction and verificatimsupported by the discussion
of recent experimental evidence in Chapter 6. We have alswrslthat our model

267
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incorporating the explicit prediction and verification rhaaism is very successful at
predicting a range of experimental data (Section 9). Am@hapter 8.7 showed how
the modelling of prediction and verification naturally camgs aspects of Surprisal
and Dependency Locality Theory.

10.1 Main Contributions

The first part of this thesis showed that eye-tracking daienfnaturally occurring
text can be a beneficial complimentary method for evaluatiegries of human lan-
guage processing. The second part developed, implememtieglvaluated a model of
prediction coupled with a verification process for humarteece processing. The re-
sults provide some methodological, experimental and #tea contributions, as well
as the PLTAG version of the Penn Treebank as a resource amidtly shcremental
parser for TAG as an NLP tool.

e Evaluation on a broad-coverage corpus.
Evaluation on broad-coverage text allows to detect pracgssfficulty on struc-
tures in context and possibly tease apart effects intratlbgethe experiment
from processing difficulty encountered in every-day preges Furthermore,
theories of sentence processing can be tested as to whb#yesdtale up to
broad-coverage, naturally occurring text, an aspect wtagbarticularly rele-
vant with respect to applying psycholinguistic theoriesdentence processing
in NLP applications.
Demonstrating the usefulness of eye-tracking corpora lwapefully motivate
the creation of similar corpora that overcome some of thetdimons of the
Dundee Corpus, in particular the fact that no manual paese dnnotation is
available for the Dundee Corpus, and that it was only readObgubjects.

e Demonstration that syntactic processing effects can befoueye-tracking data
of naturally-occurring text.
Previous models of reading primarily focussed on low-leeading effects. We
have shown in our studies in Chapters 4 and 5 that higherdgwmeactic effects
that can also be detected in the reading data, and that tieydaccount for
a part of the variance in the reading data that lower-levete$ cannot account
for.
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Comparison of alternative sentence processing theoridseosame resource.
Three theories of sentence processing, DLT integratioty &sprisal and the
prediction theory proposed in this thesis were evaluatethersame resource.
This made it possible to compare effect sizes in terms oawag accounted for,
and determine whether the same or different parts of thanvegiwere explained
by the theories.

Implementation of DLT.

To the best of our knowledge, this work performed the firstlempentation of
DLT. Before, DLT had been calculated by hand for a small nunatbenaterials
used in experiments.

Definition and Formalization of PLTAG.

The design of PLTAG was guided by the principles of increrakiytand con-

nectedness and includes an explicit mechanism for gengraiid verifying syn-
tactic predictions. Chapter 7.2 argued that PLTAG and LTA&sarongly equiv-
alent. PLTAG differs from the most similar TAG variant, DVTA in that its

lexicon is much smaller, providing adaptable predictioaigsize, and having
shown that parsing with it is tractable.

PLTAG Treebank and Lexicon.
We converted the Penn TreeBank into PLTAG format and indwc@&l.TAG
lexicon, consisting of canonical LTAG trees and predicti@es.

Proposition of a new cognitively plausible theory for syatt@processing.

The theory proposed in this work is based on psycholinguallyi plausible as-
sumptions including incremental processing, memory decalyan explicit pre-
diction and verification mechanism.

Implementation of a strictly incremental statistical gar®r PLTAG.

The parser is to our knowledge the first strictly incremeptadictive parser. We
show that it can tractably parse broad-coverage data amdt thehieves accu-
racy results that make it suitable for using as a basis fduatiag the sentence
processing theory.

Implementation of the PLTAG-based sentence processimgyhe
The full implementation of the proposed theory makes it fdsd0 evaluate
predictions for processing difficulty automatically on baxperimental items
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and broad coverage text. Furthermore, it can make predgba untested phe-
nomena that can then be verified in a laboratory experiment.

e Evaluation of the PLTAG-based sentence processing theory.

The model of sentence processing difficulty proposed intti@sis captures ex-
perimental results from the literature, and can explaith botality and predic-
tion effects, which standard models of sentence processi@dLT and Sur-
prisal are unable to account for simultaneously. Furtheemivis validated by
the broad-coverage evaluation: it can explain the variameceading times on
naturally-occurring text better than alternative modéte [Surprisal and DLT
integration cost. Our model therefore constitutes an itgudrstep towards a
unified theory of human parsing.

10.2 Directions for Further Research

The results obtained in this thesis open directions foihintresearch. This section
point outs some interesting future directions which buitdtoe present work.

10.2.1 Evaluation of Theory in Other Languages

The theory developed in this thesis was only implementedestdd on English. How-
ever, a plausible theory of human sentence comprehensiutdsimake correct predic-
tions for a range of (ideally all) languages. PLTAG couldbdie used as a formalism
for implementing our theory in other languages, becausentildly context-sensitive
and can therefore model cross-serial dependency coristisi¢hat have been argued
to exist in Dutch‘(Bresnan et AI., 1982) and Swiss Gen%are(&m@S).

Studying crosslinguistic phenomena is particularly iegéing because some psy-

cholinguistic effects may only be tested based on manijpmsthat are not grammati-
cal in English, but could be manipulated and tested in amd¢éinguage where they are
grammatical.

In order for our theory to generalize to other languages, ustmalso take into
account aspects of language that are currently largelyréghcsuch as morphology.
A first starting point would be to train the parser and testttieory on French, be-
cause there is a broad-coverage French eye-tracking cavpailable, which was also

collected by the Dundee group (Kennedy and Pynte, 2005).nfarasting aspect in
which French differs from English is for example headedméssun compounds (in
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English, the head is usually the last component, whereaseinch it tends to be the
first component).

10.2.2 Integration with Semantics and Discourse

In recent years, people have argued that the traditional @relanguage processing is
often too syntacto-centrii: (Jacken%ff, 2d03; van Berkﬂai.eL?O%?). This thesis fo-
cussed only on syntax, but this is of course far from the whtaegy. We saw in Section
9.2 that the syntactic predictors indeed only explain a bpmaportion of the variance

in the reading data. A first step towards combining syntastiatsemantic effects into a

combined Surprisal measure have been undertaken in (Mitthed., 2010), where we

combine syntactic Surprisal based on the Roark parser eittastic Surprisal (based
on LSA) and calculate a combined Surprisal measure thatowesrmodel fit over just
syntactic Surprisal. Ideally, however, we would like to tiseparser presented here, as
we have shown that surprisal estimates from the PLTAG pans¢ch reading times on
the Dundee corpus better than surprisal estimates basdw dtoiark parser, and be-
cause it implements a verification component. The semanticgntactic components
should also be integrated better, such that they can infach ether: the semantic
component should take into account syntactic relatiorsstapd the parser could take
semantic plausibility into account when rating analyseSAlonly quantifies how re-
alted two lexemes are irrespective of their roles to eackrabh in the sentence. A
deeper semantic approach could calculate semantic asddgsed on the TAG deriva-
tions. Modelling discourse effects, reference resolutiod etc. would be important
further steps towards a more holistic model of human langyagcessing.

10.2.3 Incremental Update of the Language Model

The model proposed in this thesis only deals with languaggcehension, and is ag-
nostic as to how the probabilities are acquired, and to hay thould change over
time (in fact, in the current training of the model, probdl@k are based on the batch
of events observed during training, and then never updated)etter model would
take into account short term priming as well as long termnliegy from observing

new events during run time. Dubey et al. (2006) has shown hpvolability model

for a parser can be updated during parsing to model short peimning. Structures
which have been encountered recently are then predicteel ¢asier and hence faster
to process than otherwise expected. Over time, this effeekposure to a specific
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encountered structure weakens, but will have a small effied¢he overall probability
distribution in the model. Such learning effects have atseived empirical support

from a recent studﬁl (Wells et HI 2&)09) that exposed segeoalps of adults to differ-
ent stimuli over a couple of weeks, and showed that it aftehtev difficult they found
the processing of such structures at the end.

10.2.4 Experiments on Prediction Grain Size

The specification of the sentence processing theory andliie@formalism in Sec-
tion (7.3 raised questions about the exact grain size of gieds. Are arguments
principally different from modifiers in that they are preidid while modifiers are not?
And which role does context play in this respect? It has beews that modifiers can
be predicted if they are required to semantically disamdiga referent. How detailed
are the predictions? How specific are predictions of sulgoaization frames, and
when are they generated? And how does the prediction of sedgmrézation frames
generalize to languages with free word order?
These questions should be answered based on laboratonyneapts.

10.2.5 Automatic Determination of Lexicon Entry Sizes

The extended domain of locality in TAG gives us the flexililib generate lexicon
entries with more than one lexical anchor, and thus moda&taéxed multi-word ex-

pressions and idioms. As pointed out in Sections 6.1.2 ah@,4t would be desirable
to learn in a more principled fashion from data what size &taxentry should be,
for example using a DOP-like framework or extending the ilegprocess proposed in
dCohn et a%., 2009) for Tree Substitution Grammar to PLTAG®&Ures.

10.2.6 Modelling the Effect of Processing Difficulty on Read ing

Times

As briefly discussed in Chapters 2 and 9, theories of senf@ooessing try to predict
processing difficulty, and evaluate predictions most oftemeading times. If done on
a word-by-word basis, like in our broad-coverage evalumgim Chapters|5 and 9.2,
possible spill-over and skipping effects are not accoufdedlIt is possible that this
severely affects some words, like e.g. the determiner ofreaxpected noun phrase,
which will receive a high difficulty prediction by Surprisbhsed theories, which is



10.2. Directions for Further Research 273

most likely to be only empirically measurable on the follagiinoun due to common
skipping of words that are short and frequent. One way ofisglthis issue would

be to integrate the difficulty predictions into a model of -egevement, such as the
ones discussed in 2.1.3, in particular E-Z Reader 10, whighgests a mechanism for

integrating higher-level processés (Reichle eH al., 2008Klinton Bicknell’'s recent

rational model of reading (Bicknell and Levy, 2010).
In a similar line or argument, a better mathematical modeblseo be developed
in order to include information about skipping into the reggion models.

10.2.7 Improving Parser Performance

Finally, the performance of the incremental predictive RGTparser presented in
Chapter 8 falls short of the parsing accuracy achieved bwytedstate-of-the-art
parsers. It is however very likely, that performance can ldeswntially improved
if some psycholinguistically motivated constraints ar@xed. First promising steps
would be to introduce supertagging for canonical trees ditewh to prediction trees.
In addition, the lexicon could be changed to be smaller, tadacing data sparseness,

by leaving out all traces and doing sister adjunction (Cdn,iLﬂﬁ)OO) instead of standard
TAG adjunction.






Appendix A

CCG and Incrementality

Combinatory Categorial Grammar (CCG, Steedman, 1996,)200@& grammatical

theory which provides a transparent interface betweeraser$yntax and underlying
semantics. Each (complete or partial) syntactic derivatiarresponds directly to an
interpretable structure. This allows CCG to provide an aotdor the incremental

nature of human language processing. As we will discussignctiapter, CCG with

the standard lexicon and rules does however not always d&lotie strongest inter-
pretation of incrementality.

In CCG, the language-specific knowledge about the gramnsdoisd in the lex-
icon. There is a finite set of rules that allow the lexical gatées to combine. These
rules are based on the categorial calculus (Ajdukiewic3 1‘98ar-HiIIe‘, 195%) as
well as on the combinatory logic of Curry and Feys (1958).

This section is first going to give an overview of the CCG camaltion rules, before
discussing incremental processing in CCG. Most exampled @ explaining CCG

rules are taken from Steedman (2000), which the reader dlatad refer to for further

detail.

A.1 Standard CCG Rules

Each word in the lexicon is assigned one or more categorasitfine its behaviour
in the sentence. Categories for a word can either be atomid\®, S, PP, or complex
like the category{S\NP)/NP. Complex categorieX /Y andX\Y designate a functor-
argument relationship betweefrandY, where the directionality of the relation is
indicated by the forward slashand the backward slash For example, categoty/Y
takes category as an argument to its right and yields categéryvhile categoryx\Y

275
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takes category as an argument to its left to result in categry
These two rules are referred to as forward and backward ibmattapplication,
shown in Rules (1-a) and (1-b).

(1)  Functional Application

a. X/Y Y = X (>)
b. Y X\ Y - X (<)

Figure A.1 shows natural language examples for functiopplieation. With only
functional application, it is possible to derive normalrfoparses of traditional con-
stituents of English sentences that do not involve any kirtdaces or movement.

John sleeps eats carrots
‘NP S\NP (S\NP)/NP NP
s S\NP

(a) forward application (b) backward application

Figure A.1: Examples of forward and backward application in CCG.

In addition to these two most basic operators, the canoi€4 inventory as de-

finedin kSteedma%, ZObO) contains a range of further opesraforward and backward
composition for example are needed to allow for non-stahdanstituents, such as in
“Mary [[bought] and [will eat]] carrots.”. Essentially, composition allows to apply a
functor to its argument even if that argument is a functaliis.e. if the argument has
dependents itself. The simplest case of this are Forwardackward Composition,
see Rules (2) and Figure A.2, but CCG allows the same alscaf®scwhere multi-
ple dependents are missing (Generalized Composition),“dshn [[recommended],
and[will give]], a book to Mary!, see Rules (3) and Figure A.3. Composition is used
when the argument of a function is itself still expectinguargents. These expected
arguments are then inherited to the functor category.

will eat
(S\NP)/VP VP/NP
(S\NP)/NP

Figure A.2: An example of forward composition in CCG.
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will give
(S\NP)/VP (VP/PP)/NP
(S\NP)/PPY/NP >

Figure A.3: Examples of generalized forward composition in CCG.

(2) Composition

a. X/Y Y/Z = X/Z (> B)
b. Y\Z X\ Y = X\ Z (< B)

(3) Generalized Composition

a. X/Y Y/2)/ % = X/2Z)/$ (>B"
b. (Y\2)\$ X\Y = X\ Z2)\$ (< B"

CCG also has unary rules, known as type-raising rules, séesR4) and Figure
A4l Type-raising turns an argument of a function into a fioxcwhich takes the orig-
inal function into its argument. Type-raising usually octogether with composition
and is necessary for filling argument slots of the functot #na not directly accessi-
ble. The argument can turn into a function through typexngisind then inherit the
remaining arguments of the original function through cosipon. Type-raising is of-
ten used for subjects, e.g. in sentences]ljiiteter bought] and[Mary ate]] the carrot.
To prevent extensive type-raising that would potentiayd to over-generation of the
grammar, T\ X and T/ X have to be licensed categories for the language.

(4)  Type-raising

a. X = T/(T\X) (>T)
b. X = T\(T/X) (<T)
Peter bought
NP (S\NP)/NP
S/(S\NP)
S/NP

Figure A.4: Example of forward type raising in CCG.

The intuition behind type-raising of NPs is that the arguteam by virtue of its
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case demand for a specific predicate in order to build a proposin inflecting lan-
guages, a dative NP can therefore select for different websa accusative NP. Nom-
inative vs. accusative NPs would just be type-raised teefit complex categories,
reflecting their function in the sentence.

Examples for type-raising English NPs in their differemdtions occurs for ex-
ample, when combining clusters of English NPs into constits (for example for a
clause such a%jive [a teacher an apple] and [a policeman a flower]see Figure

A.5).

give a policeman a flower

((S\NP)/NP)/NP NP/N N NP/N N

> >

NP NP
((S\NP)/NP)\ (((S\NP)/NP)/NP) <S\NP>\<<S\NP>/NP;>
(S\NP)\(((S\NP)/NP)/NP)

S\NP

B

Figure A.5: Example of type raising with type-raising categories for NPs in different

syntactic functions.

Type raising and composition rules are also necessary 8e getractions like in
relative clauses, where, just as in coordination, the s¢amgument is not directly
available.

The last of the standard CCG rules is forward and backwaos¢ed) substitution.
Substitution rules are needed for so-called “parasiticfagxtracted items with more
than one dependency, as‘articles which; | filej without reading’ .

(5)  Substitution
a. Y/Z (X\Y)/Z = X/Z (<S) whereY=S\$

Finally, there is a special ternary coordination rule shawRule|(6). This rule
(and the associated lexicon en@DNJfor “and” / “or” etc.) is preferablé over the
lexicon entry of a conjundtX\ X)/X.

(6) Coordination

a. X CONJ X’ = X" (<P >)

1The (X\ X)/X rule allowed for problematic application of unary rules omposition to the con-
juncts before coordination was completed,dmzﬁ)ﬁ)XZO
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The full set of CCG rules includes crossed versions of fodveard backward com-
position and substitution. However, it depends on the lagguvhether how many
of these rules are allowed to be applied. In English, forweaassed composition
is forbidden, because it would cause over-generation. Ka#yecrossed rules are
“dangerous” in order-sensitive languages, because theleeaa to accepting ungram-
matical word sequences. On the other hand, English doestpgeaokward crossed
composition. This rule is needed in order to account for ééi-shift. To prevent
over-generation, both of the backward crossed rules (cempio and substitution) are
restricted in what categories they can be used on, as seanei(H.

A.2 The limits of CCG and Over-generation

CCG rules create so-called spurious ambiguity. This mdaatsthere are alternative
ways and orders of applying these rules, which lead to syintdly distinct but seman-
tically equivalent derivations of a sequence of words. Tdralination of type-raising
and composition can be used to construct almost any syntaeg for a sequence
of words. Current CCG parsers create CCG normal form désivat which means
that they use type raising and composition only when theeseetcan’t be correctly
parsed otherwise. However, the possibility of building +st@ndard of constituents,
which are licensed by how phrases can be coordinated, all@@ to make more in-
cremental derivations and thereby explain some of the imergality that is observed
in the human parser.

However, it is not possible to build an arbitrary derivatigsing these rules, and
this sets a limit on how incremental a bottom-up CCG parséhn thie standard rules
can actually be. For example, the standard set of rules isuféitient to build an
incremental derivation of object relative clauses li&porter who John attacke@ven
though it is grammatically possible to form a coordinatidhe form: [[the reporter
who John] and [the senator who Mary]] attacked admitted tmee The normal
form derivation of an object relative clause is shown in E&gA.6. In order to parse
the coordinated phrase, it is necessary to use an additiolealcalledGeach Rule
Geach rule is not part of standard CCG. The normal form dieonaf the coordinated
ORCs with extracted verbs is shown in Figure|A.7. The Geat#hisua unary rule,
see Rule (7). Interestingly, composition can be reducedeact rule and functional
application (see Figure A.8). (This is where theB notation for composition comes
from.) Similarly, there’s a unary version of substitutisee Figure A.9.
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reporter who John attacked
N (N\N)/(S/NP) NP (S\NP)/NP
S/(S\NP)
S/NP
N\N -
N

Figure A.6: Example of normal form derivation for object relative clause in CCG.

flowers that John and  books which Jenny liked
N (N\N)/(S/NP) NP CONJ  N/((S\NP)/NP) (S\NP)/NP
N/(N\N) . S/(S\Npl(ee;
N/(S/NP) (S/NP)/((S\NP)/NP)
N/((S\NP)/NP) ”
N/((S\NP)/NP) >
N

Figure A.7: Example of incrementalised derivation for object relative clause in CCG

(coordination is not incremental in this derivation).

(7) Geach
a. Y/Z = Y/G)/(Z/G) (B)

This means that the Geach rule actu@lyechnically part of traditional CCG, but
it usually only occurs wrapped up with functional applicati But what happens, if we
want to take incrementality a step further and try to subtgithe ORC noun (“John”
in Figurel A.7) by an NP like “every accordionist”? CCG canparse object rela-
tive clauses which contain an embedded NP of length greatefuly incrementally,
see the derivation in Figure A.10, where the warencannot be integrated with the
sentence prefix.

Whether CCG should be able to strictly incrementally deolvgct relative clauses
is however open to discussion, as it depends on whether amensuch a§[books
that every] and [journals that no]] accordionist liked judged as similarly good and
grammatical asflowers that John and books which Jerry likeddnd whether it can
actually be shown that human processing is strictly incrgaiet this point.

The most incremental analysis of an object relative clasis®i fully incremental
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X/Y Y/Z
XY e (X/2)/(Y/2)
X/ Xz

(a) functional composition
(b) Geach and functional application

X/Y (Y/Z)/W
XN Y/ (X/2)/(Y/2)
Xz ((/2) W) /(Y /2)/W)
(c) generalized composition (X/Z)/W g

(d) Geach twice and functional application

Figure A.8: Functional composition (first derivation) can alternatively be understood as

a combination of the Geach rule and functional application (second derivation).

Y/Z (X\Y)/z
Y/Z (X\Y)/Z s
wés (X/Z)/((X\Y)/Z)
X/Z >
X/Z

(a) Binary substitution
(b) Unary substitution and functional application

Figure A.9: Binary substitution can be decomposed into unary substitution and func-

tional application.

(see Figure A.11 (b)), since one can only type-raise the N€rjaman” once the words
everyand manthey have been combined. Note though that the determinebean
integrated incrementally into other prefixes (e.g. in scjelative clauses), as shown
in the first derivation in Figure A.11 (a). Grammaticalityaggradual process, but it

books which every and journals that no man
N (N\N)/(S/NP) NP/N CONJ N/((S\(NP/N))/NP) N
N/(N\N) S/(S\(NP/N))
N/(S/NP)  (S/NP)/((S\(NP/N))/NP)
N/((S\(NP/N))/NP) . N
N/((S\(NP/N))/NP)

Figure A.10: Example of incrementalised derivation for object relative clause in CCG

(coordination is not incremental in this derivation).
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the woman that saw every and  the girlthat sawno man
NP/N N (N\N)/(S\NP) (S\NP)/NP NP/N CONJ NP/N N
>T
N/(NAN)
— B
NP/(N\N)
>B
NP/(S\NP)
>B
NP/NP
>B
NP/N
o>
NP/N
>
NP

(a) Subject relative clauses can be parsed incrementedly, though a wh-constraint is violated.

the woman that every man saw
NP/N N (N\N)/(S/NP) NP/N N (S\NP)/NP
N/(N\N) NP -
NP/(N\N) S/(S\NP)
NP/(S/NP) ~ S/NPI/(S\NP)/NP)
NP/((S\NP)/NP)
NP g

(b) Object relative clauses cannot be parsed incremeriiattause of the subject island constraint
(the NP has to be type-raised as a whole).

Figure A.11: Incrementality in subject relative clauses, which, contrarily to the object

relative clause, does get a derivation in CCG.

does not seem obvious why “Here come the woman that saw endiya girl that saw
no man.” would be much more grammatical than “Here come themavothat every
and the girl that no man saw.”, and thus justify why the onelmaderived in CCG and
the other one can't.

A.3 Incrementality in CCG

This section further analyses CCGs failure to fully increma#ly derive object relative
clauses. Table A.1 lists all possible category constelatifor a sequence of three
words, which are functors and arguments of one another.eTdrerfive constellations
which only use composition and functional application.

The other tree constellations (6., 7. and 8. in Figure A.lirectype-raising. De-
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1. ab b/c c

2. (&/c)/b b c

3. &b b c\a

4. a (be)h\a c

5. a ba c\b

6. ©a\b = c/(c\a) (@a)((©a\b) (c\a)\b
7. @/c b c\b = a/c c/(c\b) c\b
8. a bc c\a = b/(b\a) (b\a)/(c\a) c\a

Table A.1: Category constellations in a sequence of three adjacent words that are func-

tors and arguments of one another.

pending on the parametrisation of a specific language, hot Hie type-raising rules
for 6. and 7. would be parametrically licensed in standardC@hich means that it
depends on the specific instance whether a sequence of gategoparsable incre-
mentally. In the eighth case, the functya is not directly adjacent to its argument
a. Instead, there is another word is another word in the middieh takesc as its
argument. These categories can still be combined incraieosing type-raising and
geaching, but the type-raising required for this kind ofragien would likely not be
licensed by the language (since there’s no category thaasedporises for its grand-
child).

But what happens in CCG categories which cannot be parseshientally, even
when not following the type-raising restrictions, such bgeot relative clauses with an
NP that’'s composed of a determiner and a noun? This case@sguconstellation of
four categories:

a/(s/np) np/n n (s\np)/np =
a/(s/np) (§/np)/((s\(np/n))/np) n  (s\np)/np

Even after type-raising it is not possible to process thisgary constellation in-

crementally, due to the first category of the accusativeivelaronoun category. There
are however ways around this problem. For example, the aatey the object rel-
ative pronoun could be changed. If the category was (aff{¥/np))/np instead of
a/(s/np), an incremental derivation would be unproblematic.

However, there are theoretically motivated reasons footiginal object relative
pronoun category (NN/(S/NP)): the standard category prevents subject island vio-
lations by burying the subject NP in the verb category irgtefaincluding it in the
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the woman that every man saw
NP/N N ((N\N)/((S\NP)/NP))/NP NP/N N (S\NP)/NP
N/(N\Ni
NP /(N\N)
(NP/X)/((N\N)/X)
(NP/((S\NP)/NP))/NP
(NP/((S\NP)/NP))/N c
NP /((S\NP)/NP)
NP g

Figure A.12: Incremental derivation of object relative clause with new object relative

pronoun category.

category of the object relative pronoun. (The NP argumerfNixN/(S/NP)) is for
the object NP.) The subject NP is thus not accessible fromideithe relative clause.
This property is interesting, and raises the question véretican be used in a directed
manner in order to enforce island constraints. For exantipdeywh-island constraint is
violated in subject relative clauses likee man that every and the woman that no kid
saw and there are also ungrammatical object relative claughswdative as a relative
pronoun, where the ungrammaticality is due to the extracbibparts of the object
from within the relative clause. In this case, the categdrthe dative relative pro-
noun does not prevent extraction to outside the NP and CC@&ftre over-generates
in these cases]girls whom | gave every] and [boys whom you stole no], ballBee

D

Figurel A.13 for the complete derivation of this sentencee Baldridge (2002) for

more examples of CCG over-generating on relative clauseshé&change of the ob-

ject relative clause category to the more complex categaayns defensible, given that
it would allow fully incremental derivations of object réikse clauses, and lead to less
of an asymmetry in terms of when island constraints are tadlan CCG.

To summarise this observation, we conclude that increrhprbaessing can't be
guaranteed to be possible if the categories are not “deeméito reflect the structure
of the relevant part of the tree. The more complex versiomefdirect object relative
pronoun category(N\N)/((S\NPsubj)/NPobj))/NPsubj) reflects that a subject NP is
required first, followed by a transitive verb to the right,ilelihe standard simple object
relative pronoun categoryN\N) /(S/NPRypj) only encodes that a sentence lacking an
object NP is needed, but does not encode the subject NP. Thel&o version thus
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girls whom | gave every,
N ((NAN)/X)/((S/X)/NP) NP ((S\NP)/NP)/NP  NP/N
N/(N\N) >; S/(S\NP) )
(N/X)/((N\N)/X) (S/NP)/((S\NP)/NP)
(N/X)/((S/X)/NP) -~ (S/NP)/NP
N/NP
N/N >B
(a) beginning

girls whom | gave every, and  boys whom you stole no, ball

N/N CONJ N/N N
o>
N/N
N

(b) rest

Figure A.13: Derivation for an ungrammatical sentence.

captures more of the internal structure of the object nedatiause, which in turn allows
for incremental derivations. Incrementality can thus b&wled to a certain extent by
creating deeper categories, such as the new relative pnpooby type-raising (which
creates other forms of deep trees in that a noun phrase be@strictures rooted in
a sentence that lacks a noun phrase).






Appendix B

Traces in PLTAG

As with prediction trees, elementary trees for traces camtagrated by the parser
without any evidence from the input string, and therefone patentially slow parsing
down a lot. We therefore decided to "bind” all traces eitleethte tree that subcate-

gorises them, or to the filler, depending on the relationsieipveen filler and trace.
We here discuss two different attachment strategies:

1. The trace is attached into the tree that contains theituiist node for it if
¢ the substitution nodes for filler and trace are in the sammethtary tree
(like in passives, or simple extractions like “..., said X6nstructions).

¢ the tree that the trace substitutes into adjoins into thresttrat has a substi-
tution node for the filler (such as raising or control verbs).

2. The trace and filler make up a multi-component lexiconye(MCTAG, Weir,

1988), meaning that two elementary trees always have totheatiached into a
tree, not just one of them, if

e both the trace and the filler adjoin into the same tree (fong{a for ex-
trapolate modifiers).

e the trace-tree substitutes into a tree that in turn sulsstnto the filler tree
(as in relative clauses).

Cases we don't currently treat:

o if the filler and trace substitute into different trees (candealt with using the
non-tree-local version of MCTAG, but that makes MCTAG maxpressive)

287
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e parasitic gaps

All these cases are given with an example and discussed ia daebail below.

B.1 Relative Clauses

Our current treatment of relative clauses does not enco@ghehthe relative pronoun
is a subject or object pronoun. This only becomes encodeddatwith the verb entry,
which will contain a trace in the subject or object position.

An interesting alternative might be to observe the full pag¢tween the trace and
the filler. The tree for a relative pronoun would then look@ofvs:

NP NP
NP* SBAR NP* SBAR
WHNP-1 S WHNP-1 S
WP NP¢  VPE WP NP | Vi
| | | N
who  tracel whom VKNP
|
trace-1l

We will require further experiments to establish whether titace should is pre-
dicted as early as the relative pronoun is encountered orFwmtthe time being, the
trace is attached to the main verb and not an MCTAG entry aigrelative pronoun.

B.2 Traces for Passive Constructions

Following the above guidelines, a passive verb’s lexicanyeattaches the trace at ob-
ject position in the verb tree because both filler and traeesabstituted into this same
structure. This is attractive because it codes the fillererrelationship in passives
locally (since they are already co-indexed in the lexicoimygn
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S
NP-SUBJ-1 VP PUNCT]
TN

VBN NP+4race

| |
held *-1

B.3 Raising and Control

Raising constructions are slightly different, becausdithee is part of the recursively
adjoined tree and refers to the subject of that phrase. \Wa¥le to decide on how to
encode where to find the filler for the trace in such casesdiadth this may mainly

be a problem of a semantic interpretation component) — theedaolds for object

control constructions. The trace is here only predicteedhe head verb of the raising
or object control construction has been encountered. ipigrbs are however still
problematic because they don’t have a special tag thahdigghes them from regular
verbs. The automatic head finding rules based on Magermaat percolation table
determine raising verbs to be the head of the sentence arefdreeassign them an
incorrect structure (an auxiliary tree with the S node asanmsve structure, instead of
the VP node for the recursive structure).

S
NP-SUBJ-1 VP
/\ /\
D|T N|N VBZ S
The rate | RN
appears NP-SBJ VP

| PN
tracel TO VP

| |
to VB

sink
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automatic: S desired: VP
NP| VP VBZ S
/\* | T
VBZ S appears NP-SBJ VP*
| |
appears -NONE-
|
*1

B.4 Extraction

Traces that occur for topicalized direct speech like in.* ‘saidtrace Peter.” are easy
to treat because both filler and trace occur locally in theestige.

S
S-1 i) VP NP| A
/\
VBD S

said tracel

Other kinds of extraction are handled similarly, considereixample the following
sentencaBecause I'm late, Peter thinks O | hurry ugwhich contains an adjunct that
originated in a lower clause, and an empty element for tlaivel pronoun marked by
0. However, this does not lead to a problem, because thimk-tree is an auxiliary
tree that is adjoined in later. In terms of the lexicon howgtrgs analysis entails that
each verb must not only have an different elementary treedch of its arguments
that could be topicalized, but also for modifiers. The ak#iue to these multiple trees
is to use multi-component TAG (MCTAG). The SBAR sentence Hraltrace under
the VP are then simultaneously integrated at the VP. Sincegure full connectivity
in PLTAG, we would however have to add a prediction tree fertarb structure right
away for connectivity reasons, and the effect would be vemlar, perhaps attaching
the trace even earlier if we decided to use lazy predictiom @arsing strategy.

If deciding against MCTAG, we run into the question of preidic grain size again:
with the trace integrated into the verb structure, the traoeld only be predicted
once the head of the phrase (i.e. the verb, hkery up in the below example tree
structure) is encountered. This does not seem very plajsiblparticular for the
modifier example. MCTAG would on the other hand predict thed¢rand the structure
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in between once the filler clause “Because...” is encoudtgdme important aspect to
take care of when using MCTAG however is that both componteaie to be attached
to the same elementary tree; otherwise, the formalism besaoo powerful and will
over-generate. MCTAG can also explain extrapolationseaitht, for example: “The
man is really tall, who is wearing that hat.”

However, then we also have to learn the associated lexicoiegfrom the Penn
Treebank, such that the filler and trace elementary treestared together. This phe-
nomenon is not very common and occurs in a bit less than 1%ntéisees.

S S
NP| VP /\
/\ SBAR-1 S
| RN Because I'm late, NP VP
think THAT S* | /\
| I VP SBAR
0 | |
VBZ trace-1
/\
hurry up

B.5 Long-distance extractions

Similarly, we can use MCTAG for more deeply embedded corsitrns like “Which
dog did Peter buy a bone fggce?”

S and NP S , VP
WHNP-1  S* trace-1 NP VP VP* PP
which  dog Peter VBZ NP IN NP|
| PN |
buy a bone for

B.6 Parasitic gaps

A parasitic gap is a construction where a verb’s argumentoppkd (i.e. replaced
by a trace, the secortdace-1 in the below example) under the condition that the co-
referential argument has been fronted, also leaving a tvabhand (the firstrace-1 in

the below example). The difficulty about them is that the tngbst trace is contingent
on the WH-phrase having been fronted beforehand, and tisasttifficult to capture
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in a lexicon entry. (A sentence like “Peter files papers withreading.”) is not gram-
matically correct. | currently do not have a good treatmentifaces due to parasitic

gaps.

SBARQ
WHNP-1 SQ
/\
Which papers
VBD SQ
|
did
NP-2 VP
|
you
VB NP PP
file trace-1
IN S-NOM
| /\
without NP VP

| TN

trace2 VBG NP
| |

reading tracel
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