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Tree Adjoining Grammar (TAG)

@ tree-rewriting formalism

@ a set of (elementary) trees with two operations
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Tree Adjoining Grammar

Operations

Substitution Replacing a leaf with an initial tree

Adjunction Replacing an internal node with an auxiliary tree
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Tree Adjoining Grammar

Some linguistic principles:
@ Lexicalization: Each elementary tree has at least one
non-empty lexical item, its anchor. (LTAG)

@ Predicate argument co-occurence: Elementary trees of
predicates contain slots for the arguments they subcategorize

for.
S
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Why is TAG interesting?

Motivation

@ Mildly context-sensitive formalism

© |t generates (at least) all context-free languages.

@ It captures a limited amount of cross-serial dependencies, e.g.
the copy language {ww|w € {a,b}*}.

© It can be parsed in polynomial time. (O(n®))

© It has constant growth property.

= appropriate to describe natural languages

@ Important characteristics
© Extended domain of locality - elementary trees can be
arbitrarily large.
@ Factoring of recursion - adjunction operations allows to put
recursive structures into separate elementary trees.
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Motivation

Why incremental parsing?

@ Psycholinguistic evidence

o Humans build up semantic representation before reaching the
end of the sentence.

@ Interpretation is based on fast, left-to-write construction of
syntactic relations.

@ Boost in speed
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Incremental TAG parsing

AG

@ [Sturt and Lombardo, 2005] argue that models of human
parsing incorporate an operation similar to adjunction in TAG.

@ Traditional LTAG does not allow full connectedness.
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Where is incrementality encoded?

Components of a parser:
@ a (competence) grammar
@ a parsing strategy

@ a memory organizing strategy

@ an oracle
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Motivation
Overview

Where is incrementality encoded?

Components of a parser:

@ a (competence) grammar
= a parsing strategy
@ a memory organizing strategy

@ an oracle
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Where is incrementality encoded?

Components of a parser:
= a (competence) grammar
@ a parsing strategy

@ a memory organizing strategy

@ an oracle
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Approaches

LTAG-spinal - “Incremental” parser

Incremental LTAG Parsing
L. Shen and A. K. Joshi (2005)

DVTAG - Strictly incremental parser

Dynamic TAG and lexical dependencies
A. Mazzei, V. Lombardo and P. Sturt (2007)
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© Strictly incremental TAG

@ Conclusion
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Grammar Formalism
Parsing Algorithm
Training

Evaluation

© ‘Incremental’ TAG
@ Grammar Formalism
@ Parsing Algorithm
@ Training
@ Evaluation
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Evaluation

LTAG-spinal

Variant of LTAG
@ initial tree only contains its spine

@ auxiliary tree only contains its spine and a foot node directly
linked to the spine

initial: auxiliary: initial auxiliary
Al Bl S
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Definition: Spine

The spine of an elementary tree is the path from the root node to
the anchor of the tree.
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LTAG-spinal formalism

Operations
Adjunction (A) Same as in LTAG.

Attachment (T) Attachment of an initial tree « to a node n of
another tree o’: add the root of « to n as a new child.

Conjunction (C) Special operation to build coordination structures.
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LTAG-spinal formalism

Relation to LTAG

@ LTAG-spinal is more powerful than CFG.
[Shen and Joshi, 2005a]

@ LTAG-spinal with attachment constraints is weakly equivalent
to traditional LTAG. [Shen et al., 2007]
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LTAG-spinal formalism

Relation to LTAG

@ LTAG-spinal is more powerful than CFG.
[Shen and Joshi, 2005a]

@ LTAG-spinal with attachment constraints is weakly equivalent
to traditional LTAG. [Shen et al., 2007]

@ LTAG-spinal trees generalize over predicates with different
subcategorization frames.
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The Parsing Algorithm

@ Four types of parser operations:

o Attachment, adjunction, conjunction
@ Generation: generate a possible spine for a given word
according to the context and the lexicon (Supertagging)

@ Variant of the shift-reduce algorithm, using a stack of
disconnected treelets to represent the left context

o Shift: Read a word, generate a list of possible elementary trees
for this word. For each elementary tree, push it into the stack.

@ Reduce: Pop the top two treelets from the stack, combine
them by attachment, adjunction or conjunction and push the
combined tree into the stack.

@ Beam-search to prune the search space
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DT NN WDT VBZ 1 cc 2l TO PRP
a parser which seems new  and interesting to me

G: generate T: attach A: adjoin C: conjoin

Graph taken from http://libinshen.net/Documents/ijc04_slides.ps
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nT ) NN WDT VBZ 11 cc 11 TO PRP
a parser which seems new and interesting to me

G: generate T: attach

A: adjoin

C: conjoin
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WDT VBZ

a parser which seems

G: generate T: attach

1) cc ] TO

new and interesting to

A: adjoin C: conjoin

PRP
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a parser which
G: generate
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seems

T: attach

] cc ] TO

new and interesting to

A: adjoin C: conjoin

PRP
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VBZ

a parser which seems

G: generate

T: attach

I cc 1 TO

new and interesting to

A: adjoin C: conjoin

PRP
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cc I TO PRP
a parser Wthh seems and interesting to me

G: generate T: attach A: adjoin C: conjoin
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a parser which

G: generate
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T: attach

cc ) TO

and interesting to

A: adjoin C: conjoin
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G: generate T: attach A: adjoin C: conjoin

PRP
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cc 11 TO PRP
a parser which seems new and interesting to me

G: generate T: attach A: adjoin C: conjoin



Introduction Grammar Formalism

“Incremental’” TAG Parsing Algorithm
Strictly incremental TAG Training
Conclusion Evaluation

Example

parser which seems

G: generate T: attach A: adjoin C: conjoin

Graph taken from http://libinshen.net/Documents/ijc04_slides.ps
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Flex Model vs. Eager Model

Pseudo-ambiguity in the shift-reduce derivation:
A adjoins to B, B adjoins to C

o (A—B)— Q)
o (A— (B— Q)
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Flex Model vs. Eager Model

Pseudo-ambiguity in the shift-reduce derivation:
A adjoins to B, B adjoins to C
o (A—B)— Q)
o (A— (B— Q)
Flex Model
@ Both derivations are allowed.
Eager Model
@ Only ((A — B) — Q) is allowed.
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Features and Learning

Features extracted from gold-standard parses have the following
format:

(operation, main_spine, child_spine, spine_node, context)

@ spine_node: node on the main_spine onto which the
child_spine is attached/adjoined/conjoined

@ context: dependent on the type of operation; includes
amongst others the (0,2) window in the sentence

Weights for the features are learned using a perceptron-like
algorithm as proposed in [Collins, 2002)].
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Evaluation

@ LTAG-spinal treebank (see [Shen and Joshi, 2005b])
@ Training, development and test data from WSJ

@ Syntactic dependency for evaluation against PTB

model | beam | sen/sec | f-score %
Flex 10 0.37 89.3
Eager 10 0.79 88.7

With an extension (Combined Parses) and beam=100: 94.2%
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What we have seen so far

Parser for LTAG-spinal
@ Incremental?

o Input is processed incrementally, but only partially
o Structure is not fully connected (usage of a stack)
@ Look-ahead of 2 words

@ Implemented: efficient statistical parsing

@ Generative power of grammar is stronger than CFG
@ Motivation?
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© Strictly incremental TAG
@ Dynamics
@ Formalism
@ Wide-coverage Grammar
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Dynamics

Dynamics

Dynamic Grammar

@ The syntactic analysis is viewed as a dynamic process
= A sequence of transitions between adjacent syntactic
states S;_; and S;.

@ A syntactic state contains all the syntactic information about
the fragment already processed.
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Dynamics and Incrementality

Incremental processing;:

@ Each input word w; defines a transition from S;_;
(left-context) to S;.

@ States as partial syntactic structures
Strong connectivity:
@ Impose that transitions do not produce disconnected trees

Parsing strategy is part of the grammar
= Incrementality-in-compentence
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Dynamics in TAG - Intuition (I)

Dynamics
Formalism
Wide-coverage Grammar

S(4) S
J Dl NP (Bill) VP (i
1. Inizialization Npi Bill) . VB 2._Adjoining from the left LE) &
s
NNP LV NP| (k) NNP ADV(often)  VP(i)
Bill,; | Bl
— pleases ADV \ NP (k)
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Dynamics in TAG - Intuition (II)

S(pleases)

NP(Bill) VP (pleases) NP(3:ll) VP(pleases)
3. Shift 4. Substitution
NNP ADV(often) VP (pleases) NNP ADV(often) VP( leases)
B Bl P
ADV V(pleases) NP| (k) ADV  V{pleases) NP(Suc)
often pleases N often pleases
o NNP
NP(Swue) -
NNP
Sue

At step 4, the elementary tree anchored in w; is combined with the partial
structure spanning the words wy...w;—1.

= Updated left-context spanning the words w...w;
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DVTAG

Dynamic Version of TAG
Elementary trees similar to LTAG trees, BUT

S(.1)
NP(Sue) VP(.j)
NP{BiH) VP(i)
. ) NNP ADV(pften) VP*(_j)

NNP Y NP| (k) Sue r
Bl 2 ADV

pleases

likes often

cats

plays
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DVTAG

Dynamic Version of TAG
Elementary trees similar to LTAG trees, BUT

@ Lexical items (but not the left-anchor) can be underspecified.
The preterminal category is paired with a finite list of values.
= predicted nodes to fulfill full connectivity

S(.1)
} NP(Sue) VP(.j)
\'P[mu) VP(i)
. ) NNP ADV(pften) VP*()
NNP Y NP| (k) Sue r
Bill Aby
pleases £

likes often
eats
plays
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Formalism

DVTAG

Dynamic Version of TAG
Elementary trees similar to LTAG trees, BUT

@ Lexical items (but not the left-anchor) can be underspecified.
The preterminal category is paired with a finite list of values.
= predicted nodes to fulfill full connectivity

@ Distinction between left/right auxiliary trees

S(.1)
} NP(Sue) VP(.j)
\'P[mu) VP(.)
. ) NNP ADV(pften) VP*()
NNP Y NP| (k) Sue r
Bill Aby
pleases £

likes often
eats
plays
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DVTAG

Head feature

@ Feature that indicates the lexical head of each node in the
elementary tree

@ Needed to compute a dependency tree

S(4)
NP(Sue) VP(.j)
NP{Bill) VP(4) T
- NNP ADV(pften) VP*(j)

NPV NPL(A) Sue [
Bil [ ADV

pleases

likes often

cats
plays
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Some DVTAG terminology

Formalism

Dotted tree

A pair (y,) where ~y is a tree and i is an integer such that
i€0...|[YIELD(y)|.

Moreover, all the symbols on the yield that are on the left of the
dot are terminal symbols.

S S

N T

Pus o)

0 T T

€ v @
g

Fringe of (v,1)
Set of nodes that are accessible for operations
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Formalism

Combination of a left-context (A, %) with an (unanalysed)
elementary tree (v, 0)

@ 2 substitution operations

@ 4 adjoining operations

@ a shift operation

“Normal” operations Inverse operations
@ Substitution Sub™ @ Inv. substitution Sub*
@ Adjoining from the left V7~ @ Inv. adj. from the left Vi~
o Adjoining from the right V7 @ Inv. adj. from the right Vi

@ Shift Shi
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Shift

Shi((v,i)) takes as input a single dotted tree (7,7) and returns the
dotted tree (7,7 + 1). It can be applied only if a terminal symbol
belongs to the fringe of (v,1).

A\ Shi((7,2)) . /P\L
BB B B

ol E |l
f @8 f 5'®
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DVTAG Operations

Substitution
Sub™ ((a,0), (v,)):
If there is a substitution node NNV in the fringe of (v, %) such that

label(N') = label(root(a)), the operation returns a new dotted tree
(0,7 4 1) such that 0 is obtained by grafting « into .

{\/\ a, ) <62>
\lc/, Sub™ ((e,0), (v, 1)) /\L

R
L"F N ’ 13 F
A '@ | | .
a c'@
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DVTAG Operations

Substitution and inverse Substitution

NA/;Z/\."T\‘ <a,0> . A(ﬁ 2)
B E g Sub™((0,0). (7.1)) N
L ' ~-- ) : '
‘a'@® | | '
a cl@
/\—/—\ Qg << 0> S <() 2>
" | “h’]) b b
R Sub™ (€. 0), (1)) g :

r/ N ’ \\
a L. b@ | T| R
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DVTAG Operations

Adjoining from the left

V77 ((8,0),(v,1),add) where § is a left auxiliary tree:
If there is a non-terminal node IV at position add in the fringe of
(7,1) such that label(N) = label(root(B)), the operation returns a

new dotted tree (0,7 + 1) such that § is obtained by grafting 3 into
N.

31 o — 4,2)
- /R (8,00 VI ((5,0), (7,1),2)
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Example derivation

Dynamics
Formalism
Wide-coverage Grammar

(-,0) _Bil
Shi({apiy-0))

S(_vy)

S(v)

NPiBrIH) _-mVP(w) NP(3ll) VP(wy)
NNP /Y NP (02) NNP ADV(often)  Vp(u
Bill, @ |- 1 Bill 2

0 | pleases L i
: likes ADV -
N eats often d 1

o et e S pleases
R play # VP(_v3) likes

cats
J\D\’(rften) VP*(_vs) plays
ADV

often

vf«"joften- 0)1 <A1= 1) .2)

T g . often

(b)

1)

NP| (v2)
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Example derivation

pleases Sue
Shi((Ag,2)) Sub™ ({orsue- 0). (Ag, 3))

S(pleases)

NP(F?IH) VP(pleases)
P

NP (Biil) VP(pleases)

NNP ADV(of tfﬁn)ﬂ'h’q&s’) NNP ADV(often) VP(pleases)
mil | mo | )’\

ADV V(pleases) NP| (wg) ADV  V(pleases) NP(Sue)
often pleases @ often  pleascs

NP(Sue) gi\ip.
NNP
Sue
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A wide-coverage DVTAG

Ways to build a grammar:
© Manually write it (XTAG, FTAG)

© Automatically extract it from treebanks

Anticipated problem: Size of grammar because of predicted nodes
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Grammar seizes in comparison

| # of tree templates

XTAG 1,200
DVTAG from XTAG 6,000,000
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Grammar seizes in comparison

| # of tree templates

XTAG 1,200
DVTAG from XTAG 6,000,000
DVTAG from PTB 12,000
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Grammar seizes in comparison

‘ # of tree templates

XTAG 1,200
DVTAG from XTAG 6,000,000
DVTAG from PTB 12,000
LTAG-spinal 1,200

Numbers are taken from [Mazzei, 2005] and [Shen et al., 2007], and rounded.
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@ Conclusion
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Conclusion

LTAG-spinal
@ Parsing strategy specifies the “incremental” nature.
@ In fact, not very incremental (stack, look-ahead)
o Efficient, implemented parser available
DVTAG
@ The (competence) grammar determines the parsing strategy
@ Natively fulfills a strict version of incrementality
@ Resembles left-corner strategy (= center embeddings)

@ Grammars grow very large in size
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Discussion

@ Why would we want incrementality in competence?

@ For NLP applications the “incremental” parser might be
enough.

@ Can psycholinguistic findings/memory profiles be explained
with these grammers?
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