Incremental Parsing with TAG

Miriam Kashammer

Course: Incremental Processing
Department of Computational Linguistics, Universitdt des Saarlandes

May 28, 2011

Introduction
“Incremental’ TAG [T}A? .
Strictly incremental TAG (,)(‘ vaten
Conclusion Jven

Tree Adjoining Grammar (TAG)

@ tree-rewriting formalism

@ a set of (elementary) trees with two operations

initial trees
auxiliary trees S

VP NP, VP
N

ADV VP* Vv

often ‘

Peter

Introduction

“Incremental’ TAG TAG
Strictly incremental TAG
Conclusion

Tree Adjoining Grammar

Operations

Substitution Replacing a leaf with an initial tree

Adjunction Replacing an internal node with an auxiliary tree

S
S /\
NP VP

N‘P ffffffffff >NPJ V‘P . Peter ADV VP

| |
Peter ; Y often Y
/| laughs laughs

Introduction

“Incremental’ TAG TAG
Strictly incremental TAG
Conclusion

Tree Adjoining Grammar

Some linguistic principles:
@ Lexicalization: Each elementary tree has at least one
non-empty lexical item, its anchor. (LTAG)

@ Predicate argument co-occurence: Elementary trees of
predicates contain slots for the arguments they subcategorize

for.
S
N‘P ********* »NP\L, » VP
Peter VP S V

Introduction
“Incremental’ TAG
Strictly incremental TAG
Conclusion

Why is TAG interesting?

Motivation

@ Mildly context-sensitive formalism

© |t generates (at least) all context-free languages.

@ It captures a limited amount of cross-serial dependencies, e.g.
the copy language {ww|w € {a,b}*}.

© It can be parsed in polynomial time. (O(n®))

© It has constant growth property.

= appropriate to describe natural languages

@ Important characteristics
© Extended domain of locality - elementary trees can be
arbitrarily large.
@ Factoring of recursion - adjunction operations allows to put
recursive structures into separate elementary trees.

Introduction
“Incremental’ TAG
Strictly incremental TAG
Conclusion

Motivation

Why incremental parsing?

@ Psycholinguistic evidence

o Humans build up semantic representation before reaching the
end of the sentence.

@ Interpretation is based on fast, left-to-write construction of
syntactic relations.

@ Boost in speed

Introduction -
“Incremental’ TAG Motivation
Strictly incremental TAG N
. Overview
Conclusion

Incremental TAG parsing

AG

@ [Sturt and Lombardo, 2005] argue that models of human
parsing incorporate an operation similar to adjunction in TAG.

@ Traditional LTAG does not allow full connectedness.

Peter often ...

VP
NP

| ADV VP*
Peter \

often

Introduction TACG
“Incremental’ TAG Mc;tjivation
Strictly incremental TAG N
. Overview
Conclusion

Where is incrementality encoded?

Components of a parser:
@ a (competence) grammar
@ a parsing strategy

@ a memory organizing strategy

@ an oracle

Introduction
“Incremental’ TAG
Strictly incremental TAG
Conclusion

TAG
Motivation
Overview

Where is incrementality encoded?

Components of a parser:

@ a (competence) grammar
= a parsing strategy
@ a memory organizing strategy

@ an oracle

Introduction TACG
“Incremental’ TAG Mc;tjivation
Strictly incremental TAG N
. Overview
Conclusion

Where is incrementality encoded?

Components of a parser:
= a (competence) grammar
@ a parsing strategy

@ a memory organizing strategy

@ an oracle

Introduction
“Incremental’ TAG
Strictly incremental TAG

. Overview
Conclusion

Approaches

LTAG-spinal - “Incremental” parser

Incremental LTAG Parsing
L. Shen and A. K. Joshi (2005)

DVTAG - Strictly incremental parser

Dynamic TAG and lexical dependencies
A. Mazzei, V. Lombardo and P. Sturt (2007)

Introduction

“Incremental’ TAG R—/IA? i
Strictly incremental TAG Ose:\\//iae\ln?n

Conclusion

Outline

@ Introduction
© ‘Incremental’ TAG
© Strictly incremental TAG

@ Conclusion

10/ 42

Introduction
“Incremental’ TAG
Strictly incremental TAG
Conclusion

Outline

Grammar Formalism
Parsing Algorithm
Training

Evaluation

© ‘Incremental’ TAG
@ Grammar Formalism
@ Parsing Algorithm
@ Training
@ Evaluation

Introduction Grammar Formalism

“Incremental”’ TAG Parsing Algorithm
Strictly incremental TAG
Conclusion

Evaluation

LTAG-spinal

Variant of LTAG
@ initial tree only contains its spine

@ auxiliary tree only contains its spine and a foot node directly
linked to the spine

initial: auxiliary: initial auxiliary
Al Bl S

: | |

i | VP VP
¥ N

! i ve ve v
An Bn/ é 1% give seems

Definition: Spine

The spine of an elementary tree is the path from the root node to
the anchor of the tree.

Introduction Grammar Formalism
“Incremental’ TAG Parsin Igorithm
Strictly incremental TAG rainin
Conclusion Evaluation

LTAG-spinal formalism

Operations
Adjunction (A) Same as in LTAG.

Attachment (T) Attachment of an initial tree « to a node n of
another tree o’: add the root of « to n as a new child.

Conjunction (C) Special operation to build coordination structures.

Introduction Grammar Formalism
“Incremental’ TAG
Strictly incremental TAG
Conclusion

LTAG-spinal formalism

Relation to LTAG

@ LTAG-spinal is more powerful than CFG.
[Shen and Joshi, 2005a]

@ LTAG-spinal with attachment constraints is weakly equivalent
to traditional LTAG. [Shen et al., 2007]

Introduction Grammar Formalism
“Incremental’ TAG
Strictly incremental TAG
Conclusion

LTAG-spinal formalism

Relation to LTAG

@ LTAG-spinal is more powerful than CFG.
[Shen and Joshi, 2005a]

@ LTAG-spinal with attachment constraints is weakly equivalent
to traditional LTAG. [Shen et al., 2007]

@ LTAG-spinal trees generalize over predicates with different
subcategorization frames.

Introduction

“Incremental’” TAG Parsing Algorithm
Strictly incremental TAG
Conclusion

The Parsing Algorithm

@ Four types of parser operations:

o Attachment, adjunction, conjunction
@ Generation: generate a possible spine for a given word
according to the context and the lexicon (Supertagging)

@ Variant of the shift-reduce algorithm, using a stack of
disconnected treelets to represent the left context

o Shift: Read a word, generate a list of possible elementary trees
for this word. For each elementary tree, push it into the stack.

@ Reduce: Pop the top two treelets from the stack, combine
them by attachment, adjunction or conjunction and push the
combined tree into the stack.

@ Beam-search to prune the search space

Introduction Grammar Formalism

“Incremental’” TAG Parsing Algorithm
Strictly incremental TAG Training
Conclusion Evaluation
Example
DT NN WDT VBZ 1 cc 2l TO PRP
a parser which seems new and interesting to me

G: generate T: attach A: adjoin C: conjoin

Graph taken from http://libinshen.net/Documents/ijc04_slides.ps

http://libinshen.net/Documents/ijc04_slides.ps

Introduction
“Incremental’ TAG
Strictly incremental TAG
Conclusion

Grammar Formalism
Parsing Algorithm
Training

Evaluation

Example
1G
nT) NN WDT VBZ 11 cc 11 TO PRP
a parser which seems new and interesting to me

G: generate T: attach

A: adjoin

C: conjoin

Introduction
“Incremental’ TAG
Strictly incremental TAG
Conclusion

Example

Grammar Formalism
Parsing Algorithm
Training

Evaluation

WDT VBZ

a parser which seems

G: generate T: attach

1) cc] TO

new and interesting to

A: adjoin C: conjoin

PRP

Introduction

“Incremental’ TAG
Strictly incremental TAG

Example

Conclusion

Grammar Formalism
Parsing Algorithm
Training

Evaluation

WDT
a parser which
G: generate

VBZ

seems

T: attach

] cc] TO

new and interesting to

A: adjoin C: conjoin

PRP

Introduction

“Incremental’ TAG
Strictly incremental TAG

Example

Conclusion

Grammar Formalism
Parsing Algorithm
Training

Evaluation

VBZ

a parser which seems

G: generate

T: attach

I cc 1 TO

new and interesting to

A: adjoin C: conjoin

PRP

Introduction Grammar Formalism

“Incremental’” TAG Parsing Algorithm
Strictly incremental TAG Training
Conclusion Evaluation

Example

cc I TO PRP
a parser Wthh seems and interesting to me

G: generate T: attach A: adjoin C: conjoin

Introduction

“Incremental’ TAG
Strictly incremental TAG

Example

Conclusion

Grammar Formalism
Parsing Algorithm
Training

Evaluation

4G
WDT

a parser which

G: generate

VP
5G
VBZ VP *
seems
T: attach

cc) TO

and interesting to

A: adjoin C: conjoin

PRP

Introduction Grammar Formalism

“Incremental’” TAG Parsing Algorithm
Strictly incremental TAG Training
Conclusion Evaluation

Example

cc JI TO
a parser which seems new and interesting to

G: generate T: attach A: adjoin C: conjoin

PRP

Introduction Grammar Formalism

“Incremental’” TAG Parsing Algorithm
Strictly incremental TAG Training
Conclusion Evaluation
Example
8T

VP
5G 6G
cc hij TO PRP
a parser which seems new and interesting to me

G: generate T: attach A: adjoin C: conjoin

Introduction Grammar Formalism

“Incremental’” TAG Parsing Algorithm
Strictly incremental TAG Training
Conclusion Evaluation

Example

cc 11 TO PRP
a parser which seems new and interesting to me

G: generate T: attach A: adjoin C: conjoin

Introduction Grammar Formalism

“Incremental’” TAG Parsing Algorithm
Strictly incremental TAG Training
Conclusion Evaluation

Example

parser which seems

G: generate T: attach A: adjoin C: conjoin

Graph taken from http://libinshen.net/Documents/ijc04_slides.ps

http://libinshen.net/Documents/ijc04_slides.ps

Introduction Grammar Formalism

“Incremental’” TAG Parsing Algorithm
Strictly incremental TAG Training
Conclusion Evaluation

Flex Model vs. Eager Model

Pseudo-ambiguity in the shift-reduce derivation:
A adjoins to B, B adjoins to C

o (A—B)— Q)
o (A— (B— Q)

Introduction

“Incremental’” TAG Parsing Algorithm
Strictly incremental TAG
Conclusion

Flex Model vs. Eager Model

Pseudo-ambiguity in the shift-reduce derivation:
A adjoins to B, B adjoins to C
o (A—B)— Q)
o (A— (B— Q)
Flex Model
@ Both derivations are allowed.
Eager Model
@ Only ((A — B) — Q) is allowed.

Introduction
“Incremental’ TAG

Strictly incremental TAG Training
Conclusion

Features and Learning

Features extracted from gold-standard parses have the following
format:

(operation, main_spine, child_spine, spine_node, context)

@ spine_node: node on the main_spine onto which the
child_spine is attached/adjoined/conjoined

@ context: dependent on the type of operation; includes
amongst others the (0,2) window in the sentence

Weights for the features are learned using a perceptron-like
algorithm as proposed in [Collins, 2002)].

Introduction

“Incremental’ TAG

Strictly incremental TAG
Conclusion Evaluation

Evaluation

@ LTAG-spinal treebank (see [Shen and Joshi, 2005b])
@ Training, development and test data from WSJ

@ Syntactic dependency for evaluation against PTB

model | beam | sen/sec | f-score %
Flex 10 0.37 89.3
Eager 10 0.79 88.7

With an extension (Combined Parses) and beam=100: 94.2%

Introduction

“Incremental’ TAG

Strictly incremental TAG
Conclusion Evaluation

What we have seen so far

Parser for LTAG-spinal
@ Incremental?

o Input is processed incrementally, but only partially
o Structure is not fully connected (usage of a stack)
@ Look-ahead of 2 words

@ Implemented: efficient statistical parsing

@ Generative power of grammar is stronger than CFG
@ Motivation?

Introduction
“Incremental’ TAG
Strictly incremental TAG
Conclusion

Outline

Dynamics
Formalism
Wide-coverage Grammar

© Strictly incremental TAG
@ Dynamics
@ Formalism
@ Wide-coverage Grammar

Introduction
“Incremental’ TAG
Strictly incremental TAG
Conclusion

Dynamics

Dynamics

Dynamic Grammar

@ The syntactic analysis is viewed as a dynamic process
= A sequence of transitions between adjacent syntactic
states S;_; and S;.

@ A syntactic state contains all the syntactic information about
the fragment already processed.

Introduction D .
“Incremental’ TAG ynamics
Strictly incremental TAG
Conclusion

Dynamics and Incrementality

Incremental processing;:

@ Each input word w; defines a transition from S;_;
(left-context) to S;.

@ States as partial syntactic structures
Strong connectivity:
@ Impose that transitions do not produce disconnected trees

Parsing strategy is part of the grammar
= Incrementality-in-compentence

Introduction
“Incremental’ TAG
Strictly incremental TAG
Conclusion

Dynamics in TAG - Intuition (I)

Dynamics
Formalism
Wide-coverage Grammar

S(4) S
J Dl NP (Bill) VP (i
1. Inizialization Npi Bill) . VB 2._Adjoining from the left LE) &
s
NNP LV NP| (k) NNP ADV(often) VP(i)
Bill,; | Bl
— pleases ADV \ NP (k)
, likes often” |
fo eats o pleases
- plays LT T T likes
Yo ¥ - Lt ’ VB cats
£ lays
- ADV(pften) VP*(j) peeys
ADV

often

Introduction

“Incremental’ TAG Ey'r'lya‘r‘r;lc’s
Strictly incremental TAG - =
. Wide-coverage Grammar
Conclusion

Dynamics in TAG - Intuition (II)

S(pleases)

NP(Bill) VP (pleases) NP(3:ll) VP(pleases)
3. Shift 4. Substitution
NNP ADV(often) VP (pleases) NNP ADV(often) VP(leases)
B Bl P
ADV V(pleases) NP| (k) ADV V{pleases) NP(Suc)
often pleases N often pleases
o NNP
NP(Swue) -
NNP
Sue

At step 4, the elementary tree anchored in w; is combined with the partial
structure spanning the words wy...w;—1.

= Updated left-context spanning the words w...w;

Introduction
“Incremental’ TAG
Strictly incremental TAG
Conclusion

Dynamics
Formalism
Wide-coverage Grammar

DVTAG

Dynamic Version of TAG
Elementary trees similar to LTAG trees, BUT

S(.1)
NP(Sue) VP(.j)
NP{BiH) VP(i)
.) NNP ADV(pften) VP*(_j)

NNP Y NP| (k) Sue r
Bl 2 ADV

pleases

likes often

cats

plays

Introduction
“Incremental’ TAG F i
Strictly incremental TAG ormalism
Conclusion

DVTAG

Dynamic Version of TAG
Elementary trees similar to LTAG trees, BUT

@ Lexical items (but not the left-anchor) can be underspecified.
The preterminal category is paired with a finite list of values.
= predicted nodes to fulfill full connectivity

S(.1)
} NP(Sue) VP(.j)
\'P[mu) VP(i)
.) NNP ADV(pften) VP*()
NNP Y NP| (k) Sue r
Bill Aby
pleases £

likes often
eats
plays

Introduction
“Incremental’ TAG
Strictly incremental TAG
Conclusion

Formalism

DVTAG

Dynamic Version of TAG
Elementary trees similar to LTAG trees, BUT

@ Lexical items (but not the left-anchor) can be underspecified.
The preterminal category is paired with a finite list of values.
= predicted nodes to fulfill full connectivity

@ Distinction between left/right auxiliary trees

S(.1)
} NP(Sue) VP(.j)
\'P[mu) VP(.)
.) NNP ADV(pften) VP*()
NNP Y NP| (k) Sue r
Bill Aby
pleases £

likes often
eats
plays

Introduction
“Incremental’ TAG
Strictly incremental TAG
Conclusion

Dynami
Formalism
ide-coverage Grammar

DVTAG

Head feature

@ Feature that indicates the lexical head of each node in the
elementary tree

@ Needed to compute a dependency tree

S(4)
NP(Sue) VP(.j)
NP{Bill) VP(4) T
- NNP ADV(pften) VP*(j)

NPV NPL(A) Sue [
Bil [ADV

pleases

likes often

cats
plays

Introduction
“Incremental’ TAG
Strictly incremental TAG
Conclusion

Some DVTAG terminology

Formalism

Dotted tree

A pair (y,) where ~y is a tree and i is an integer such that
i€0...|[YIELD(y)|.

Moreover, all the symbols on the yield that are on the left of the
dot are terminal symbols.

S S

N T

Pus o)

0 T T

€ v @
g

Fringe of (v,1)
Set of nodes that are accessible for operations

Introduction
“Incremental’ TAG
Strictly incremental TAG

DVTAG Operations

Formalism

Combination of a left-context (A, %) with an (unanalysed)
elementary tree (v, 0)

@ 2 substitution operations

@ 4 adjoining operations

@ a shift operation

“Normal” operations Inverse operations
@ Substitution Sub™ @ Inv. substitution Sub*
@ Adjoining from the left V7~ @ Inv. adj. from the left Vi~
o Adjoining from the right V7 @ Inv. adj. from the right Vi

@ Shift Shi

Introduction
“Incremental’ TAG
Strictly incremental TAG

DVTAG Operations

Dynamics
Formalism
Wide-coverage Grammar

Shift

Shi((v,i)) takes as input a single dotted tree (7,7) and returns the
dotted tree (7,7 + 1). It can be applied only if a terminal symbol
belongs to the fringe of (v,1).

A\ Shi((7,2)) . /P\L
BB B B

ol E |l
f @8 f 5'®

Introduction

“Incremental’ TAG Ey“‘ml'.“'
Strictly incremental TAG \‘\?{T"_a’ 'f\m' ‘e Grammar

Conclusion

DVTAG Operations

Substitution
Sub™ ((a,0), (v,)):
If there is a substitution node NNV in the fringe of (v, %) such that

label(N') = label(root(a)), the operation returns a new dotted tree
(0,7 4 1) such that 0 is obtained by grafting « into .

{\/\ a,) <62>
\lc/, Sub™ ((e,0), (v, 1)) /\L

R
L"F N ’ 13 F
A '@ | | .
a c'@

Introduction

“Incremental’ TAG I[:c\)rl;ﬁ"awlli;rﬁ
Strictly incremental TAG
. Wide-coverage Grammar
Conclusion

DVTAG Operations

Substitution and inverse Substitution

NA/;Z/\."T\‘ <a,0> . A(ﬁ 2)
B E g Sub™((0,0). (7.1)) N
L ' ~--) : '
‘a'@® | | '
a cl@
/\—/—\ Qg << 0> S <() 2>
" | “h’]) b b
R Sub™ (€. 0), (1)) g :

r/ N ’ \\
a L. b@ | T| R

Introduction

“Incremental’ TAG Ey“‘ml'.“'
Strictly incremental TAG \‘\?{T"_a’ 'f\m' \ze Grammar

Conclusion

DVTAG Operations

Adjoining from the left

V77 ((8,0),(v,1),add) where § is a left auxiliary tree:
If there is a non-terminal node IV at position add in the fringe of
(7,1) such that label(N) = label(root(B)), the operation returns a

new dotted tree (0,7 + 1) such that § is obtained by grafting 3 into
N.

31 o — 4,2)
- /R (8,00 VI ((5,0), (7,1),2)

Introduction
“Incremental’ TAG
Strictly incremental TAG
Conclusion

Example derivation

Dynamics
Formalism
Wide-coverage Grammar

(-,0) _Bil
Shi({apiy-0))

S(_vy)

S(v)

NPiBrIH) _-mVP(w) NP(3ll) VP(wy)
NNP /Y NP (02) NNP ADV(often) Vp(u
Bill, @ |- 1 Bill 2

0 | pleases L i
: likes ADV -
N eats often d 1

o et e S pleases
R play # VP(_v3) likes

cats
J\D\’(rften) VP*(_vs) plays
ADV

often

vf«"joften- 0)1 <A1= 1) .2)

T g . often

(b)

1)

NP| (v2)

Introduction

“Incremental’ TAG Eg:::::llllsc;
Strictly incremental TAG .
. Wide-coverage Grammar
Conclusion

Example derivation

pleases Sue
Shi((Ag,2)) Sub™ ({orsue- 0). (Ag, 3))

S(pleases)

NP(F?IH) VP(pleases)
P

NP (Biil) VP(pleases)

NNP ADV(of tfﬁn)ﬂ'h’q&s’) NNP ADV(often) VP(pleases)
mil | mo |)’\

ADV V(pleases) NP| (wg) ADV V(pleases) NP(Sue)
often pleases @ often pleascs

NP(Sue) gi\ip.
NNP
Sue

Introduction
“Incremental’ TAG

Strictly incremental TAG Wide-coverage Grammar
Conclusion

A wide-coverage DVTAG

Ways to build a grammar:
© Manually write it (XTAG, FTAG)

© Automatically extract it from treebanks

Anticipated problem: Size of grammar because of predicted nodes

Introduction

“Incremental’ TAG Ey:l';:l:lli'f:_
Strictly incremental TAG e
. Wide-coverage Grammar
Conclusion

Grammar seizes in comparison

| # of tree templates

XTAG 1,200
DVTAG from XTAG 6,000,000

Introduction Dynami
“Incremental’ TAG snaries
Formalism

trictly i tal TA .
Strictly incrementa . G Wide-coverage Grammar
Conclusion

Grammar seizes in comparison

| # of tree templates

XTAG 1,200
DVTAG from XTAG 6,000,000
DVTAG from PTB 12,000

Introduction
“Incremental’ TAG
Strictly incremental TAG

. Wide-coverage Grammar
Conclusion

Grammar seizes in comparison

‘ # of tree templates

XTAG 1,200
DVTAG from XTAG 6,000,000
DVTAG from PTB 12,000
LTAG-spinal 1,200

Numbers are taken from [Mazzei, 2005] and [Shen et al., 2007], and rounded.

Introduction
“Incremental’ TAG
Strictly incremental TAG
Conclusion

Outline

@ Conclusion

38/ 42

Introduction
“Incremental’ TAG
Strictly incremental TAG
Conclusion

Conclusion

LTAG-spinal
@ Parsing strategy specifies the “incremental” nature.
@ In fact, not very incremental (stack, look-ahead)
o Efficient, implemented parser available
DVTAG
@ The (competence) grammar determines the parsing strategy
@ Natively fulfills a strict version of incrementality
@ Resembles left-corner strategy (= center embeddings)

@ Grammars grow very large in size

Introduction
“Incremental’ TAG
Strictly incremental TAG
Conclusion

References |

@ Collins, M. (2002).

Discriminative training methods for hidden markov models: Theory and
experiments with perceptron algorithms.

EMNLP.

@ Mazzei, A. (2005).

Formal and empirical issues of applying dynamics to Tree Adjoining
Grammars.

PhD thesis, Dipartimento di Informatica, Universita degli studi di Torino.

@ Mazzei, A., Lombardo, V., and Sturt, P. (2007).
Dynamic TAG and lexical dependencies.
Research on Language and Computation.

[§ Shen, L. and Joshi, A. K. (2005a).
Building an LTAG Treebank.

Technical Report MS-CIS-05-15, CIS, University of Pennsylvania,
Philadelphia, PA.

Introduction
“Incremental’ TAG
Strictly incremental TAG
Conclusion

References |1

Shen, L. and Joshi, A. K. (2005b).
Incremental LTAG Parsing.

Proceedings of the conference on Human Language Technology and
Empirical Methods in Natural Language Processing.

@ Shen, L., Joshi, A. K., and Champollion, L. (2007).
LTAG-spinal and the Treebank.
Language Resources and Evaluation.

[§ Sturt, P. and Lombardo, V. (2005).
Processing coordinated structures: Incrementality and connectedness.
Cognitive Science, 29.

Introduction
“Incremental’ TAG
Strictly incremental TAG
Conclusion

Discussion

@ Why would we want incrementality in competence?

@ For NLP applications the “incremental” parser might be
enough.

@ Can psycholinguistic findings/memory profiles be explained
with these grammers?

	Introduction
	TAG
	Motivation
	Overview

	``Incremental'' TAG
	Grammar Formalism
	Parsing Algorithm
	Training
	Evaluation

	Strictly incremental TAG
	Dynamics
	Formalism
	Wide-coverage Grammar

	Conclusion

