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• Probabilistic Grammars

• Top-Down Parsing Algorithm

• Evaluation and Application

4



Motivation

• psycholinguistic evidence indicates (strictly) 
incremental processing in humans

• algorithms following that structure are 
more human-like

• possible benefits for performance as well as 
psycholinguistic understanding
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Motivation

• new approach to language modeling for 
speech recognition 

• speech recognition is a real-time application 
with incremental input

• it requires on-line processing
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PCFGs

• a CFG G = (V, T, P, S°) consists of:

• V: set of non-terminal symbols

• T: set of terminal symbols

• P: set of production rules

• S°: start symbol ! V
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PCFGs

• a CFG G defines a language LG

• a PCFG is a CFG with a probability 
assigned to each rule

• a probability is assigned to each string
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TextText

Grammar Transforms

• grammars can be transformed to an 
equivalent structure in several ways 

• this affects the parsing process regarding 
tree traversal and thus the order of 
production

• they also depend on the parsing strategy
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TextText

Grammar Transforms
binarized trees
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TextText

Grammar Transforms
left-corner transform
for left-recursive rules



Left-Factorization

• delays predictions about constituents that 
are expected later in the string

• transforms production rules s.t. all 
productions are either binary, lexical rules 
or epsilon productions
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Left-Factorization

• (A ! B  A-B) ! Gf iff (A ! B") ! G, 

s.t. B ! V and " ! V*

• (A-# ! B  A-#B) ! Gf iff (A ! #B") ! G, 

s.t. B ! V, # ! V+, and " ! V* 

• (A-#B ! $) ! Gf iff (A ! #B) ! G,

s.t. B ! V and # ! V* 

• (A ! a) ! Gf iff (A ! a) ! G, s.t. a ! T 
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TextText

Left-Factorization
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TextText

Left-Factorization
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TextText

Left-Factorization
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Left-Factorization
S°

S S°-S

NP S-NP </s>

Spot VP S-NP,VP
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(A ! B  A-B) ! Gf 

iff (A ! B") ! G, 

s.t. B ! V and " ! V*

VP ! VBD NP ! G

VP ! VBD  VP-VBD ! Gf



18

TextText

Left-Factorization

(A-# ! B  A-#B) ! Gf

iff (A ! #B") ! G,

s.t. B ! V, # ! V+, and " ! V*
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TextText

Left-Factorization

(A-#B ! $) ! Gf

iff (A ! #B) ! G,

s.t. B ! V and # ! V*

VP ! VBD NP ! G

VP-VBD,NP ! $ ! Gf
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TextText

Left-Factorization

(A ! a) ! Gf iff (A ! a) ! G, 

s.t. a ! T

DT ! the ! G

DT ! the ! Gf

S°
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Parsing Algorithm

• incremental top-down parser

• beam search, using probability-based 
heuristics
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Parsing Algorithm

• candidate analyses C = (D, S, PD, F, w  ):

• D: derivation, list of rules

• S: stack of non-terminal symbols and $

• PD: probability

• F: figure of merit

• w  : string remaining to be parsed
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Parsing Algorithm

• C = (D, S, PD, F, w1):

• D: derivation

• S: [VP,  S-NP,VP,  S°-S, $]

• PD: p1

• F: p1 x LAP(S, „chased“) 

• w1: „chased ...“
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Parsing Algorithm

C = (D, S, PD, F, w  ) ⇒ C‘ = (D‘, S‘, PD‘, F‘, w  )

• D‘ = D + A ! Xo...Xk 

• S = A#$

• either S‘ = Xo... Xk#$ and j = i 
or k = 0, X0 = wi, j = i +1, and S' = #$

• PD‘ = PD P(A ! Xo... Xk) 

• F‘ = PD‘ LAP(S‘,wj) 
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Parsing Algorithm

• C = (D, S, PD, F, w1):

• D: derivation

• S: [VBD,VP-VBD, 
     S-NP,VP, S°-S,$]

• PD: p2= p1 x P(VP!..)

• F: p2 x LAP(S, „chased“) 

• w1: „chased ...“
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Parsing Algorithm

• C = (D, S, PD, F, w2):

• D: derivation

• S: [VP-VBD, S-NP,VP, S°-S,$]

• PD: p3 = p2 x P(VBD!chased)

• F: p3 x LAP(S, „the“) 

• w2: „the ...“
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Parsing Algorithm

• initial candidate on H0: ([], S°$, 1, 1, w  )

• a candidate is popped from the priority 
queue Hi

• derived candidates are moved to priority 
queues Hi and Hi+1
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Parsing Algorithm

• termination condition: S = $, wi = </s>

• if Hi+1 is sufficiently filled, the algorithm 
moves from Hi to Hi+1

• the complete parse on Hn+1 with the 
highest probability is selected as return 
value
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TextText

Left-Recursion

• left-factorizing the grammar does not 
eliminate left-recursion

• due to the nature of beam search 
improbable candidate analysis are discarded

• the longer a chain of consecutive left-
recursive rule productions the more 
improbable it becomes
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TextText

Left-Recursion

• the parser can still be inefficient regarding 
left-recursion 

• left-child chain for a word: consecutive non-
terminals above it are the leftmost children 
within their constituent 
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TextText

Left-Recursion

• almost all correct analyses with left-
recursive chains are constructed 

• many constructed analyses contains chains 
that are longer than necessary
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TextText

Left-Recursion
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TextText

Left-Recursion
• to minimise the amount of incorrect analyses 

left-recursive NP rules in the grammar are 
transformed

• a flattened selective left-corner transform is 
used
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TextText

Left-Recursion

• recall and precision, as well as parsing time 
increase slightly compared to an entirely 
left-factorized grammar

• with an adjusted beam factor, recall and 
precision are the same and the parser is 
40% more efficient



Conditioning
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• additionally to the form of an expanding 
CFG rule other features of a candidate 
analysis are taken into account

• the incremental parser uses information to 
predict the nature of further input more 
accurately



c-command

• A does not dominate B

• B does not dominate A

• The first branching node 
that dominates A,
also dominates B
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Node A c-commands node B iff:
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Conditioning



Conditioning
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non-POS non-terminals A:

④ the closest sibling,  Yps, to the left of  Yp

S°

S S°-S

NP S-NP

Spot VP S-NP,VP



Conditioning

39

POS non-terminals A:

⑤ the closest c-commanding lexical head to A

S°

S S°-S

NP S-NP

Spot VP S-NP,VP

VBD VP-VBD



Conditioning
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Conditioning
Levels

Mnemonic
Label

Information Level

(0,0,0) none simple PCFG

(2,2,2) par+sib small amount of structural context

(5,2,2) NT struct all structural context for non-POS

(6,2,2) NT head lexical context for non-POS

(6,3,2) POS struct more structural context for leftmost POS

(6,5,2) attach all attachment context for leftmost POS

(6,6,4) all everything



Evaluation
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Conditioning
Labeled
Recall

Labeled
Precision

Percent
Failed

none 71,1 75,3 0,9

par+sib 82,8 83,6 1,1

NT struct 84,3 84,9 1,0

NT head 85,6 85,7 0,9

POS struct 86,1 86,2 1,0

attach 86,7 86,6 1,2

all 86,6 86,5 1,3



Evaluation
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Speech Recognition
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Model LM Weight
Word

Error Rate
Sentence 

Error Rate

Roark 15 15,1 73,2

Treebank 
Trigram

5 16,5 79,8

no Language 
Model

0 16,8 84,0



Speech Recognition

• an incremental top-down parser can be 
used in a real-world application

• less accurate than state-of-the-art speech 
recognition systems

• results of interpolation with a trigram 
model imply that types of information are 
orthogonal
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Summary

• probabilistic grammars and transform

• incremental top-down parsing

• conditioning based on already observed 
input and its structure

• application to speech recognition
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Discussion

• benefits of grammar transforms

• improvement of conditioning

• finer distinctions

• a parsing model as a language model

• or as one of multiple models
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Thank you
for your attention.



Questions?!
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