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Motivation

® psycholinguistic evidence indicates (strictly)
incremental processing in humans

® algorithms following that structure are
more human-like

® possible benefits for performance as well as
psycholinguistic understanding



Motivation

® new approach to language modeling for
speech recognition

® speech recognition is a real-time application
with incremental input

® it requires on-line processing



PCFGs

® 3 CFG G = (V,T,P.S°) consists of:
* V:set of non-terminal symbols
* T:set of terminal symbols
* P:set of production rules

o S°:start symbol € V



PCFGs

® a CFG G defines a language Lc

® a PCFG is a CFG with a probability
assigned to each rule

® a probability is assighed to each string



Grammar Transforms

® grammars can be transformed to an
equivalent structure in several ways

® this affects the parsing process regarding
tree traversal and thus the order of
production

® they also depend on the parsing strategy



Grammar Transforms

binarized trees
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Grammar Transforms

left-corner transform
for left-recursive rules
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L eft-Factorization

® delays predictions about constituents that
are expected later in the string

® transforms production rules s.t. all
productions are either binary, lexical rules
or epsilon productions



L eft-Factorization

e (A — B A-B) e G iff (A — BB) € G,
s.t. B eV and B e V*

e (A-ol = B A-0B) € Griff (A = aBB) € G,
s.t. BeV,x eV+,and B e V*

® (A-aB — €) € Griff (A = aB) € G,
s.t. BeVand & e V*

® (A—23)eGriff (A 2a)eG,st.ael
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L eft-Factorization
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L eft-Factorization

SO
-~ \
S </s>
I\iP VP
Spot  VBD /Np\ —>
ch a‘sed DT NN



L eft-Factorization
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L eft-Factorization
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L eft-Factorization

~ \

(A-x = B A-aB) € Gy Nmp illsi
iff (A = aBpB) € G, |
Spot VP S-NPVP

s.t.BeV,x eV+,and p e V* A

VBD VP-VBD €
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| |
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L eft-Factorization
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iff (A = OB) € G, |
Spot VP S-NPVP
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L eft-Factorization
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Parsing Algorithm

® incremental top-down parser

® beam search, using probability-based
heuristics

21



Parsing Algorithm

® candidate analyses C = (D, S, Pp, F w? ):
® D: derivation, list of rules
® S:stack of non-terminal symbols and $
® Pp: probability
® F:figure of merit

® w":string remaining to be parsed
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Parsing Algorithm

e C=(D,S,Pp, Fw): N
S S°-S
® D:derivation I\iP/>\IP\
o S:[VP, S-NPVP, S°-§, $] Spot VP S-NPVP

® Pp:pi
® F:pixLAP(S, ,,chased)

® w/:,chased..”
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Parsing Algorithm

C=(D,S,Po,Ew}) = C* = (D’ S’ Po, F, W)

D‘=D+A = X,.. Xk
S =A%

either $* = Xo... Xx$ and j = i
ork=0,Xo=w,j=i+l,and §' = &$

Ppo-= Pp P(A = X,... Xi)
F* = Po: LAP(S’w))
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Parsing Algorithm

® C=(D,5,Pp,FEwi):

S
® D:derivation NP/S}\]P $°-S
e S:[VBD,VP-VBD, S,Jot P -
S-NPVP, $°-S,$] ’
VBD VP-VBD

® Pp:p2=pixP(VP—.)
® F:p2x LAP(S, ,,chased®)

® w/:,chased..”
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Parsing Algorithm

e C=(D,S,Po,Fwy): s
S S°-S

® D:derivation N oRe

e S:[VP-VBD, S-NPVP, §°-S,$] Sp‘ot VmRVP
® Pp:p3= p2x P(VBD—chased) Y&° VP-VBD

® F:p3x LAP(S, ,the") chased

® wy:,the ..”
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Parsing Algorithm

® initial candidate on Ho: ([], S°$, I, I, w?)

® a candidate is popped from the priority
queue H;

® derived candidates are moved to priority
queues Hi and Hi+
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Parsing Algorithm

® termination condition:S = §, w; = </s>

® if Hi+ is sufficiently filled, the algorithm
moves from H; to Hi+|

® the complete parse on Hn+ with the
highest probability is selected as return
value
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| eft-Recursion

® |eft-factorizing the grammar does not
eliminate left-recursion

® due to the nature of beam search
improbable candidate analysis are discarded

® the longer a chain of consecutive left-
recursive rule productions the more
improbable it becomes
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| eft-Recursion

® the parser can still be inefficient regarding
left-recursion

® |eft-child chain for a word: consecutive non-
terminals above it are the leftmost children
within their constituent

30



| eft-Recursion

® a|most all correct analyses with left-
recursive chains are constructed

® many constructed analyses contains chains
that are longer than necessary
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Percent of total analyses
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| eft-Recursion

® to minimise the amount of incorrect analyses
left-recursive NP rules in the grammar are

transformed

® 3 flattened selective left-corner transform is

used

NP

/\
NP PP

2 e AN
NP NN IN

2 ]
NNP POS dog with...

b

Jim S
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| eft-Recursion

® recall and precision, as well as parsing time
increase slightly compared to an entirely
left-factorized grammar

® with an adjusted beam factor; recall and
precision are the same and the parser is
407% more efficient
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Conditioning

® additionally to the form of an expanding
CFG rule other features of a candidate
analysis are taken into account

® the incremental parser uses information to
predict the nature of further input more
accurately
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c-command

Node A c-commands node B iff:

® A does not dominate B /\
® B does not dominate A

® The first branching node
that dominates A,
also dominates B
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Conditioning

For all rules 4 = « © A

@ the parent, Y,, of constituent(.-l) in the derivation
p p

@ the closest sibling, Y5, to the left of constituent(4) in the derivation

A = POS, Y, # NULL

® the parent, Y,, of Y, in the derivation the closest c-commanding
g9 P . g
lexical head to A

= POS
the next closest c-commanding
the closest sibling, the POS of the closest lexical head to A

@ Y}, to the left of Y c-commanding lexical head to 4

If Y, is CC,‘the leftmost child \

® of the conjoining category; else NULL the closest c-commanding lexical head to A

the lexical head of constituent(.A4) if already seen; ‘
® otherwise the lexical head of the closest the next closest c-commanding
constituent to the left of A within constituent(.4) lexical head to A
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Conditioning

non-POS non-terminals A:

@) the closest sibling, Yps, to the left of Y,

§o
3 50

NP S-NP

Spot VP S-NPVP
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Conditioning

POS non-terminals A:

(B the closest c-commanding lexical head to A

§o
§ s°s
/\
T S-NIP
Spot VP S-NPVP

VED VP-VBD
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Conditioning

Corll_c(ii\izzla:ing [lrtm)eeTonic Information Level
(0,0,0) none simple PCFG
(2,2,2) par+sib small amount of structural context
(5,2,2) NT struct |all structural context for non-POS
(6,2,2) NT head lexical context for non-POS
(6,3,2) POS struct |more structural context for leftmost POS
(6,5,2) attach all attachment context for leftmost POS
(6,6,4) all everything
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Evaluation

Conditioning Labeled Labeled Percent
Recall Precision Failed
none 71,1 75,3 0,9
par+sib 82,8 83,6 l, |
NT struct 84,3 84,9 1,0
NT head 85,6 85,7 0,9
POS struct 86, | 86,2 1,0
attach 86,7 86,6 |,2
all 86,6 86,5 |,3

4]




Percentage Reduction

Evaluation

—©— Parse error

& Rule expansions
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Conditioning information
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Speech Recognition

. Word Sentence
Model LM VVeight Error Rate Error Rate
Roark |5 15,1 73,2
Treebank 5 16,5 79.8
Trigram
no Language 0 16.8 84.0

Model
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Speech Recognition

® an incremental top-down parser can be
used in a real-world application

® |ess accurate than state-of-the-art speech
recognition systems

® results of interpolation with a trigram

model imply that types of information are
orthogonal
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Summary

probabilistic grammars and transform
incremental top-down parsing

conditioning based on already observed
input and its structure

application to speech recognition
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Discussion

® benefits of grammar transforms
® improvement of conditioning
* finer distinctions
® a parsing model as a language model

* or as one of multiple models
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Thank you
for your attention.



Questions!?!






