Uniform Information Density

Matthew W. Crocker
Vera Demberg

Block Course – Summer Semester 2015

Surprisal & Psycholinguistics

• The information conveyed by any given linguistic unit (e.g. phoneme, word, utterance) in context is called surprisal:

\[
Surprisal(x) = \log_2 \left(\frac{1}{P(x \mid context)} \right)
\]

• Surprisal will be high, when \(x \) has a low conditional probability, and low, when \(x \) has a high probability.

• Claim: Cognitive effort required to process a word is proportional to its surprisal
Information Theoretic Approaches

• Surprisal offers a (linguistic) theory neutral measure of the information conveyed by linguistic events

• The average surprisal of a word has been shown to correlate with word length, suggesting lexica have “evolved” towards an optimised encoding

 • predictable words (on average) are shorter

• Surprisal also offers a good index of on-line lexical and syntactic processing effort

 • predictable words convey less information, are easier

Rational Communication

• Linguistic forms are being reduced/expanded at all linguistic levels

• Variation enables modulation of the rate and linearization of message transmission

 • Evidence: Word length, speech, reading times

• Rational communication systems:

 • How is information communicated optimally?

 • Are speakers adapted to listeners constraints?
Uniform Information Density Hypothesis

Within the bounds defined by grammar, speakers prefer utterances that distribute information uniformly across the signal (information density). Where speakers have a choice between several variants to encode their message, they prefer the variant with more uniform information density (ceteris paribus).

Jaeger, 2010

See also:
Entropy Rate Constancy Principle, Genzel & Charniak (2002)

UID Hypotheses

• Channel Capacity provides an upper bound on the amount of information

• Language users prefer to distribute information uniformly over a message

bad use of channel
ID very variable

good use of channel
ID uniformly distributed
Information Density

• Uniform Information Density:
 • Maximizes information transmission
 • Minimize comprehender difficulty

\[
\text{Information}(\text{event}) = \log_2 \frac{1}{P(\text{event})}
\]
\[
= \log_2 \frac{1}{P(w_1)} + \log_2 \frac{1}{P(w_2 | w_1)} + ... + \log_2 \frac{1}{P(w_n | w_1...w_{n-1})}
\]

UID Hypotheses

• Variation in encoding serves to modulate information density

• Uniform information density at all levels of language use: speech to discourse

• Production choices are influenced by predictability:
 • Expansion of informationally dense (high surprisal) expressions
 • Reduction of more predictable expressions
 • Use forms that distribute information peaks over time
Variation and UID

- Within the bounds of the grammar, speakers should adopt the most encoding with greatest uniformity

- Note: assumes the alternatives are sufficiently meaning invariant

Linguistic Levels

- In principle, UID might be expected to be:
 - conditioned by all relevant context
 - relevant to determining encoding as all levels

\[
Surprisal(unit) = -\log_2 P(unit \mid \text{Context}) = -\log_2 P(word \mid \text{Script}) = -\log_2 P(syntactic_unit \mid \text{Discourse}) = -\log_2 P(phone \mid \text{Collocation})
\]
Scope for variation

- Speech: we can modulate the duration and energy of our vocalisations
- Lexical: we can choose longer and shorter forms
 - *math* versus *mathematics*
- Syntactic reductions, and alternative linearisation
 - *The thief (that was) arrested was guilty.*

Evidence from Speech

- Smooth Signal Redundancy Hypothesis (Aylett & Turk, 2004):

 the trade of “robust communication and articulatory effort suggests an inverse relation between redundancy and duration”

- The SSR hypothesis is similar to UID: expected material is articulated with shorter durations

- Examined a large corpus of spontaneous speech

- syllables coded with prosodic, durational, and redundancy information

- redundancy was determined by syllabic trigrams, word frequencies, and # of previous mentions

- a significant effect of prosodic and redundancy factors on duration in a large corpus of spontaneous running speech

- an inverse relationship between redundancy and duration
Constancy Rate Principle

- **Hypothesis**: The entropy rate of generated text should remains constant across that text.

- The accruing context will generally reduce entropy of the text over time.

- **Prediction**: local measure of entropy (ignoring context), should increase with each successive sentence in a text

Two models

- Genzel & Charniak therefore compute sentence level surprisal, across sample texts

- N-gram model:

\[
P(S) = P(w_1) \times P(w_2 \mid w_1) \times P(w_3 \mid w_2 w_1) \times \prod_{i=4}^{n} P(w_n \mid w_{n-1} w_{n-2} w_{n-3})
\]

- Parsing model:

\[
P(S) = \prod_{x \in T} P(x \mid \text{parents}(x))
\]
Entropy rate

Syntactic Reduction

- Jaeger (2010 & PhD) tests the UID hypothesis at the syntactic level

- The complementizer “that” is optional in English:

 My boss confirmed (that) I am absolutely crazy.

- UID predicts that that-mentioning will be influenced by the surprisal of the complement clause (CC) onset
Example: *that*-omission

- The complementizer “that” is optional in English:

 My boss confirmed (that) I am absolutely crazy.

- Uniform Information Density: Use of overt “that” increases with ID at onset of the CC (i.e. w_1), namely “I …”

 \[
 \text{Overt that} = \log_2 \left(\frac{1}{P(w_1 \mid CC, that, w_{-1})} \right)
 \]

 \[
 \text{Omitted that} = \log_2 \left(\frac{1}{P(CC \mid w_{-1})} \right) + \log_2 \left(\frac{1}{P(w_1 \mid CC, w_{-1})} \right)
 \]

 Jaeger, 2010

Jaeger, 2010
The Study

- A large scale corpus study of complement clause structures in spontaneous speech
- Switchboard corpus of telephone dialogues
- Compares UID with other theories of *that*-mention
 - availability, ambiguity avoidance, and dependency processing
- Tests the influence of UID above and beyond other known predictors of *that*-mention
Previous accounts

- Availability: this account assumes speakers insert that when they know the following words will be more difficult to retrieve, and want to maintain fluency:

 \[\text{I know [many of them are doing it].} \]

- Ambiguity avoidance: that-mention occurs when other complements are possible, case doesn’t disambiguate:

- Dependency accounts: increasing distance between the matrix verb and the CC correlates with that-mention

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Description</th>
<th>Type (βs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEPT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dependency length and position of CC</td>
<td></td>
<td>cont(3)</td>
</tr>
<tr>
<td>POSITION(MATRIX VERB)</td>
<td>CC position in the sentence</td>
<td>cont(1)</td>
</tr>
<tr>
<td>LENGTH(MATRIX VERB-TO-CC)</td>
<td>Distance of CC from matrix verb</td>
<td>cont(1)</td>
</tr>
<tr>
<td>LENGTH(CC ONSET)</td>
<td>Length of CC onset</td>
<td>cont(1)</td>
</tr>
<tr>
<td>LENGTH(CC REMAINDER)</td>
<td>Length of remainder of CC</td>
<td>cont(1)</td>
</tr>
<tr>
<td>Overt production difficulty at CC onset</td>
<td></td>
<td>cont(2)</td>
</tr>
<tr>
<td>SPEECH RATE</td>
<td>Log and squared log speech rate</td>
<td>cont(1)</td>
</tr>
<tr>
<td>PAUSE</td>
<td>Pause immediately preceding CC</td>
<td>cat(1)</td>
</tr>
<tr>
<td>DISFLUENCY</td>
<td>Normalized disfluency rate at CC onset</td>
<td>cont(1)</td>
</tr>
<tr>
<td>Lexical retrieval at CC onset</td>
<td></td>
<td>cont(1)</td>
</tr>
<tr>
<td>CC SUBJECT</td>
<td>Type of CC subject</td>
<td>cat(3)</td>
</tr>
<tr>
<td>SUBJECT IDENTITY</td>
<td>Matrix and CC subject are identical</td>
<td>cat(1)</td>
</tr>
<tr>
<td>FREQUENCY(CC SUBJECT HEAD)</td>
<td>Log frequency CC subject head lemma</td>
<td>cont(1)</td>
</tr>
<tr>
<td>WORD FORM SIMILARITY</td>
<td>Potential for double that sequence</td>
<td>cat(1)</td>
</tr>
<tr>
<td>Lexical retrieval before CC onset</td>
<td></td>
<td>cont(1)</td>
</tr>
<tr>
<td>FREQUENCY(MATRIX VERB)</td>
<td>Log frequency of verb lemma</td>
<td>cont(1)</td>
</tr>
<tr>
<td>Ambiguity avoidance at CC onset</td>
<td></td>
<td>cat(1)</td>
</tr>
<tr>
<td>AMBIGUOUS CC ONSET</td>
<td>CC onset ambiguous without that</td>
<td>cat(1)</td>
</tr>
<tr>
<td>Grammaticalization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATRIX SUBJECT</td>
<td>Type of matrix subject</td>
<td>cat(3)</td>
</tr>
<tr>
<td>Additional controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYNT. PERSISTENCE</td>
<td>Prime (if any) w/ or w/o that</td>
<td>cat(2)</td>
</tr>
<tr>
<td>MALE SPEAKER</td>
<td>Speaker is male</td>
<td>cat(1)</td>
</tr>
<tr>
<td>Total number of control parameters in model plus intercept</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
Support for UID

- ID has a significant influence on *that*-mention, even when all other predictors are controlled

- ID is in fact the stronger predictor in its contribution to the model’s likelihood (15% of model quality due to ID)

- Also support for the availability account (fluency) and dependency accounts, but only very limited support for ambiguity avoidance
Additional Evidence

• Frank and Jaeger (2008) find evidence that contraction is influence by ID:

 • “I am” vs. “I’m” – “you have” vs. “you’ve” – “did not vs. didn’t”

• for the 4-grams before host target after: they compute: \(I(t|b,h) \), \(I(t|a) \) and \(I(a|h,t) \)

• ID of the target had consistent influence on reduction, ID of the following word, less so

that-relativiser omission

\[\text{How big is } [\text{NP the family}_i \ [\text{RC (that) you cook for } i]] \]

• Similar to that-complementisers, that-mention is relative clauses is optional

• N-gram estimates of ID predicted use of “that”

• Additionally, evidence that purely structural ID also predicts use of “that”

Levy & Jaeger, 2007
Encoding and UID

\[
\text{Utterance} = \arg\max_{Enc_i} UID(Enc_i)
\]

Discussion

- Evidence for uniformity preference …
 - … but not for maximal use of channel capacity
 - … does not claim signal will be uniform

- Is UID really “audience design” or does the speaker just use their own “language model”
 - Does speaker behaviour vary across listeners?

- Omission and contraction are very localised
 - Does UID influence larger encoding choices?