
Letter-to-Phoneme Conversion
for a German Text-to-Speech System

Vera Demberg

Diplomarbeit Nr. 47

Betreuer: Dr. Helmut Schmid
Dr. Gregor Möhler

Prüfer: Prof. Hinrich Schütze, PhD
Dr. Helmut Schmid

Begin: December 01, 2005
End: May 31, 2006

Universität Stuttgart
Institut für Maschinelle Sprachverarbeitung

Azenbergstr. 12
70174 Stuttgart

Germany

Abstract
This thesis deals with the conversion from letters to phonemes, syllabification and
word stress assignment for a German text-to-speech system.

In the first part of the thesis (chapter 5), several alternative approaches for morpho-
logical segmentation are analysed and the benefit of such a morphological preprocess-
ing component is evaluated with respect to the grapheme-to-phoneme conversion al-
gorithm used.

In the second part (chapters 6 - 8), a pipeline architecture in which syllabification,
stress assignment and letter-to-phoneme conversion are tackled in separate modules is
compared with a design that integrates all tasks into one step. Alternative approaches
to the problems are discussed and evaluated.

Best results are obtained with a Hidden Markov Model that does letter-to-phoneme
conversion, syllabification and stress assignment simultaneously and incorporates some
very simple and language-independent phonological constraints regarding syllable struc-
ture and word stress. This model achieves a 50% reduction in word error rate relative
to the AWT decision tree.

The Hidden Markov Model is shown to compare well to state-of-the-art approaches
to grapheme-to-phoneme conversion in English and French.

iii

Acknowledgements
First of all, I want to thank my supervisor Helmut Schmid,

who always had an open door for me to bump in,
for very interesting discussions and helpful advice.

I am also grateful to Gregor Möhler,
my supervisor at IBM.

Special honours and my deepest gratitude to
Ralf Jankowitsch for proof-reading the thesis
and very competent advice on using Latex.

I also want to thank Mustafa Karakoc
for helpful comments on my thesis.

I am thankful to
Delphine Bernhard, Stefan Bordag,
Samarth Keshava and Emily Pitler

for allowing me to use the morphological segmentations by their algorithms
and fruitful discussion.

The author would furthermore like to thank the following
for discussion, help and advice:

Ruth Fuchss,
Bernd Möbius, Hinrich Schütze,
Yannick Marchand, Bob Damper,
Stanley Chen and John Goldsmith.

Personally, I want to say thanks to
Iglika Misheva, Sarah Böck, Sonja Lohrengel

Stefan Andreas Link, Jan-Erek Thiede, Juri Ganitkevitch,
Andreas Pabst, Martin Strenge and Daniel Nüsse,

who were students at IBM at the same period for a great time,
and Ines Flechsig, Manuel Kountz, Andreas Madsack,

Ralf Jankowitsch and Nicolai Hezinger
for excellent lunch company.

The author took part in the 2nd Pascal Challenges Workshop
in Venice, Italy from 10th to 12th April 2006.

Participation was partly financed
by IBM Germany Research and Development GmbH and

by Evangelisches Studienwerk e.V. Villigst.

I very gratefully acknowledge support by
Evangelisches Studienwerk e.V. Villigst throughout my studies.

Last and least, I would like to thank Lenchen for the chocolate.

iv

Declaration
Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst habe und dabei
keine andere als die angegebene Literatur verwendet habe.
Alle Zitate und sinngemäßen Entlehnungen sind als solche unter genauer Angabe der
Quelle gekennzeichnet.

I declare that this thesis was composed by myself, that the work contained herein is
my own except where explicitly stated otherwise in the text.

(Vera Demberg)

v

Table of Contents

1 Introduction 1
1.1 Text-to-Speech Synthesis Systems 1
1.2 Applications and their Requirements 3
1.3 Project Goals and Execution . 4
1.4 Structure of Thesis . 4

2 Mathematical Background 7
2.1 Hidden Markov Models . 7

2.1.1 The Viterbi Algorithm . 8
2.2 Smoothing . 9
2.3 Decision Trees . 9

2.3.1 The Entropy Criterion . 9
2.3.2 Pruning . 10

3 Resources 11
3.1 CELEX . 11

3.1.1 Phonetic Transcription . 11
3.1.2 Morphological Information 12
3.1.3 Syllable Boundaries . 13

3.2 BOMP . 14
3.3 SMOR and IMSLEX . 14
3.4 taz-Corpus . 15
3.5 English and French Resources . 17

3.5.1 English CELEX . 17
3.5.2 NetTalk . 18
3.5.3 beep . 18
3.5.4 Teacher’s Word Book . 18
3.5.5 Brulex . 19

3.6 IBM Native Phonology for TTS . 20

4 Evaluation 21
4.1 Training and Test Set Design . 21
4.2 Evaluation Methods . 22
4.3 Evaluation Data . 23
4.4 Evaluation Measures . 23

4.4.1 Error Rates . 23
4.4.2 Precision, Recall and F-Measure 24

vii

5 Morphology 25
5.1 Motivation of Morphological Analysis for g2p 25
5.2 Effect of Morphological Boundaries 26
5.3 Morphological Information from CELEX 27
5.4 Systems for Morphological Analysis 27

5.4.1 Rule Based Approaches . 28
5.4.2 Data-based Approaches: Supervised 35
5.4.3 Data-based Approaches: Unsupervised 35

5.5 Homographs . 46
5.6 Results . 46
5.7 Discussion . 50

6 Syllabification 51
6.1 Motivation for a Syllabification Component 51
6.2 Syllabification in German . 52
6.3 Previous Work on Syllabification . 52
6.4 Syllabification as a Tagging Problem – Using a HMM 53

6.4.1 Constraints . 53
6.4.2 Smoothing . 54

6.5 Experiments and Results . 55
6.6 Error Analysis . 58
6.7 Performance on g2p task and Discussion 59

6.7.1 Preprocessing vs. Postprocessing 59
6.7.2 Orthographic vs. Projected Syllable Boundaries 60

7 Word Stress 61
7.1 Why a separate module for Stress Assignment? 61
7.2 German Word Stress . 62

7.2.1 Primary Word Stress . 62
7.2.2 Secondary Word Stress and Stress Clash 64

7.3 Working with Low Quality Training / Test Data 64
7.4 Approaches considered . 65
7.5 Multi-level Process . 66
7.6 Rule-based Stress Assignment . 66
7.7 Baseline Approaches to Learning Stress for Stems 68
7.8 HMM for Stress Assignment . 70

7.8.1 Definition . 70
7.8.2 Constraints . 71
7.8.3 Training data . 71
7.8.4 Smoothing . 73
7.8.5 Summary of Experiment Results 79
7.8.6 Performance in Pipeline System 79

7.9 Discussion . 80

viii

8 Grapheme-to-Phoneme Conversion 81
8.1 Motivation for Automatic Grapheme-to-PhonemeConversion 81
8.2 Previous Approaches to g2p . 82
8.3 Alignment . 86

8.3.1 Alignment with Morphological Boundaries 86
8.3.2 Fully Automatic Alignment 87

8.4 A HMM for g2p conversion . 87
8.4.1 Definition . 87
8.4.2 Smoothing and Backoff . 88
8.4.3 Pruning . 90
8.4.4 Multiple Solutions . 91
8.4.5 Integration of Constraints 91
8.4.6 Results . 92

8.5 Performance on other languages . 94
8.6 Discussion . 95

9 Summary and Future Work 97
9.1 Conclusion . 97

9.1.1 Morphology for German TTS 97
9.1.2 Syllabification and Stress . 98
9.1.3 Modularity . 98

9.2 Suggestions for Future Work . 98

Bibliography 101

ix

Chapter 1

Introduction

Letter-to-phoneme conversion is often also referred to as “letter-to-sound conversion”
or “grapheme-to-phoneme conversion” (commonly abbreviated as g2p conversion). I
therefore want to define very briefly the notions of “letter”, “grapheme”, “phoneme”
and “sound”.

A letter is an element of the alphabet of a language (I am only considering lan-
guages with alphabets here).

There are different definitions for a grapheme. In this thesis, I refer to a grapheme
as a string consisting of one or more letters that together correspond to exactly one
phoneme.

A phoneme is an entity that is a transcription of a sound which is nearer to the
pronunciation of a word than its orthographical representation. It defined by its ability
to distinguish relevantly different sounds in a language. Phonemes differ from phones
in that they are relative entities that describe differences which are significant within a
language. In German, there is a phonemes /P/ (as in Pass) that subsumes the phone [p]
and the phone [ph] (aspirated [p]), which is not relevant for German lexical semantics
(i.e. [phas] would be assigned the same semantics by a German speaker as [pas]). But
there is a separate phoneme /B/ for the phone [b]. /B/ this is needed to make the
difference between the words “Pass” and “Bass”. The phoneme inventory I used in
this thesis is the IBM Native Phonology for TTS (see section 3.6).

A sound is an acoustic signal. In the context of a TTS system, sounds are gener-
ated by the synthesizing component but not by the grapheme-to-phoneme conversion
component.

Although “letter to phoneme conversion” describes best what I have been doing in
this thesis, I will use the abbreviation g2p interchangeably.

1.1 Text-to-Speech Synthesis Systems

The conversion from text to speech is a complex procedure that involves several sub-
tasks. The processing steps typically performed in TTS systems are depicted in figure
1.1.

The first obligatory step in TTS is to segment and tokenize a text. In this step, the
input text is split up into sentences and words. This task is not as trivial as it may seem
because words are not always well-defined, and punctuation marks can be ambiguous.

1

2 Chapter 1. Introduction

Figure 1.1: Typical Architecture of a Text-to-Speech System.

(For a more detailed description of the problem refer to Möbius [2001].) The next step
is referred to as “text normalization”. Text normalization comprises:

• expansion of abbreviations
e.g. expanding z.B. to zum Beispiel (Engl: for example).

• interpretation of numbers
e.g. correct expansion of ordinal numbers with respect to case and gender as
well as the correct interpretation of symbols like “%”.

• recognition of dates and similar
e.g. the expansion of 1993 to neunzehnhundert und dreiundneunzig (Engl: “nine-
teen hundred ninety three” instead of expanding it to the German equivalent of
“one thousand nine hundred ninety three”), as well as the correct expansion with
respect to case: am 14.3. should be expanded to am vierzehnten dritten or am
vierzehnten März. The standard nominative case form vierzehnter would be in-
correct. Similar problems occur for expressions like Heinrich IV, which has to
be expanded to Heinrich der Vierte, Heinrich des Vierten, Heinrich dem Vierten
or Heinrich den Vierten (Engl: different grammatical cases of “Henry fourth”)
dependent on the context.

• recognition of acronymes
There is no general rule for acronym pronunciation in German. Some are spelled
out e.g. ADAC, IMS or IBM, while others are pronounced as words, e.g. NATO
or AIDS.

This thesis focusses on the letter-to-phoneme conversion step, which comprises a
number of different subtasks: determining which letters map to one phoneme (also
commonly referred to as alignment or graphemic parsing), syllabification, word stress
assignment and g2p conversion.

1.2. Applications and their Requirements 3

The advantage of a modular architecture in which each task is performed by a
separate module is that problems can be isolated easily and it is straightforward to sub-
stitute one module by another one if a better algorithm is found. But stress assignment,
syllabification and g2p conversion are dependent on one another – e.g., stress depends
on the position and weight of a syllable. But syllable weight can only be determined
when the phonemes are known – letters are very ambiguous, for example, the letter e
can be transcribed to unstressable schwa (/E#/), light /AE/ or vowels such as /AE:/ or
/E:/ that contribute to make a syllable “heavy”. On the other hand, if we know whether
a vowel is stressed or not, the correct phoneme can be assigned with higher probability.

It can thus be beneficial to do strongly interdependent tasks in a single step. In
current systems, both types of architectures can be found (Möbius [2001]; Black et al.
[1998]; Pagel et al. [1998]; van den Bosch et al. [1998]; Marchand and Damper [2005];
Guérillon [2002]). Among the modular systems, some systems do syllabification and
stress assignment in a preprocessing step, while other do grapheme-to-phoneme con-
version first and then insert syllable boundaries and assign word stress.

Once words have been converted to their phonemic representation, prosody (i.e. in-
tonation and rhythm of speech) has to be added to the sentences, and phrase boundaries
have to be inserted. To do this, deeper level linguistic processes such as tagging (de-
termining word types and other grammatical categories) and parsing (to detect chunks
and decide on where pauses should be inserted) are applied. In speech synthesis, the
linguistically preprocessed material is finally synthesized to speech sounds.

1.2 Applications and their Requirements

An obvious effect of such a pipeline architecture as outlined above is that it causes
mistakes to be propagated through the process: errors in early stages cause errors in
the following processing steps. This emphasizes the need for good quality conversion
results.

Text-to-speech systems are nowadays applied in many domains such as automati-
cally reading text documents to people with impaired vision, or communicating with
spoken dialogue systems.

The most important requirement for a TTS system is that quality is good enough
to be understandable in order to reach the dialogue goal. But that is no enough: users
have been found dislike systems that do not sound natural. Even minor mistakes are
relevant.

Requirements to the TTS system vary in function of the target application. If the
system is to be run on a mobile device with relatively low storage capacity, it needs
to run fast and should consume little memory resources. It may even be necessary to
trade quality for efficiency in such systems. On the other hand, if the system is to be
run on a bigger system, achieving optimal quality is the prior concern. For all systems,
an important requirement is that the system runs in real time – no user would be willing
to talk to a system that takes 5 minutes to compute the answer for every dialogue turn.

At the level of system design, it is desirable to have a system that can be easily
adapted to other languages or transferred to new domains. With rule-based systems,
this property is usually not given, as the systems rely on large expert-designed rule-sets
and often also on linguistically annotated lexicons. Rules would have to be rewritten

4 Chapter 1. Introduction

completely, and a new lexicon would have to be designed for the adaptation of the
system to a new language. To apply a system to a another domain with special words,
a lexicon from this new domain is needed. Data-based approaches do not require expert
rule sets and therefore have lower development costs. But large annotated databases
are needed for supervised learning. The acquisition of such databases can constitute a
bottleneck similar to the rule acquisition problem.

1.3 Project Goals and Execution

The overall goal of this thesis is to reach higher correctness rates in letter-to-phoneme
conversion of the IBM TTS system.

The initial approach was to use a newly acquired lexicon, IMSLEX (cf. chapter
3) to build a better morphology module for the TTS system, by using the finite state
transducer from SMOR (see also chapter 3) and by taking into account data-based
approaches. Morphological information had been found to be relevant for g2p, as
syllable structure, word stress and the phonemizations of certain letters depend on
word structure. Words that were annotated with morphological structure from the IBM
ETI morphology, had shown to reduce word error rate significantly.

Unfortunately, I could not achieve better performance than with the original mor-
phology due to lacking information in IMSLEX. I furthermore found that state-of-the-
art data-based approaches do not reach the rule-based morphological systems’ perfor-
mance rates, and therefore do not provide information valuable to the g2p task.

When I analysed the conversion mistakes made by the system, I found stress assign-
ment to constitute a major problem that accounts for the largest proportion of errors. I
therefore implemented separate components for syllabification and stress assignment,
which lead to reductions in word error rates. In a last step, the statistical model which
had shown to return best results for the syllabification and stress assignment problems
was adapted to g2p conversion to substitute the IBM decision tree. I experimented on
the optimal arrangement of modules and also built one module that performs all three
tasks at once.

Learning and evaluation was only performed on word lists – context dependent phe-
nomena (e.g. word stress in context or co-articulation effects across word boundaries)
are not considered in this work. Also, the word list used does not contain any names,
which are very frequent in naturally occurring text and the transcription of which tends
to be particularly error-prone (for detailed discussion and specialized systems for name
transcription see Jannedy and Möbius [1997]).

1.4 Structure of Thesis

In chapter 2, a brief introduction into the statistical models used in this work (deci-
sion trees and Hidden Markov Models) and smoothing methods for n-gram models is
given. During my thesis, I used a variety of different corpora and lexica which I briefly
present in chapter 3. Chapter 4 addresses the issue of training and test set design and
evaluation methodologies. Chapters 5–8 contain the main parts of this thesis. They
are concerned with the subtasks in letter-to-phoneme conversion, i.e. morphological

1.4. Structure of Thesis 5

decomposition of words, syllabification, word stress assignment and g2p conversion
respectively. Each of the chapters summarizes previous work on the respective field,
discusses the different approaches followed in this work and presents their results as
lone-standing systems and with respect to their impact on the overall conversion task.
Finally, I draw conclusions about how to best design the g2p conversion component of
a TTS system and suggest future work in chapter 9.

Chapter 2

Mathematical Background

The function of this chapter is to give a very broad overview of the most important
probabilistic models that are used and discussed in this thesis, Hidden Markov Mod-
els and decision trees, and the most important issues that come up when using these
models.

2.1 Hidden Markov Models

A Markov process (named after Andrey Markov) is a stochastic process with the
Markov property. The Markov property states that the previous states are irrelevant
for subsequent states given the actual state (i.e. subsequent states are conditionally in-
dependent from previous states). This property can also be generalized to higher order
Markov Models, where a state depends on k previous states. A Markov model’s only
parameters are the transitional probabilities from one state to the next state.

Figure 2.1: A first order Markov Model.

Figure 2.2: A second order Markov Model.

A Hidden Markov Model (HMM) is a statistical model where the system being
modelled is assumed to be a Markov process with unknown parameters. The challenge
consists of determining the hidden parameters from the observable parameters. Hidden
Markov Models are very often used in speech recognition. The observed symbols do
not depend on one another directly, but depend from some hidden states, which in turn
depend on one another with the Markov property.

A Markov model is defined such that the states are directly visible to the observer.
In a Hidden Markov Model, the state is not directly visible, but variables which are

7

8 Chapter 2. Mathematical Background

influenced by the state are visible. Each state has a probability distribution over the
possible output tokens. Thus, the sequence of tokens generated by an HMM gives
some information about the sequence of states. In addition to the state transitional
probabilities, output probabilities from hidden to observed states have to be estimated
in a Hidden Markov Model. For a formal definition and more detailed introduction to
HMMs refer to e.g. Manning and Schütze [1999].

Figure 2.3: A first order Hidden Markov Model.

The models described in chapters 6, 7 and 8 can be thought of as Hidden Markov
Models where the hidden states are letter–syllable-boundary, syllable–stress, or letter–
phoneme-sequence pairs respectively, and the observed states are letters or syllables.
This definition causes the output probability of a hidden state to be always equal to
one, which is rather untypical for HMMs. But the model is not a Markov model either,
because the paired symbols were not observed. In literature, I found similar models
to simply have been called joint n-gram models, but I will nevertheless refer to these
models as HMMs in this thesis.

2.1.1 The Viterbi Algorithm

The typical goal when using a Hidden Markov Model is to find the most probable
complete hidden state sequence. The lattice that is built up during this calculation
can be enormous: for a model with t observed symbols and n eligible hidden states, t n

paths have to be calculated and compared. For example, consider a word with 10 letters
where each letter maps on average to 12 different phoneme sequences. Calculating the
whole trellis would mean to calculate 1012 different state sequences.

The Viterbi algorithm is a dynamic programming algorithm for finding the most
likely sequence of hidden states. The Viterbi algorithm stores the most probable path
for getting to a state and its probability with each state. In the end, the algorithm
chooses the state with the highest overall probability and goes backward to the begin-
ning of the lattice to discover the final state sequence. Using the Viterbi algorithm
is much more efficient than calculating each path in the whole trellis to the end, and
reduces complexity to O(n2t). For more comprehensive explications of the Viterbi al-
gorithm see e.g. Manning and Schütze [1999], Schöning [2001] or Carstensen et al.
[2001].

2.2. Smoothing 9

2.2 Smoothing

When we want to estimate the probability of n-grams (i.e. sequences of n letters (or
letter-phoneme pairs, or syllables, or words)), there will be some n-grams which we
have seen very rarely, and there might be other n-grams which we have not seen at
all in training. A statistical model that estimates probabilities of n-grams from data
seen in the training set would therefore assign a probability of zero to these sequences.
But in language, this is often not what we want: we do not assume to have seen all
possible combinations of words, letters or syllables that may occur in our training set,
and should therefore redistribute some of the probability mass to these unseen events.
To estimate the probability of the unseen events as exactly as possible (because even
among the unseen events, there are some which are more probable than others), the
probability of an n-gram is usually estimated from the probability of a lower-order
n-gram model, and weighted by a backoff-factor to make sure to obtain a probability
distribution.
This procedure can be formally expressed as: p(n–gram) =backoff-factor ∗p(n-1–
gram)

In smoothing, two types of models are commonly distinguished: interpolated mod-
els and backoff models. A backoff-model only looks at lower-order n-gram models in
case the higher-order n-gram was not observed, while an interpolated model always
combines the estimates from the the actual and all lower-order n-grams via linear in-
terpolation.

An overview of the most commonly used smoothing methods is given in Chen and
Goodman [1996].

2.3 Decision Trees

A decision tree is an n-branching tree with questions on its inner nodes and decisions
on its leaves. A decision tree serves at solving a complex problem through answering
questions on partial problems which are dependent on the complex problem. For g2p
conversion, the complex problem is how to pronounce a letter, the questions concern
letter identity and context of the letter. Breaking down the problem into smaller prob-
lems consists of deciding on the pronunciation of a letter in a particular context, which
is a less difficult problem. The most commonly used types of decision trees are CART
(Breimann [1984]), C4.5 (Quinlan [1993]) and CHAID (Sonquist and Morgan [1964]).
These algorithms mainly differ in their pruning strategies and branching factors used.

A statistical decision tree defines a probability distribution over the set of possible
choices.

2.3.1 The Entropy Criterion

The questions to be asked in a decision tree depend on the set of entities that are con-
sidered at a particular node. The goal in choosing a question is to reduce the entropy1

1Entropy is defined as a measure of disorder present in a system. In this context, it measures the
uncertainty of how to classify the input symbol.

10 Chapter 2. Mathematical Background

of the decision. This is achieved by choosing the question that yields the highest infor-
mation gain, i.e. the question that divides the data set into classes such that each class
has as low an entropy as possible. That is, the question is chosen such that its answers
contribute as much as possible to the decision.

The information gain (IG) criterion is defined as the difference of the entropy (H)
of the mother node and the weighted sum of the entropies of the child nodes d1 to dn.

IG(quest) = H(mother)−H(mother|quest)
= H(mother)− (pd1H(d1)+ pd2H(d2)+ ...pdnH(dn))

where pdx is the proportion of entities that are in branch dx
and H(set) = −∑x∈set p(x)log2 p(x).

The intuitive idea here is to choose the question that is most relevant. Information
gain measures the reduction of uncertainty. If the question that maximizes information
gain is chosen, the uncertainty in classification is reduced maximally.

In principle, the order of questions is irrelevant in an unpruned tree – the solution
will always be the same. The entropy criterion is important for the efficiency of de-
cision trees, as is prevents trees to become larger than necessary, and for pruned trees
(see below).

2.3.2 Pruning

If no stopping criterion is used, the tree will grow (by asking new questions and thus
branching further) until all the data is disambiguated or until there are no more ques-
tions to ask (e.g. if all the information the algorithm has access to does not suffice to
disambiguate the examples). The tree then does not learn general rules any more but
asks for specific properties of concrete instances. Disambiguating to the end improves
the performance on the training data (as the training corpus is stored completely in the
tree) but typically reduces the tree’s ability for generalization, so that performance on
unseen data is worse. This effect is commonly referred to as over-training, and can be
prevented by pruning.

The most widely used pruning strategies are to either define a stopping rule that
defines criteria for determining when a node may be divided further, or to first fully
grow the tree and cut branches afterwards.

Chapter 3

Resources

This chapter briefly presents the corpora I used for training and testing. For German,
these included CELEX, BOMP, the computational morphology SMOR which uses the
lexicon IMSLEX, and a large taz newspaper corpus. The grapheme-to-phoneme con-
version component was also evaluated on English and French, to assess generalizabil-
ity of the approach to other languages – the resources used are briefly characterized
here. The last section gives an overview of the German phonology I worked with
(IBM Native Phonology for TTS).

3.1 CELEX

CELEX is a lexical database created by the Instituut voor Nederlandse Lexicografie
(INL) and the Max-Planck-Institute, Nijmegen. It contains data for Dutch, English,
and German, which was classified automatically and corrected manually.

CELEX contains information about orthography, orthographic syllable boundaries,
phonetic transcriptions of the words that include syllable boundaries and primary and
secondary stress markers. If a word has multiple alternative pronunciations or mean-
ings, its orthographic form is included for each of these. There is also a data file
for the derivational and compositional morphology of words for the base form lexi-
con and a second lexicon containing the inflected word forms, from which inflectional
morpheme boundaries can be derived. Moreover, CELEX provides information about
word classes and word frequencies.

German CELEX contains about 365,000 word forms, thereof 51,000 different stems.
I here worked with a subset of approximately 250,000 words. The standard training
set I am used contains 239,000 words, and the test set 12,326 words.

3.1.1 Phonetic Transcription

CELEX uses its own system of transcribing phonology, called Disc. The Disc repre-
sentations were converted to IBM Native Phonology for TTS format (see section 3.6),
which I worked with throughout this project. The CELEX data contains quite a lot of
inconsistencies, in particular for word stress. For example, the syllable -tion is usually
stressed in German unless it is followed by an even more stress-attracting suffix such

11

12 Chapter 3. Resources

as -al or -ier. In the CELEX data, only 20% of the -tion affixes are stressed. I manu-
ally went through the first 100 cases and found that they were all annotated incorrectly.
There are some more inconsistencies, such as in 2. person inflections following stems
that end in -sch, (wä-)schst is sometimes transcribed as /S% S T/, and sometimes as
/S% T/.

Approximately 0.8% of the words in the test set occur twice (because they are
ambiguous, such as Bank (Engl: bank or bench)), about one third of these have dif-
ferent phonetic transcriptions (0.3% or the words). Another particularity of CELEX
is that some (0.5%) words have two annotated primary word stresses to indicate al-
ternative stressing dependent on the context. These cases are problematic for learning
and testing (as the word is correct if it has one of the stresses but not both), but I cur-
rently disregard the problem because of its low frequency. The best way to cope with
these cases would probably be to manually disambiguate them by choosing one of the
analyses. Most of the examples should not be ambiguous according to my intuition.
Examples include: stocksauer, weiterhin, stinkfaul, versprochenermaßen.

3.1.2 Morphological Information

CELEX also contains manually annotated morphological information. Using good
qualtiy morphological information has several benefits.

Firstly, the morphological analysis can be used to determine an upper boundary for
the maximal quality that is reachable using morphological pre-processing for the input
to the AWT, a syllabification or a stress-assignment step, and to estimate the degrada-
tion in quality due to morphological mistakes for each of these processes. Secondly,
the analyses can be used to disambiguate SMOR-analyses and to learn a weighted FST
based on these disambiguated analyses. Thirdly, these analyses can provide an eval-
uation standard, against which the output of the ETI-morphology and SMOR can be
compared, thus measuring morphological performance by a different and more direct
means than by its impact on grapheme-to-phoneme conversion.

In order to obtain enough morphological information to cover the whole training
set and test set, some automatic processing had to be performed, as the data has to be
retrieved from two separate CELEX data files. One file contains word stems and their
morphological decomposition. Mapping was not always trivial, especially for word
that are subject to vowel changes:

arbeitswillig Arbeit+s+willig
(((arbeit)[V])[N],(s)[A|N.A],(((woll)[V])[N],(ig)[A|N.])[A])[A]

Draufgaenger drauf+Gang+er
((((da)[B],(r)[B|B.P],(auf)[P])[B])[B],((geh)[V])[N],(er)[N|BN.])[N]

When consonant doubling occurs, it is not clear either from the lexicon where to
insert the boundary. Also, there are some errors /inconsistencies for sequences of three
identical letters (see Schiffahrt vs. Brennnessel):

abandonnieren Abandon+ier ((Abandon)[N],(ier)[V|N.])[V]
Schiffahrt Schiff+Fahrt ((Schiff)[N],((fahr)[V],(t)[N|V.])[N])[N]
Brennnessel brenn+Nessel ((brenn)[V],(Nessel)[N])[N]

3.1. CELEX 13

Furthermore, not all words were decomposed. Some (the majority of the participles)
were annotated with the flag [F], which stands for “Lexicalised flection”. I annotated
these (altogether more than 1000 entries) semi-automatically, by running them through
SMOR and disambiguating them manually (circa 4 hours of work).

abfahren ab+fahr ((ab)[V|.V],(fahr)[V])[V]
Abfahrt Abfahrt ((Abfahrt)[F])[N]
dichtgedraengt dicht+gedraengt ((dicht)[A],(gedraengt)[F])[A]

Another file contained inflections of the words in the first file, so that automatic
processing was necessary to merge the information. In particular, not all of the inflec-
tions needed (i.e. all forms that were in the training and test set I was using) were in
the second file, so that the annotation of the missing entries had to be deduced from
the entries available. This was not a difficult but time-consuming task.

Labels for morphological boundaries were derived from the annotation after each
bracket – morphemes followed by [X] were assigned the “stem”-label, [X|.X] the
“prefix”-label and [X|X.] the “suffix”-label. All suffixes from the first data file (the
lemma file) were annotated as derivational suffixes while all affixes from the full form
lexicon were labelled as inflectional suffixes.

3.1.3 Syllable Boundaries

There are two ways of acquiring syllabification information and adding it to the (mor-
phologically annotated) data. Firstly, the syllable boundaries can be projected from
the phonetic transcription if an alignment is available. I ran the alignment component
of the AWT on both the training and the test data to obtain the syllabification infor-
mation. The other possibility is to use the orthographic syllabification information
available in CELEX. Orthographic and projected syllable boundaries differ in several
ways: Because of orthographic conventions in German, the orthographic syllabified
string does not always correspond directly to the original string. (Consider e.g. Schif-
fahrt vs. Schiff-fahrt1, backen vs. bak-ken) and also contained some mistakes due
to these conventions (e.g. Brenn-esseln instead of Brenn-nesseln). Direct mapping
from phonemes leads to (on the grapheme level unconventional) syllabification due to
the fact that ng in the suffix -ungen is transcribed as one phoneme. The orthographic
convention would be to separate the word Schulungen into Schu-lun-gen, but the
mapping from phonemes cannot do this and would yield Schu-lu-ngen. Differences
also occur in the case of st because there is an orthographic rule forbidding to separate
s and t, even though the natural syllabification is such.

1This problem does not occur any longer in new German orthography, where Schifffahrt has become
the correct form.

14 Chapter 3. Resources

3.2 BOMP

BOMP is another machine-readable pronunciation dictionary for German.2 BOMP
contains roughly 140,000 inflected words derived from about 61,000 stems. The over-
lap with CELEX (same word and same phonemization) is approximately 92,000 word
forms.

Unfortunately, it cannot just be appended to CELEX to learn from more data, be-
cause this would make the data even more inconsistent. For example, syllabification is
sometimes quite unusual:
/. ? A . B R E) V . J A .1 T S J O: N/ (Abbreviation)
/.1 ? A . P F A L .2 ? EI . M A#/ (Abfalleimer)

I used BOMP when I discovered that stress information in CELEX is very unre-
liable. Any data-based algorithm can never become better than the data it learns on.
Therefore, I ran the algorithm only on those entries that had the same annotation in
BOMP and CELEX (see chapter 7).

3.3 SMOR and IMSLEX

SMOR is a computational morphology which was developed at the Institute for Nat-
ural Language Processing (IMS), University of Stuttgart. SMOR contains an extensive
lexicon, IMSLEX, which is annotated with many features (e.g. origin, complexity,
word class). These features are used to alleviate the problem of overgeneration (which
would occur if any affixes and stems were allowed to combine). The rules and the lex-
icon are compiled into a finite state transducer, using the SFST (Stuttgart Finite-State-
Transducer) tools. The lexicon contains the stems of each word, which are marked
as <Base Stems>. If the stem varies in derivation or compounding, separate lexicon
entries contain these forms. See below for some example lexicon entries.

<Base_Stems>Abasie<NN><base><frei><NFem/Sg>
<Base_Stems>Abbild<NN><base><nativ><NNeut_es_er>
<Base_Stems>Abbildung<NN><base><nativ><NFem-Deriv>
...
<ge><Base_Stems>schaffe:<>n:<><V><base><nativ><VVReg>
<ge><Base_Stems>schalte:<>n:<><V><base><nativ><VVReg>
<NoPref><Base_Stems>rund<VPART><ge>gehe:<>n:<><V><base><nativ><VVPres>
<NoPref><Base_Stems>rckdatiere:<>n:<><V><base><nativ><VVReg>
...
<Deriv_Stems>dedukt<V><deriv><lang>
<Deriv_Stems>deduz<V><deriv><kurz>
...
<Pref_Stems>ego<PREF><V><klassisch>
<Pref_Stems>ein<PREF><V><fremd,klassisch,nativ>
<Pref_Stems>einher<PREF><V><nativ>
...
<Suff_Stems><simplex,suffderiv><frei,fremd,nativ><kompos><V>mig<ADJ><SUFF>
<kompos><nativ>
<Suff_Stems><simplex,suffderiv><frei,gebunden><deriv><ADJ>ial<ADJ><SUFF><base>
<frei><Adj+>

2For more information consult www.ikp.uni-bonn.de/dt/forsch/phonetik/bomp/README.html.

3.4. taz-Corpus 15

The quality of the morphological analyses returned by the system is very high, as
can be expected from the large amount of linguistic knowledge it contains. But as
many rule-based systems, it cannot analyse words if their stem is not contained in the
dictionary. In the case of CELEX, 10% of the words do not receive an analysis.

The SMOR version used for this project returns the following analysis for the word
Aufgabenheften:

Aufgabe<>:n<NN>:<><kompos>:<><X>:<>H:heft<NN>:<><base>:<><X>:<><+NN>:<><Neut>:<>
<>:e<Dat>:n<Pl>:<>
Aufgabe<>:n<NN>:<><kompos>:<><X>:<>hefte:<>n:<><V>:<><deriv>:<><X>:<><deriv>:<>
<V>:<><>:e<>:n<NN>:<><SUFF>:<><base>:<><X>:<><+NN>:<><Neut>:<><NDA>:<><Sg>:<>
a:Auf<VPART>:<><V>:<><X>:<>ge:abe:<>n:<><V>:<><deriv>:<><X>:<><deriv>:<><V>:<>
<>:e<>:n<NN>:<><SUFF>:<><kompos>:<><X>:<>H:heft<NN>:<><base>:<><X>:<><+NN>:<>
<Neut>:<><>:e<Dat>:n<Pl>:<>
a:Auf<VPART>:<><V>:<><X>:<>ge:abe:<>n:<><V>:<><deriv>:<><X>:<><deriv>:<><V>:<>
<>:e<>:n<NN>:<><SUFF>:<><kompos>:<><X>:<>hefte:<>n:<><V>:<><deriv>:<><X>:<><deriv>
:<><V>:<><>:e<>:n<NN>:<><SUFF>:<><base>:<><X>:<><+NN>:<><Neut>:<><NDA>:<><Sg>:<>

The output of SMOR is then converted to the ETI digit notation:

Aufgabenheften 1aufgaben1heft2en 6auf1gab3en1heft2en

For a detailed discussion about using SMOR for morphological decomposition to im-
prove g2p conversion quality, see chapter 5.

3.4 taz-Corpus

The taz-corpus (taz is a major German newspaper) comprises newspaper articles from
the last 19 years, from 1986 to November 2005. This corresponds to 5.7 GB of data,
or approx. 240 million words, 4.13 million tokens. The ratio of tokens that occurred
just once is 62% (2.59 million).

• coverage of SMOR on taz
There are 410,155 (26.5 %) out of the 1,543,466 different words in taz with a
count of more than 2 which cannot be analysed by SMOR. Many of these are
of course names, although SMOR does have a small processing component for
names.

• coverage of CELEX on taz
1,427,176 words cannot be directly looked up from the CELEX data base, that
is 92% of the words that occur more than twice (of course, the more frequent
ones tend to occur in CELEX, while the less frequent ones and names do not).
Examples of very frequent words that are not contained in CELEX are: “Bun-
desregierung”, “Angebot”, “beispielsweise”.

It contains approximately 80 million words (2 GB worth of text), and 8 million differ-
ent tokens (names, inflected word forms, compounds). Out of these, more than half of
the tokens occur just once. This phenomenon is often referred to as the lnre-problem
(large number of rare events), discussed in Möbius [2001].

In a first step, all meta-information, digits and punctuation marks were removed
from the text in order to extract “pure” words (i.e. characters (and hyphens) enclosed

16 Chapter 3. Resources

by white spaces or punctuation). As I only needed the text to extract word frequen-
cies, the information conveyed by punctuation was not relevant. However, there are
a number of issues arising when trying to extract words (see also Möbius [2001];
Manning and Schütze [1999]).

1. abbreviations
For the sake of simplicity, I also cut off full-stops in abbreviations. Alternatively,
it would be possible to keep all those full-stops that are followed by a non-capital
letter, make a list of these likely abbreviations, see whether any of these likely
abbreviations also occur without being followed by a full-stop, in order to create
a reliable list of abbreviations.

2. uppercase and lowercase
A related issue is the question whether to map capitals and non-capitals all onto
non-capitals or whether to keep the capitals, which would give us information
about the occurrence frequency of verb-noun homographs, and to count sep-
arately common words and proper names (die grünen (adj.) Wiesen vs. die
Grünen (political party)). Here again, the use of capitals at the beginning of a
sentence is an issue, which can be easily solved for cases that are not ambiguous.

3. compounds and apostrophes
A problem that generally arises when tokenizing English text is the common
use of apostrophes (it’s, don’t, Peter’s) and the use of white spaces in com-
pounds (data base, natural language processing). These issues do not arise in
German, as German compound nouns are written in a single word (e.g. Daten-
bank, Sprachverarbeitung).

4. separable verb prefixes
The issue of separable verb prefixes is a real problem in this simplistic approach
to word counting. In German, verbs with separable prefixes (English examples
of which are “work out” or “spit up”) are very common. In German sentences
with verb-second position usually have a long-distance relation between the verb
and its separable prefix, which will be at the end of the sentence, as in “Das
Auto fährt regelmäßig das Verkehrsschild beim Kreisel um.” (The car regularly
knocks over the traffic sign near the round-about.) It is difficult to correctly re-
late the separable verb prefixes to their verbs, as separable prefixes in general are
homographs with prepositions, so that syntactic processing would be necessary
to detect that the um in the following sentence is not a separable verb prefix to
the verb fahren (“Das Auto fährt regelmäßig beim Kreisel links um die Ecke.”)
Why do we want this information at all? The training and test lists do not contain
words that are made of two strings (e.g. “fährt um”) anyway. But it does contain
the infinitives and verb-last-position forms “umfahren” and “umfährt”. Both of
these are ambiguous with respect to a non-seperable-prefix-verb “umfahren” (to
drive round). In a German main clause, the prefix stays with the verb (e.g. “Das
Auto umfährt das Verkehrsschild beim Kreisel vorsichtig.” - The car carfully
drives round the traffic sign near the round-about.) Reliable frequency counts
for both verbs would be desirable for the TTS task, as separable prefix verbs are
stressed on the separable verb prefix while verbs with non-separable prefixes are

3.5. English and French Resources 17

stressed on the stem.
“...dass er das Schild umfährt.” (= that he drives over the traffic sign)
“...dass er das Schild umfährt.” (= that he drives round the traffic sign)
The distinction is meaningful and important for conveying the correct semantics
of the sentences. Hence it would be beneficial to estimate occurrence frequen-
cies for both verbs. With my naı̈ve approach of not relating separated prefixes
and their respective verbs, I cannot disambiguate verbs and therefore not esti-
mate their frequency. Furthermore I will also underestimate the frequency of the
ambiguous “umfahren” verb.

Based on these words extracted from the newspaper texts, I recorded word fre-
quency information and stored each token and its corresponding frequency in a list, on
which all further algorithms operated for efficiency reasons (the frequency list has a
size of only approx. 80 MB). Frequency information is needed to estimate the rele-
vance of errors made. Using frequency information from taz instead of CELEX allows
to more reliably estimate how well the data performs on general text. Using CELEX
frequency information would have biased the results.

The idea in doing a frequency-weighted evaluation is that it is obviously much
worse to pronounce very frequent words incorrectly than to incorrectly pronounce a
rarely occurring word. The simple word list on which evaluation is performed does
not provide such information and does therefore not give a realistic estimate as to how
well the system would work on real text. (This effect is also strengthened by the way
of constructing the test set, which does not contain the same stems as the training set.)

I also used the taz words and word counts to train the RePortS algorithm and the
Morfessor algorithm for unsupervised acquisition of morphemes, see section 5.4.3.
Using taz gave results with much better quality than running the algorithm on CELEX
alone. Moreover, I used the frequencies from the taz corpus when I ran the algorithms
on CELEX data only.

3.5 English and French Resources

The lexica beep, Nettalk, The Teacher’s Word Book and Brulex were downloaded
from the Pascal challenge web page3. All of these corpora were provided with a letter-
phoneme alignment.

3.5.1 English CELEX

For English CELEX, the same type of information is available as for German CELEX.
The data set used contains approximately 72,000 words, 66,623 in the training set and
5,664 in the test set. See below the data format used. Letters and phonemes were
aligned manually, each letter maps onto 0–3 phonemes.

abandon .’ @ b .’ { n d . @ n
abandoned .’ @ b .’ { n d . @ n d
abandoning .’ @ b .’ { n d . @ n . I N

3http://www.pascal-network.org/Challenges/PRONALSYL/Datasets/

18 Chapter 3. Resources

3.5.2 NetTalk

The NetTalk corpus is a publicly accessible database containing 20,008 words from
Webster’s dictionary. It contains information about alignment, syllabification and
stress. The annotated corpus was provided by Sejnowski and Rosenberg [1987] in the
scope of their work on making neural networks pronounce English text. Their work re-
ceived a lot of attention at the time and is claimed to be one of the most widely known
applications of neural networks and data-based TTS systems.

Many data-based approaches to grapheme-to-phoneme conversion have also been
evaluated on the NetTalk corpus, so that it is a good resource for comparing results to
other’s work despite its small size.

The data format of the NetTalk corpus is:

abbreviation xb-rivieS-xn 0<>>2>01>0<<

Each letter is mapped onto one or zero (marked by the hyphen) phonemes. The third
string contains syllabification and stress information and is also aligned with the word.
Syllable boundaries can be inferred from the notation (‘|’ marks a syllable boundary):

1. [<>] → [< | >]

2. [< digit] → [< |digit]

3. [digit >] → [digit| >]

4. [digitdigit] → [digit|digit]

This leads to a syllabification of ab|bre|vi|a|tion or xb|-ri|vi|e|S-xn. As can be seen in
this example, the syllabification is sometimes questionable – as x|b-ri|vi|e|S-xn would
perhaps be preferable. The digits mark stress status of a syllable: 1 stands for primary
stress, 2 for secondary stress and 0 for no stress.

3.5.3 beep

Beep is a large English dictionary containing almost 200,000 words (approx. 178,000
were used for training and 19,863 for testing). It was aligned automatically using the
EM algorithm (cf. Damper et al. [2004]). Each letter is aligned with two phonemic
characters. For an example alignment see the excerpt below.

ABANDONDED AX_BAE_N_DAX_N_DIH_D
ABANDONED AX_BAE_N_DAX_N_-_D
ABANDONEE AX_BAE_N_DOW_N_-IY
ABANDONER AX_BAE_N_DAX_NAX_-

3.5.4 Teacher’s Word Book

The Teacher’s Word Book is the smallest data set – it contains only about 16,000 words,
and has a 1:0..1 alignment (dots stand for “no corresponding phoneme”). The prob-
lematic letter x, which maps onto two phonemes in most phoneme sets, is represented
by just one symbol here (/n/ or /1/ respectively).

3.5. English and French Resources 19

RETRACE RgTRhS.
TOWER Ti.A.
PIKE PjK.
EXTRICATE EnTRAKhT.
EXAMINE I1cMIN.
MAXIMUM McnIMAM

3.5.5 Brulex

Brulex is a rather small French dictionary, containing about 27,500 words. It does not
contain verbal inflections. The alignment is done such that both the orthographic and
the phonemic strings can contain empty elements, which are marked as ’ ’.

abandonner ab_‘do_n_1
abaque aba__k
abasourdir abaz_uRdiR
_x1nophile ks1nof_il_

20 Chapter 3. Resources

3.6 IBM Native Phonology for TTS

The phonological symbol set used for the work on the German system in this project
was the IBM Native Phonology for TTS. It contains 48 phonemes, a syllable marker
and a stress marker. The complete set of symbols are listed below.

? be inhalten
A Altweiberfastnacht
A: Bardame, Mahnmal
A# untermauerte, Werk
AE exzellenter, Tendenz
AE: bärenmäßig
AN Arrangeure, avangardistisch
AU auftaut, Rowdy
B Beschreibung
CH1 Nachzucht, achtfach
CH2 Chemie, Ungerechtigkeit
D Rhododendron
E: telegen, Allée
E# abgerissenerem, Bedenken
EI Beichtgeheimnis
EU leutescheuer, Euter
EY Playback, native (engl.)
F vorwurfsfrei
G gleichgültige
H Höllenhund
I wichtigtuerisch, Mitte
I: zivilisiert, Miete
IN Bassin, Teint
J Jahr, Yak, Majoran
K kleinkriegtet

L Linie, Klavier
M Mutter, Pampa
N Nudel, Panne
N) Achtung, lenken
O Otter, Pathos
O: Rose, Autos, Telefon
OE Öffnung, Gesöff
OE: Öse, hören
ON Raison, Salon
P Pause, Apfel
R zurückkriegt, richtig
R# forderst, Kurve
S Spaß, Masse
S% Stiel, Masche
T Rad, Rat, Stadt
U Mutter, unter
U: Mut, Utopie
V Wolle, erwarten
Y üppig, Krücke
Y: übrig, übertrüge
Z Sonne, Vase
ZH Journal, Passage
. syllable boundary
.1 syll. bound., next syll. stressed

Chapter 4

Evaluation

Evaluation is important for comparing different methods and making reliable estimates
about what method works best and why. I devote this section to evaluation because
there are a number of different issues I would like to discuss. Evaluation results depend
a lot on training and test set design, and in order to judge the reliability of results, it is
necessary to think about the evaluation methods and the data used for evaluations. In
the last section of this discussion, I will briefly explain the evaluation measures I used
for this work.

4.1 Training and Test Set Design

The requirements for training and test data depend on the method used. When work-
ing with rule-based systems, no training is needed, so all of the data can be used for
evaluation.

The situation is similar for unsupervised learning – the algorithm can be run and
evaluated on the whole data set, (although it may be better to use a separate test set to
make sure the algorithm was not tuned to the data set).

In supervised learning, the data set needs to be split up into a training set and a
disjunct test set. If training and test sets overlap, or if the test set is also used for
learning, it is not possible to estimate the algorithm’s performance on unseen data.
When algorithms that require the optimization of external parameters are used, the
data should not only be split into a training and test set, but also a development set for
estimate these values.

In general, the test set should be designed such that it is representative for the
unseen data that we expect the model to encounter later. This is quite a difficult issue
– in g2p conversion, experts have agreed that the fastest and most reliable method to
determine the pronunciation of a word is to do a lexicon lookup and use compositional
methods only for out-of-vocabulary (OOV) words.

But what are the typical OOV words? All words we can evaluate on are words that
have actually been seen. When taking these words out of the training set, we pretend
not to have seen these words. Common methods simply take every 10th word out
of the vocabulary list, regardless of their frequency. This may bias results because the
pronunciation of common words has not the same degree of reliability as pronunciation
of rare words. Furthermore, the unseen words can be expected to contain a higher ratio

21

22 Chapter 4. Evaluation

of foreign words than the known words.
Perhaps it would therefore be good to put into the test set all words that occurred

just once. Luckily, these issues are not relevant for comparing alternative algorithms.
As already mentioned above, the “standard” method in g2p is to randomly divide

a data set into a training and a test set (cf. Taylor [2005]) by e.g. choosing 10% of the
data set to be the test set and making the remaining 90% the training set. If inflected
corpora are used, this method is problematic because the training and test set are not
really independent of one another any more – especially in highly inflecting languages
such as German. Every word in the test set will then consist of an already known stem
and a commonly occurring affix.

Among the new words that will be encountered later there will be also words that
contain previously unseen stems. Therefore, such a design does not model the prop-
erties of unseen words well – and one cannot reliably estimate the model’s ability for
generalizing to new data.

There are two risks that one should be aware of when choosing such a test set
design. Firstly, this can lead to over-training, because parameters (e.g. for pruning
or smoothing) are estimated wrongly. Secondly, some problems, in particular those
related to data sparsity, may not occur and therefore problems with them may not be
recognizable.

An alternative strategy is to choose the test set such that the training and test set
do not contain common stems other than in compounds. This can e.g. be achieved
by randomly choosing words from the data set and taking out all words that differ
from that word only by their ending. In the case of CELEX, this can be done very
reliably as all inflected words point to their stem, and can therefore be separated cleanly
from the other words. The German CELEX test and training set used in this project
were designed according to this strategy. As can be seen in evaluations in chapter 6,
word error rates are higher, but I believe that this is the better way to estimate the
performance of an algorithm.

4.2 Evaluation Methods

When the data set size is small, the evaluation method becomes an issue – it is crucial
for the algorithm to be trained on as much data as possible. On the other hand, eval-
uation results are less reliable when small test sets are used. It is then difficult to say
whether difference in performance are just random deviation or a sign showing that
one method is better than the other one.

This is why significance tests are performed. A significance test calculates the
probability p that the observed number of errors originates from the same distribution
as the expected error ratio. The formula for a two-tailed binomial test, which I used in
this thesis is:

z =
X
n − p
√

pq
n

where X is the number of hits, n is the total number of events and p is the expected
ratio of hits. q is the expected ratio of non-hits. Significance rates for the z-score can

4.3. Evaluation Data 23

be looked up in tables. (e.g. http://www.math2.org/math/stat/distributions/z-dist.htm
for one-tailed binary tests.)

The data for testing can be maximized by using 10-fold cross-validation (which
is what I did for the small English data sets (NetTalk and Teacher’s WB) and for test
sets with small error rates resulting from using the 90/10 splitting). In 10-fold cross-
validation, the data set is split into 10 parts. In 10 iterations, the model is then trained
on 9 parts and evaluated on the remaining section. In the end, the average error rate of
these 10 test sets is calculated, and this measure is then based on a higher number of
words (the whole data set) and is thus less subject to random variation.

4.3 Evaluation Data

Another issue in evaluation is what data to evaluate against. When running a mor-
phological segmentation algorithm, the results can either be evaluated against some
gold standard for morphological segmentation (e.g. manually annotated data), or with
respect to its influence on overall g2p conversion task performance.

Very importantly, an improvement on one value does not always correspond to
an improvement on the other value. The alternative morphological algorithms pre-
sented in chapter 5 were evaluated against manually annotated morphological bound-
aries from CELEX. Best matches were obtained by using SMOR and a special dis-
ambiguation heuristic, but this higher similarity to the gold standard did not mirror
in correspondingly better performance on the g2p task. It is thus always important to
not only evaluate a method by itself but also within the context of the task to be tack-
led. This has also be found for other fields of computational linguistic (e.g. machine
translation, cf. Fraser and Marcu [2006]).

4.4 Evaluation Measures

4.4.1 Error Rates

In this thesis, I evaluated syllabification, stress assignment and g2p conversion by re-
porting phoneme error rates (PER) or word error rates (WER). For phoneme error
rates, the number of insertions, deletions and substitutions that would be necessary to
obtain the target phonemic representation are counted and divided by the number of
phonemes.

Word error rates are obtained by dividing the number of words that contain an error
by the number of all words. For the word error measure, it does therefore not make a
difference whether a word contains one mistake or ten mistakes. However, for intuitive
estimation of phoneme string quality, the word error rate is perhaps more meaningful:
getting 97% of the phonemes right seems to be rather nice, while a word error rate of
20% is actually quite high.

Another comment I want to make is that the reported word error rates reflect the oc-
currence of words in the word list. They are not representative for real text, where some
words occur very often and thus contribute much more to the perceived amount of mis-
takes than some very rarely occurring words. For example, an unweighted word error

24 Chapter 4. Evaluation

rate of 23.3% corresponded to a weighted word error rate of 3.9% (for the AddWord
decision tree given morphological information from SMOR). This number seems much
better but also has to be treated with care: this is not the realistic word error rate either,
as CELEX does not contain any names, which would be contained in real text – and
automatic g2p systems have been shown to exhibit higher word error rates for names.

4.4.2 Precision, Recall and F-Measure

When I evaluated alternative morphologies with respect to a gold standard morphol-
ogy, I did not use word error rate but precision, recall and f-measure. Precision counts
the number of correctly found morpheme boundaries divided by the number of all
morpheme boundaries assigned by the algorithm (i.e. if the precision of a morpheme
segmentation algorithm is 95%, 95% out of the boundaries it found were correct). Re-
call counts the number of morphological boundaries that were found by the algorithm
divided by the target number of morpheme boundaries (i.e. a recall of 50% means that
50% of the morpheme boundaries were found.) f-measure is the harmonic mean of
recall and precision.

precision =
t p

t p+ f p

recall =
t p

t p+ f n

f −measure =
2t p

2t p+ f n+ f p

where tp stands for “true positives”, fp stands for “false positives” and fn stands for
“false negatives”.

Chapter 5

Morphology

This chapter gives an overview of systems that segment words into morphemes. A
morpheme is defined as the smallest meaning-bearing unit in language. The benefit
from morphological segmentation for g2p conversion is motivated linguistically, and
the performance of several versions of the rule-based system SMOR and a range of
unsupervised data-based methods is evaluated with respect to a gold-standard mor-
phological segmentation and their effect on the g2p conversion task. Strength and
weaknesses of the alternative systems are pointed out and compared.

5.1 Motivation of Morphological Analysis for g2p

The method that would produce the best transcription results would be to lookup the
pronunciation of every word in a dictionary. But language is highly productive, new
words are created frequently and the problem is especially severe for a language like
German, where compounding is extraordinarily productive. A lexicon can never cover
all words from an arbitrary text. For the taz German newspaper corpus, which consists
of articles from the last 19 years, only 3% of the different words occurring are covered
by CELEX (many of the unknown words are proper names and words with stems that
are not in the lexicon, but there is also a considerable amount of compounds and in-
flections of known words among them). Machine learning techniques for generalizing
pronunciation of known words to unknown words and systems that use manually con-
structed rules have been designed to cope with the out-of-vocabulary (OOV) words.
For both approaches, generalization quality has been shown to increase when informa-
tion about the structure of an unknown word was taken into account.

German pronunciation heavily depends on the inner morphological structure of
words. It has already been shown by several research groups that morphological
preprocessing can improve German Text-to-Speech Synthesis (for details see Möbius
[1998]; Pounder and Kommenda [1986]). Morphological preprocessing has shown to
decrease the phoneme error rate by over 20% in the IBM TTS-system, which currently
uses a decision tree for the g2p task. Furthermore, a much smaller tree is needed to
achieve similar performance rates.

Taylor [2005] and Black et al. [1998] suggest that the use of a morphology would
also be beneficial for English. This can probably also be generalized to e.g. Swedish
or Dutch, whose morphological processes are similar to those of German.

25

26 Chapter 5. Morphology

5.2 Effect of Morphological Boundaries

Morphological boundaries improve performance of the letter-to-phoneme conversion
system: morphological annotation from the ETI-morphology reduces phoneme error
rate (PER) from 26.6% to 21.8% when using the AddWordTree for grapheme-to-
phoneme conversion). But it is not only beneficial to segment words but also to have
information about segment types (suffix, stem, prefix). More fine-grained information
can further improve results, e.g. if the stress status of a prefix is coded in the morpho-
logical boundary used, or if derivational and inflectional suffixes are distinguished. As
can be seen in table 5.9, the labelled version of the ETI-segmentation outperforms the
unlabelled version.

Similar to the ETI morphology, SMOR outputs linguistically rich segmentation
information from which boundary types can be deduced. But none of the unsupervised
algorithms provide labelling (with the exceptions of the algorithm by Bernhard [2006]
which distinguishes prefixes, stems and suffixes, and Morfessor 2.0, which is not yet
available publicly).

Throughout this work, I used the same morphological annotation of letter strings,
which result in the word Familienangelegenheiten to be annotated
1Familie2n5an4ge1leg2en3heit2en. The labels for morphological boundaries are:

1. stem
A stem is a content word without any inflectional affixes. Knowing where a
stem ends and where another stem begins is crucial for the correct insertion
of glottal stops, syllable boundaries, syllable-final devoicing of stops and frica-
tives (Auslautverhärtung) and for assigning word stress. My favourite exam-
ple in German is Granatapfel: if we did not know that there was a morpho-
logical boundary between Granat and Apfel, we would have to pronounce it
/G R A . N A .1 T A . P F E# L/ instead of
/G R A .1 N A: T . ? A . P F E# L/.

2. inflectional suffix or infix (Fugenmorphem)
The inflectional suffix has a positive effect on the disambiguation of the letter
e. Consider for example the pronunciations of er in 5Be1richt5er1statt3ung
vs. 1Richt3er2s or 1Arbeit4er1schaffen vs. 1Arbeit2er3schaft.
Consonant clusters are argued to influence the duration and quality of vowels
(Pounder and Kommenda [1986]). The word rast is pronounced with a long
/A:/ because it is followed by just one stem consonant and can be morphologi-
cally decomposed into ras+t while Rast is pronounced with a short /A/ because
the vowel is followed by two consonants that belong to the same morpheme.

3. derivational suffix
Similar to stems, derivational suffixes often influence syllabification, stress as-
signment and lead to final devoicing (e.g. for the correct pronunciation of Höschen
/H OE: S . CH2 E# N/ instead of /H OE . S% E# N/ or /H OE: Z . CH2 E# N/).
Some heavy syllables (which should be stressed according to the default rules)
are never stressed when they are derivational suffixes, e.g. -schaft, -heit, -keit,
-lein. And, similar to inflectional suffixes, derivational suffix markers can serve
for disambiguating pronunciations of vowels.

5.3. Morphological Information from CELEX 27

4. stressed prefix
There are three prefix tags, one for always unstressed prefixes, one for prefixes
that are sometimes or always stressed and one for separable verb prefixes (only
introduced in labelling morphological boundaries from the SMOR morphology
in which this information is available). Detection of prefixes plays a crucial role
in syllabification, glottal stop assignment (for all stems that begin with a vowel)
and also for disambiguating pronunciation of e.g. v in
/V E: .1 R A N . D A:/ (Veranda) vs.
/F AE R .1 ? A N T . W O R# . T U N)/ (Ver+antwort+ung).

5. unstressed prefix
see stressed prefixes

6. separable prefix
Separable prefixes are always stressed. This is not only relevant for verbs but
also for deverbal nouns, e.g. ´̈Ubergang, ´̈Ubersicht, ´̈Uberfluß vs. Übersétzung,
Übertrágung). Otherwise, the same arguments as for the other prefixes are valid.

5.3 Morphological Information from CELEX

To obtain a gold standard for morphological information, I extracted the manually
annotated morphological information from the German CELEX database, and showed
that perfect1 morphological segmentation can lead to further improvement (see table
5.1). The morphological segmentation systems were not only compared with respect to
their performance on the grapheme-to-phoneme conversion task, but also with respect
to their similarity to CELEX manual morphological information. For results, see table
5.6.

5.4 Systems for Morphological Analysis

There are several dimensions of morphological analysis: finding the correct segmen-
tation of a word, clustering words according to their stems, detecting morphological
paradigms. Here, we are only interested in the first task: segmenting a word into the
smallest meaning-bearing units, its morphemes.

There have been several approaches in NLP to build systems that accomplish this
task. The most traditional systems are rule based systems. They rely on linguistically
motivated rules and large affix lists and lexica. More recently, data-based approaches
have also been taken to tackle morphological segmentation. We distinguish two types
of data-based methods: supervised ones which take as an input morphologically an-
notated data and unsupervised methods, which work on raw text. This makes truly
unsupervised methods particularly attractive, as virtually no work is needed to adapt
them to other languages. However, state-of-the-art unsupervised algorithms have not
yet reached the quality of rule-based systems.

1In fact, morphological information from CELEX is also far from perfect, see comments in chapter
3, but it’s the best segmentation available, as there is no gold standard for morphological decomposition
in German.

28 Chapter 5. Morphology

5.4.1 Rule Based Approaches

Rule-based systems are currently the most common approach to morphological de-
composition and usually perform best in segmenting words. But there are several
disadvantages in rule-based systems. Firstly, the acquisition of a substantial rule-based
morphology is very labour-intense and can only be done by an expert linguist who
knows the language concerned very well. Secondly, large knowledge bases are needed,
such as comprehensive affix lists and a large lexicon, often annotated with linguistic
features that are relevant for morphology. Experience from language processing shows
that, due to the LNRE2 property of language, there are always some words that are not
in the lexicon, in particular foreign words and new words. So a rule-based system has
to be updated permanently.

Another issue is the disambiguation of alternative analyses. In rule-based systems
this can either be accomplished by assigning probabilities to analyses (which need to
be acquired first from large data sets or be added to the morphology manually from
linguistic insight), or by arranging rules in a certain order, which may prevent the
desired analysis from being detected. In such a system, rules heavily depend on one
another, making it very difficult to modify rules.

5.4.1.1 Bell Labs System

The Bell Labs System described in (Möbius [1998]) is a TTS-system for German that
exploits the morphological structure of words and is implemented as a weighted fi-
nite state transducer (WFST). The transition weights of the transducer are assigned
manually based on linguistic expert knowledge, and the productivity of affixes. Affix
productivity has been shown to be proportional to the ratio of hapax legomena3 of the
words they occur with. The weights cause the analysis which includes a productive
affix to be preferred over an analysis with an unproductive one.

Unknown words are segmented using a phonotactic4 syllable model. This model
tries to match known affixes within the word and assigns costs to any previously un-
accounted orthographic substrings based on their phonotactics (whether the letter se-
quence can possibly be a stem, whether there is a letter sequence that can never occur
within a morpheme and therefore gives high evidence for the insertion of a morpheme
boundary). The order of stems and affixes is furthermore coordinated by specific rules
(that require e.g. that a prefix cannot be directly followed by a suffix).

A difficult problem is furthermore the pronunciation of names, which make up a
large amount of the incorrectly pronounced words. In Jannedy and Möbius [1997],
the authors discuss the construction and use of a specialized finite state transducer for
name analysis, which they show to perform much better on names than the generic
system.

2Large Number of Rare Events.
3A hapax legomenon is a morpheme that only occurs with one single stem, for example Schornstein,

Himbeere, Schmetterling.
4Phonotactics is a branch of phonology that deals with restrictions in a language on the permissible

combinations of phonemes.

5.4. Systems for Morphological Analysis 29

5.4.1.2 ETI-Morphology

The ETI morphological analysis module is a rule-based system that relies on an exten-
sive lexicon. The rules (when to peal off what affixes) are arranged in a specific order
such that exactly one analysis is returned for each input word. Words that cannot be
segmented because parts of them are not in the lexicon, are heuristically decomposed
assuming a default “unknown” morpheme and pealing off as many affixes as possible.
Mistakes can roughly be classified into two categories that are due to missing lexicon
entries:

1. unknown stems are decomposed too far
For example, if the word Abderit was not in the lexicon, it is segmented into
Ab+derit, as ab is a common German prefix. This behaviour leads to relatively
high recall but low precision on affixes (see tables 5.6 and 5.7 below).

2. compounds with at least one unknown stem are not decomposed
A default “unknown” stem is not assumed in the case of compounds. Therefore,
compounds are not decomposed when one of the stems is not in the lexicon (e.g.
1bardame (desired analysis: 1bar1dame), 5aus1sagesatz (5aus1sage1satz),
1belegexemplar (1beleg1exemplar)). This lowers recall on stem boundary
detection.

The ETI-morphology was nevertheless the morphology which performed best on the
grapheme-to-phoneme conversion task.

5.4.1.3 SMOR-Morphology with FSTs

SMOR, a computational morphology developed at the Institute for Natural Language
Processing (IMS) at the University of Stuttgart, covers inflection, derivation and com-
pounding. It is based on DMOR, DeKo and IMSLex and uses a finite state transducer
(FST) to compute morphological analyses.

Finite state transducers have been widely used in rule-based systems, due to the
fact that morphological rules and exception lexicons can be compiled into FSTs to
work efficiently. Chapter 2 of Karttunen [2001] explains why a FST is adequate for the
specific task of morphological analysis. Further systems that used FSTs are described
in (Sproat [1996]; Beesley).

SMOR comprises a large lexicon containing affix lists and a stem list which, in
addition to the canonical stem forms, also lists irregular derivational stems and com-
pounding stems. To prevent over-generation, each entry is annotated with a set of
features that are required to match in order for two morphemes to compose. These
features ask e.g. for word class, stem type, origin, complexity, whether the verb can
take a prefix, whether an ß is converted to ss (for a full list of features, cf. Schmid et al.
[2004]).

The analysis for the word Aktentaschen looks like this:

Akt<NN>:<><kompos>:<><X>:<>ent<VPREF>:<><V>:<><X>:<>asche:<>n:<><V>:<><deriv>:<>
<X>:<><deriv>:<><V>:<><>:e<>:n<NN>:<><SUFF>:<><base>:<><X>:<><+NN>:<><Neut>:<>
<NDA>:<><Sg>:<>
Akte<>:n<NN>:<><kompos>:<><X>:<>T:tasche<NN>:<><base>:<><X>:<><+NN>:<><Fem>:<><>:n

30 Chapter 5. Morphology

<NGDA>:<><Pl>:<>
a:Akt<V>:<><deriv>:<><X>:<><deriv>:<><V>:<><NN>:<><SUFF>:<><kompos>:<><X>:<>ent
<VPREF>:<><V>:<><X>:<>asche:<>n:<><V>:<><deriv>:<><X>:<><deriv>:<><V>:<><>:e<>:n
<NN>:<><SUFF>:<><base>:<><X>:<><+NN>:<><Neut>:<><NDA>:<><Sg>:<>
a:Akt<V>:<><deriv>:<><X>:<><deriv>:<><V>:<><>:e<>:n<NN>:<><SUFF>:<><kompos>:<>
<X>:<>T:tasche<NN>:<><base>:<><X>:<><+NN>:<><Fem>:<><>:n<NGDA>:<><Pl>:<>

This form contains some information which is irrelevant to the actual task, for ex-
ample agreement information. Therefore, all analyses that map on the same segmen-
tation are only kept once. Furthermore, the representation is transferred to the format
that is used by the ETI-morphology. For the current example, this would be:

1akt4ent1asch3en
1akten1tasche2n
1akt3en1tasche2n

The overall quality of analyses from SMOR is linguistically better than the ETI
analyses (SMOR analyses have a much higher precision with respect to manually an-
notated data than ETI analyses, cf. table 5.6), but performance on the grapheme-to-
phonem conversion task is worse for the following reasons:

1. coverage
SMOR’s coverage of the CELEX data is only 90%. OOV words include Kirschsaft
(because the compositional stem Kirsch- is not included in the lexicon), Ab-
dampf, Adhäsion, Agglutination, entmagnetisieren. Also, conjunctive II forms
are included in CELEX in two versions: with and without an e. SMOR currently
only analyses the version which contains an e (e.g. entsprächst, entsprächt vs.
entsprächest, entsprächet).

2. complex lexicon entries
The lexicon contains complex words which could be decomposed further (e.g.
Abbildung, Abschwung, Granatapfel), and for which we do not get the informa-
tion necessary to insert glottal stops (at the a in apfel), place syllable boundaries
(between t and a in Granatapfel) or assign word stress correctly (to the first
syllable of Abbild, instead of the second).

SMOR uses a number of features to segment words and prevent over-generation.
These features for example disallow the verb prefix ab to combine with a noun.
For the word Abbildungen, there are thus two possible segmentations:
Ab+bild+ung+en (ab+bild comes from the verb abbilden) and Abbildung+en
(based on the lexicon entry Abbildung), but for the word Abbild, the only pos-
sible analysis is Abbild, as there is no regular process that would transform the
prefixed verb abbilden into the noun Abbild. Additionally, SMOR has a filter
that leads to under-segmentation in prefixes in order to preserve tractability in
the transducer: every word can at most have one prefix, words as unübersetzbar
are assumed to base on the complex stem übersetz.

3. ambiguity
The finite state transducer is not weighted. Any alternative analyses can not be
disambiguated by the transducer. It is therefore not clear, which out of the set

5.4. Systems for Morphological Analysis 31

of analyses should be chosen. Most of the analyses generated by SMOR are lin-
guistically possible, but many are extremely unlikely (such as Abt+eil+ung+en
or Akt+ent+aschen, Ab+fal+leim+er or Ab+end+kleid). The average num-
ber of different segmentations per word is 2.4(!).

Possible solutions to these problems are the following:

1. Introduction of a default stem to obtain wider coverage of the lexicon
The advantage of such an approach is that it would make use of the grammar’s
knowledge about possible affixes. On the other hand, the unknown words might
begin or end in a prefix or suffix by chance, this is particularly true for very
short (one letter) and rare or unproductive affixes. My suggestion is therefore
to include a mechanism that takes into account affix length, probability and pro-
ductivity as well as phonotactic and orthographic constraints (to prevent a seg-
mentation like A+ffix). I did not implement the proposed constraints but only
the default segmentation that peals of affixes.

2. Segmentation of lexicon entries
For tasks in syntax or semantics it may be better not to segment lexicalized com-
plex words such as Abbild or Flugzeug, but, as motivated above, we need to look
at the lexicon from another perspective for this task. To integrate both types of
granularities into the lexicon, I automatically inserted additional morphological
boundaries into these complex words. The entry Abbildung was changed to
Ab<X>bild<X>ung, where <X> is a morpheme boundary. Ideally, the newly in-
serted morpheme boundaries should also be encoded to state that ab is the prefix,
bild the stem and ung a suffix. The automatic segmentation of lexicon entries
was performed using the affix lists and stem lists from the lexicon itself. But
the automatic segmentation introduces new ambiguities, and thus aggravate the
disambiguation problem. In table 5.1, the approach is referred to as SMOR-
newLex.

Overall, introducing segment boundaries into the lexicon reduced precision from
92% to 88% (because segment boundaries were annotated automatically and
not corrected manually, therefore they contain some errors) and improved recall
from 75% to 80%. This results in an f-measure increase from 82.1% to 83.6%
(significant at p < 0.000001 according to a two-tailed binomial test).

3. Disambiguation
In a first, very simple approach, I used the system’s inbuilt -d option. This option
always selects the analysis with the smallest number of morphemes. In general,
this leads to linguistically good results. But we face also the most severe problem
of under-segmentation (i.e. very low recall) for words such as Abbildung, that
can be segmented as Ab+bild+ung but also have own lexicon entries.

To improve on recall, I then decided to always pick the analysis which splits
the word into the largest number of segments, but this led to very low perfor-
mance, too, this time due to low precision (e.g. Akt+ent+asche+n is preferred
over Akten+tasche+n, and Abt+ei+lunge+n is preferred over Abteilung+en).
A more sophisticated version of this heuristic (which actually returned the best

32 Chapter 5. Morphology

overall results) was to always select the SMOR analysis with the largest number
of segments if at least one stem segment from the analysis with the smallest num-
ber of segments was in the same position. This heuristic returns Ab+bild+ung+en
instead of Abbildung+en, and prefers Akten+tasche+n over Akt+ent+asch+en.
Unfortunately, it did not improve results on grapheme-to-phoneme conversion
either (wrt. ETI), although it has a higher f-measure than the ETI-segmentation
with respect to the CELEX manually annotated data.

Another way to disambiguate alternative analyses is to use probabilities for rank-
ing the goodness of an analysis. In a finite state transducer, weights that represent
transitional costs can be added to the arcs, to rank alternative paths with respect
to one another. Weights can be added to a finite state transducer by manual
annotation following human intuitions (this is the most laborious and difficult
way, as it is hard to estimate the various interactions of weightings), based on
transitional probabilities learnt from large amounts of annotated data, or based
on productivity information (Möbius [1998]) for affix disambiguation (can be
acquired even from raw text), or a combination of these. In a first approach, I
derived the weighting for the finite state transducer from text through the acquisi-
tion of word and affix frequencies from the taz corpus. The underlying idea was
that frequencies should help to correctly disambiguate cases where words are
segmented into very infrequent morphemes, such as Top+fes (Engl: top (best)
+ Fes (fez = type of oriental hat)) instead of Topf+es (genitive of the word Topf
= pot). The disambiguated analyses were then used to learn transitional proba-
bilities for the SMOR finite state transducer. This did lead to some improvement,
but frequency alone did not seem to be a sufficiently good disambiguator.

Much better results were in fact obtained when I used the morphological infor-
mation contained in CELEX to disambiguate SMOR analyses. Disambiguation
consisted of always choosing the analysis that was most similar to the CELEX
analysis. However, due to the way arch probabilities are multiplied in the trans-
ducer, analyses with a low small number of segments are preferred over analyses
with many segments. Therefore, under-segmentation is still a problem (cf. tables
5.6 and 5.1).

SMOR as a Resource
SMOR is a very rich resource, with information about stem type (native, classic, for-
eign), word category etc. Therefore, it would be interesting to at least use some of
this information. The most direct usages are to extract stem and affix lists to build a
low-resource naı̈ve morphology (see section 5.4.1.4). SMOR annotation about sepa-
rable prefixes can also be valuable for the pronunciation of verbs that are ambiguous
with respect to their primary stress position, (i.e. úmfahren vs. umfáhren, ´̈uberlegen
vs. überlégen,). Verbs that can be interpreted as having a separable prefix are marked
with the “VPART”-tag. However, within our word list, this information is of limited
value, as we have no means to disambiguate an ambiguous verb. But the information
can help to determine the accent for verbs that only have one possible reading.

Another approach to exploiting SMOR would be to add pronunciations to each lex-
icon entry (e.g. add all the data available from CELEX). A new word could then be
analysed by SMOR, and in a first step be given the concatenated pronunciation based

5.4. Systems for Morphological Analysis 33

on the separate pronunciations of each morpheme. To do justice to numerous processes
like syllable-final consonant devoicing, stress shift etc., transformation based learning
(TBL) could be used to learn transformation rules (from a training set) which could
then be used on the concatenated string and would lead to the final pronunciation. The
main drawback from this approach is that disambiguation and lacking coverage would
still be an unsolved problem, and that pronunciations for all SMOR lexicon entries
would have to be obtained.

Native vs. Foreign Words
In another experiment, foreign word were separated from native and classic words
to learn two separate decision trees – one for native words and one for non-native
words. To determine what are foreign words (like “Computer”, “Abandon”, “Bataille”,
“Billard”), all words that were marked as “foreign” in SMOR were singled out. This
process is a good approximation of what a foreign word is, but it is by no means perfect,
as the annotation in SMOR marks only the kind of affixes a word can combine with –
and a foreign word may be inflected like a German word even if its pronunciation does
not follow German pronunciation rules. Compounds with a foreign bit in them may
be marked as native, such as “computergesteuert”. Therefore, all words that contained
other words with a “foreign”-mark were also removed from the set of native words.

The processing of words unknown to SMOR (and for which no consequently prove-
nence tag is available), would work as follows: The new word would be processed by
both the foreign and the native tree and the pronunciation from the tree that assigned
it the higher probability would be chosen. This idea is based on the observation that
analyses which turn out to be wrong have a considerably lower average probability
than words that are transcribed correctly.

For each of the word sets (native and non-native words), two decision trees were
learnt for grapheme-to-phoneme conversion were learnt. While results of the native-
only tree were improved (PER 2.68%, WER 20.51%) (and even more so if all words
that do not have an analysis in SMOR are taken out (PER 2.48%, WER 19.60%)), the
pronunciations of the foreign words are very error-prone (PER 6.49%, WER 41.44%).
The high error rate on foreign words can partly be explained by insufficient training
set size and the heterogenity among the foreign words.

If the whole set of words is analysed using the tree trained on native words only,
there are slightly more errors than when learning is performed on the mixed data (PER
2.89%, WER 21.77%). In conclusion, trying to process native and foreign words sepa-
rately is difficult: the training set for foreign words is not big enough. To overcome the
data sparsity problem, a model for words from each language would have to be built
(i.e. one for German, one for French and one for Spanish, as these languages make up
the largest proportion of foreign words in German.) These models should probably not
be trained on original data sets from these languages, as typical German native speak-
ers do not use the whole phonetic inventory of other languages but map many sounds
onto sounds in their own language.

34 Chapter 5. Morphology

Combining two Morphologies
I was interested in seeing how the results from SMOR could be used to improve per-
formance of the letter-to-phoneme conversion step, and therefore also tried to combine
the output of SMOR and ETI in order to find an upper boundary for performance. This
approach would of course be unattractive for a practical application, as it is a very
resource-consuming solution to run both systems. For example, I always selected the
SMOR analysis that was most similar to an analysis from the ETI-morphology. Al-
though the increased f-measure showed that the morphological segmentation is more
close to the target segmentation, it does not perform better on the g2p conversion task
(see table 5.1).

version WER PER f-meas. Prec. Recall
SMOR-d 24.99% 3.28% 71.8% 95.4% 57.6%
SMOR-heuristic 23.25% 2.92% 82.1% 90.2% 75.4%
SMOR+newLex 23.76% 3.00% 83.6% 87.1% 80.4%
SMOR-CELEX-WFST 24.16% 3.22% 76.4% 94.9% 63.9%
SMOR-ETI 22.33% 2.85% 81.7% 92.3% 73.3%

Table 5.1: Comparison of the effect of morphological decomposition from alternative
versions of SMOR on the g2p task.

Evaluation on weighted word lists
The taz frequency information also allowed me to evaluate whether more mistakes
were made with frequent words or whether errors were committed on infrequent words.
A system that returns few errors on infrequent words but relatively many errors on
frequent words is good for a design where all known words are simply looked up in a
lexicon. A system that is designed for running on a device with very limited memory
capacity would better be such that it makes very few errors on the frequent words,
hoping that the rare words occur so seldom that performance is not impaired too much.
For results from the frequency-weighted evaluation of morphological preprocessing
for grapheme to phoneme conversion see table 5.2.

morphology words corr. words wrong types corr. types wrong ratio
ETI 31,301,332 2,112,552 4,531 1,146 6.3%
SMOR-heur 32,108,944 1,304,940 4,445 1,232 3.9%

Table 5.2: Evaluating ETI and different versions of SMOR using weighted frequencies
from taz.

As the ETI-morphology has shown to work best for the current task, it would also
be interesting to augment ETI-lexicon with the entries from SMOR, thus covering a
larger vocabulary, which would improve on precision.

5.4. Systems for Morphological Analysis 35

5.4.1.4 Naı̈vely pealing off affixes

In the previous sections, I have argued that morphological annotation can improve
conversion quality significantly. But a morphology with many rules is very time-
consuming to build for new languages. What if we had a full affix list of this language?
I wrote a simple script that peals off as many suffixes from a word as possible.

Alternative matches are disambiguated by pealing off the longest affixes first and
introducing a restriction on minimal stem length. But unfortunately, this naı̈ve mor-
phology has a negative effect on letter-to-phoneme conversion quality.

An explication for this phenomenon is that the grapheme-to-phoneme conversion
algorithms used here, the decision tree and the Hidden Markov model, capture the
context and learn how an affix is typically pronounced. The morphological information
is primarily needed for disambiguating letter strings as to whether they are an affix or
part of the stem (like in vertikal where the v should be pronounced /V/ instead of
/F/). The other big issue are morpheme boundaries in compounds, which the affix
lists cannot resolve.

Information is “lost” by the simple disambiguation strategy of always trying to peal
off the longest possible affix. The letter-to-phoneme conversion algorithm cannot re-
late the remaining (pseudo-)stem to the true stem any more. Another reason for why the
annotation actually harms performance (instead of simple bringing no improvement),
is that the algorithm actually loses some information as it sees less of the surrounding
letter context when more characters are added to the string while keeping the context
window size constant. This naı̈ve affix list-based algorithm is used as a second base-
line (first baseline: no morphological annotation) for comparing the performance of
algorithms.

5.4.2 Data-based Approaches: Supervised

For an overview of past research on supervised approaches to morphology acquisition
see chapter 2.1 in Schone and Jurafsky [2001]. Supervised approaches are less attrac-
tive than unsupervised approaches, as they require a lot of morphologically annotated
data for learning. It would certainly be interesting to run a HMM similar to the syllable
tagging model (see chapter 6) on the morphologically annotated data and observe what
performance rates can be achieved when using supervised learning. Unfortunately, I
did not have the time to try this in the scope of this thesis. Following the good results
with the g2p-HMM (see chapter 8), I do not expect any significant improvements to be
gained from introducing a separate module for morphological segmentation that uses
the same method as the g2p algorithm.

5.4.3 Data-based Approaches: Unsupervised

Using unsupervised methods is attractive, because they can be applied by non-linguists
and do not require any language-specific knowledge. The only input needed is a large
corpus or list of words.

From 10th to 12th of April, I attended the 2nd Pascal5 Workshop in Venice, Italy.

5European Network of Excellence, Pascal stands for Pattern Analysis, Statistical Modelling and

36 Chapter 5. Morphology

During the workshop, results from a recent challenge on language-independent auto-
matic acquisition of morphemes were reported. For evaluation, algorithms had been
applied to English, Finnish and Turkish corpora, and were also evaluated with respect
to their usefulness for a speech recognition task. The approaches taken were very di-
verse and seemed interesting as a preprocessing step for the grapheme to phoneme
conversion task. The three winners of the challenge (evaluation was done on differ-
ent languages, so that there were different winners for the tasks) agreed to let me use
their algorithms in order to test whether the their morphological segmentations can
improve results for the letter-to-phoneme conversion task. Furthermore, I downloaded
an older version (Morphessor 1.0) of the algorithm from the Morpho-Challenge orga-
nizers. The best-scoring versions (Morphessors 2.0 and 3.0) are not yet available for
download (expected: June 2006).

All of these unsupervised methods assume morphology to be a concatenative process.
The evaluation set-up was as follows: I tested each of the algorithms on English and
German, and evaluated their benefits for g2p conversion with the AWT decision tree
(and the best one also with the HMM model). The output of the unsupervised algo-
rithms only indicates unlabelled morpheme boundaries.

Interestingly, none of the algorithms outperformed all others on all evaluation lan-
guages. This indicates firstly that different types of languages exhibit different types
of morphological problems, and secondly that the unsupervised algorithms probably
make some language-specific assumptions. Therefore, it is either necessary to choose
the appropriate algorithm dependent on the type of language, or to combine different
algorithms and exploit their strength for the different types of morphological phenom-
ena, in order to obtain a system that can cope well with all of them.

Approaches to unsupervised acquisition of morphology were classified by Goldsmith
[2001] into the following categories:

1. identification of morpheme boundaries based on conditional entropy

2. identification of bi-grams that have a high likelihood of being morpheme internal

3. discovery of rules for phonological relationships between pairs of related words

4. seeking an analysis that compresses the corpus optimally

Goldsmith [2001] discusses difficulties with first two approaches and concludes that
morphology should not operate on a n-gram word environment, but rather on a higher
level, because he finds statistical links between local sequencing of phonemes or letters
to be too weak.

In the following four sections (using Goldsmith’s categories for structuring the
approaches), I will explain the most important approaches and those which I used to
for morphological preprocessing in more detail.

5.4.3.1 Splitting based on segment predictability

The original idea for this approach was developed by Harris [1955]: word splitting
should occur if the number of distinct letters (for words from a word list) after a given

Computational Reasoning.

5.4. Systems for Morphological Analysis 37

sequence of letters rises above a certain threshold. This approach was implemented
by Hafer and Weiss [1974], but they found it to give very noisy results if applied to a
simple word list. Hafer and Weiss therefore experimented with the idea and developed
15 different algorithms that differed in their design and parameters. The psycholog-
ical plausibility of this theory is supported by experiments discussed in Saffran et al.
[1996] which suggest that humans also rely on transition probabilities to identify word
boundaries. The idea underlying this approach is used (but not as strictly as in the first
approaches) by Bernhard [2006]; Bordag [2006]; Keshava and Pitler [2006].

The approach presented in Bordag [2006] comprises two steps. A set of plausible
affixes is obtained in the first step, and the second step uses these affixes to find mor-
phemes for which less evidence can be found in the data. Such a two-step approach
has also been used in another algorithm based on Harris’ letter predictability approach
(cf. Déjean [1998]).

Bordag’s first step is based on Harris’ letter successor variety (LSV). LSV is calcu-
lated among semantically similar words. The semantic similarity of words is thereby
determined from context similarity and edit distance. According to this implemen-
tation, two words are similar if their contexts contain many identical words (latent
semantic analysis (LSA) is not used), and if they look similar. The intuition here is
that semantically similar words should have the same root or affix. This integration of
semantic information alleviates the problem observed by Hafer and Weiss [1974] who
had obtained very noisy results from using the whole lexicon. To reduce typical errors
committed by the simple LSV-approach, the LSV value is combined with a measure
for bi-gram weight (how probable it is in general to split two particular letters) and a
substring frequency measure (to down-weight letter sequences that are graphemes (e.g.
sch, th) but favour frequently occurring sequences are possible affixes).

What’s interesting about this first step is the incorporation of semantic information
and the use of edit distance to find similar words – using edit distance would also be
generalizable to finding infixes or circumfixes, instead of always focussing on prefixes
and suffixes (which are admittedly the most common phenomena in the Indo-European
language group). Another nice property of this algorithm is that it is not limited to a
certain number of morphemes but can split a word into an arbitrarily large number of
morphemes.

But, as Bordag reported in Bordag [2005], precision for the segmentation obtained
from this first step is high (about 80%), but recall is low. Therefore, a trie6, made of
the words for which there was enough evidence in the first step, is used to segment the
rest of the words in a second step. The use of a forward and a backward tree is well
suited for prefixation and suffixation, but not ideal for handling infixes. Several affixes
are split off by iteratively applying the tries until no more splits are found. To prevent
excessive over-segmentation, a threshold (either the affix or the stem must consist of
minimally three letters) is introduced.

In MorphoChallenge 2006, a version of Bordag’s algorithm which only performs
the first step won the precision competitions for Finnish and Turkish. But recall was

6A trie (the word was derived from reTRIEval) is a special type of the more general tree. Tries
are used to search simultaneously for strings that begin with the same substring. Each branch of a
trie represents an additional letter, and every node corresponds to the string that can be obtained when
appending the labels from all labels down to the node. The root node represents an empty string.

38 Chapter 5. Morphology

even much lower than for English and German, because the corpora were relatively
small and because of the high number of word forms in these morphologically rich
languages. This sufferance from data sparseness can also be observed for German
(despite a corpus of 500 million words7 and 9 million different word forms) where
the algorithm (perhaps unsurprisingly) performs worse on infrequent words than on
more frequent ones. For example on German, an f-measure of 0.704 (precision: 0.687,
recall: 0.721) according to Bordag [2006] is reached on the 100,000 most common
words of CELEX, but only 0.614 f-measure with 0.606 precision and 0.623 recall (val-
ues from personal communication) for the whole of German CELEX (approx. 250,000
words). If we assume that the word segmentation is only needed for very rarely oc-
curring words (as we could store the pronunciation of frequently occurring words in a
lexicon), this method seems to be not very well suited as a preprocessing step to letter-
to-phoneme conversion, as it suffers more severely from data sparseness than some of
the other algorithms considered.

The approach presented in Bernhard [2006] is also based on Harris’ segment pre-
dictability, but uses transitional probabilities instead of counting the number of differ-
ent letters following a given substring. Contrarily to the approaches by Bordag [2006];
Keshava and Pitler [2006]; Schone and Jurafsky [2001], it does not use trees to peal
off prefixes or suffixes from the sides of the word but searches for similar stems. Sim-
ilarly to the later Morfessor versions (refer to Creutz and Lagus [2004, 2005]), it uses
three different categories: prefix, stem, and suffix as well as an additional category for
linking elements (like the German Fugenmorpheme) and imposes constraints on how
these can be combined. For all transitions between two letters in a word, the transi-
tional probabilities to all substrings before the potential split and after the potential split
are calculated. Minima in the transitional probability curve are accepted as morpheme
boundaries if they deviate more than one standard deviation from the preceding and
following maxima. The longest and least frequent segment is added to the stem list, if
it occurs at least twice in the rest of the data and once in the beginning of a word, and if
it is followed by at least two different letters. A problem is the data sparsity for stems
in which consonant doubling, e-deletion, umlauting or ablauting occurs – these cannot
be validated by this method. Once the affix and stem lists have been acquired, each
word is segmented with respect to these lists. Any ambiguities are solved by using a
cost function. Bernhard proposes two different cost functions:

cost1(si) = − log f (si)
∑i f (fi)

cost2(si) = − log f (si)
maxi[f (si)]

Following my experiments with the disambiguation of SMOR, it would be interesting
not to use simple word segment frequencies but transitional probabilities (for example
a HMM as in Creutz and Lagus [2004]), or affix productivity (as in Möbius [1998]).

The results of running three different data sets were compared for German CELEX:
1) unweighted CELEX, 2) weighted CELEX using weights from taz and disambiguat-
ing with cost function 1, 3) weighted CELEX using weights from taz and disambiguat-
ing with the second cost function.

7Projekt Deutscher Wortschatz: http://wortschatz.uni-leipzig.de/.

5.4. Systems for Morphological Analysis 39

In MorphoChallenge 2006, Bernhard’s algorithm was the winner8 for Finnish and
Turkish, and came second for English.

Morphology Precision Recall F-Measure PER WER
unweighted CELEX 0.380 0.566 0.452 4.46% 31.89%
weighted CELEX, method 1 0.649 0.621 0.635 3.88% 28.26%
weighted CELEX, method 2 0.566 0.687 0.621 5.04% 34.98%

Table 5.3: Different data sets for Bernhard’s algorithm.

The approach presented in Keshava and Pitler [2006] combines the ideas of using
words that appear as substrings of other words and of using transitional probabilities.

The core element of the algorithm are a forward tree and a backward tree, which
are used to calculate the conditional probabilities of a letter given the preceding letter
sequence. The forward tree is used to determine suffixes while the backward tree is
used to find prefixes. The trees encode the probability of a letter given the letters that
precede it in the word (for the forward tree), and the probability of each letter given all
letters that follow it (for the backward tree) respectively.

Then, two lists of potential prefixes and suffixes are constructed using three condi-
tions:

1. The letter sequence before the potential suffix should also be a word in the cor-
pus.

2. The transitional probability of the last two stem letters should be close to 1.

3. The transitional probability from the last letter of the stem to the first letter of
the hypothesized suffix should be < 1.

If all three conditions are met, the potential suffix is rewarded (it gets some credit),
otherwise it is punished (its score is deduced). Prefixes and suffixes that have a positive
score in the end are included into the final prefix and suffix lists, which is then pruned
in order to eliminate affixes that are concatenations of two or more suffixes (such as
-ungen in German).

In the word segmentation step, morpheme boundaries are inserted using the prefix
and suffix lists: For each word, all possible suffixes are pealed off. In the case of
ambiguities, probabilities from the trees are used. Then the same process is repeated
for prefixes. Compounding is solved partially because the prefix and suffix lists may
also contain stems, especially those which often occur in a certain position in the word.

The algorithm achieved by far the best results for English (80% f-score), but had
low recall for Finnish and Turkish, which is due to the invalid assumption that a proper
word is obtained after pealing off a suffix. Another problem are infixes, as the set of
potential affixes only comprises prefixes and suffixes that occur in the beginning or end
of the integral words from word list. The algorithm has the same problems as Bern-
hard’s algorithm concerning stem variations due to consonant doubling, umlauting and
ablauting.

8Among participants; the organizer’s best Morfessor system was slightly better.

40 Chapter 5. Morphology

I tried the algorithm on my German data with different data sets: 1) German taz
(only words that occur more than once), 2) German CELEX unweighted word list, and
3) German CELEX frequency weighted word list. In approaches 2) and 3), no suffixes
were validated, whereas the prefix lists looked very good for all three approaches. The
algorithm’s failure to find suffixes in German can be explained as follows: The first
condition, saying that a word whose affix was stripped off should still be a word in
the corpus is not met. German verb stems do not occur on their own (except from
certain imperative forms), so a word like abholst that is stripped of its suffix is abhol
which cannot be found in the lexicon, although words like abholen, abholt, abhole or
abholung are part of the corpus. The problem for German nouns is similar. While many
foreign suffixes such as -ation or -ismus (engl. -ation, -ism) are found for English,
due to word pairs like catholic – catholicism, commercial – commercialism, cynic –
cynicism, accept – acceptation, adapt – adaptation, such pairs are very rare for the
German equivalents: katholisch – Katholizismus – Katholik, adaptieren – Adaptation,
akzeptieren – Akteptanz.

These suffixes are punished far too often and thus even lead the list for lowest
scores! Therefore, the first condition would have be changed for languages with ag-
glutinative morphology. The introduction of a stem list in addition to the prefix and
suffix lists would probably also be beneficial; such a list would also help to alleviate
the problem of over-segmentation in short words that are decomposed into a prefix
and a suffix but no stem or a very short stem (e.g. über+kl+ei+de+n, über+f+uhr,
über+b+last, über+b+leib+e, über+brachtet, über+b+ring+e).

The version that was trained on taz (running the corpus for this corpus took more
than 10 hours on a 2.8 GHz machine) achieved much more promising results. Here, a
long list of suffixes could be identified, many of which are real suffixes. But, support-
ing my hypothesis about the problem resulting from criterion 1, some very common
suffixes, such as -ung and prefixes such as ver- did not obtain sufficiently high scores.

Another common source of mistakes is that suffixes can be stripped off in any order.
Here, a HMM or similar model as used in the second version of Morfessor (see below)
could help to overcome this problem.

Remarkably, the RePortS algorithm does not suffer from problems observed with
the MDL-approach Creutz and Lagus [2006] or with Bordag [2006], namely the de-
tection of graphemes such as sch in German or th in English. These are punished too
often when the remaining word is not part of the lexicon.

Morphology Precision Recall F-Measure
unweighted CELEX 0.832 0.250 0.385
weighted CELEX 0.597 0.388 0.470
unweighted taz 0.711 0.507 0.592

Table 5.4: Different Data Sets for RePortS.

I now want to compare this approach to my naı̈ve approach of segmenting words
by using linguistically verified prefix and suffix lists.
Intuitive advantages of the unsupervised approach:

1. prefix and suffix lists contain stems, therefore compounding can be resolved to

5.4. Systems for Morphological Analysis 41

a certain extent.

2. if segmentation is ambiguous, probabilities are used.

3. if the transitional probability equals 1, the affixes is not pealed off (e.g. vertikal
will not be segmented)

Intuitive disadvantages:

1. some affixes may not be found

2. the algorithm may find incorrect affixes

5.4.3.2 Probability of letter sequences to occur morpheme-internally

The second type of approaches is based on the heuristic that certain letter sequences do
not occur morpheme-internally but are only seen at morphological boundaries. In Ger-
man, for example, the letter sequences tw or hh never occur morpheme-internally but
only in morphologically complex words such as Nachtwache or nachholen, whereas
the strings ch or qu only occur morph-internally. For a broader discussion of and ref-
erences to algorithms that use this approach see Goldsmith [2001].

The approach is not very promising, in particular when considering that this kind
of information is captured by the statistical models for g2p conversion any way, as their
decision on how to transcribe a letter is dependent on the neighbour letters.

5.4.3.3 Word Comparison (similarity and dissimilarity of parts of words)

Measuring the similarity of words is an interesting approach in that the basic idea also
allows to capture non-concatenative processes such as umlauting, ablauting, letter in-
sertions or deletions or similar regular letter-variance patterns.
In Neuvel and Fulop [2002], the authors describe an implementation based on Whole
Word Morphology, which does not recur to the notion of a morpheme but learn trans-
formation patterns for whole words. Two words are assumed to be morphologically
related if all differences between them are also found in at least one other pair of
words from the same lexicon. The input of the algorithm is a tagged lexicon. Evalua-
tion was not done by analysing words (the approach does not allow to do this as it does
not have the notion of a morpheme) but by generating word inflections and measuring
the correctness of these word forms; the authors report precision levels of 70–80%.
The approach is interesting because it is well-suited for detecting morphological relat-
edness, which is an important concept that most of the other unsupervised algorithms
lack and which causes them to perform badly on words that exhibit stem variation.

The following two approaches (by Jacquemin [1997]; Schone and Jurafsky [2001])
make use of contextual information (like Bordag, see above). They work on full text
instead of word lists and extract co-occurrences of words, thus exploiting syntactic and
semantic information.

42 Chapter 5. Morphology

In Jacquemin [1997], similarities and dissimilarities are identified as word forma-
tion strategies. Similarities are thereby determined using tries (cf. second step in
Bordag [2006]). Jacquemin’s approach is, like many of the others discussed here, spe-
cific to word formation by prefixing and suffixing. Words are deemed to be related if
they have the same first few letters as other words and satisfy length conditions for the
remaining stem. The simple application of this intuition leads to very noisy results.
Therefore, Jacquemin only accepted as affixes differences between words from same
context (again, cf. Bordag [2006]).

As in (Neuvel and Fulop [2002]), differences that are only seen for one hypothe-
sized word pair are rejected. Jacquemin furthermore improved performance by clus-
tering groups of words with the same ending, which was later adopted by Goldsmith
who called these sets of strings that occur with the same stem signatures. In another
approach, (Jacquemin [1997]) exploits similar words in small contexts to introduce
semantic relatedness. But as the contexts considered are very strict and the data set
seems rather small, recall is inhibitively low.

The approach by Schone and Jurafsky [2000, 2001] is quite similar to Jacquemin’s
approach in that it also uses two tries to find frequently occurring differences at the
beginning and end of words, which are then regarded as potential affixes. Schone and
Jurafsky also cluster words into conjugation groups, but extend the usage of seman-
tic and syntactic relatedness to filter affix candidates, such as the potential prefix t-,
which comes up because there are many words in English that only differ in this letter
(like train and rain or table and able). They exploit the fact that semantic vectors ob-
tained from latent semantic analysis for train and rain are not very strongly correlated,
while those of e.g. rain and raining are. Unsurprisingly, this method suffers from
the same problems as Bordag’s approach: many stems occur very rarely, so that not
enough contextual information can be gathered for doing LSA. Therefore, a reliable
affix lists and a stem inventory is determined in a first step, while the affix sets are
then applied to more rarely occurring words in a second step. Jurafsky and Schone’s
approach tackles the detection of suffixes, prefixes and circumfixes, but it is not clear
how well composition would be covered. The approach is very resource-intense as the
calculation of LSA takes up a lot of time and space. Unfortunately, it is not possible to
directly estimate the segmentation quality of this algorithm as it was not evaluated for
segmentation but only with respect to its detection of conflation sets.

5.4.3.4 Minimal Description Length (MDL)

The use of minimal description length is motivated by the intuition that a good mor-
phological decomposition of words must be from a model which compresses the data
well and which is simple at the same time. To compress the data means that the number
of letters in a lexicon and affix list is smaller than the number of letters in a word list
(because for all words on -ing (working, eating, sleeping), the ending ing is just stored
once, and for all inflections of the same word such as working, works and worked,
the root work is only stored once, too). If we would only optimize this criterion, the
optimal compression would be obtained by storing each letter on its own. But then the
model required to describe the words would be very complicated, having to explain
the relationship between each of the letters in a word. Therefore, minimal description

5.4. Systems for Morphological Analysis 43

length also optimizes for simplicity of the model (the most simple model would be a
look-up word list).

However, the theory of minimal description length does not tell us how to generate
the model or how to determine what is a stem and what is an affix. It is used to compare
models and select the best model out of a set of alternative models.

A shortcoming of the approach is that it does not take into account frequencies and
might therefore detect high frequency letter sequences even if they are not morphemes
(such as th, str in English or sch in German).

A very influential paper that used minimal description length to learn morphologi-
cal segmentation for English and other European languages was (Goldsmith [2001]).
He proposed several heuristics for developing a probabilistic morphological grammar
which are then evaluated using MDL. The input of the algorithm is raw data and the
algorithm tries to split words into stems and affixes. Goldsmith’s implementation of
the approach in the program Linguistica is freely available for download9.

An important drawback is that longer prefixes such as zusammen- or stems in com-
pounds are not found by the current version of Linguistica, as the threshold for maxi-
mal length of a prefix is fixed to 5. German infixes (Fugenmorpheme) cannot be found
either.

The main steps in Goldsmith’s algorithm are:

1. discovery of candidate suffixes using weighted mutual information
Two heuristics are used to identify candidate suffixes. The first one is to split all
words into two parts (disregarding whether they can be split or not) and optimiz-
ing for description length. The method turns out to be strongly biased towards
single letters. The problem is fixed by strongly dispreferring one-letter segments,
but the heuristic still tends to prefer graphemes that consist of several letters. (In
German, these are e.g. sch, ch.)

Goldsmith’s second heuristic is to try to peal off the word suffixes of different
length (e.g. 1 g, 2 ng to 6 orking) and use weighted mutual information to rank
them. The best ones are kept (they contain the most frequently seen sequences of
letters at the end of a word) and used as (high-quality) suffix-candidates to parse
all words. The MDL criterion is then used to identify the optimally compressing
suffixes.

2. detection of regular signatures
Each stem is assigned its signature, i.e. all endings it was seen with. For example
in German, the stem repar- has the signature ation.iert. All signatures that
appear just once are deleted, as well as those that appear only with one stem,
thus improving the quality of the endings and removing pseudo-stems.

3. use maximum description length to correct errors generated by heuristics
After these two steps there are still a number of typical problems, which Gold-
smith points out and tries to solve using, again, the MDL criterion:

9http://humanities.uchicago.edu/faculty/goldsmith/Linguistica2000

44 Chapter 5. Morphology

• suffixes that contain several suffixes (e.g. -ungen)
All suffixes that can be generated by composing two other suffixes are re-
moved and additional words are generated (e.g. Reinigung from original
Reinigungen).

• spurious signatures
e.g. atzes.ätze due to the words Aussagesatz and Aussagesätze

• relatedness between stems is not detected
This problem (due to umlauting, ablauting, consonant doubling, e-deletion
etc.) is tackled by introducing a procedure for identifying related stems,
which tries to delete one letter, insert a letter or replace a letter and thereby
tries to find consistent patterns (e.g. “replace a by ä” in German).

However, there are of course some mistakes which remain: for example there
are some words for which evidence is not large enough: for example, ver- is a
very frequent prefix but should not be pealed off a word as vertikal. This is a
difficult problem: if a prefix is not assumed for previously unseen stems (here
tikal), then recall will be low, as there are many words that are only seen in their
prefixed variant, or are extremely sparse due to stem changes such as ablauts,
e.g. Verkehr, versäumen, versunken.

Goldsmith reports very high precision (85.9%) and recall (90.4%), but it is diffi-
cult to compare these values to my results or the results from the Morpho-Challenge
workshop, as Goldsmith’s evaluation is based on manual inspection and did not use
the same corpus.

Another MDL model that is designed to cope with an arbitrary number of mor-
phemes in a word is the Morfessor System Creutz and Lagus [2006], that can also
be downloaded freely10. The Morfessor system is from the organizers of the Pascal
Morpho-Challenge. It system has shown to perform well on highly inflecting and com-
pounding languages such as Finnish and Turkish and its second version (not available
for download yet) returned very good results for English, too.

The Morfessor algorithm uses a greedy search strategy for segmenting words in
order to obtain a more concise representation of the lexicon. Every word is split in all
positions and candidate boundaries with the highest probability (i.e. those whose parts
also occur in other words) are kept. This process is repeated until convergence. The
results are dependent on the order in which words are selected. The order of the words
is therefore randomized in each step, to limit the effects of artefacts. Another decision
that needs to be taken when running the algorithm is, whether it should be run on a full
corpus, i.e. take into account word tokens, or whether it should be run on a word list
in which each word occurs only once, i.e. on word types. Creutz [2003] observed that
learning from word types (i.e. using a word list) leads to significantly higher recall but
slightly lower precision. Also, the lexicon size influences precision and recall quality.
A larger corpus leads to higher precision but lower recall. It is not clear what lexicon
or word list size to choose in order to obtain optimal results. F-measure was found to

10http://www.cis.hut.fi/projects/morpho/

5.4. Systems for Morphological Analysis 45

increase for English with increasing corpus length, but for Finnish, best results were
obtained with a smaller lexicon (see Creutz and Lagus [2005]).

For this evaluation, I used the Morfessor 1.0 software package. The more re-
cent versions “Categories-ML” and “Categories MAP”, which were also presented at
Morpho-Challenge, perform better, and additionally give information about boundary
types and even return a hierarchical analysis of the morphemes. These new versions
would therefore probably be more interesting than the currently available version. The
new algorithms will probably be made available during summer 2006.

The main problems with the results from Morfessor 1.0 are

1. under-segmentation of frequent words
Can be explained by the way the algorithm works: A frequent morpheme is best
stored as a single entity, whereas rare words are more efficiently split up into
parts, using pointers to these various parts to compose the word.

2. over-segmentation of rare words (e.g. ab+m+e+ierung, s+ie+st+en, s+en+s+e)

3. morphological violations (e.g. t+ränkung, t+röstung, s+en+s+ation, s+e+e+gang).
In these cases, the frequent suffixes -s, -e, -t, -en, should only be used as suffixes
and not be allowed in any place in the word.

The majority of these problems are tackled in the second version, called Morfessor
Categories-ML (see Creutz and Lagus [2004]), which has not been made available yet.
At Morpho-Challenge, the authors reported that they introduces categories “prefix”,
“suffix”, “stem”, and “noise”. In a first step, the baseline algorithms is run as usual.
Then, a HMM is used to estimate the probability of a morpheme of belonging to these
classes and the context-sensitivity of the HMM makes morphotactic violations less
likely to occur. In several iterations, words are split further and re-concatenated, while
minimizing description length.

These modifications increased f-measure values for Finnish and Turkish consider-
ably (by 10 to 20 points), and also helped for English. A positive effect can therefore
also be expected for German.

A further extension called Categories-MAP Creutz and Lagus [2005] outputs a hi-
erarchy of morphemes. Under-segmentation is prevented by enforcing the splitting of
a string into morphemes where possible. The problem of over-segmentation is allevi-
ated by not allowing for “noise”-morphs. F-measure is for all languages similar to that
of the third version, but in English, precision is much higher and recall lower than for
the Categories-ML approach.

The Categories-ML and Categories-MAP algorithms have a language-dependent
parameter, whereas the baseline version, Morphessor1.0, is knowledge-free and language-
independent. The parameter determines the likeliness of seeing a prefix / stem / suffix
in a certain place and is tuned to the target language. The language-specific parameter
can be estimated using a small development corpus.

When inspecting the data, I found recall to be very low. Many affixes (prefixes as
well as suffixes) were not recognized, because they were too frequent or because they
did not occur often enough in a particular form but with a different or no affix. Here,
German doubling of consonants, deletion of e’s, ablauting and umlauting aggravate the
problem of data sparseness (as seen for most algorithms).

46 Chapter 5. Morphology

morphology Precision Recall F-Measure PER WER
taz + CELEX 0.651 0.251 0.363 4.17% 29.9%
weighted CELEX 0.639 0.205 0.310 4.10% 29.6%
unweighted CELEX 0.709 0.418 0.526 4.17% 30.0%

Table 5.5: Different Data Sets for Morfessor1.0.

5.5 Homographs

A difficult problem within text-to-speech synthesis is the contextually appropriate pro-
nunciation of homographs. Homographs are words that are spelled identically but
pronounced differently. English has a very serious problem with homographs, for ex-
ample there are many verb–noun homographs such as “At present, we present him a
present.” These can only be disambiguated in context; in word lists the difference can-
not be learnt (unless the relevant information, e.g. POS tag, is provided). German has
similar phenomena: e.g. modern (modern / to rot), rast/Rast (speed / break), Heroin
(heroine or female hero), Knie (knee, pronounced /K N I:/ in its singular form and
/K N I: E#/ in plural). Another source of homographs that with different stress pat-
terns can arise from compounds such as Lebensmittelpunkt, which can mean center
of life or food badge. The most common case however are ambiguities in stress as-
signment for verbs that have the same form with a separable and non-separable prefix:
e.g., durchströmen (flow through), umfahren (drive around / knock over), umspannen
(embrace / transform), unterstellen (to take shelter / assume).

To quantify the problem of homographs in German: CELEX contains 1,238 ho-
mographs that are not homophones (that is about 0.5% of all words). There are two
problems for machine learning and evaluation: A machine learning algorithm can only
return a single best answer if it is not given any context, so for each of these pairs, it
will get one of the words wrong, even if it has learnt German pronunciation perfectly.
At the same time, the chance of getting at least one of the different versions right is
higher.

In previous research, homographs have often been taken out of the corpus alto-
gether or have been disambiguated manually. The problem of homographs in TTS are
discussed in more detail in Yarowsky [1996].

5.6 Results

In this section, I will give an overview of the algorithms’ performances on evaluation
with respect to the CELEX manually annotated data and on the conversion task. A first
important point is that higher f-measure with respect to CELEX correlates with a lower
grapheme-to-phoneme conversion error rate only in very rough terms: The rule-based
methods achieved consistently higher f-score than the data-based methods (between
71% and 84% f-measure, see table 5.6) and their transcription scores were also all
better than the no-morphology baseline, while segmentations from unsupervised mor-

5.6. Results 47

phologies obtained f-scores of only 53%–64%. Disappointingly, all segmentations
from unsupervised algorithms made the conversion results worse than they are without
morphological annotation.

But smaller improvements in f-measure did not always entail an improvement in
phoneme error rate. For example, ETI segmentation reaches an f-score of 79.5%, but
a lower PER than the f-measure-wise best version of SMOR, which had an f-score of
over 83%.

The interpretation of the data is difficult: It is not clear whether precision or recall
is more important for performing well on the conversion task. Therefore, I analysed
the data further to see what kind of morphological boundaries each of the algorithms
got right or wrong, and also looked into the types of mistakes made in g2p conversion.

morphology Precision Recall F-Measure PER AWT
CELEX-gold standard 2.64%
ETI 0.754 0.841 0.795 2.78%
SMOR-ETI 0.923 0.733 0.817 2.85%
SMOR-heuristic 0.902 0.754 0.821 2.92%
SMOR-newLex 0.871 0.804 0.836 3.00%
SMOR-CELEX-WFST 0.949 0.639 0.764 3.22%
SMOR-large segments 0.954 0.576 0.718 3.28%
no morphology 3.63%
best RePortS (taz+CELEX) 0.711 0.507 0.592 3.83%
best Bernhard (w. CELEX) 0.649 0.621 0.635 3.88%
naı̈vely cut affixes 0.553 0.683 0.611 4.00%
best Morfessor (unw. CELEX) 0.709 0.418 0.526 4.10%
Bordag 0.665 0.619 0.641 4.38%

Table 5.6: Evaluating rule-based and data-based systems for morphological segmen-
tation with respect to German CELEX (Cen [1995]) manual morphological annotation.

When looking at the types of morphological segments found by the algorithm, the
high performance of the ETI morphology on stems and prefixes but comparably low
recall on suffixes is striking. This finding also indicates a special problem in assessing
precision and recall for suffixes: the correct place for a suffix boundary is often much
less well-defined than for prefix and stem boundaries. It is not always evident how far
a word should be decomposed – for example, when consonant doubling occurs, should
the doubled consonant be part of the stem or part or the affix?

Most interesting is perhaps the question why the Bordag algorithm performs so
badly on the conversion task (PER= 4.38%, which is worst of all morphologies tested),
although it achieves the highest f-score among unsupervised methods. When look-
ing at the boundary type recall figures, the Bordag algorithm performs best on suffix
boundaries, while both the Bernhard algorithm and the RePortS algorithm outperform
it on the detection of stems. This indicates that identifying stems correctly has a larger
impact on g2p conversion than the identification of suffixes.

48 Chapter 5. Morphology

morphology stem prefix suffix
ETI 0.937 0.954 0.790
SMOR-d 0.527 0.658 0.595
SMOR-heur.2+newLex 0.848 0.896 0.778
best RePortS (taz+CELEX) 0.711 0.507 0.592
best Bernhard 0.638 0.593 0.616
cut-affs 0.599 0.651 0.724
Bordag 0.575 0.522 0.647
best Morfessor (unw. CELEX) 0.415 0.367 0.425

Table 5.7: Recall for types of morphological segments.

To reduce errors, it is crucial to know what kinds of errors are made in order to iden-
tify their causes and effectively improve performance of the system. Table 5.8 provides
an overview of the types of errors in function of the morphological preprocessing used.
For a more detailed discussion of conversion problems please refer to chapter 8.Tpyes

of errors:

1. syllabification or stress errors
/.1 ? A P . F A: R# . T/ instead of /.1 ? A P . F A: R# T/
(spurious syllable boundary in Abfahrt)
/.1 ? A P . N O R# . M I: . T AE: . T E# N/ instead of
/. ? A P . N O R# . M I: .1 T AE: . T E# N/
(wrong word stress in Abnormitäten)

2. incorrect vowel quality
/.1 L AE S . ? A: R# T/ instead of /.1 L E: S . ? A: R# T/
(wrong quality of e in Lesart)

3. incorrect vowel length
/.1 K Y: S . CH2 E# N/ instead of /.1 K Y S . CH2 E# N/
(incorrect long /Y:/ sound in Küßchen)

4. consonant errors
/.1 ? A CH1 . T S I CH2 . S% T E# L/ instead of
/.1 ? A CH1 . T S I CH2 . S T E# L/
(st pronounced as /S% T/ instead of /S T/ in achzigstel)
/. P A T . T S E# .1 R EI/ instead of
/. P A T . T S E# .1 R EI/
(t pronounced twice in Patzerei)

Finally, different kinds of errors may be propagated differently with different algo-
rithms. Table 5.9 lists the phoneme error rates and word error rates with the decision
tree and the HMM.

5.6. Results 49

Morphology WER vowel length vowel quality syllab. or stress consonants
Bordag 4.38% 397 (9%) 1194 (28%) 2637 (62%) 37 (1%)
best Morfessor 4.1% 524 (9%) 1799 (31%) 3551 (60%) 72 (1%)
affix only baseline 4.00% 541 (9%) 1647 (29%) 3569 (61%) 68 (1%)
best Bernhard 3.88% 459 (8%) 1503 (26%) 3691 (65%) 36 (1%)
best RePortS 3.83% 369 (7%) 1554 (28%) 3616 (65%) 56 (1%)
no morphology 3.63% 455 (9%) 1487 (28%) 3312 (63%) 41 (1%)
WFST-SMOR 3.22% 381 (8%) 1156 (24%) 3189 (67%) 34 (1%)
ETI 2.78% 393 (9%) 1031 (26%) 2632 (64%) 42 (1%)
CELEX 2.64% 291 (7%) 867 (21%) 2880 (71%) 20 (0.5%)

Table 5.8: An overview of the conversion error classes for each morphological system.

Morphology AWT-PER AWT-WER g2p-HMM
with constr.

Bordag 4.38% 31.35%
Morfessor 4.1% 30.00%
affix only baseline 4.00% 29.32%
Bernhard 3.88% 28.26%
RePortS 3.83% 28.03% 15.1%
no morphology 3.63% 26.59% 13.7%
WFST-SMOR 3.22% 24.16%
ETI unlabeled 2.94% 21.95%
ETI 2.78% 21.13% 13.6%
CELEX 2.64% 21.64% 13.2%

Table 5.9: Using a Morphology as a Preprocessing Step for AWT and the HMM.

50 Chapter 5. Morphology

5.7 Discussion

My experiments showed that good morphological annotation can significantly improve
grapheme-to-phoneme conversion with the AWT algorithm. Annotating the graphemic
representation of words with morphological boundaries eliminates some of the typical
mistakes that a system which does not have access to such information frequently com-
mits (no glottal stop, incorrect syllabification, errors on vowels that cannot be disam-
biguated without knowledge about morphological structure). These results therefore
seem to confirm the finding of Richard Sproat (Sproat [1996]), saying that optimal re-
sults cannot be expected from a gp2 system for languages such as German, English or
Dutch, if it does not have access to morphological information.

However, if morphological information is not good enough (i.e. if it does not
have an f-score > 70% for German), the wrong or missing morphological information
makes the algorithm perform worse. None of the unsupervised algorithms reached
sufficiently good performance to lead to an improvement on the g2p task. However, I
think that using the Morfessor 2.0 and 3.0 version, which will soon become available,
might be worth trying, as they achieved large performance gains on Turkish, Finnish
and English. The approach by Keshava and Pitler is also very promising, in particular
when the good performance of their algorithm on English is considered. Substitut-
ing the inappropriate assumption that a word whose affixes have been pealed off is a
again a word, by a notion of stems can possibly lead to a performance boost for highly
inflecting languages.

The experiments on the SMOR morphology showed that SMOR lacks some infor-
mation that is crucial to g2p conversion. Evaluation with respect to a gold-standard
morphology (extracted from the CELEX database) showed that precision is much bet-
ter for SMOR than for the ETI morphology. I think that SMOR can outperform ETI
if 1) morphological boundaries are manually inserted into the lexicon, 2) weights are
learnt for the transducer, and 3) if a default strategy for coping with OOV words is
implemented.

Chapter 6

Syllabification

In this chapter, I first motivate the implementation of a separate syllabification compo-
nent, explain how syllabification works in German and give an overview of previous
research on the problem. I then present the statistical syllabification model used and
very briefly address the smoothing issue. Results from experiments with alternative
input representations (letters, morphologically annotated letters, phonemes) are pre-
sented and remaining errors analysed. In the final section, performance within the
TTS pipeline is discussed.

6.1 Motivation for a Syllabification Component

There were two main reasons for designing a separate syllabification component and
for not letting the information be learnt in just one step by the letter-to-phoneme con-
version module. Firstly, about 60% of the phoneme conversion errors are syllabi-
fication or stress errors, the majority being stress errors. The decision tree cannot
capture enough context and does not apply any restrictions to prevent the violation of
phonological contstraints. Therefore, there is a virtue in building a component that
can take into account the relevant context and apply constraints. While I want to keep
the model as language-independent as possible, a general constraint saying that every
syllable must have a nucleus is to my knowledge valid for all languages. The set of
possible nuclei may differ from one language to another1, but the construction of a list
of possible syllable nuclei for a language is still a reasonalby easy and staightforward
task.

Syllable boundaries are needed as a basis for performing stress assignment. And
because vowel length and quality sometimes depend on word stress in German, ar-
ranging the modules in the order: 1. mophological analysis, 2. syllabification (syllable
boundaries depend on morphological boundaries), 3. word stress assignment and 4.
letter to phoneme conversion, is well-motivated.

The second reason for introducing a separate syllabification step is that Marchand
and Damper [2005] have shown perfect syllabification to improve g2p conversion for
English, while automatically induced syllabification using the same method as for
grapheme-to-phoneme conversion (Pronunciation by Analogy), did not yield better

1Typical syllable nuclei in Indo-Germanic languages are vowels and liquides.

51

52 Chapter 6. Syllabification

results. So why did I hope for an improvement? Firstly, the introduction of constraints
introduces linguistic knowledge to the system that is otherwise not available. Sec-
ondly, syllabification results reported in Schmid et al. [2005] attained near-to-perfect
syllabification quality (over 99%). Syllabification is furthermore a process that is nec-
essary for grapheme-to-phoneme conversion in any language, whereas morphological
analysis is particularly important for German and some other languages with rich mor-
phology.

6.2 Syllabification in German

A syllable in German has the general form C*VC*2. The consonant cluster at the
beginning of a syllable is called the onset, it is followed by an obligatory nucleus,
which usually consists of a vowel. The consonant cluster following the nucleus is
called the syllable’s coda.

When a string CCVCCCVC is seen, the segmentation into syllables may thus be
ambiguous between CCV-CCCVC, CCVC-CCVC, CCVCC-CVC and CCVCCC-VC.
Fortunately, this high ambiguity is alleviated by restrictions from phonotactics (the
reader is referred to Kiraz and Möbius [1998] for a detailed analysis of German phono-
tactics). The constraints define e.g. the maximal length of a consonant cluster (3
consonant phonemes in the onset and 5 in the coda for German) and what types of
consonants they can consist of (for example, if a three-consonant German onset be-
gins with /S% P/, the third consonant must be either /R/ or /L/). This observation
is captured by the sonority hierarchy, which states that consonants in the beginning
of the onset and end of the coda are less sonore than consonants in positions closer
to the nucleus. Despite these restrictions, ambiguities arise frequently, in particular in
morphologically complex words that involve compounding or derivations. The default
is that the onset attracts as many consonants as phonotactically possible (this is also
known as the maximum-onset principle). In German, morphological structure often
overrides this default, such as in the compound Parkende (Engl. = end of parc), which
has a morphological boundary between its two components Park and Ende and should
therefore be syllabified as Park-en-de, in contrast to the present participle parkende
which is syllabified as par-ken-de.

6.3 Previous Work on Syllabification

Previous approaches have tried a range of different approaches to the problem: Rule-
based systems mainly relied on the maximum onset principle or the sonority hierarchy.
An example is the finite state transducer by Kiraz and Möbius [1998]. Data-based ap-
proaches adapted Pronunciation by Analogy (PbA) to syllables (cf. Marchand and
Damper [2005]), used forward-feeding connectionist networks with back-propagation
(cf. Daelemans and van den Bosch [1992]), or a PCFG (cf. Müller [2001]). In recent
work, Schmid et al. [2005] applied a Hidden Markov Model (HMM) for placing syl-
lable boundaries and obtained excellent results. I therefore used their algorithm and
modified it later, introducing another smoothing method (see below).

2C* = zero or more consonants, V = syllable nucleus

6.4. Syllabification as a Tagging Problem – Using a HMM 53

6.4 Syllabification as a Tagging Problem – Using a HMM

The basic idea in Schmid et al. [2005] is to look at the syllabification task from a
tagging perspective. Each letter is to be annotated with one of two tags: B (syllable
boundary follows) or N (no syllable boundary). The observed states are the phonemes
or letters (depending on whether the algorithm is run on graphemic or phonemic input),
and the hidden states are a pair 〈l;s〉 of the observed phoneme or letter l and the tag s
(see figure 6.1).

Figure 6.1: HMM for syllable tagging with states shown for a sequence from the word
“parkende”.

The syllable tagger uses the Viterbi algorithm (see chapter 2 or (Manning and Schütze
[1999])) to efficiently compute the most probable sequence ŝn

1 of syllable boundaries
ŝ1, ŝ2, ŝ3, ..., ŝn, (that satisfies the constraints specified below) for a given letter sequence
ln
1 . The Markov assumption states that a given letter-boundary pair only depends on

the preceding k states (i.e. letter/phoneme–syllable-boundary pairs).

ŝn
1 = argmax

sn
1

n+1

∏
i=1

P(〈s; l〉i | 〈s; l〉i−1
i−k)

Dummy letters ‘#’ are appended to both ends of the word to indicate the word boundary
and ensure that all conditional probabilities are well-defined.

Consider the example in figure 6.2: two hidden states are generated for each ob-
served state, one for each of the possible tags3. Then the probabilities for each pos-
sible state sequence are calculated and the one with the highest probability is chosen.
Thereby, the algorithm always has a limited size context window (k=1 in the example
figure).

Two crucial aspects of the algorithm, smoothing and the introduction of constraints,
will be discussed in the next two sections.

6.4.1 Constraints

There is one main constraint for syllabification: each syllable must contain exactly
one nucleus. When running the decision tree or simple HMM where this constraint is
not in-built, phonologically impossible syllables are generated, e.g. /. T/ at the end
of a word, probably because the sequences /. T E#/, /. T E# S T/, /. T E# T/,
/. T A#/ etc. were seen frequently. In rare words, syllables with more than two nuclei

3It would be mathematically more correct to also generate a state for all other letters of the alphabet
and the two tags, but as such a state can never be seen in training, its probability unsmoothed probability
would be zero any way, so such states can safely be pruned.

54 Chapter 6. Syllabification

Figure 6.2: HMM for syllable tagging with states shown for a sequence from the word
“parkende”, the target sequence is indicated with bold arrows.

are an important source of errors. Example errors from the Hidden Markov Model for
syllable boundary detection include: schi-llers-c-h, spathal-ti-gen.

For the exact constraint conditions, refer to Schmid et al. [2005], who first intro-
duced them to the HMM. I was interested in quantifying the benefit from these con-
straints in function of the context window, to estimate whether it is worth introducing
the constraint (see table 6.1). Mathematically, the probabilities in the HMM do not sum
to one any more in the current implementation, as all placements of syllable boundaries
that do not conform to the constraints are pruned off immediately.

WER k=3 k=4 k=5
constraint 3.70% 3.10% 2.96%
no constraint 5.68% 3.48% 3.66%

Table 6.1: Syllabification on letters with and without the syllable constraints.

6.4.2 Smoothing

Smoothing is needed to avoid zero probabilities for sequences that were not seen in
the training data. Some of the probability mass is taken off the probability values and
redistributed to unseen events.

To approximate a probability of an unseen event well, a popular strategy is to back-
off to a smaller context. A smaller context is of course relatively more probable.
Therefore, the probability of the smaller context is combined with a backoff-factor
that “punishes” the unavailability of the larger context.

An important aspect is the choice of what context to back-off to. The variant used in
these experiments does not simply back-off to the next smaller n-gram but to phoneme-
types, i.e. consonants or non-consonants. This is intuitively sensible in that consonants
behave similarly (that is, they are either in the onset or the coda of a syllable, while
vowels are in the syllable nucleus). At this point, some (easy to acquire) language-
specific information is added to the algorithm.

6.5. Experiments and Results 55

As an alternative to backing off only if an n-gram has not been seen in training,
linear interpolation can be performed. In linear interpolation, probabilities from all
smaller n-grams combined. The relative contribution of a lower-order n-gram to the
overall probability is determined by weights which sum to one. The choice of the
smoothing strategy is important because it determines the ranking of alternative state
sequences to one another and can thus strongly influence results. For an extensive and
comprehensible study of different smoothing strategies see Chen [2003].

In the initial implementation of the syllabification HMM, a very simple smoothing
method, which I will refer to as “Schmid-smoothing” was used. When I adapted the
model to stress assignment (see next chapter), I found some problems that were due to
Schmid-smoothing and substituted it by Modified Kneser-Ney smoothing (proposed in
Chen [2003]). For an elaborated explication of reasons, see section 7.8. Kneser-Ney
smoothing improves performance by 10%–20% for the syllabification task (see table
6.2 for the results).

From an analysis of the different types of mistakes made by the two algorithms,
Kneser-Ney smoothing seems to capture morphological phenomena (rules such as “do
not syllabify 1Wurf2e as 1Wurf-2e but 1Wur-f2e” because -2e can only stand on its
own if it follows a vowel or mute h). For a more detailed comparison of performance,
also see section 6.5.

6.5 Experiments and Results

A range of experiments was conducted to estimate the gain to be drawn from alternative
conditions:

• different smoothing techniques
Schmid smoothing vs. Modified Kneser-Ney smoothing

• type of syllable boundaries
orthographic vs. projected from target syllables

• richness of input
letters vs. letters annotated with morphological boundaries, vs. phonemes

• alternative test sets
random 90-10 split vs. test set design where stems from test and training sets are
disjunct. (See chapter 4 for a discussion on training and test set design.)

The choice of the smoothing technique has a great impact on syllabification per-
formance, and can improve results by 10% to 20% (see results in table 6.2). Typical
errors that are made using Schmid smoothing but not with Kneser-Ney smoothing are:
ö r t - e r - t e n
g r ö - b l i c h - s t e s
5 u n - 1 s a n f t - 2 e - r e m
1 e i n - 1 t o p - f 1 e - s s 2 e n
/T S U: . K U N F T S T . R AE CH2 . T I . G A#/
/? A . P F L AU . T E# T/

56 Chapter 6. Syllabification

These examples show that morphemes and general principles are captured better
with Kneser-Ney smoothing.

WER Schmid Kneser-Ney
nomorph, orth 2.60% 2.13%
nomorph, proj 3.43% 3.10%
Celex, proj 2.17% 1.91%
ETI, proj 2.95% 2.63%
Phonemes 1.84% 1.53%
nomorph (90/10) 0.73% 0.72%
Celex (90/10) 0.53% 0.53%
Phonemes (90/10) 0.18% 0.18%

Table 6.2: Results for Syllabification HMM Schmid backoff vs. Kneser-Ney smoothing,
context window length k=4.

There are two possible choices for what syllables to learn: orthographic syllables
or syllables from the target phonemization. These can differ considerably, as the fol-
lowing examples illustrate:

• approximants
Vowel sequences that are not graphemes (ei, au, eu) are often realized as ap-
proximants4 if the first vowel is a front vowel. In that case, the two syllables
constitute only one syllable together with the following vowel.
ü-ber-re-gi-o-na-le (orth.) vs. ü-ber-re-gio-na-le (proj. phon.)
ja-gu-ar (orth.) vs. ja-guar (proj. phon.)

• double consonants
If there is no morpheme boundary in-between a sequence of two identical con-
sonants, they have the effect of shortening the preceding vowel and are not pro-
nounced as two consonants. Therefore, their projection onto the letter represen-
tation of the word is difficult.
ü-ber-ren-nest (orth.) vs. ü-ber-re-nnest (proj. phon)

• graphemes made of several letters
When projecting a syllable boundary from phonemes, there are some cases, e.g.
words on -ungen, where the orthograhic syllable boundary is between n and g,
but where the sequence ng is transcribed to a single phoneme /N)/. To project
the syllable boundary back, one has to decide where to put it.
set-zet (orth.) vs. ü-ber-se-tzet (proj. phon)
zu-hän-gend (orth.) vs. zu-hä-ngend (proj. phon)

• contestable phonemization
Finally, there are also some cases, where syllabification annotation in CELEX
is at least debatable. ü-ber-ge-ord-net (orth.) vs. ü-ber-ge-or-dnet (proj.
phon)
zweif-le-risch (orth.) vs. zwei-fle-risch (proj. phon)

4German approximants are [w] and [j], which are transcribed as /U/ and /J/ in the phoneme set used.

6.5. Experiments and Results 57

The difference from projected syllabification to orthographic word separation may be
learnt by a machine learning algorithm if the deviation is regular. “Real” problems
only arise when the data is inconsistent, like the phonemization of CELEX. The incon-
sistencies presumably also lead to the considerably lower performance of the algorithm
on projected syllable boundaries (see table 6.3).

WER k=3 k=4 k=5
noMorph proj. 3.70% 3.10% 2.96%
noMorph orth. 2.56% 2.13% 2.34%

Table 6.3: Results for syllabification HMM for letters with different morphological anno-
tations and phonemes.

The results from using information about morphological boundaries for syllabifi-
cation correspond to my expectations: the algorithm performs significantly better on
the morphologically annotated words than on raw letters (see table 6.4). I also ob-
served that the algorithm performs always better on input in all lower-case than on
input with upper-case letters, because case distinction leads to data sparsity and is not
well-motivated. The cases in which syllabification based on ETI annotation is wrong
are generally due to incorrect morphological annotation. Some of the syllabification
errors on the data annotated with CELEX morphological information can also be ex-
plained by wrong or missing morphological annotation (e.g. 1fas-te-la-bend2s),
and errors due to the fact of working on letters instead of graphemes or phonemes
(discussion see below).

WER k=3 k=4 k=5
noMorph proj. 3.70% 3.10% 2.96%
ETI proj. 3.58% 2.63% 2.88%
Celex proj. 2.67% 1.91 % 2.08%
Phonemes 1.55% 1.53 % 1.57%

Table 6.4: Results for syllabification HMM for letters with different morphological anno-
tations and phonemes.

As the results obtained by me did not correspond the good results reported in
Schmid et al. [2005], I changed the training and test set design to replicate the original
experiment. Instead of the training and test set design where stems are disjunct, I now
used the randomly generated training and test sets and evaluated them using 10-fold
cross evaluation. Word error rates (WER) were much lower when using the random
test set than with the test set design where inflections or derivations from the same
word did not occur both in the test and training set (table see 6.5). One interesting
point is that the optimal window length was determined to be k=4 for the disjunct-
stems-design, whereas a context window of k=5 performed better on the randomly
split data. Although the results do not reach significance level, this might be a sign for
over-training due to the high similarity of training and test data in the randomly split
data: a window size of four is better for generalizing than a window length of five,
which seems to generalize less well to new data.

58 Chapter 6. Syllabification

WER k=3 k=4 k=5
noMorph proj. 3.70% 3.10% 2.96%
noMorph proj. 90/10 0.72% 0.72% 0.53%
Celex proj., disj. stems 2.67% 1.91% 2.08%
Celex proj., 90/10 0.54% 0.53% 0.45%
Phonemes disj. stems 1.55% 1.53% 1.57%
Phonemes 90/10 0.43% 0.14% 0.11%

Table 6.5: Results for syllabification HMM for different training-test set designs.

6.6 Error Analysis

An interesting error that occurs relatively frequently, in particular with small context
windows is wich-est instead of wi-chest or Deich-e instead of Dei-che. While I
first wondered about the lacking ability for generalization (syllable boundaries before
schwa can only occur when the previous syllable does not have a coda), it became
then clear that this is an artefact due to working on letters instead of graphemes: the
sequence h-e is highly frequent in words with a mute h. So in fact, the algorithm
has seen in training that he is actually bad syllabification. Results could therefore be
improved by substituting graphemes like ch or sch by different symbols. But of course
in some cases, disambiguation might be needed to do this - not every sch is actually
pronounced /S%/. In some cases, e.g. in Röschen (Engl: little rose), sch has to be
transcribed /S . CH2/. Experiments showed that the context window may be shrunk
if graphemes are substituted by other characters.

Further remaining errors in the phoneme transcription can be explained by incon-
sistencies in the training data, e.g. /F AE R# . D I N) . E# S T/ has the boundary
after /N)/ instead of before /N)/, because the two only occurrences of /D I N) E# S T/
in the training data were annotated as /? A P . D I N) . E# S T/ and
/F O: . R AU S . B E# . D I N) . E# S T/; a more frequently occurring in-
consistency is e.g. for zer-stö-re-risch-ste, 1,450 words on -ischste in the train-
ing data have the boundary after schs, while only 35 insert it after sch. Some of
the instances in the evaluation set are also wrong or at least questionable, such as
/A K . N E# N/.

Another important source of errors both on graphemes and phonemes is the ambi-
guity between st and schst in the end of words. For example, we want /G R OE: S . T E#/
but /S% OE: N . S T E/, because the s belongs to the stem in größte, while it is a
pure suffix in schönste. Consider also lau-ste (Engl: tepidest) vs. laus-te (Engl:
deloused). The algorithm would not have to simply count what is the most probable
sequence (-ste or s-te) but also take into account whether there is a stem ending in s.

Finally, there are also mistakes due to missing morphological data or wrong phone-
mization, such as /? EI N . T O . P F AE . S E# N/ (Eintopfessen). Syllables
beginning in a vowel are very rare, therefore the analysis follows the default phonotac-
tic rules of German when it inserts the syllable boundary before /P F/. Furthermore,
there should be a glottal stop before /AE/, which would have rendered the syllabifi-

6.7. Performance on g2p task and Discussion 59

cation unambiguous. Many other analyses that seem extremely undesired at the first
view, can be explained by the training data: ko-tzlang-wei-lig (Engl: puke-boring)
may be explained by the missing morphological boundary, but even then, tzl is not a
good syllable onset. The problem is that otz-l has never been seen in the training
data, while o-tzl has been seen once – in bro-tzle which may also be considered as
a syllabification error.

6.7 Performance on g2p task and Discussion

The central question in syllabification is whether automatically acquired syllabification
does improve grapheme to phoneme conversion, or whether sole use of such a compo-
nent is to provide required information for automatic stress assignment. Marchand
and Damper [2005] found that grapheme-to-phoneme conversion performance was
significantly improved if words were annotated with perfect syllable boundaries, but
observed no performance gains when syllable boundaries were acquired from an au-
tomatic process. I replicated their experiments with my data and modules and found
automatic syllabification to lead to a small but significant improvement (25.6% instead
of 26.6% WER; p=0.015 on a two-tailed t-test). The effectiveness of the automatic
syllabification module can be explained by two factors: Firstly, I used a method for
syllabification that worked differently from the g2p conversion algorithm and therefore
had access to a different kind of information, whereas Marchand and Damper used the
same method for both g2p conversion and syllable boundary assignment. Secondly,
the integration of phonological constraints adds additional linguistic information to
the module that is not available to the decision tree.

When these two factors are not valid, i.e. when g2p is performed with the HMM
and if the syllable structure constraint is implemented into this HMM, separate auto-
matic syllabification does not lead to an improvement.

6.7.1 Preprocessing vs. Postprocessing

Syllabification works better on phonemes than on letters, because phonemes are less
ambiguous. Consider for example the word Drecksturm (Engl: either “dirt tower”
or “storm of dirt”) or the well-known example of Staubecken which can either mean
“reservoir” or “dust corners”. The correct phonemic transcription (even without syl-
lable boundaries) resolves these ambiguities: the sequences /S T/ and /B ?/ in the
Drecks+turm and Staub+ecken interpretation are not allowed as an onset in standard
German. On the other hand, the g2p conversion process needs the information that
there is a morphemic and therefore syllabic boundary here in order to generate the cor-
rect phonemes. The question is whether this information has to be provided explicitly
by annotating a morphemic or syllabic boundary, or whether the g2p component can
achieve the correct disambiguation using statistical evidence (having seen that Dreck
is quite probable to be appended an s if it is followed by further letters (i.e. if it is a
compound), or that turm has been seen more frequently than sturm.

Evidence from experiments shows that higher overall performance is achieved if
syllabification and stress assignment are done in a postprocessing step rather than in
preprocessing (see table 8.2).

60 Chapter 6. Syllabification

6.7.2 Orthographic vs. Projected Syllable Boundaries

In table 6.3 we saw that learning orthographic syllable boundaries is a less difficult
problem than learning syllable boundaries that were projected from the phoneme out-
put. The reason is probably that orthographic syllabification annotation is of higher
quality and less inconsistent. When integrated into the pipeline system, the g2p com-
ponent has to compensate for the difference between orthographic and projected syl-
lable boundaries, which leads to correspondingly worse performance at this later step.
The word error rate is 18.6% if orthographic syllables are learnt as opposed to 16.6%
when syllabification is learnt on the projected syllables.

Chapter 7

Word Stress

This chapter addresses German word stress assignment. I firstly motivate, why a spe-
cial treatment for stress assignment is needed and explain how German word stress
works. Problems with low quality training data are then addressed and alternative
designs for a stress module are discussed.

I implemented three different approaches for stress assignment: a rule-based sys-
tem, a probabilistic baseline system and an adaptation of the HMM also used for stress
assignment. The advantages and disadvantages of the models are analysed. Significant
data-sparsity problems led to the discovery of problems with the smoothing method
used and its substitution by another method, which subsequently also led to better
results for the syllabification and g2p-HMMs. In the last section of this chapter, I
summarize my findings and draw conclusions.

7.1 Why a separate module for Stress Assignment?

Using the ETI morphological analysis and the AddWordTree for grapheme-to-phoneme
conversion, 21% of the words in the list are transcribed incorrectly (at least one pro-
nunciation or stress error). Within these errors, there are particularly many word stress
errors. Stress errors account for two thirds of the mistakes (i.e. 14.5% of the words
are stressed incorrectly when using the ETI-morphology in preprocessing, 16.8% with
CELEX morphological annotation, and even 17.3% are assigned incorrect stress with-
out morphological preprocessing). There are three roughly equally big categories
within the stress errors.

1. words with more than one main stress (≈ 5.3%)
Most words in this category are very long and complex (often compounds or
prefixed words).

2. words with no stress (≈ 4%)
This category typically contains some rare words, and words with few affixes.

3. stress on the wrong syllable (≈ 5.2%)
There are relatively many non-native words in this category, but not exclusively.
Word stress is a hard problem in German. So far, no rules have been found which
can perfectly predict word stress.

61

62 Chapter 7. Word Stress

Lébensmittelpunkt
a

a
aa

!
!

!!

Lebensmittel
b

bb
"

""

Lebens Mittel

Punkt

Lebensmı́ttelpunkt
a

a
aa

!
!

!!

Lebens Mittelpunkt
b

bb
"

""

Mittel Punkt

Figure 7.1: Two possible analyses for the homograph “Lebensmittelpunkt”.

7.2 German Word Stress

Many linguists have now agreed on the hypothesis that syllable weight and syllable
position within the word are the most relevant parameters in German word stress. (Al-
though the influence of syllable weight is not uncontroversial among experts. For an
overview of the discussion in the field, see Jessen [1998].)

7.2.1 Primary Word Stress

There are several levels on which word stress is determined:

1. compounds
German compounds are usually stressed on the left element of the compound,
with very few exceptions (e.g. Jahrzéhnt, Lebewóhl), which can be looked up
from a special list. In compounds with three elements, stress position is am-
biguous and arguably depends on the structure of the compound as well as on
its lexicalization status. Firstly, consider the minimal pair Lebensmı́ttelpunkt
(Engl: center of life) and Lébensmittelpunkt (Engl: food badge) (alternative
analyses are shown in Figure 1). When the first two components belong to-
gether more closely, the first compound element is stressed. Otherwise, stress
may be on the second element, but for left-branching structure, the definition of
rules is more complex: Stress has been proposed to fall on the middle element
if the last two words are freely composed (as in [Bundes+[kriminál+amt]]) but
on the first element if the last two elements constitute a lexicalized unit (as in
[Háupt+[bahn+hof]]).

In CELEX however, all compounds are stressed on the first syllable, with the
very few exceptions of Rotkreuzmannschaft, Nordsüdgefälle and Ostwestroute.
This is on the one hand due to wrong stress (or at least questionable) assignments
(Állhéilmittel, Últrakurzwellenempfänger, Ángestelltenversicherungsgesetz), on
the other hand, there are relatively few real (non-lexicalized) compounds in
CELEX.

2. affixes
The next level for determining word stress are affixes.

(a) prefixes

• There are some prefixes which can never be stressed, such as ver-, er-,
ent-

7.2. German Word Stress 63

• and some which are always stressed, such as ein-, auf-
• there is also a group of ambiguous prefixes whose stressing cannot be

explained, e.g. un-
• and finally there are those prefixes whose stressing depends on whether

they are separable or non-separable verb prefixes, e.g. um-, über-,
unter-, voll-

When there are several prefixes that belong to the group of usually stressed
affixes, overrules the other. Therefore, it would be good to extract a ranked
(according to frequency and stressing probability) list for stressing proba-
bilities from the training data.

(b) suffixes

• inflectional suffixes
Inflectional suffixes are never stressed but can cause stress shift in
words with certain endings (Musı́k but Músiker or Áutor but Autóren).
Suffixes that leave the stress pattern of the stem untouched are classi-
fied as class-II suffixes, whereas suffixes that are stressed themselves
or that have an impact on the stem they modify, are classified as class-
I suffixes (for a full list of inflectional and derivational suffixes, see
Jessen [1998]).

• derivational suffixes
Some derivational suffixes are always stressed, some are never stressed,
very few ambiguous with respect to their stress status. As for in-
flectional suffixes, some seem to influence the stress position of their
word: Amérika vs. amerikánisch, Amerikáner.

3. stems

German word stress has been studied for a long time, first publications on syl-
lable weight and stress go back to the Sixties. A recent extensive study which
claims to be able to explain 95% of German word stress for non-prefixed and
non-compounded words (see Wagner [2003, 2001]). Wagner reviewed and re-
fined a set of rules introduced in Jessen [1998]. These rules are based on the
account of syllable weight and syllable position after splitting off “unstressable”
suffixes, while keeping some other affixes which have the power to attract stress.
Wagner’s rules (based on Jessen):

(a) stress the last syllable if it is heavy

(b) otherwise stress the second last syllable if it is not a schwa-syllable

(c) otherwise go from right to left and stress the next non-schwa syllable

The second last (“penultima”) syllable is stressed most often. A baseline assign-
ment that always stresses the second last syllable in a stem achieves a success
rate of 63%.

There remain some exceptions that cannot be solved without recurrence to ety-
mological information. For example, Arbeit was originally a compound, but is

64 Chapter 7. Word Stress

not perceived as a compound any more in contemporary German. Exceptions
also include borrowings from other languages in particular from French.

In some rare cases (e.g. Télefon vs. Telefónanruf, Telefónanschluss), stress is
shifted within the same stem due to compounding.

Since syllable form and weight has an influence on stress assignment in German,
it seems sensible to try to learn syllable classes, i.e. group syllables according to their
weight (possibly in function of the position). One option is to use linguistic informa-
tion to do this. But generalization to other languages in which syllable structure also
plays a role for stress assignment would be easier if syllable weight could be derived
automatically. The notion of syllable weight could for example be approximated from
a syllable’s probability of being stressed. This would also enable us to capture syllables
with a special stress status due the fact that they represent a certain morpheme.

Information about the morphological structure, syllabification and phonemes (syl-
lable weight is only defined for phonemes, because letters are ambiguous) is necessary
to apply the rules.

7.2.2 Secondary Word Stress and Stress Clash

The discussion so far focussed on primary word stress in German. Complex words,
which tend to be quite long in German, often also have secondary stress, especially in
compounds or prefixed words.

Another problem arises from the fact that there is some evidence that German is
a stress-shifting language. This means that two adjacent syllables must not both be
stressed (e.g. Fách + Hóchschule = Fáchhochschúle). This phenomenon can even be
observed to occur across word boundaries: den Róck + ánziehen = den Róck anzı́ehen.
Wagner and Fischenbeck [2002] conducted experiments on this phenomenon but re-
ported that stress shifting is in fact a very irregular pattern in German, which makes it
very difficult to automatically assign stress correctly.

In this work, only primary word stress is considered. Stress clash across words
boundaries does not occur in the actual problem setting, because we only work with
word lists. Any stress assignment that would be sensitive to its context cannot be
evaluated with the data available to me any way.

7.3 Working with Low Quality Training / Test Data

As mentioned above, the word stress assignments which were learnt from CELEX us-
ing the AddWordTree were subject to many errors. There are two reasons for this. The
first one was discussed above, and is caused by the fact that the learning mechanisms
do not have access to all of the information they would need to solve the problem. But
a second problem must also not be underestimated. The CELEX stress data is not very
reliable, in many cases it is wrong and (perhaps even worse) inconsistent. For example,
the suffix -tion should always be stressed in German unless it is followed by another
affix that attracts stress more strongly, like -al or unless it is part of a compound. But in
CELEX, only half of the words on -tion are stressed on this syllable. When I manually
inspected the first 40 cases, there were only two correct ones among them.

7.4. Approaches considered 65

Such inconsistencies have a very negative effect on the data based algorithms,
which consequently learn wrong or no generalizations. Furthermore, the data is only
partially valuable for evaluation – any system will get punished for not committing the
mistakes which are in the “gold-standard” data. Therefore, it is difficult to evaluate
the rule-based system using this data. For the data-based algorithms, the case is per-
haps less dramatic because (at least if errors are consistent) we can assess how well the
algorithm learns from what it is given.

7.4 Approaches considered

• Rule-based Stress Assignment
Caseiro et al. [2002] obtained best results on a g2p conversion task for Por-
tuguese when they introduced a separate preprocessing step for determining
word stress. However, the stress patterns were not learnt automatically, but in-
stead a set of manually constructed rules was compiled into a finite state trans-
ducer. An important argument for using a rule-based approach is the low quality
of word stress in our resources.

It would be possible to compile Wagner’s rules into such an FST. But one prob-
lem is that Wagner’s description of weight is based on phonemes and not on
letters. It is therefore necessary to determine the weight status of the syllables
in phonemes and then, using the letter-phoneme alignment, project these cate-
gories onto the letters and generalize the rules found in order to assign weights
to letter-syllable.

However, this mapping will cause ambiguity. Therefore, it has to be tested
whether a stress assignment step should better be done in preprocessing or post-
processing.

• Separate Decision Tree
Why would one want another decision tree, although the Addwordtree has al-
ready proven to return unsatisfactory results? What can be hoped to be gained
from another, separate decision tree? The decision tree could be better adapted
to the task. It could consider more context, and could ask different questions.

The most important negative aspect is that again, it cannot be guaranteed that
exactly one stress is produced for each word. Furthermore, Dege [2003] already
tried to do stress assignment in a separate decision tree and obtained even higher
word error rates than for the integrated solution.

• Pronunciation by Analogy
Similarly, PbA can neither guarantee that there is exactly one stress in a new
unseen word. The weighting algorithm which chooses the best path through the
lattice, could however be modified to allow for exactly one stress, but such a
method would not be able to model stress attraction. Marchand and Damper
attempted to do letter-to-stress with PbA but found that PbA is not well suited
for this task: they obtained only 54% of words correctly stressed for English.

66 Chapter 7. Word Stress

• HMM
In analogy to the syllabification problem, stress assignment can also be regarded
as a tagging problem. The necessary constraints can be defined similarly (in syl-
lable boundary assignment, a syllable must have exactly one nucleus; in stress
assignment each word must have exactly one main stress.) Issues in design-
ing the HMM are what entities to choose (single letters or syllables), how big
a context is needed and what information to include as features (stress status,
native-foreign info, morphological information, position in the word). Further-
more, it is necessary to define a smoothing strategy. I have eventually chosen
this approach – see below for more detailed design description.

7.5 Multi-level Process

Because of the different levels that need to be considered to assign German word
stress theoretically (compounding, affixation, stress within stems), using a multi-level-
architecture based on the morphological structure of a word seems to do justice to the
problem. On the first level, which only applies to compounds, the part of the com-
pound which should be stressed needs to be decided on. In a next step, words with
affixes which are always stressed can be filtered out (as the affix stress overrules the
stressing from stems or suffixes), and only in a final step does an algorithm apply that
would determine the stress position on the word or compound element.

The advantage of such an architecture is that it reflects the nature of the problem
well. Also, this design prevents some basic errors that typically occur in the deci-
sion tree or the HMM (see chapter 8), which do not have access to this kind of level-
dependent rules. Drawbacks are that this approach only works with good morpholog-
ical annotation. Otherwise it is impossible to apply the different steps. Furthermore,
this architecture is specific to German and related languages such as Dutch, but can not
be transferred to languages with different stress assignment processes. To build some-
thing equivalent for another language, a linguist would be required to determine the
other language’s stress determining factors. Finally, the problem with the introduction
of several steps is that they will probably only work better, if their input is flawless. In
real life, the danger of propagating errors is high.

7.6 Rule-based Stress Assignment

Because the training data available to me is very unreliable and a data-based algorithm
can only ever be as good as its training data, I implemented Wagner’s rules to see how
well they scale to large amounts of naturally occurring text. Although the rules seemed
sufficiently simple on the first view, they proved labour-intensive to implement.

Wagner’s rules only apply to word stems, or word stems with class-I suffixes (i.e.
suffixes that are stressed themselves or lead to stress shift when they are attached to
a word). Therefore, the multi-level-process had to be applied. In my implementa-
tion, compounds are first segmented into their elements and only the first element is
processed further, (I here exploited the fact that CELEX almost exclusively only con-
tains compounds that are stressed on the first element). Then, the rest of the word

7.6. Rule-based Stress Assignment 67

is segmented into its prefixes and suffixes, and stress is assigned appropriately. Only
those word stems that did not concatenate with stressed affixes are processed with
Wagner’s rules (for the set of rules, see above or refer to Wagner [2001]).

A first problem with the rule based system is that morphological information is
crucially necessary. This model simply does not work if no morphological information
is available. In the case of un-recognized compounds or prefixes, the rule system assign
a wrong stress in almost 100% of the cases: the rules try to assign stress to the second
last or word-final syllable (processing the word from right to left), while some prefixed
words and most compounds should be stressed on the first element of the word.

Syllable weight rules are defined on phonemes, because the graphemic presentation
is much more ambiguous. At the same time, the rules concerning affixes (to distinguish
class-I and class-II affixes) are defined on the orthographic letter-strings. Therefore,
I implemented a the rule-based approach on a combined representation of phonemes
and letters. Such a component can therefore not be used in preprocessing but only for
postprocessing after the g2p conversion step.

In the first version, which did not take into account morphological information,
the correctness rate was as low as 52.41% on a corpus of approx. 239,700 German
words from CELEX (the training corpus). When I include morphological information,
correct assigment of stress rises to 84.11%, which is much better but still does not even
reach the success rate of the one-step integrated Addword Tree or HMM. There is some
room for improvement though, as can be seen from the below list of error categories:

• ambiguous prefixes
20% of the errors are on prefixes that are ambiguous with respect to their stress
status. In future work, information e.g. from SMOR should be used to disam-
biguate these cases (time does not allow me to implement this in the scope of
this thesis).

• words not covered by the rules
This category make up approximately another 25% of the errors. The words it
inclused are often foreign words, mainly from Latin and French, but also some
native German words: Arbeit, Ablativ, Abenteuer, Abakus, Allee

• missing morphological information
Morphological annotation, even the one from CELEX, is not perfect and ac-
counts for about another 25% of the mistakes. There are some words that lack
compound annotation, such as Aberglaube, Aberwitz, Achillesferse and words
where prefixes are not marked, e.g. Abgeschmacktheit, Abwesenheit

• words on -ien
There are three types of words that end on -ien and that are stressed differently.
The first group includes plurals of words that end in long stressed /I:/, like Har-
monien, Fantasie. The plural of these words should also be stressed on /I:/. In
contrast, the plurals Sanatorien, Materialien looks the same and is also tran-
scribed /I: . E# N/, but should not be stressed on /I:/ but the previous syl-
lable. If we had access to the singular forms of these words1, we could decide

1Singular of Sanatorien is Sanatorium. The singular of Materialien is Material.

68 Chapter 7. Word Stress

the matter more easily, but there are also words like Linie or Akazie which look
like the words from the Harmonie-class but whose plural forms are pronounced
similar to those from the second class.

• words that are wrong in CELEX
This concerns mostly words on -tion, -ell, -ieren, but includes also words like
abtáuschen, abtranspórtieren and of course all words that are annotated with
more than one or no stress. Altogether, these cases make up about 15% of the
mistakes (this number was estimated from looking manually through 200 errors).

• composita that are not stressed on the first syllable
As explained above, the stressing of compounds with three elements depends on
the compound’s structure and lexicalization status. In the version of the rule-
based system which was implemented here, I do not have access to such infor-
mation. However, it could be retrieved from large text sources by estimating the
probability of compound elements of occurring together and constituting a lex-
icalized unit. For this purpose, e.g. for the word Haupt+bahn+hof, one could
count the occurrence frequencies of Hauptbahn and Bahnhof, and also count
with how many different other words they are compounded. We would expect to
find Bahnhof much more frequently than Hauptbahn and to see loads of words
that compound with Bahnhof, e.g. Nordbahnhof, Güterbahnhof etc., but few
words like Hauptbahnstrecke.

I conclude from this experience that the rule-based method is not appropriate for
the task at hand – it cannot cope with data that is not morphologically annotated and
degrades quickly if the morphological annotation is noisy. Furthermore, a large ex-
ception list would be needed to handle all those cases which cannot be covered by
the rule system. Moreover, such a rule-based system does not generalize well to other
languages.

7.7 Baseline Approaches to Learning Stress for Stems

The first possibility to assign stress to stems is to simply do a lexicon lookup. The look-
up method is the best quality method for known stems. The only source of mistakes
made would be homographs. But, as no patterns are learnt, it is not possible to assign
stress to unseen stems.

Secondly, one could store for each syllable its probability of being stressed. For a
new word, stress could then always be assigned to the syllable with highest stressing
probability. Doing this, we disregard the importance of syllable position, and as can
be expected, one performs less well on the training set. If we only store the syllable
form and not the syllable position, only 85% of the training set are predicted correctly.
These probabilities can of course be combined with a syllable position model, but in
general, stress probability can only be assigned to words that are made of syllables that
were already seen in training, new syllables need to be assigned some default value.

The third approach is to learn syllable classes, i.e. to group syllables according to
their probability of being stressed and to generalize the patterns that are common to
these syllables. We then again expect to lose some contextual information, i.e. perform

7.7. Baseline Approaches to Learning Stress for Stems 69

worse on the training set. But we can now cope with any unseen word, which may even
be composed of syllables not contained in the training set. As syllables are also subject
to the LNRE2 problem, it seems sensible to try such an approach. The goal is to learn
the classification rules for different syllable weights automatically without using any
linguistic knowledge. If we succeed in doing this, the approach can promisingly be
applied to other languages as well.

In the rest of this subsection, two knowledge-lean (syllable weights are not known
in advance) and quickly-running approaches are described. The motivation for im-
plementing these approaches are twofold. On the one hand, I wanted to provide a
baseline algorithm to compare against. The second goal is to learn syllable classes that
are meaningful for the stress assignment task.

Assumptions in this approach are that syllable structure and syllable position are
relevant for stress assignment. As discussed above, the weight of a syllable (which
contributes to its probability of being stressed) depends on the vowel it contains, and on
the structure of its onset and coda. Ideally, these should be derived from the phonemes,
and not the letters, as one grapheme is much more ambiguous than a phoneme (e can
be the heavy nucleus /E:/, the light nucleus /AE/ or the super-light nucleus schwa
/E#/).

The stressing probability of an entity is the frequency of seeing this entity in a
stressed syllable divided by its overall frequency. The stressing probability of a syl-
lable is thereby composed of the stressing probabilitis of its onset, nucleus and coda.
Composing the syllable stress probability from these units allows to generalize to un-
seen syllables. As a result, all syllables are assigned gradual values.

To estimate these probabilities well, it is necessary to learn from “clean” words, that
is from syllables that are not stressed for being a certain affix, but only from syllables
that are part of stressed stems. Furthermore, only words from the subset of CELEX
and BOMP with the same transcription were used to ensure good quality.

Once the stress probabilities have been calculated for all syllables in the training
set, new words from the test set were evaluated. If the heaviest syllable is chosen
for stressing without taking into account syllable position, 72% of words are stressed
correctly. The position-only baseline for stress assignment yields 63% of stems correct.
Introducing a simple heuristics for combining the information from syllable position
and syllable weight, a precision of over 82% on the test set can easily be reached.

This approach does not scale well to a situation where morphological analysis is not
available, because syllable stress probabilities would be biased by e.g. heavy affixes
that are always unstressed, such as -keit or -schaft.

2large number of rare events: The number of extremely rare events is extremely large in many NLP
problems. Seeing a previously unseen word or syllable occurs very often, although the probability of
a particular instance of such a rare event is very low. Khmaladze [1987] found that the law of large
numbers does not hold for such lnre distributions.

70 Chapter 7. Word Stress

7.8 HMM for Stress Assignment

The second serious approach to word stress assignment was the implementation of
a Hidden Markov Model (HMM), similar to the HMM used for syllabification. The
HMM differs from the HMM for syllabification and letter-to-phoneme conversion, (see
chapter 8), in that its hidden states are syllables-stress pairs instead of letter–syllable-
boundary pairs.

7.8.1 Definition

The hidden states are pairs of syllables and stress markers, the observed states are
syllables. The Hidden Markov Model returns the most likely syllable-stress sequence
ˆstrn

1 = ˆstr1, ˆstr2, ˆstr3, ..., ˆstrn, (that satisfies the constraint that each word contain ex-
actly one stress) for a given syllable sequence syln

1 . Thereby, the Markov assumption
is applied which states that a given syllable-stress pair only depends on the preceding
k states (i.e. syllable–stress pairs).

ˆstrn
1 = argmax

strn
1

n+1

∏
i=1

P(〈str;syl〉i | 〈str;syl〉i−1
i−k)

To each word, dummy syllables ‘#’ are appended at both ends to indicate the word
boundary and ensure that all conditional probabilities are well-defined.

Syllables were chosen as a basic entity to allow the HMM to acquire a notion of
syllable weight, with the idea that the model can back-off from unseen syllables using
the results from the syllable-class learning experiment for learning stress probabilities
of syllables. Using syllables as basic units has advantages and disadvantages. The ad-
vantage is that the model can look at a larger context. In addition, every unit that may
be tagged with the stress-tag is meaningful in that it contains a syllable nucleus (stress
can only be realized on syllable nuclei). A disadvantage is that it leads to a strong
data sparsity issue: The two following words are inflectional variants of another but
look very different to the algorithm: 1) 1un-ter-1pri-vi-le-#gier-2t2es-tes3

2) #1un-ter-1pri-vi-le-gier2t2st (gier-2t2es-tes and gier2t2st are not re-
lated for the algorithm. If they were, they should be assigned the same stress status.).
The algorithm does not learn to generalize from the training data that it should stress all
endings on -ier (unless the word is prefixed / part of a compound etc.) irrespective of
the preceding stem (that determines the syllable onset) and of the inflectional suffixes.

The HMM does not have any explicit attribute for the syllable position but contains
this information implicitly through its context window. The advantage of the HMM is
that it can be generalized to other languages easily.

I ran the HMM with several different context window sizes from k = 1 to k = 3.
Choosing k = 1 makes the HMM most attractive: performance cannot be significantly
improved by choosing a larger window size. Furthermore, a context length of 1 in
training is the only constellation in which the training file takes less space than the
full training data (5.9 MB for Phonemes). The file sizes and performance in function

3‘#’ is used to mark stress in letter-strings while I use the ‘.1’ notation to mark stress in phonemic
representations

7.8. HMM for Stress Assignment 71

of the window length choice is shown in table 7.1, note that the sizes refer to the
uncompressed text files.

context window training file size Word Error Rate
k=1 2.3 MB 8.8%
k=2 6.9 MB 8.7%
k=3 11.9 MB 9.4%

Table 7.1: Training file sizes and Word Error Rate in function of the context window for
the HMM on Phoneme Syllables.

7.8.2 Constraints

One important problem with the HMM and decision tree for integrating grapheme-
to-phoneme conversion, syllabification and stress assignment in one single step was
that many words were assigned no stress or more than one word stress. The idea in
modularizing the task is to introduce constraints to counter these obvious mistakes.
Therefore, a constraint that only accepts words with exactly one stress was integrated
into the model. As can be seen from the word error rates below shown in table 7.2, this
constraint improves results significantly, and reduces word error rate by over 60%.

To integrate the stress constraint into the model, every sequence is stored with a
flag indicating whether it has already been assigned a stress or not. Any state that
would introduce a second stress is pruned directly for efficiency reasons. This pruning
causes the probabilities in the model not to sum to 1 any more, but only eliminates
analyses that we do not want any way – the ranking with respect to the other analyses
does not change.

Without the constraint, 14.5% of the words are not stressed at all and 13.7% of
words have more than one stress, the remaining 3.6% of errors are due to wrong stress
position.

context window WER with constraint WER without constraint
k=1 10.3% 31.9%
k=2 10.3% 30.2%
k=3 11.1% 29.9%

Table 7.2: Effect of integrating a constraint to the stress HMM.

7.8.3 Training data

The algorithm was furthermore run on several different data sets. First, of course, on
the full training data, not using any knowledge about how compounds are stressed or
which affixes are stressed. In a second run, I used linguistic information about Ger-
man through introducing the restriction that all compounds must be stressed on the
first compound element. But, surprisingly, this did not lead to an improvement, which
is probably due to incorrect morphological annotation (some prefixes were annotated

72 Chapter 7. Word Stress

as stems). I did not go further into correcting morphological annotation because com-
pounding is much less of an issue for the Hidden Markov Model than for the rule-based
approach: Many compound elements seem to occur in a typical position in the com-
pound. For example, Mann occurs often as the last element of a compound, which is
perhaps partially an artefact of the compounding stems in German – if it was to occur
as a first element, it would be either have the form Manns or Männer. Therefore, the
algorithm learns to rather stress the syllable Manns or Mä followed by nner than the
syllable Mann.

To estimate the proportion of errors due to inconsistent stress annotation, the data
was run on a smaller set of high-quality data, which was obtained from retaining only
those words in the training set that had the same stress annotation in BOMP (for more
information on BOMP, see chapter 3) and CELEX. The results are difficult to interpret,
as there are two factors that influence performance: the amount of training data and
the quality of training data. While quality was increased when using the CELEX-
BOMP intersection set, size was reduced to roughly one quarter (61,000 words instead
of 239,000 words), which lead to data sparsity problems. From the results in table 7.3,
we can see that the negative effects of the smaller training set weighted heavier than an
improvement in quality. An important lesson to be learnt from this experiment is that
performance drops dramatically with a decrease of the amount of training data, at least
in models where data sparsity is an important issue.

training set size test on
full CELEX CELEX-BOMP

CELEX training 239,000 wds 8.8% -
CELEX-BOMP overlap 91,000 wds 17.8% -
CELEX-BOMP same-stress 61,000 wds 19.3% 13.6%

Table 7.3: Training file sizes and Word Error Rate in function of the context window for
the HMM on Phoneme Syllables.

Like the syllabification HMM, this algorithm was also run on different types of
input data: phoneme-syllables, letter-syllables and morphologically annotated letter-
syllables. The model worked best on phoneme-syllables, reaching a word error rate of
only 8,7% for k=2. At first, I was surprized to find that morphological annotation from
CELEX did not improve performance over using no morphological annotation, al-
though overall conversion quality was best with CELEX annotation (remember results
in table 5.9). A possible explication for this observation is that while the number of
conversion errors on phonemes decreases, the number of conversion errors in stressing
increased. This negative effect of morphological annotation is on the one hand prob-
ably due to increased data sparsity: syllables that are seen rarely are seen even more
rarely with one particular morphological annotation, in particular if the morphological
annotation is not perfectly consistent.

The results in table 7.4 show performance of the algorithm on the supposedly per-
fect data, i.e. projected syllable boundaries for the letter syllables, CELEX morpho-
logical annotation and CELEX phonemization. For an account of how well the module
works when integrated in the TTS-architecture, and how it degrades with noisy input,
see section 7.8.6 below.

7.8. HMM for Stress Assignment 73

training set p=1 p=2 reverse (p=1) reverse (p=2)
Phonemes 8.8% 8.7% 8.6% 9.1%
Letters 9.9% 9.5% 9.7% 9.9%
Letters + CELEX-morph 10.3% 10.3% 9.9% 9.9%

Table 7.4: Word Error Rates in function of the input data and processing direction.

In another experiment, I let the HMM run backwards through the words, because
the linguistically motivated rule-based system also assigns stress to syllables beginning
from the end of the word. So I hoped that the Hidden Markov Model might also profit
from this order. But the results are difficult to interpret - while an improvement was
obtained for the k=1 context window, this success was not consistent for the higher-
order HMMs. Also, the difference is small and only weakly statistically significant
(p ≈0.1 using a two-tailed binomial t-test).

7.8.4 Smoothing

Smoothing is always necessary in statistical models to prevent the model from assign-
ing zero probabilities to unseen events. For the stress-assignment HMM, smoothing is
even a more important issue than for the letter-based syllabification algorithm: While it
is very improbable to see a new letter–stress-tag pair in the input word, encountering a
previously unseen syllable–stress-tag pair is quite a frequent event even with a training
set as large as the one used here (239,700 words). Even more often, we will not have
seen a certain syllable sequence. In that case, we try to estimate its probability from a
smaller n-gram, just as done in the Hidden Markov Model for syllabification. To alle-
viate the data sparsity problem, I substituted all upper case letters by the corresponding
lower case letters.

7.8.4.1 Back-off steps

I tried out several strategies to back off to smaller contexts and evaluated their influence
on the results.

• backing off directly to the next smaller n-gram
The simplest strategy to estimate the probability of an n-gram based on the n-1-
gram gave me the best results.

A word error rate of 8.6% on phoneme syllables for k=1 was reached, which
is significantly better than the WERs from the rule-based system (15.8% WER)
or the integrated decision tree step (14.5% WER with ETI-morphology, 16.8%
with CELEX morphological annotation and 17.3% WER without morphological
annotation).

In another experiment, all syllables that occurred just once were mapped onto
a default “unknown” syllable. Syllable stress probability of new syllables was

74 Chapter 7. Word Stress

then estimated from this value. But (probably because of more serious data spar-
sity problems from flattening out all syllables that occurred once), this approach
increased the word error rate by almost 20% (relative increase).

• backing off to the syllable structure
Instead of estimating an unseen syllable’s probability from the next smaller con-
text alone, I first backed off to the syllable structure of the outermost syllable
in the context window. The structures I backed off to were the ones used in the
rule-based algorithm that are relevant for syllable weight in German. Unfortu-
nately, results did not differ significantly from results that did not include this
step.

• backing off to the syllable’s stress status
In a last approach, I tried another stepwise backoff-approach. If a syllable se-
quence had not been observed, it was generalized to an unknown syllable with
the same stress status. E.g. for estimating the probability of stressing the syllable
der in Kalender (’ stands for “no stress”, ‘#’ stands for “stress”, and ‘-’ for a
syllable boundary):

Ka-#len- der
any-#len- der

#len- der
#any- der

der
any

Although this worked a bit better than backing off to the syllable structure, it
was clearly outperformed by the simplest backoff step.

Further possibilites, which I found intuitively less promising, and therefore did not
spend time on, are 1) to backoff to the syllables morphemic type (part of a stem, part of
a suffix etc.) but this is less well-defined as syllable boundaries do not always coincide
with morpheme boundaries, 2) to back off to the stressing probability as acquired from
the naive approach outlined in the previous section and 3) to back off to the syllables
position (e.g. counted from the back and the beginning in order to abstract away from
particular word lengths).

7.8.4.2 Smoothing Algorithm

The second issue in smoothing is what method to use for discounting probability mass
from seen events and redistribute it to unseen events. In a first approach, I used the
smoothing strategy that was implemented in the syllable-HMM (which this model for
stress assignment is based on Schmid et al. [2005]). It used a non-standard procedure
which I will refer to as “Schmid-Smoothing” throughout this work. The smoothed
probabilities are

P(wi|wi−1
i−n+1) =

c(wi
i−n+1)+ΘP(wi|wi−1

i−n+2)

c(wi−1
i−n+1)+Θ

7.8. HMM for Stress Assignment 75

prob(# 5ver) = 0.0323 prob(# %5ver) = 2.5044e-05
prob(%1web2st) = 9.1138e-07 prob(1web2st) = 9.1138e-07
backoff(5ver) = 0.0001 backoff(%5ver) = 0.1428
prob(5ver %1web2st) = 1.0041e-10 prob(%5ver 1web2st) = 1.3019e-07
prob(%1web2st #) = 0.6091 prob(1web2st #) = 0.6091

Table 7.5: Backoff Probabilities for the word verwebst.

where Θ is a predefined smoothing parameter. In this work, I set Θ = 1. The backoff-
factor can then be derived as:

α(wi−1
i−n+1) =

1−∑wi p(wi|wi−1
i−n+1)

1−∑wi p(wi|wi−1
i−n+2)

=
1−∑wi

c(wi
i−n+1)+Θp(wi|w

i−1
i−n+2)

c(wi−1
i−n+1)

1−∑wi p(wi|wi−1
i−n+2)

=
c(wi

i−n+1)+Θ−∑wi c(wi−n+1i−Θ∑wi p(wi|wi−1
i−n+2))

(c(wi
i−n+1)+Θ)(1−∑wi p(wi|wi−1

i−n+2))

=
Θ(1−∑wi p(wi|wi−1

i−n+2))

(c(wi
i−n+1)+Θ)(1−∑wi p(wi|wi−1

i−n+2))

= Θ
c(wi−1

i−n+1)+Θ

Using this smoothing method, the error rate is inacceptably high. When I analysed
the results, I identified some patterns of mistakes that “should not occur” i.e. that
are not explicable based on the data or due to exceptions. My observation was that
with Schmid-smoothing, the stress was very often assigned to unstressable prefixes or
suffixes. Particularly often-occurring examples were in words prefixed by ver-, be-,
er-, which for some reason were stressed by the algorithm. On the other hand, the
normally stressed prefixes ab-, auf-, aus- etc. were not stressed!

The assumption in Schmid-backoff is that if we have a context that we saw very
often, we should also have seen it with the actually considered state, otherwise our
current state is probably not very grammatical or otherwise bad and should therefore
be punished for having to backoff. On the other hand, it is probable to not have seen
a particular state after a state that occurs very infrequently any way. In table 7.5, the
effect of Schmid-smoothing on the word 5ver-1web2st is shown (only the analysis
that was assigned the highest probability and the desired analysis are shown). The
syllable 1web2st was seen twice in the training data, once stressed and once unstressed
(from the two possible stress positions in the word überwebst).

The prefix 5ver, has been seen in the training data 6,502 times without stress and
only 6 times with stress (these were actually annotation errors: 5vér1wasch2en). In

76 Chapter 7. Word Stress

the test list, there are 336 words with the prefix 5ver. Out of these, 83 were wrongly
stressed on the ver-prefix. A typical example is 5ver-1web2st: As we expect, a much
higher probability is assigned to unstressed 5ver initially. But then, the sequence
5ver-1web2st was not in the training data. To estimate its probability, the next smaller
context, which consists only of 1web2st, is considered. In the case shown here, the
probabilities for stressed and unstressed 1web2st are the same (I chose this example
for simplicity, the effect occurs in cases when the algorithm has to back-off). But then
the algorithm combines the estimate of the smaller n-gram with the Schmid-backoff-
value for seeing 5ver. This backoff probability is high for stressed 5ver as it has not
been seen often, but very low for unstressed 5ver.

The assumption in Schmid’s smoothing is sensible for e.g. POS-tagging, where
we want to punish ungrammatical sequences. A very common tag such as ART for an
article should have been seen in training with all POS-tags that may follow it, whereas
a very rare tag is expected to not have been seen in all possible contexts.

The assumption used for POS-tagging does however not hold for stress assignment
on syllables. We expect to see many different stems (and also a lot of stems that
were not previously seen in that context) with morphemes that are productive, such as
ver-. That is, we want to have a higher probability for contexts that occur with a lot
of different syllables. I then looked for some approach that would take this idea of
productivity into account. A comprehensive summary and comparison of commonly
used smoothing strategies can be found in Chen [2003].

Kneser-Ney Smoothing is a variant of Absolute Discounting. It is an interpolated
model. That means that all smaller n-grams are always taken into account even if the
actually considered sequence has been seen. The formula for Interpolated Kneser-Ney
Smoothing has the following form:

pKN(wi|wi−1
i−n+1) =

max
{

c(wi
i−n+1)−D,0

}

∑wi c(wi
i−n+1)

+ γ(wi−1
i−n+1)∗ pKN(wi|wi−1

i−n+2)

where the backoff factor is

γ(wi−1
i−n+1) =

D
∑wi c(wi

i−n+1)
N1+(wi−1

i−n+1•)

D is the discounting value, c(wi) is the frequency of wi, and N1+(wi−1
i−n+1•) is a function

that returns the number of contexts from wi−n+1 to wi followed by any syllable, that
have a count of one or more:

N1+(wi−1
i−n+1•) = |

{

wi : c(wi
i−n+1)0

}

|

Kneser-Ney Smoothing differs from Absolute Discounting in that the probability
of the lower order n-grams are estimated as

pKN(wi|wi−1
i−n+2) =

N1+(•wi
i−n+2)

N1+(•wi
i−n+2•)

where

N1+(•wi
i−n+2) = |

{

wi−n+1 : c(wi
i−n+1) > 0

}

|

7.8. HMM for Stress Assignment 77

and

N1+(•wi
i−n+2) = |

{

(wi−n+1,wi) : c(wi
i−n+1) > 0

}

| = ∑
wi

N1+(•wi
i−n+2)

that is, all lower-order models are calculated as:

pKN(wi|wi−1
i−n+1) =

max
{

N1+(wi
i−n+1)−D,0

}

∑wi N1+(wi
i−n+1)

+ γ(wi−1
i−n+1)∗ pKN(wi|wi−1

i−n+2)

In this implementation, I used Modified Kneser-Ney Smoothing which was pro-
posed by Chen and Goodman, who conducted a large comparative analysis of alterna-
tive smoothing algorithms and found modified Kneser-Ney Smoothing to work best,
especially for small non-zero counts. The good performance on this task can thus be
explained by the important data sparsity problem encountered. Modified Kneser-Ney
Smoothing differs from Kneser-Ney Smoothing only in that it uses more specific para-
meters, that is N1+ is substituted by three different terms: N1, N2 and N3+ and matching
specialized discount values D1, D2 and D3+. The model is given as:

pKN(wi|wi−1
i−n+1) =

c(wi
i−n+1)−D(c(wi

i−n+1))

∑wi c(wi
i−n+1)

+ γ(wi−1
i−n+1)pKN(wi|wi−1

i−n+2)

where

D(c) =

0 i f c = 0
D1 i f c = 1
D2 i f c = 2
D3+ i f c ≥ 3

and

γ(wi−1
i−n+1) =

D1N1(wi−1
i−n+1•)+D2N2(wi−1

i−n+1•)+D3+N3+(wi−1
i−n+1•)

∑wi c(wi
i−n+1)

Optimal values for D1, D2, D3+ were determined as:

Y =
n1

n1 +2n2

D1 = 1−2Y
n2

n1

D2 = 2−3Y
n3

n2

D3+ = 3−4Y
n4

n3

and nx is the number of entities that were seen exactly x times in training.
An assumption in the back-off and interpolation models is that all wi are part of

a closed vocabulary W . It is therefore not specified how to proceed with previously
unseen entities. In the current application however, there are a lot of such unseen

78 Chapter 7. Word Stress

syllable-stress pairs. These unseen entities can either occur as part of the context. In
that case, we simply go down to the largest m-gram that does not contain any such
syllables, and estimate the probability from that m-gram model.

If the syllable-stress pair which we want to estimate has not been seen, we still need
to assign it some probability. The simplest solution is to assign such an entity a uniform
probability, but this is not optimal, we can do better by estimating a syllable-stress
pair’s probability by basing on the probability of seeing a stressed syllable. As long as
both the stressed and the unstressed version of the syllable were seen in training, it is
fine to estimate the probability of the syllable and its stress status from the probability
of stressing a syllable that was seen only once in training.

But, as the probability of the stress status is relatively high, we run into problems
when the syllable was seen stressed but not unstressed or the other way around, because
then we estimate P(〈syll,stress〉) for the one case and P(stress) for the other case.
This leads to severe errors of preferring syllables that were not seen in training with
a particular stress status (and from which we should therefore possibly conclude that
they were not seen because it is very bad to stress them (e.g. a schwa syllable)).
Therefore, the probability of a syllable that has been seen but not with a particular
stress status is estimated as P(〈syll,stress〉) = P(syll) ∗ P̂(stress|syll). This version
showed to prevent errors of e.g. stressing schwa-syllables and led to an improvement
in performance.

The overall performance of Kneser-Ney Smoothing is consistently and signifi-
cantly better than Schmid Smoothing. Errors like stressing unstressed prefixes (ver-,
be- etc.) do not occur.

But there are still some mistakes we would like to prevent. For example, we def-
initely would like our algorithm not do make mistakes like 5Ge-1rinn-#3sel2s in-
stead of 5Ge-#1rinn-3sel2s, because suffixes containing an e are in principle never
stressed, because these es are realized as schwas. But, as can be seen from the current
example, the algorithm does not learn such rules. While it correctly determined that
5Ge should not be stressed, 1rinn and 3sel2s were both unstressed in all occurrences
in the training data, and both had very few counts. To solve this problem, the algorithm
would need to estimate the probability of 1rinn being stressed via its being the first
syllable of a stem, and 3sel2s as a suffix containing (very probably) a schwa.

context window k=1 k=2 k=3
training set schmid knes. schmid knes. schmid knes.
Phonemes 12.6% 8.8% 17.3% 8.7% 20.2% 9.4%
Letters 14.2% 9.9% 19.7% 9.5% 22.6% 10.4%
Lett. + morph 13.2% 10.3% 18.6% 10.3% 21.5% 11.1%

Table 7.6: Performance for different input data, for different smoothing methods and
context sizes.

The improvements obtained through using modified Kneser-Ney Smoothing in-
stead of Schmid Smoothing (refer to table 7.6) are all strongly statistically significant
(p < 0.0001, using a two-tailed binomial test).

7.8. HMM for Stress Assignment 79

7.8.5 Summary of Experiment Results

In addition to generalizing the data quite well by reaching a word error rate of below
10%, the algorithm also remembers the training data well. If run on the data it was
trained on, it stresses over 99% of the words correctly. This means that no exception
lists is required stress assignment to known words.

A good parameter setting for the HMM seems to be a small context window of 1.
Data sparseness (and therefore the appropriate choice of a smoothing algorithm) is an
important issue that arises from defining the HMM on syllables rather than letters. I
showed that using Kneser-Ney-Smoothing instead of Schmid-Smoothing can reduce
the word error rate for word stress assignment by almost 50%. I also showed that
in designs with important data sparsity problems, using as much data as possible for
training is important, even if the quality is not perfect.

The algorithm performs best on phonemes, which are the least ambiguous repre-
sentation of words. This is relevant because the letter e can be either realized as an
unstressable schwa (/E#/), or /AE/ or /E:/, which can both port stress.

Morphological information from CELEX does not improve results and the initially
proposed process of exploiting morphological annotation for using several steps for
stress assignment, did not lead to any better results either, although morphology has an
important influence on stressing, as argued above.

7.8.6 Performance in Pipeline System

When the module has to handle imperfect input (i.e. input containing wrong sylla-
ble boundaries, or incorrect phonemizations), we can expect it to also suffer from the
errors. The below table shows the performance of the module when working on au-
tomatically generated syllable boundaries or phonemes. Overall performance is best
when stress assignment and syllabification are performed in one step with grapheme
to phoneme conversion.

The advantage of the modular design is that a component can be exchanged easily.
For example, if some system for stress assignment became available that modelled the
problem better, it could substitute the old module, only adapting the input and output
formats. Best results were obtained when the syllabification and stressing steps were
performed after g2p conversion (see result table 8.2).

perfect input automatic input
no morph 9.9% 12.7% (3.1% syll. errors)
CELEX 10.3% 11.7% (1.9% syll. errors)
Phonemes 8.8% 14.3% (6.2% syll./phon. errors)

Table 7.7: Word Error Rates of stress assignment HMM on imperfect syllabification and
imperfect phonemes input respectively.

Words annotated with automatically generated syllabification and stress informa-
tion can also be used as an input to the decision tree for the g2p conversion task. When
the letters without morphological information are annotated with automatically gener-
ated orthographic syllable boundaries and stress as returned from the HMM stress as-
signment component, word error rate is reduced from 26.6% to 21.15%, and phoneme

80 Chapter 7. Word Stress

error rate is reduced from 3.63% to 3.32%. Both reductions are highly statistically
significant.

7.9 Discussion

The original goal of significantly reducing the conversion error rate by running separate
syllabification and stress components and using the information for the input to the
decision tree was reached, and WER was reduced from 26.6% to 21.1%.

In combination with the g2p-HMM that does not incorporate any constraints, the
syllabification and stress modules also lead to an error reduction from 22%WER to
16.6%WER if used as preprocessing components and even down to 15.2%WER if
used in postprocessing. However, best results were achieved when the constraints used
in the syllabification and stress components were directly incorporated into the g2p-
HMM, when a word error rate of only 13.7%WER was reached (refer to chapter 8).

Despite this success in improving overall performance by quite a large margin, my
opinion is that none of the approaches outlined above fully fits the stress assignment
problem:

• The performance of the rule-based approach is not good enough because of a
high number of exceptions to the rules and because it heavily depends on a
morphology that correctly identifies morpheme boundaries between compounds.
When no statistical information is available to the system, even semantic infor-
mation is needed to correctly stress compounds with more than two elements.

• The baseline approach did not actually lead to much benefit other than general
information on what kind of performance rates can be achieved using statistical
information for the stressing probability of syllables with a certain structure.
The results were not used to alleviate the data sparsity problems in the HMM
component because this kind of stepwise backoff turned out to not bring enough
benefits. But I think that there may still be room for improvement, if more time
is invested – estimating probabilities more exactly should lead to performance
gains.

• Finally, although the quality of stress assignment by the HMM is much better
than the one from the other models tried, it is not satisfying with an error rate
close to 10%. The main problem is that the model does not have the power
to model the processes that underlie stress assignment: it does not model the
structure of compounds, and does not “understand” the difference between af-
fixes that are stressed because of their semantics, and a syllable in a stem that is
stressed because of its weight, position or the origin of the word it is part of.

Chapter 8

Grapheme-to-Phoneme Conversion

The first part of this chapter motivates the use of automatic grapheme-to-phoneme con-
version for TTS systems and provides an overview of previous research in the field. I
then briefly address the problem of graphemic parsing, which is also known as letter
to phoneme alignment. The second part describes the adaptation of the HMM used for
syllabification and stress assignment to the grapheme-to-phoneme conversion prob-
lem. For smoothing, I obtained best results with a variant of Modified Kneser-Ney
Smoothing. The differences between this version and Chen and Goodman’s smooth-
ing method are discussed. The chapter furthermore addresses the issues of pruning
the HMM and the integration of the constraints that were applied for syllabification
and stress assignment in the previous modules to the g2p component. Finally, I briefly
report results for English and French and compare them to state-of-the-art methods.

8.1 Motivation for Automatic Grapheme-to-Phoneme
Conversion

The term Grapheme-to-phoneme (g2p) conversion is commonly used for describing
the process of automatic conversion of letters into their phonemic transcription. The
simplest solution to the problem is to do a lexical lookup in large databases where each
word is listed together with its phonemic representation. But many words cannot be
found in the lexicon. The phonemic representation of OOV words is obtained from
transcribing known parts of the words (this can be substrings or single letters) and
composing these parts. This compositional strategy tries to mirror the ability of human
native speakers of a language to read and pronounce unknown words following the
systematics of their language.

Although German orthography is certainly much closer to the pronunciation of
German words than English orthography is to the pronunciations of English words,
g2p is still a hard problem in German. The German alphabet contains 30 letters, while
the phoneme set of German contains 48 phonemes, so there is necessarily some ambi-
guity. Furthermore, there are some notoriously ambiguous letters such as e that can be
transcribed as /AE:/, /AE/, /E:/ or /E / in function of its context.

For a long time, a majority opinion in the speech research community has been
that that grapheme-to-phoneme conversion is a solved problem and that linguistically

81

82 Chapter 8. Grapheme-to-Phoneme Conversion

motivated rule-based methods outperform machine learning approaches. However,
Damper et al. [1999] have argued that neither of these presumptions is true: rule-based
methods actually showed to work very poorly on large texts, and even the best machine
learning approaches only obtain below 70% of words correct on the English NetTalk
corpus, indicating that this is not a solved problem at all.

8.2 Previous Approaches to g2p

A wide range of techniques have been applied to grapheme-to-phoneme conversion.
An overview and comparative evaluation of four different approaches: a rule-based
method, a nearest neighbour algorithm, a neural network by Sejnowski and Rosenberg
[1987] and Pronunciation by Analogy (PbA), is provided in Damper et al. [1999].

The oldest approach to grapheme-to-phoneme conversion is to use phonlogical
transcription rules, e.g. “pronounce the sequence ab as /A: B/, unless it is a prefix
or followed by a syllable boundary, in which case it has to be pronounced /A P/”.
Rule-based systems for g2p conversion are still in use today. Möbius [1998] describes
a finite state transducer for the Bell Labs system. They report to use a total of 259 rules
in addition to a separate component that deals with affix pronunciations. As Damper
remarks, most of the rule-based methods are part of commercial systems and can there-
fore not be tested by independent researchers to measure their performance and com-
pare them to other systems. The rule-based method tested in the evaluation by Damper
used the 372 phonological transcription rules from Elovitz et al. [1976]. It performed
worst among the tested systems - only 25.7% of the words were transcribed correctly,
evaluating on a subset of Webster’s dictionary which contained 16,280 words. Damper
et al. also report to have evaluated an up-to-date commercial rule-set, for which they
obtained similarly low success rates. An obvious disadvantage of rule-based systems is
also that they have to be developed by a specialist and are very labour-intensive to cre-
ate (because of the large number of rules and because of possible interactions between
them, so that they have to be arranged carefully).

To overcome this rule acquisition bottleneck, Bouma [2000] proposed an approach
for bootstrapping the generation of rules from a very basic subset of rules. The author
uses a lazy learning method called transformation based learning (TBL): a set of rule
patterns is used to generate new rules that minimize the errors made by the baseline
system (i.e. the rule-based system) and bring the largest overall improvement on the
data. These rules are then added to the rule set until no more improvements can be
found. Applying this method to a rule-based system for Dutch, Bouma achieved a
reduction in word error rate from 39.6% to 7.4%. This seems to be a good method for
languages where a rule-based system has already been developed and where only small
data sets with letters and their phonemic transcriptions are available. Unfortunately, it
is difficult to compare results across languages.

The first data-based approach to get much attention was the NetSpeak system, a
neural network by Sejnowski and Rosenberg [1987], whose performance was 46.0%
on unseen test data in Damper et al.’s evaluation. It is from this project that the manu-
ally annotated and aligned NetTalk corpus originates.

Bosch and Daelemans [1993] compared a connectionist model with an instance
based learning (IBL) method, a table lookup method (that used heuristics to also pro-

8.2. Previous Approaches to g2p 83

vide transcriptions for unseen words) and the rule-based system “Morpa-cum-Morphon”.
They found IBL and the table to outperform the neural network. The table performed
best and also returned significantly better results than the rule-based system.

In Daelemans and van den Bosch [1997] the table-approach was developed further
and stored as a search trie, called IG-tree (IG stands for Information Gain, see section
2). In this approach, a separate tree is built for each letter in the alphabet. Thereby,
the exact amount of context is added which is needed to completely disambiguate all
words from the training data. The branches of the tree represent the context, the leaves
contain the phonemes. For new input words, each of the word’s letters is looked up in
the trie and a trie branch is followed down to the leaves as far as possible. If the context
of a letter has been seen in training and a leaf can thus be reached, the corresponding
phoneme is chosen. If no leaf is reached (e.g. because a particular context did not
occur in the training data and is ambiguous), majority vote among the leaves is used.
The advantage of this approach is that the training data is stored efficiently and the
method will transcribe all words seen in training correctly (except homographs). But
a problem is that the choice of a transcription is not dependent on the transcription
of the preceding letters. Therefore, phonologically impossible sequences that are not
compatible with one another can occur.

The IG-tree differs from decision trees (e.g. ID3 or C4.5 (Quinlan [1993]) in that
it does not use pruning and in that the order of questions is not computed for the
generation of each branch but deterministically dependent on the letter sequence in
the word. While the IG-tree only asks for specific letters in specific context positions,
many implementations of decision trees use a wider range of questions.

Decision trees were one of the first data-based approaches to be applied to the
problem (refer to Lucassen and Mercer [1984]) and are widely used for grapheme-
to-phoneme conversion (e.g. Andersen and Dalsgaard [1995]; Kienappel and Kneser
[2001]; Black et al. [1998]; Suontausta and Häkkinen [2000]). A variant of Lucassen
and Mercer’s decision tree, the AddWordTree (AWT), is used in the current IBM TTS
system. The AddWordTree is a binary entropy-based decision tree with a context win-
dow of 5 letters to each side and 5 phonemes back.

Decision trees allow for a compact representation of the data and are relatively easy
and quick to use. When using decision trees, the g2p problem is viewed as a catego-
rization problem. Each letter is assigned to its phoneme-category. For assigning this
category, the decision tree asks questions about the letter under consideration and its
context (for an example decision tree, see figure 8.2). Good compactness of the model
is achieved by firstly using the information gain criterion to decide at each branch of
the tree (see section 2), which question to use and secondly defining a effective set of
questions.

The tree’s compactness, performance and ability to generalize also largely depend
on the questions it is allowed to ask. A very simple tree would only be able to ask for
letter identities. The entropy criterion is in such a simple tree only used to choose the
letter position to ask about. Only asking for exact identities leads to very large trees.
For example, ch is pronounced /CH2/ after consonants. If the decision tree can only
ask for single letters, it would have to ask the same question for every single consonant:
is there a ’r’ at position -1, is there a ’n’ at position -1,... Furthermore, the decision tree
can not generalize to letter sequences it did not see in training. Kienappel and Kneser

84 Chapter 8. Grapheme-to-Phoneme Conversion

h at pos. +1?
yes no

vowel at pos. -1?
yes no

k at +1?
yes no

high vowel at pos. -1?
yes no

/S%/ at phon. pos. -1?
yes no

/K/ ...

/CH2/ /CH1/ // /CH2/

Figure 8.1: Example binary decision tree branch for the letter c in position 0.

[2001] experimented with different questions and found that for German and English,
it is beneficial to ask questions about:

• letters within a certain context window

• questions about preceding phonemes

• grouping questions (sets of letters, e.g. consonants, front vowels, back vowels)

• “double” questions (i.e. whether two adjacent letters are identical)

The grouping questions can either be defined manually (as done in the AWT) or
automatically (cf. Kienappel and Kneser [2001]). Kienappel and Kneser reported that
including the more complex questions about groups of letters or phonemes and the
question about double consonants lead to a relative improvement of 8% with respect
to the decision tree that can only ask for single letters and phonemes.

Advantages of the decision tree are that it is quick to run and compact, because it
only asks the questions that are relevant according to the information gain criterion and
therefore ideally only stores the relevant parts of the context. However, as Bellegarda
[2003] pointed out, pruning and choosing the relevant questions by looking at what
patterns can be found in the data has a price: the effective set of questions ends up best
covering those phenomena which are most represented in the training data. Rarely
seen contexts tend to be overlooked, regardless of their degree of relevance to a given
situation. New words that comprise a number of irregular patterns that were rarely
seen in the training set will suffer from this limitation. This observation may explain
why the joint HMM model which I am using (see below) returns better results even
when a smaller context window is used.

The basic idea in analogy-based methods is to compose the pronunciation of an
unseen words from large substrings of words seen in training. The approach was
first implemented by Dedina and Nusbaum [1996], and was most recently applied by
Damper et al. [1999] in their Pronunciation by Analogy system. An attractive aspect
of the analogy-based methods is that they do not use a fixed context window size but
can match arbitrarily long sequences. During the training phase, a large lattice of the
words seen from training data is built up. Any new words can the be analysed by
searching for a matching path through this lattice. In most cases, there are many such

8.2. Previous Approaches to g2p 85

paths. A range of different strategies for heuristically choosing the best path have been
proposed through the years. Recently, Damper et al. [2002] used a combination of five
selection strategies to determine the best combination of sub-sequences and achieved
a significant improvement over using just one strategy. The original system did not
tempt to also assign syllable boundaries or stress. In Marchand and Damper [2005],
the authors enrich the graphemic representation of the words with syllabification in-
formation and achieved a significant improvement from 65% WER to 71% WER on
the NetTalk corpus. However, this improvement was only attained with “perfect” syl-
labification. Syllable boundaries from an automatic system (using essentially the same
mechanism, which they called Syllabification by Analogy (SbA)) did not lead to an
performance improvement as errors were propagated and the syllabification module
did not have access to any knowledge or data that the simple system would not have
had access to.

Another type of approaches for which very good results were reported are joint
n-gram models. In joint n-gram models, letters and phonemes are combined to one
single state, a “graphone”, similar to the combined syllable-stress states and letter-
syllable-boundary states used in the previous chapters. Such an approach was taken by
Bisani and Ney [2002] and Galescu and Allen [2001]. Both use an integrated letter-
phoneme alignment procedure (all of the other data-based approaches are dependent
on a preprocessing step that determines the alignment between letters and phonemes,
which is not a trivial task (see section 8.3). Galescu and Allen [2001] pre-derive letter-
phone chunks that consist of at most zero or one letters and zero or one phones (i.e. they
introduce null-letters and null-phonemes for the alignment). Bisani and Ney [2002] on
the other hand experimented with different maximal letter and phoneme sequences for
the joint states in function of the context window size. Best results (PER=0.52%) were
found for a context window size of 3 and using 〈(l : |1..2|) : (g : |1..2|)〉1 as length con-
straints for the joint states. On the other hand, a design with 〈(l : |1..6|) : (g : |1..6|)〉-
chunks yielded an error rate of 2.3%. When using a smaller context window size, they
found larger chunks to work better than smaller chunks: for k=1, a 〈(l : |1..6|) : (g : |1..6|)〉-
chunk achieved a phoneme error rate of 2.79%, while the 〈(l : |1..2|) : (g : |1..2|)〉 lead
to 14.08% PER. A plausible explication for these results is that large chunks lead to
heavy data-sparsity problems, and that small chunks cannot capture enough of the con-
textual information if the context window size is also small.

Chen [2003] systematically compares conditional n-gram models (decision trees)
and joint n-gram models (similar to the ones introduced by Bisani and Ney [2002] and
Galescu and Allen [2001]). Chen iteratively optimizes the letter-phoneme alignment
during training for the g2p conversion task, uses small chunks (〈(l : |0..1|) : (g : |0..1|)〉
pairs only) and applies a smoothing method based on Gaussian priors instead of ML es-
timates. This smoothing method allows him to profitably run the algorithm on 7-grams
and larger, while results already degrade for 5-grams when other smoothing meth-
ods (Kneser-Ney (used by myself, see below), absolute discounting (used by Bisani
and Ney) or Witten-Bell Smoothing (used by Galescu and Allen)) are applied. Chen
[2003] reports evaluation results superior to Marchand’s PbA approach (evaluating on
the NetTalk data), and outperforms both Bisani and Ney [2002] and Galescu and Allen
[2001].

1This notation stands for a graphone made of one or two letters and one or two graphemes.

86 Chapter 8. Grapheme-to-Phoneme Conversion

An approach using joint n-grams was also implemented by Caseiro et al. [2002]
for Portuguese. But he did not obtain results superior to the rule-base system used.

Models that do not use joint letter-phoneme states and therefore cannot make the
decision of the actual phoneme dependent on the preceding letters but only on the ac-
tual letter and the preceding phonemes, did not achieve very good results. Examples of
such approaches using Hidden Markov Models are Rentzepopoulos and Kokkinakis
[1991](who applied the HMM to the related task of phoneme-to-grapheme conver-
sion), Taylor [2005] and Minker [1996].

8.3 Alignment

In the current IBM system, data alignment is the most laborious step in data-based
grapheme-to-phoneme conversion. The alignment process is done semi-automatically
where the algorithm is given a set of letters, phonemes and mappings from single
letters to phonemes or phoneme-sequences. Then, all mappings are calculated, and the
ambiguous cases are disambiguated manually, a process that easily takes one or two
weeks of full-time work for every new data set. (An example for a sequence whose
alignment has to be disambiguated is tts to /T S/ (e.g. in the word Betts (Engl: genitive
of bed)). Each of the ts can either map onto /T/ or the empty phoneme-sequence //.)

8.3.1 Alignment with Morphological Boundaries

For the German data, morphological boundaries initially mapped onto syllable bound-
aries. This meant that every time some morphological annotation was changed (e.g.
due to using another morphological preprocessing algorithm), hundreds of disam-
biguation rules had to be adapted manually, before the effect of the change on g2p
conversion performance could be evaluated. This made the process very ineffective
and constituted a real bottle-neck. (Coming back to the above example, let us assume
that the morphological process annotated a morphological boundary tt2s. This has
now again be disambiguated to /T S/.)

Although a mapping from morphological boundaries onto syllable boundaries may
be intuitive, it is not necessary for the decision tree to learn that a morphological bound-
ary should map onto a syllable boundary. As it does ask questions about the context,
it may as well learn that whenever a morphological boundary was seen at position
-1, it should use the phone-sequence version that contains a syllable boundary (e.g.
/. ? A/ instead of /A/).

When the alignment algorithm is run on new morphologically annotated data, it
generates all ambiguous sequences that contain the morphological boundary. The de-
cisions on how to align the word does not change through the morphological anno-
tation. If we chose to make the first t map onto /T/ and the second onto silence for
tts-example, we want to make the same decision for the morphologically annotated se-
quence tt3s. I implemented a simple script that automatically annotates these cases.
For each newly generated ambiguity, it looks up the disambiguation of the same string
without the morphological annotation, copies the alignment to the new string and in-
serts a null-mapping for the morphological boundary.

8.4. A HMM for g2p conversion 87

And indeed, using the automatic script for making all syllable boundaries map onto
an empty string did not only perform as good as the old version but even a bit better –
probably because manual disambiguation always also introduces inconsistencies that
do not occur when the automatic process is applied. New versions for morphological
annotation can now be tested without manual effort.

This script does however not solve the problem of manually aligning data for cor-
pora in other languages.

8.3.2 Fully Automatic Alignment

The most widely used approach to do letter to phoneme alignment automatically is
to use the Expectation Maximization (EM) Algorithm. The EM-algorithm iteratively
maximizes the likelihood of the letter-phoneme alignment until convergence. For a
description of the alignment problem and of how the EM algorithm works, refer to
Damper et al. [2004].

Some of the English and French data bases I evaluated the g2p-HMM on were
aligned using an automatic alignment algorithm and still did return quite good results
(see table 8.5 below).

I can however not comment on the exact performance differences, because cur-
rently, no corpus is available to me for which I have access to both manual and auto-
matic alignment. But I hope to supplement this information later: Yannick Marchand
very kindly sent me a small excerpt of automatically aligned CELEX for German, and
promised to send the full aligned CELEX in the beginning of June (which is unfortu-
nately after the deadline of this thesis, so that I cannot report results on comparison
between the manually aligned versions and state-of-the-art automatic alignment in this
thesis).

8.4 A HMM for g2p conversion

The strength of an HMM model defined in analogy to the stress and syllabification
models is that it captures the context well, that is, it has a good memory for the ex-
amples it saw (in function of its context window width) and does have the power to
generalize to new data by looking at sub-sequences of the data. Furthermore, using the
Viterbi algorithm, it guaranties to find the optimal state sequence (i.e. the most proba-
ble one according to the estimation methods used) if no pruning is used. Therefore, it
seems only sensible to try and adapt the model to grapheme-to-phoneme conversion,
which can also be regarded as a tagging task: tagging letters with phonemes.

After I implemented this model, I actually found that a very similar approach had
already been taken by Chen [2003] and Bisani and Ney [2002] and Galescu and Allen
[2001] (see section 8.2).

8.4.1 Definition

The observed states in the model are the letters, the hidden states are letter-phoneme
pairs. This is why I prefer to call this method “letter-to-phoneme conversion” instead
of “grapheme-to-phoneme conversion” – I work on letters and not on graphemes. The

88 Chapter 8. Grapheme-to-Phoneme Conversion

phoneme sequence can therefore contain zero to n phonemes, where n is typically ≤ 3.
A typical hidden state (for the model that does g2p, syllabification and stress assign-
ment in one step) looks like this: a-.1 ? A:. (The underscores mark the boundaries
between two phonemes.)

But where do these states come from? The letter and phoneme sequences from
the training data need to be aligned in a separate step first, as I did not implement
an Expectation-Maximization step to align letter to phoneme sequences. The training
input format looks as follows:

...
a-.1_?_A: a- s-S g-._G e-EI i- e-._E\# r-R\# s-S
a-.1_?_A: b-._B a-A k-._K u-U s-S
a-._?_A b-._B a-AN n- d-.1_D o-ON n-
...

The HMM returns the most likely phoneme sequence p̂n
1 = p̂1, p̂2, p̂3, ..., p̂n, for a

given letter sequence ln
1 . Thereby, the markov assumption is applied which states that

a given letter - phoneme-sequence pair 〈p; l〉 only depends on the preceding k states
(which are also letter - phoneme-sequence pairs).

p̂n
1 = argmax

pn
1

n+1

∏
i=1

P(〈p; l〉i | 〈p; l〉i−1
i−k)

To each word, dummy states ‘#’ are appended at both ends to indicate the word
boundary and ensure that all conditional probabilities are well-defined. When testing
HMM with several different context window sizes from k=3 to k=5, I found that k=4
actually worked best.

8.4.2 Smoothing and Backoff

Several smoothing techniques, which I also tried on the other Hidden Markov Models
were implemented. For a detailed discussion of how these techniques work and what
effects they have on the performance of the algorithm, see section 7.8.4.2.

• Schmid Smoothing
The HMM outperforms the decision tree when using Schmid backoff, but Kneser-
Ney Smoothing proved again to work better.

• Interpolated Modified Kneser-Ney Smoothing
I tried two different versions: in the first one the unigram probability was es-
timated using a uniform distribution: P(〈l, p〉) = 1

|〈l,p〉:c(〈l,p〉)>0| . The second
version was to estimate the unigram probability from its distribution seen in the
training data: P(〈l, p〉) = c(〈l,p〉)

∑〈l,p〉 c(〈l,p〉) . The difference in performance is marginal
(22.0% vs. 21.99%) and not significant. I therefore use the uniform distribu-
tion, because of its simplicity. In Chen [2003], the authors also use a uniform
distribution.

8.4. A HMM for g2p conversion 89

• Variant of Interpolated Modified Kneser-Ney Smoothing
Best results were obtained with a variant of Interpolated Modified Kneser-Ney
smoothing. In this variant, only the next smaller n-gram model was taken into
account for events that had been seen.

A variant of Modified Kneser-Ney Smoothing:
pvKN(wi|wi−1

i−n+1) =

max{c(wi
i−n+1)−D,0}

∑wi c(wi
i−n+1)

+ D
∑wi c(wi

i−n+1)
N1+(wi−1

i−n+1•)
N1+(•wi

i−n+2)

N1+(•wi
i−n+2•)

i f c(wi
i−n+1) > 0

D
∑wi c(wi

i−n+1)
N1+(wi−1

i−n+1•)pvKN(wi−1|wi−1
i−n+2) i f c(wi

i−n+1) = 0

This version differs from true Modified Kneser-Ney Smoothing in two ways: firstly,

it does just one interpolation step for c(wi−n+1 > 0). The term
N1+(•wi

i−n+2)

N1+(•wi
i−n+2•)

is it-

self smoothed with lower-order n-grams in the original version, but not in my vari-
ant. Secondly, the probability when backing off to lower-order n-grams (i.e. when
c(wi

i−n+1) = 0) is estimated from frequencies instead of counts (as done in Absolute
Discounting). I therefore also implemented Absolute Discounting, to see whether
it would work better than my version of Modified Kneser-Ney Smoothing, but that
was not the case. The difference between using my variant of Modified Kneser-Ney
Smoothing or original Modified Kneser-Ney Smoothing makes up 1%-2% in WER
(which corresponds to up to 15% relative improvement).

Table 8.1 shows the word error rates for using Schmid smoothing and my variant
of Modified Kneser-Ney Smoothing respectively. This version outperforms Schmid
smoothing in particular on the phoneme-error rates when stress is not counted, and
on input that is not morphologically annotated. Significant differences (p < 0.00001)
with respect to Schmid smoothing are marked with an asterisk.

stress counted phonemes only
Schmid Kneser-Ney Schmid Kneser-Ney

nomorph 23.4% 21.5%* 9.2% 7.3%*
CELEX 25.0% 25.2% 7.3% 6.2%*
ETI 27.0% 26.5% 8.3% 7.2%*

Table 8.1: Results for g2p with HMM - Schmid Backoff vs. my variant of Modified
Kneser-Ney Smoothing.

One of the problems encountered in the model for stress assignment, namely how
to cope with previously unseen states, does not occur in this implementation of the
letter-to-phoneme conversion HMM. The model looks up all mappings from letters
to phonemes that were seen in the training data and only tries to tag a letter with
phonemes that it was already aligned with in the training data. This may in principle
prevent the algorithm from aligning a letter with the phoneme-sequence that would
be required to correctly transcribe the word, but if it was not ever seen in the training
data, the algorithm should assign it a very low probability any way. This restriction
of only using already seen letter–phoneme-sequence pairs allows me to have a closed
vocabulary and therefore a real probability distribution (which is not given otherwise,
at it is not known how much of the probability mass should be given to unseen entities).

90 Chapter 8. Grapheme-to-Phoneme Conversion

8.4.3 Pruning

The 30 letters of the German alphabet combine with the 48 single phonemes, the syl-
lable tag and the stress sign to 363 different pairs of letters and phoneme-sequences.
This means that the average number of tags for an observed letter is more than 12.
This leads to a huge lattice (the full lattice for a 10 letter word would contain 1012 se-
quences). Even when using the Viterbi algorithm, the processing times for calculating
all relevant sequences and comparing them is about 8 minutes per word on a 1.50GHz
machine, which is of course totally unacceptable. In fact, we need something that runs
at least in real time.

This processing time problem is well-known from typical HMM applications such
as speech recognition. It is very common to use pruning in these cases. The idea in
pruning is that sequences with low probabilities are not calculated to the end, as it is
very improbable that they will come out to be the finally best ones. That is we try to cut
off those sequences which we assume not to contain the optimal sequence. A widely
known pruning strategy is beam search pruning (proposed by Lowerre and Reddy [1980]).
In beam search pruning, only those sequences are considered, which have a probability
“similar” to the current best sequence. A threshold is needed to define what “similar”
means. Using this pruning strategy, processing time depends on the number of se-
quences that are similarly probable as the best sequence. Therefore, search time is not
necessarily proportional to the length of the word but may depend on the actual search
space and data configuration. Alternatively it is also possible to very simply always
consider a certain number of sequences that are followed, independent of how similar
they are to the actually best sequence. I tried various thresholds: 5, 10, 15, 25, 35.
While the very low thresholds actually do prune of some desired sequences, the sizes
above 15 returned reasonable results that did not significantly differ from searching
the whole space. Choosing a threshold of 35 still allows to analyse about 80 words per
second on a 1.5GHz machine, while a more than 120 word per minute can be processed
with a threshold of 15 and almost 400 with a threshold of 5 considered sequences. For
the HMM without thresholds on raw letters, the performance degrades from 22.0% to
22.9% when using a threshold of 5 instead of 35 (see figure 8.2).

0 3 5 10 15 20 35 40
22

23

24

25

26

27
WER in function of Pruning Threshold

Pruning Threshold

W
or

d
E

rr
or

 R
at

e
in

 %

Figure 8.2: The Effect of Pruning.

Furthermore, the current implementation is in Perl, so that I am confident that a
reimplementation in C would lead to better time performance.

8.4. A HMM for g2p conversion 91

8.4.4 Multiple Solutions

The Viterbi algorithm guaranties to return an overall best state sequence (at least if it
is not pruned), by maximizing the overall probability P(〈p, l〉i | 〈p, l〉i−1

i−n+1). In some
cases, we would like to know the two best pronunciations of a word, e.g. for ho-
mographs. The Viterbi algorithm has to be modified in order to do this, as it always
only remembers the single best sequence leading to a certain state. The two glob-
ally best sequences might share the last node – in which case the second best analysis
would be lost. Therefore, it is necessary to modify the Viterbi algorithm so that it al-
ways remembers the two best states. A formal derivation and proof can be found in
Rentzepopoulos and Kokkinakis [1991]. The authors considered the mirror problem:
they wanted the algorithm to return two alternative spellings for homophones on their
phoneme-to-grapheme conversion task. Unfortunately, I did not have time to imple-
ment this modification to the Viterbi algorithm and therefore cannot comment on the
quality of the results.

8.4.5 Integration of Constraints

Integrating constraints into the syllabification and stress assignment HMMs leads to
hughe performance gains. Therefore, it is an obvious idea to also integrate these con-
straints into the grapheme-to-phoneme conversion model. The constraints are just the
same, as in the other models:

• allow exactly one main stress per word
Once a stressed syllable has been generated, no more phoneme-sequences that
also have a stress are allowed. The globally best sequence is only chosen among
those sequences that have one stress.

• allow exactly one nucleus per syllable
No syllable boundary can be generated, if no vowel has been seen since the last
syllable boundary. Also, all sequences that generate a second vowel without
inserting a syllable boundary in-between are eliminated. The final sequence is
only accepted, if the last syllable also contains a vowel.

Including the stress and syllabification constraints leads to a highly significant im-
provement: the word error rate for not morphologically annotated words is almost
reduced by 50% (from 26.6% WER to 14.6% WER) with respect to the decision tree
results for the same input.

The integration of the constraints into the g2p component, to which the syllabifi-
cation and stress module owe a large part of their tagging success, is also superior to
a pipeline-architecture. When the constraints are used, the integrated approach of con-
verting graphemes to phonemes, setting syllable boundaries and assigning word stress
in one single module achieves a lower word error rate than tackling the three problems
in separate steps.

For a model that does not contain the constraints, the separate syllabification and
stressing steps do contribute positively (see results in table 8.2 below).

92 Chapter 8. Grapheme-to-Phoneme Conversion

Preprocessing Postprocessing one-step + constr. one-step no constr.
no morph syllables only: phonemes only: phonemes only: phonemes only:

96.9% w corr 94.0% w corr 92.2% w corr 93.6% w corr
syll + stress: phon + syll: phon + syll: phon + syll:
86.7% w corr 92.8% w corr 91.5% w corr 92.4% w corr
syll+str+phon: phon+syll+str: phon+syll+str: phon+syll+str:
83.4% w corr 84.8% w corr 86.3% w corr 78.5% w corr

CELEX syllables only: phonemes only: phonemes only: phonemes only:
98.1% w corr 95.0% w corr 93.5% w corr 94.7% w corr
syll + stress: phon + syll: phon + syll: phon + syll:
88.2% w corr 94.9% w corr 92.8% w corr 93.4% w corr
syll+str+phon: phon+syll+str: phon+syll+str: phon+syll+str:
83.9% w corr 85.6% w corr 86.7% w corr 74.7% w corr

Table 8.2: Comparing the effects of modularization, and preprocessing and post-
processing of syllabification and stress.

8.4.6 Results

The German CELEX corpus includes information about stress and syllabification.
Therefore, we want to also learn the stress assignment and syllabification from this
data. I compared several possibilities for doing so. The experiment conditions were

1. WER
word error rate using the variant of Modified Kneser-Ney-smoothed HMM with-
out any constraints

2. WER-sc
WER condition augmented by the constraint for stress assignment (exactly one
main stress per word)

3. WER-ssc
WER-sc condition augmented by the constraint for syllables: each syllable must
contain exactly one vowel
Due to suboptimal transcription of the suffix -tion to /T I: O: N/ in CELEX,
this constraint makes the suffix get split up into /T I: . O: N/ or
/T I: .1 O: N/.

4. WER-pss
Perfect syllable boundaries and stress positions are projected onto the letters, so
that the algorithm will not make any mistakes on these, and in addition has a
richer input, which should allow it to more successfully decide on syllable-final
consonant devoicing, glottal stops etc.

5. WER-S1
the same condition as WER, but errors on stress assignment are not counted

8.4. A HMM for g2p conversion 93

6. WER-S2
the model does not try to learn syllable boundaries or stress patterns, i.e. it does
not see them in training either.

WER WER-sc WER-ssc WER-pss WER-S1 WER-S2
nomorph HMM 21.5% 14.9% 13.7% 5.7% 7.5% 7.3%
nomorph AWT 26.6% 7.05% 15.0%
ETI HMM 26.5% 14.9% 13.6% 7.5% 7.2%
ETI AWT 21.1% 11.3%
CELEX HMM 25.2% 14.7% 13.2% 5.6% 6.5% 6.2%
CELEX AWT 21.7% 7.0%

Table 8.3: Results for g2p with HMM and Schmid-Smoothing vs. AWT, alternative mor-
phological annotations. p is set to 4 in the HMM, pruning threshold t=15.

In a last experiment setting, I wondered about the optimal place of the stress mark
in a setting where states are defined on graphones as units - are the syllable boundaries
really a good place to mark stress, or wouldn’t it be better to mark stress with the
syllable nuclei? The syllable onset is the least important part of a syllable to decide
stress, the nucleus and coda play a more important role to determine syllable weight.
Each stress marker was mapped onto the following vowel. But disappointingly, this
change did not lead to a performance improvement.

Table 8.4 displays performances for different complexities of the model. The word
error rates shown were achieved with a HMM that incorporates the stress and syllab-
ification constraints, and was corrected for the incorrect or at least questionable tran-
scriptions of /T I: O: N/ for the suffix -tion, which should better be /T J O: N/.
Without this automatic correction, word error rates are about 0.5–1 percentage points
higher. The size of the training set is about 13 MB.

k=3 k=4 k=5
nomorph HMM 14.4% (2.2 MB) 13.7% (5.1 MB) 16.1% (9.3 MB)
ETI HMM 15.1% (1.8 MB) 13.6% (3.9 MB) 16.3% (7.1 MB)
CELEX-Morph HMM 14.6% (1.8 MB) 13.2% (4.1 MB) 14.9% (7.5 MB)

Table 8.4: The effect of different context window sizes for the HMM with constraints, the
size of the training data files (uncompressed text files) are shown in brackets.

An important result that can be read from this table is furthermore, that the HMM
captures morphological information much better than the decision tree because it cap-
tures the structure more adequately, which seems to be significant when it comes to
translating the effects of morphological boundaries automatically. That is, the HMM
has a better memory for exact sequences and recognizes a morpheme better. To achieve
any improvement at all, it is necessary to have a near to perfect morphology - even the
ETI morphology, which lead to a significant improvement of performance with the
decision tree, only leads to a minor improvement that does not reach statistical signifi-
cance.

94 Chapter 8. Grapheme-to-Phoneme Conversion

One typical type of errors that occurs quite frequently is inaccurate vowel length
before doubled consonants, although there exists a strict rule in German, that a vowel
which is followed by a doubled consonant (in the same morpheme) is always short.
Both the decision tree and the HMM do not capture this information because they lack
concept for abstracting to the level “two identical consonants”. The model does not
have the power to generalize from seen sequences of short vowels followed by two
identical consonants (or ck) that any vowel followed by any two identical consonants
should be short – to achieve this it would have to see in the training data any sequence
of vowels followed by double consonants, as it does not have a concept of that short
vowels belong to a class of sounds. To capture the overall rule for double consonants,
these would have to be stored as graphemes, and also would need to be grouped to-
gether in a class.

8.5 Performance on other languages

The HMM model is very straightforward to apply to other languages. An aligned
corpus with words and their pronunciations is needed, but no further work or adaptation
is required.

Performances of the algorithm on the English NetTalk corpus and Teacher’s Word
Book were evaluated using 10-fold cross-validation because of the small lexicon size.
All other corpora were evaluated on a simple testset that was generated from taking
from the full set every tenth word. The training corpus contained the remaining 90% of
the data. In their 2005 paper, Marchand and Damper reported that a significant perfor-
mance gain could be achieved when the graphemic input was annotated with “perfect”
syllable boundaries. I tried the same for the HMM and obtained a corresponding im-
provement rate. The NetTalk set contains manually generated alignment information
for the whole set of 20,008 words. On the Pascal Pronalsyn webpage2, Damper also
provided the Teacher’s Word Book data set containing 16,280 words. The beep corpus
and the French data were aligned automatically with the EM-algorithm presented in
Damper et al. [2004].

corpus HMM-Schm HMM-KN PbA Chen AWT
E - Nettalk (part. set) 65.5% 67.9%
E - Nettalk 59.5% 64.6% 65.4%
E - Nettalk (+syll) 65% 70.6% 71.7%
E - Teacher’s WB 71.5% 71.8%
E - beep 84.5% 85.7% 86.7%
E - CELEX 76.3% 68.3%
French - Brulex 84.9% 88.4%

Table 8.5: Results for g2p with HMM compared to latest PbA results.

2http://www.pascal-network.org/Challenges/PRONALSYL/Datasets/

8.6. Discussion 95

8.6 Discussion

The HMM very significantly outperforms the decision tree, in particular when phono-
tactic constraints concerning the syllable structure and stress are incorporated into the
module. For input data that is not morphologically annotated, the Hidden Markov
Model reduces the word error rate by almost 50% (from 26.6% to 13.7%).

When morphological information from the best-performing automatic morphology
(ETI) is used to annotate the input, only very slight improvements can be reached with
the Hidden Markov Model, as it captures the exact context very well any way, but still
leading to an improvement of 36% with respect to the AddWordTree (from 21.5% to
13.6%). These results indicate that a morphological component is not necessary even
for a language that is very sensitive to the effects of morphological boundaries, such
as German, if a Hidden Markov Model is used instead of a decision tree.

I strongly recommend the reimplementation (for efficiency reasons, as the current
demonstration module implemented in the scope of this work is in Perl) of the Hidden
Markov Model (or a similar model that has comparable effects, such as PbA) for use
in the IBM TTS system.

Chapter 9

Summary and Future Work

9.1 Conclusion

The present thesis analysed grapheme-to-phoneme conversion for a German TTS sys-
tem. The problems of morphological preprocessing, syllabification, stress assignment
and letter-to-phoneme conversion were considered. An error reduction by 50% with
respect to the AddWord Tree module were reached by using a Hidden Markov Model
that integrates phonological constraints. The HMM was also shown to generalize to
other languages and compares well to other state-of-the art approaches. I strongly
recommend to substitute the AddWordTree by a joint n-gram model in the IBM TTS
system.

9.1.1 Morphology for German TTS

Morphological information is important for German grapheme-to-phoneme conversion
because it determines the pronunciation of certain letters, has a strong influence on syl-
labification and is crucial for stress assignment in morphologically complex words. It
is however not necessary to represent morphological boundaries explicitly in all ar-
chitectures. If a model which captures word structure well and has a good memory
for letter sequences is used in grapheme-to-phoneme conversion, the relevant informa-
tion can to a large proportion be captured implicitly. A morphological preprocessing
component then only leads to very slight improvements that are perhaps not worth the
effort of integrating a separate morphological component.

Good morphological analysers are hard to acquire. Best results on the letter-to-
phoneme conversion task were obtained with the rule-base ETI morphology. Using the
computational morphology SMOR did not lead to an improvement because the lexicon
IMSLex contains complex lexicon entries, so that many morphological boundaries are
not found. To alleviate this problem, reliable morphological boundaries need to be in-
serted into IMSLex. The disambiguation problem can be solved by using heuristics, or
training a weighted FST on disambiguated morphological analyses. Finally, a default
morpheme should be introduced to cope with out-of-vocabulary words.

State-of-the-art unsupervised approaches, although in principle attractive because
they require no development cost and only raw text as a resource, do not yet reach
sufficient quality to improve grapheme-to-phoneme conversion.

97

98 Chapter 9. Summary and Future Work

9.1.2 Syllabification and Stress

The integration of phonological constraints leads to very significant performance gains
for German. The constraints used (requiring exactly one nucleus per syllable and one
primary stress per word) are very general and, to my knowledge, language-independent.

Stress is a hard problem in German, as it depends on morphology as well as on
syllable weight and position. The data used for data-based learning of word stress is
not optimal, as the source used contains many stress errors. A rule-based approach
did not perform well on the data set, as it requires perfect morphological information,
which is typically not available. Furthermore, the rule-based approach cannot cope
with foreign words and even among German words there is quite a large proportion of
words which is not covered by rules.

The data-based module for word stress assignment lead to a significant improve-
ment in performance. But results are still far from optimal, which can be understood
when considering the fact that the stress module does not have access to the infor-
mation it needs. In fact, the HMM models the problem rather poorly, as it does not
generalize over syllables and has no representation for the higher level stress assign-
ment processes.

The choice of an appropriate smoothing method matters a lot, in particular if we
face hard data sparsity problems. A variant of Modified Kneser-Ney Smoothing was
found to perform best.

9.1.3 Modularity

Best results were obtained from the Hidden Markov Model component that does syl-
labification, stress assignment and grapheme-to-phoneme conversion all in one step
and integrates phonological constraints for syllabification and word stress. We can
conclude from this finding that an integrated approach is superior to a pipeline archi-
tecture for strongly inter-dependent tasks.

Modularity is an advantage if the individual components are more specialized to
their task than the component that does several tasks in one step, and if the exact scope
of knowledge needed is used. The syllabification and stress modules lead to perfor-
mance improvements when used in a pipeline with the AddWordTree. In a modular
system, one component can furthermore be substituted by another one – for example, if
a better way of doing stress assignment in German was found, this could be integrated
much more easily. If the modular architecture is chosen, best results are obtained when
g2p conversion is done before syllabification and stress assignment (refer to table 9.1).

9.2 Suggestions for Future Work

In future work, I suggest to use the EM-algorithm for letter to phoneme alignment.
Alignment is needed as a preprocessing step for both the decision tree and the HMM.
Automating this step would allow to more easily adapt the letter-to-phoneme conver-
sion module to other languages.

All of the algorithms evaluated in this thesis were implemented in Perl – for serious
use, these should be reimplemented in e.g. C, to improve time efficiency.

9.2. Suggestions for Future Work 99

modular one-step
Preproc. Postproc. constr. no constr.

no morph 83.4% 84.8% 86.3% 78.5%
AWT no morph 78.9% 73.4%
ETI morph 86.4%
AWT ETI morph 78.2%
CELEX morph 83.9% 85.6% 86.7% 74.7%
AWT CELEX morph 84.3% 84.1% 78.4%

Table 9.1: Comparing the effects of preprocessing and postprocessing vs. an integral
architecture.

Although morphological information did not lead to any improvements in g2p con-
version, I think that the approach taken by Keshava and Pitler is very promising. Sub-
stituting the incorrect assumption that a word whose affix has been pealed off is again
a word by an account of what a word stem is can be expected to lead to significant
performance gains.

Finally, it would be good to find a better way for coding morphological information.
Currently, low quality morphological information has a negative effect on grapheme-
to-phoneme conversion quality, because it is directly encoded into the letter string
and therefore causes the algorithm to have access to a smaller letter context within its
context window.

Bibliography

O. Andersen and P. Dalsgaard. Multi-lingual testing of a self-learning approach to
phonemic transcription of orthography. In EUROSPEECH95, pages 1117–1120,
1995.

Kenneth R. Beesley. Finite-state morphological analysis and generation of Arabic at
Xerox research: Status and plans in 2001.

J.R. Bellegarda. Unsupervised, language-independent grapheme-to-phoneme conver-
sion by latent analogy. In Spoken Language Group, Apple Comput. Inc., pages 244–
247, 2003.

Delphine Bernhard. Unsupervised morphological segmentation based on segment pre-
dictability and word segments alignment. In Proceedings of 2nd Pascal Challenges
Workshop, pages 19–24, Venice, Italy, 2006.

M. Bisani and H. Ney. Investigations on joint multigram models for grapheme-to-
phoneme conversion. In Proceedings of the 7th International Conference on Spoken
Language Processing, pages 105–108, 2002.

Alan W Black, Kevin Lenzo, and Vincent Pagel. Issues in building general letter to
sound rules. In Third ESCA on Speech Synthesis, 1998.

Stefan Bordag. Unsupervised knowledge-free morpheme boundary detection. In Pro-
ceedings of RANLP 05, 2005.

Stefan Bordag. Two-step approach to unsupervised morpheme segmentation. In Pro-
ceedings of 2nd Pascal Challenges Workshop, pages 25–29, Venice, Italy, 2006.

A. van den Bosch and W. Daelemans. Data oriented methods for grapheme-to-
phoneme conversion. In Proceedings of European Chapter of ACL, pages 45–53,
Utrecht, 1993.

G. Bouma. A finite-state and data-oriented method for grapheme to phoneme conver-
sion. In Proceedings of the first conference of the North-American Chapter of the
Association for Computational Linguistics, pages 303–310, Seattle, 2000.

K.-U. Carstensen, C. Ebert, C. Endriss, S. Jekat, R. Klabunde, and H. Langer. Com-
puterlinguistik und Sprachtechnologie. Spektrum Akademischer Verlag, 2001.

101

102 Bibliography

D. Caseiro, I. Trancoso, L. Oliveira, and C. Viana. Grapheme-to-phone using finite-
state transducers. In Proceedings of the IEEE 2002 Workshop on Speech Synthesis,
Santa Monica, California USA, 2002.

Center for Lexical Information. Max-Planck-Institut for Psycholinguistics, Nijmegen.
CELEX German Linguistic User Guide, 1995.

Stanley F. Chen. Conditional and joint models for grapheme-to-phoneme conversion.
In Eurospeech, 2003.

Mathias Creutz and Krista Lagus. Induction of a simple morphology for highly-
inflecting languages. In Proceedings of the 7th Meeting of the ACL Special Interest
Group in Computational Phonology (SIGPHON), pages 43–51, 2004.

Mathias Creutz and Krista Lagus. Unsupervised morpheme segmentation and mor-
phology induction from text corpora using morfessor 1.0. In Publications in Com-
puter and Information Science, Report A81, Helsinki University of Technology,
2005.

Mathias Creutz and Krista Lagus. Unsupervised models for morpheme segmentation
and morphology learning. In ACM Transaction on Speech and Language Process-
ing, 2006.

Mathias Creutz. Unsupervised segmentation of words using prior distributions of
morph length and frequency. In Proceedings of ACL-03, the 41st Annual Meeting of
the Association of Computational Linguistics, pages 280–287, 2003.

W. Daelemans and A. van den Bosch. Generalization performance of backpropagation
learning on a syllabification task. In Proceedings of the 3rd Twente Workshop on
Language Technology. Enschede, pages 27–37, 1992.

Walter M. P. Daelemans and Antal P. J. van den Bosch. Language-independent data-
oriented grapheme-to-phoneme conversion. In Jan P. H. van Santen, Richard W.
Sproat, Joseph P. Olive, and Julia Hirschberg, editors, Progress in Speech Synthesis,
pages 77–89. Springer, New York, 1997.

Robert I. Damper, Yannick Marchand, M.J.Adamson, and K. Gustafson. Evaluating
the pronunciation component of text-to-speech systems for English: A performance
comparison of different approaches. In Computer Speech and Language, volume 13,
pages 155–176, 1999.

Robert I. Damper, Craig Z. Stanbridge, and Yannick Marchand. A pronunciation-by-
analogy module for the festival text-to-speech synthesiser. In Proceedings of 4th
ISCA Workshop on Speech Synthesis, pages 97–102, Pitlochry, Scotland, 2002.

Robert I. Damper, Yannick Marchand, John-David Marseters, and Alex Bazin. Align-
ing letters and phonemes for speech synthesis. In Fifth ISCA ITRW on Speech Syn-
thesis, 2004.

M. Dedina and H. Nusbaum. Pronounce: a program for pronunciation by analogy. In
Computer Speech and Language 5, pages 55–64, 1996.

Bibliography 103

Christopher Dege. Integration prosodischer Information in die Phonetisierung mit
Entscheidungsbäumen. Diplomarbeit, Universität des Saarlandes, 2003.

H. Déjean. Morphemes as necessary concepts for structures: Discovery from untagged
corpora. In Workshop on paradigms and Grounding in Natural Language Learning,
pages 295–299, Adelaide, Australia, 1998.

H. Elovitz, R. Johnson, A. McHugh, and J. Shore. Letter-to-sound rules for automatic
translation of English text to phonetics. In Acoustics, Speech, and Signal Processing,
1976.

Alexander Fraser and Daniel Marcu. Measuring word alignment quality for statistical
machine translation. In Technical Report ISI-TR-616, ISI/University of Southern
California, 2006.

Lucian Galescu and James Allen. Bi-directional conversion between graphemes and
phonemes using a joint n-gram model. In Proceedings of the 4th ISCA Tutorial and
Research Workshop on Speech Synthesis, 2001.

John Goldsmith. Unsupervised learning of the morphology of a natural language.
Computational Linguistics, 27(2):153–198, 2001.

Francois Guérillon. French ETI phonemes with ADDWORD. In IBM CONFIDEN-
TIAL, June 2002.

Margaret A. Hafer and Stephen F. Weiss. Word segmentation by letter successor vari-
eties. In Information Storage and Retrieval 10, pages 371–385, 1974.

Zellig Harris. From phoneme to morpheme. In Language 31, pages 190–222, 1955.

Christian Jacquemin. Guessing morphology from terms and corpora. In Research and
Development in Information Retrieval, pages 156–165, 1997.

Stefanie Jannedy and Bernd Möbius. Name pronunciation in German text-to-speech
synthesis. In 5th Conference on Applied Natural Language Processing, ACL, pages
49–56, Washington, DC, 1997.

Michael Jessen. Word Prosodic Systems in the Languages of Europe. Mouton de
Gruyter: Berlin, 1998.

Lauri Karttunen. Applications of finite-state transducers in natural language process-
ing. Lecture Notes in Computer Science, 2088:34–46, 2001.

Samarth Keshava and Emily Pitler. A simpler, intuitive approach to morpheme in-
duction. In Proceedings of 2nd Pascal Challenges Workshop, pages 31–35, Venice,
Italy, 2006.

Estate Khmaladze. The statistical analysis of large number of rare events. In Technical
Report MS-R8804, Dept. of Mathematical Statistics, 1987.

Anne K. Kienappel and Reinhard Kneser. Designing very compact decision trees for
grapheme-to-phoneme transcription. In Eurospeech, Scandinavia, 2001.

104 Bibliography

George A. Kiraz and Bernd Möbius. Multilingual syllabification using weighted finite-
state transducers. In Proceedings of the Third International Workshop on Speech
Synthesis, pages 71–76, Jenolan Caves, Australia, 1998.

B. T. Lowerre and R. Reddy. The harpy speech understanding system. In Trends in
Speech Recognition, Prentice- Hall, Englewood Cliffs, NJ, pages 340–360, 1980.

J. Lucassen and R. Mercer. An information theoretic approach to the automatic de-
termination of phonemic baseforms. In Acoustics, Speech, and Signal Processing,
IEEE International Conference on ICASSP 9, pages 304– 307, 1984.

Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Lan-
guage Processing. The MIT Press, 1999.

Yannick Marchand and Robert I. Damper. Can syllabification improve pronunciation
by analogy of English? Natural Language Engineering, 2005.

Wolfgang Minker. Grapheme-to-phoneme conversion - an approach based on hidden
markov models. 1996.

Bernd Möbius. Word and syllable models for German text-to-speech synthesis. In
Proceedings of the Third International Workshop on Speech Synthesis, pages 59–
64, Jenolan Caves, Australia, 1998.

Bernd Möbius. German and Multilingual Speech Synthesis. phonetic AIMS, Ar-
beitspapiere des Instituts für Maschinelle Spachverarbeitung, 2001.

Karin Müller. Automatic detection of syllable boundaries combining the advantages
of treebank and bracketed corpora training. In Proceedings of ACL, pages 402–409,
2001.

Sylvain Neuvel and Sean Fulop. Unsupervised learning of morphology without mor-
phemes. In Proceedings of the Workshop on Morphological and Phonological
Learning, ACL Publications, 2002.

Vincent Pagel, Alan W Black, and Kevin Lenzo. Letter to sound rules for accented
lexicon compression. In ICSLP98, Sydney, Australia, 1998.

Amanda Pounder and Markus Kommenda. Morphological analysis for a German text-
to-speech system. In COLING 1986, pages 263–268, 1986.

J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1993.

P.A. Rentzepopoulos and G.K. Kokkinakis. Phoneme to grapheme conversion using
hmm. In Proceedings of the European Conference on Speech Communication and
Technology (Eurospeech), pages 797–800, 1991.

Jenny R. Saffran, Elissa L. Newport, and Richard N. Aslin. Word segmentation: The
role of distributional cues. Journal of Memory and Language, 35:606–621, 1996.

Bibliography 105

Helmut Schmid, Arne Fitschen, and Ulrich Heid. SMOR: A German computational
morphology covering derivation, composition and inflection. In Proceedings of
LREC, 2004.

Helmut Schmid, Bernd Möbius, and Julia Weidenkaff. Tagging syllable boundaries
with hidden Markov models. IMS, unpublished, 2005.

Patrick Schone and Daniel Jurafsky. Knowledge-free induction of morphology using
latent semantic analysis. In Proceedings of the Computational Natural Language
Learning Conference, pages 67–72, Lisbon, 2000.

Patrick Schone and Daniel Jurafsky. Knowledge-free induction of inflectional mor-
phologies. In Proceedings of the North American chapter of the Association for
Computational Linguistics (NAACL-2001), 2001.

Uwe Schöning. Algorithmik. Spektrum Akademischer Verlag, 2001.

T. J. Sejnowski and C. R. Rosenberg. Parallel networks that learn to pronouce English
text. In Complex Systems 1, pages 145–168, 1987.

J.A. Sonquist and J.N. Morgan. The detection of interaction effects. In Survey Research
Center, Institute for Social Research, University of Michigan, Ann Arbor, 1964.

R. Sproat. Multilingual text analysis for text-to-speech synthesis. In Proc. ICSLP ’96,
volume 3, pages 1365–1368, Philadelphia, PA, 1996.

Janne Suontausta and Juha Häkkinen. Decision tree based text-to-phoneme mapping
for speech recognition. In ICSLP-2000, vol.2, pages 831–834, 2000.

Paul Taylor. Hidden Markov models for grapheme to phoneme conversion. In INTER-
SPEECH, pages 1973–1976, Lisbon, Portugal, 2005.

Isabel Trancoso and Diamantino Antònio Caseiro. Spoken language processing using
weighted finite state transducers. SWIM’2004 - Special Workshop in Maui: Lectures
by Masters in Speech Processing, January 2004.

I. Trancoso, D. Caseiro, C. Viana, F. Silva, and I. Mascarenhas. Pronunciation model-
ing using finite state transducers. In Proc. ICPhS’2003 - 15th International Congress
of Phonetic Sciences, Barcelona, Spain, 2003.

A. van den Bosch, T. Weijters, and W. Daelemans. Modularity in inductive-learned
word pronunciation systems. In Proceedings NeMLaP3/CoNNL98, page 185194,
Sydney, 1998.

Petra Wagner. Systematische Überprüfung deutscher Wortbetonungsregeln. In Elektro-
nische Sprachsignalverarbeitung aus Studientexte zur Sprachkommunikation, num-
ber 22, pages 329–338, 2001.

Petra Wagner. Improving automatic prediction of German lexical stress. In Proceed-
ings of the 15th ICPhS, pages 2069–2072, Barcelona, Spain, 2003.

David Yarowsky. Progress in Speech Synthesis. New York: Springer, 1996.

	Introduction
	Text-to-Speech Synthesis Systems
	Applications and their Requirements
	Project Goals and Execution
	Structure of Thesis

	Mathematical Background
	Hidden Markov Models
	The Viterbi Algorithm

	Smoothing
	Decision Trees
	The Entropy Criterion
	Pruning

	Resources
	CELEX
	Phonetic Transcription
	Morphological Information
	Syllable Boundaries

	BOMP
	SMOR and IMSLEX
	taz-Corpus
	English and French Resources
	English CELEX
	NetTalk
	beep
	Teacher's Word Book
	Brulex

	IBM Native Phonology for TTS

	Evaluation
	Training and Test Set Design
	Evaluation Methods
	Evaluation Data
	Evaluation Measures
	Error Rates
	Precision, Recall and F-Measure

	Morphology
	Motivation of Morphological Analysis for g2p
	Effect of Morphological Boundaries
	Morphological Information from CELEX
	Systems for Morphological Analysis
	Rule Based Approaches
	Data-based Approaches: Supervised
	Data-based Approaches: Unsupervised

	Homographs
	Results
	Discussion

	Syllabification
	Motivation for a Syllabification Component
	Syllabification in German
	Previous Work on Syllabification
	Syllabification as a Tagging Problem -- Using a HMM
	Constraints
	Smoothing

	Experiments and Results
	Error Analysis
	Performance on g2p task and Discussion
	Preprocessing vs. Postprocessing
	Orthographic vs. Projected Syllable Boundaries

	Word Stress
	Why a separate module for Stress Assignment?
	German Word Stress
	Primary Word Stress
	Secondary Word Stress and Stress Clash

	Working with Low Quality Training / Test Data
	Approaches considered
	Multi-level Process
	Rule-based Stress Assignment
	Baseline Approaches to Learning Stress for Stems
	HMM for Stress Assignment
	Definition
	Constraints
	Training data
	Smoothing
	Summary of Experiment Results
	Performance in Pipeline System

	Discussion

	Grapheme-to-Phoneme Conversion
	Motivation for Automatic Grapheme-to-Phoneme Conversion
	Previous Approaches to g2p
	Alignment
	Alignment with Morphological Boundaries
	Fully Automatic Alignment

	A HMM for g2p conversion
	Definition
	Smoothing and Backoff
	Pruning
	Multiple Solutions
	Integration of Constraints
	Results

	Performance on other languages
	Discussion

	Summary and Future Work
	Conclusion
	Morphology for German TTS
	Syllabification and Stress
	Modularity

	Suggestions for Future Work

	Bibliography

