

Probabilistic Top-Down
Parsing and Language

Modeling

Incremental Processing - Vera Demberg
26. Mai 2011

Carolyn Ladda

Brian Roark (2001)

Overview

• Motivation

• Probabilistic Grammars

• Top-Down Parsing Algorithm

• Evaluation and Application

4

Motivation

• psycholinguistic evidence indicates (strictly)
incremental processing in humans

• algorithms following that structure are
more human-like

• possible benefits for performance as well as
psycholinguistic understanding

5

Motivation

• new approach to language modeling for
speech recognition

• speech recognition is a real-time application
with incremental input

• it requires on-line processing

6

PCFGs

• a CFG G = (V, T, P, S°) consists of:

• V: set of non-terminal symbols

• T: set of terminal symbols

• P: set of production rules

• S°: start symbol ! V

7

PCFGs

• a CFG G defines a language LG

• a PCFG is a CFG with a probability
assigned to each rule

• a probability is assigned to each string

8

9

TextText

Grammar Transforms

• grammars can be transformed to an
equivalent structure in several ways

• this affects the parsing process regarding
tree traversal and thus the order of
production

• they also depend on the parsing strategy

10

TextText

Grammar Transforms
binarized trees

11

TextText

Grammar Transforms
left-corner transform
for left-recursive rules

Left-Factorization

• delays predictions about constituents that
are expected later in the string

• transforms production rules s.t. all
productions are either binary, lexical rules
or epsilon productions

12

Left-Factorization

• (A ! B A-B) ! Gf iff (A ! B") ! G,

s.t. B ! V and " ! V*

• (A-# ! B A-#B) ! Gf iff (A ! #B") ! G,

s.t. B ! V, # ! V+, and " ! V*

• (A-#B ! $) ! Gf iff (A ! #B) ! G,

s.t. B ! V and # ! V*

• (A ! a) ! Gf iff (A ! a) ! G, s.t. a ! T

13

14

TextText

Left-Factorization

S°

S

NP VP

Spot VBD

chased

NP

DT

the

NN

ball

</s>

15

TextText

Left-Factorization

S°

S

NP VP

Spot VBD

chased

NP

DT

the

NN

ball

</s>

16

TextText

Left-Factorization
S°

S S°-S

NP S-NP </s>

Spot VP S-NP,VP

$VBD VP-VBD

chased NP VP-VBD,NP

DT NP-DT

the NN NP-DT,NN

ball

$

$

S°

S

NP VP

Spot VBD

chased

NP

DT

the

NN

ball

</s>

17

Left-Factorization
S°

S S°-S

NP S-NP </s>

Spot VP S-NP,VP

$VBD VP-VBD

chased NP VP-VBD,NP

DT NP-DT

the NN NP-DT,NN

ball

$

$

(A ! B A-B) ! Gf

iff (A ! B") ! G,

s.t. B ! V and " ! V*

VP ! VBD NP ! G

VP ! VBD VP-VBD ! Gf

18

TextText

Left-Factorization

(A-# ! B A-#B) ! Gf

iff (A ! #B") ! G,

s.t. B ! V, # ! V+, and " ! V*

VP ! VBD NP ! G

VP-VBD ! NP VP-VBD,NP ! Gf

S°

S S°-S

NP S-NP </s>

Spot VP S-NP,VP

$VBD VP-VBD

chased NP VP-VBD,NP

DT NP-DT

the NN NP-DT,NN

ball

$

$

19

TextText

Left-Factorization

(A-#B ! $) ! Gf

iff (A ! #B) ! G,

s.t. B ! V and # ! V*

VP ! VBD NP ! G

VP-VBD,NP ! $! Gf

S°

S S°-S

NP S-NP </s>

Spot VP S-NP,VP

$VBD VP-VBD

chased NP VP-VBD,NP

DT NP-DT

the NN NP-DT,NN

ball

$

$

20

TextText

Left-Factorization

(A ! a) ! Gf iff (A ! a) ! G,

s.t. a ! T

DT ! the ! G

DT ! the ! Gf

S°

S S°-S

NP S-NP </s>

Spot VP S-NP,VP

$VBD VP-VBD

chased NP VP-VBD,NP

DT NP-DT

the NN NP-DT,NN

ball

$

$

Parsing Algorithm

• incremental top-down parser

• beam search, using probability-based
heuristics

21

Parsing Algorithm

• candidate analyses C = (D, S, PD, F, w):

• D: derivation, list of rules

• S: stack of non-terminal symbols and $

• PD: probability

• F: figure of merit

• w : string remaining to be parsed

22

n
i

n
i

Parsing Algorithm

• C = (D, S, PD, F, w1):

• D: derivation

• S: [VP, S-NP,VP, S°-S, $]

• PD: p1

• F: p1 x LAP(S, „chased“)

• w1: „chased ...“

23

S°

S S°-S

NP S-NP

Spot VP S-NP,VP

Parsing Algorithm

C = (D, S, PD, F, w) ⇒ C‘ = (D‘, S‘, PD‘, F‘, w)

• D‘ = D + A ! Xo...Xk

• S = A#$

• either S‘ = Xo... Xk#$ and j = i
or k = 0, X0 = wi, j = i +1, and S' = #$

• PD‘ = PD P(A ! Xo... Xk)

• F‘ = PD‘ LAP(S‘,wj)
24

n
i

n
j

Parsing Algorithm

• C = (D, S, PD, F, w1):

• D: derivation

• S: [VBD,VP-VBD,
 S-NP,VP, S°-S,$]

• PD: p2= p1 x P(VP!..)

• F: p2 x LAP(S, „chased“)

• w1: „chased ...“

25

S°

S S°-S

NP S-NP

Spot VP S-NP,VP

VBD VP-VBD

Parsing Algorithm

• C = (D, S, PD, F, w2):

• D: derivation

• S: [VP-VBD, S-NP,VP, S°-S,$]

• PD: p3 = p2 x P(VBD!chased)

• F: p3 x LAP(S, „the“)

• w2: „the ...“

26

S°

S S°-S

NP S-NP

Spot VP S-NP,VP

VBD VP-VBD

chased

Parsing Algorithm

• initial candidate on H0: ([], S°$, 1, 1, w)

• a candidate is popped from the priority
queue Hi

• derived candidates are moved to priority
queues Hi and Hi+1

27

n
0

Parsing Algorithm

• termination condition: S = $, wi = </s>

• if Hi+1 is sufficiently filled, the algorithm
moves from Hi to Hi+1

• the complete parse on Hn+1 with the
highest probability is selected as return
value

28

29

TextText

Left-Recursion

• left-factorizing the grammar does not
eliminate left-recursion

• due to the nature of beam search
improbable candidate analysis are discarded

• the longer a chain of consecutive left-
recursive rule productions the more
improbable it becomes

30

TextText

Left-Recursion

• the parser can still be inefficient regarding
left-recursion

• left-child chain for a word: consecutive non-
terminals above it are the leftmost children
within their constituent

31

TextText

Left-Recursion

• almost all correct analyses with left-
recursive chains are constructed

• many constructed analyses contains chains
that are longer than necessary

32

TextText

Left-Recursion

33

TextText

Left-Recursion
• to minimise the amount of incorrect analyses

left-recursive NP rules in the grammar are
transformed

• a flattened selective left-corner transform is
used

34

TextText

Left-Recursion

• recall and precision, as well as parsing time
increase slightly compared to an entirely
left-factorized grammar

• with an adjusted beam factor, recall and
precision are the same and the parser is
40% more efficient

Conditioning

35

• additionally to the form of an expanding
CFG rule other features of a candidate
analysis are taken into account

• the incremental parser uses information to
predict the nature of further input more
accurately

c-command

• A does not dominate B

• B does not dominate A

• The first branching node
that dominates A,
also dominates B

36

Node A c-commands node B iff:

M

A B

DC

E

37

Conditioning

Conditioning

38

non-POS non-terminals A:

④ the closest sibling, Yps, to the left of Yp

S°

S S°-S

NP S-NP

Spot VP S-NP,VP

Conditioning

39

POS non-terminals A:

⑤ the closest c-commanding lexical head to A

S°

S S°-S

NP S-NP

Spot VP S-NP,VP

VBD VP-VBD

Conditioning

40

Conditioning
Levels

Mnemonic
Label

Information Level

(0,0,0) none simple PCFG

(2,2,2) par+sib small amount of structural context

(5,2,2) NT struct all structural context for non-POS

(6,2,2) NT head lexical context for non-POS

(6,3,2) POS struct more structural context for leftmost POS

(6,5,2) attach all attachment context for leftmost POS

(6,6,4) all everything

Evaluation

41

Conditioning
Labeled
Recall

Labeled
Precision

Percent
Failed

none 71,1 75,3 0,9

par+sib 82,8 83,6 1,1

NT struct 84,3 84,9 1,0

NT head 85,6 85,7 0,9

POS struct 86,1 86,2 1,0

attach 86,7 86,6 1,2

all 86,6 86,5 1,3

Evaluation

42

Speech Recognition

43

Model LM Weight
Word

Error Rate
Sentence

Error Rate

Roark 15 15,1 73,2

Treebank
Trigram

5 16,5 79,8

no Language
Model

0 16,8 84,0

Speech Recognition

• an incremental top-down parser can be
used in a real-world application

• less accurate than state-of-the-art speech
recognition systems

• results of interpolation with a trigram
model imply that types of information are
orthogonal

44

Summary

• probabilistic grammars and transform

• incremental top-down parsing

• conditioning based on already observed
input and its structure

• application to speech recognition

45

Discussion

• benefits of grammar transforms

• improvement of conditioning

• finer distinctions

• a parsing model as a language model

• or as one of multiple models

46

47

Thank you
for your attention.

Questions?!

48

