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Abstract

We propose a psycholinguistically moti-
vated version of TAG which is designed
to model key properties of human sentence
processing, viz., incrementality, connect-
edness, and prediction. We use findings
from human experiments to motivate an in-
cremental grammar formalism that makes
it possible to build fully connected struc-
tures on a word-by-word basis. A key idea
of the approach is to explicitly model the
prediction of upcoming material and the
subsequent verification and integration pro-
cesses. We also propose a linking theory
that links the predictions of our formalism
to experimental data such as reading times,
and illustrate how it can capture psycholin-
guistic results on the processing ofeither
. . . or structures and relative clauses.

1 Introduction

Current evidence from psycholinguistic research
suggests that language comprehension is largelyin-
cremental, i.e., that comprehenders build an inter-
pretation of a sentence on a word-by-word basis.
This is a fact that any cognitively motivated model
of language understanding should capture. There is
also evidence for fullconnectivity (Sturt and Lom-
bardo, 2005), i.e., for the assumption that all words
are connected by a single syntactic structure at any
point in the incremental processing of a sentence.
While this second point of full connectivity is more
controversial, the model we are proposing here ex-
plores the implications of incrementality in its strict
interpretation as full connectivity.

Furthermore, recent work on human sentence
comprehension indicates that people makepredic-
tions of upcoming words and structures as they pro-
cess language (Frazier et al., 2000; Kamide et al.,
2003; Staub and Clifton, 2006). The concepts of

connectedness and prediction are closely related:
in order to assure that the syntactic structure of a
sentence prefix is connected at every point in time,
it can be necessary to include phrases whose yield
has not been processed yet. This part of the struc-
ture needs to be generated by the parser in order to
connect the words that have been seen so far, i.e., to
achieve full connectivity (which in turn is required
to build an incremental interpretation). This pro-
cess has been formalized by (Lombardo and Sturt,
2002) using the notion ofconnection path.

In this paper, we explore how these key psy-
cholinguistic concepts (incrementality, connected-
ness, and prediction) can be realized within a
new version of tree-adjoining grammar (TAG),
which we call Psycholinguistically Motivated TAG
(PLTAG). We argue that TAG is better suited for
this modeling task than other formalisms such as
CCG or PCFGs and propose a linking theory that
derives predictions of processing difficulty from as-
pects of the PLTAG formalism.

2 Related Work

A number of incremental versions of TAG have
been proposed over the years (Shen and Joshi,
2005; Kato et al., 2004; Mazzei et al., 2007).
The version proposed here differs from these ap-
proaches in a number of ways. Spinal LTAG (Shen
and Joshi, 2005) does not implement full connec-
tivity, and cannot easily be used to model predic-
tion since it does not encode valencies. The propos-
als by (Mazzei et al., 2007) and (Kato et al., 2004)
are more similar to our work, but are less well-
suited for psycholinguistic modeling since they do
not implement a verification mechanism, which is
required to account for standard complexity results
in the spirit of (Gibson, 1998). In addition, (Kato et
al., 2004) do not distinguish between modifiers and
arguments, since they operate on the Penn Tree-
bank, where this information is not directly avail-
able.



Incremental parsers for other grammar for-
malisms include Roark’s (2001) for PCFGs, and
Nivre’s (2004) for dependency grammars. Neither
of these parsers implement strict incrementality, in
the sense of always building connected structures.
Furthermore, there are principled problems with
PCFGs as a model of prediction difficulty, even if
fully connected structures are built (see Section 7).

The main contributions in the version of TAG in-
troduced in this paper is that it is incremental and
respects full connectivity, while also modeling the
verification and integration of syntactic material.
Our main emphasis is on the modeling of predic-
tion, which has been the subject of much recent re-
search in psycholinguistics, as outlined in the pre-
vious section.

3 Incrementality and Prediction

We propose variant of TAG that incorporates two
different types of prediction: prediction through
substitution nodes in lexicon entries (e.g., if a verb
subcategorizes for an object which has not yet been
seen), and prediction via connection paths. The
first type of prediction models the anticipation of
upcoming syntactic structure that is licensed by the
current input; the second type models prediction
which is required to ensure that fully connected
structures are built. We will discuss the mechanism
for prediction due to connectivity first.

3.1 Prediction due to Connectivity

TAG elementary trees can not always be connected
directly to a previously built syntactic structure.
Examples are situations where two dependents pre-
cede a head, or where a grandparent and a child
have been encountered, but the head of the par-
ent node has not. For instance, in the sentencethe
horse seldom fell, the elementary tree ofthe horse
cannot directly be combined with elementary tree
of the adverbial modifierseldom, see Figure 1(a).
The headfell which provides the intervening struc-
ture, has not been encountered at that point. There-
fore, this intervening structure has to be predicted
in order to connectthe horse andseldom.1 We use
the substitution symbol↓ to mark predicted struc-
ture. As a prediction mark, the substitution symbol
can therefore also occur tree-internally. We assume

1Because of the recursiveness of natural language, it is pos-
sible that there are infinitely many ways to connect two trees.
Although embedding depth can be infinite in theory, we as-
sume that it is finite and indeed very small due to limitations
of human memory.

that prediction is conservative, and only includes
the structure as far as it is needed, i.e., only as far
as it is included in the connection path (see Section
4 and Figure 3). It is important to bear in mind,
however, that prediction grain size remains an open
research question (for instance, we could predict
the full elementary tree down to the lexical item,
as proposed by (Mazzei et al., 2007), to even in-
clude the remaining subcategorized nodes or likely
modifiers of that node).

Our minimal prediction method implies that ad-
junction must be possible at predicted nodes, as
shown in Figure 1(a). When this happens, the
head node of the auxiliary tree is marked as seen,
while the foot node of the auxiliary tree takes over
the prediction mark from the predicted connection
structure, because we need to mark that we have
not in fact yet seen the node that it adjoined to. If
we marked both as non-predicted nodes, then we
would not be able to guarantee that we can cor-
rectly keep track of what has been encountered in
the input and what we have predicted.

We treat those connecting structures as spe-
cial lexicon entries, where each predicted node is
marked. A predicted node differs from the rest of
the structure in that it needs to be verified, i.e., it
has to be matched (through substitution of internal
nodes) with later upcoming structure, as illustrated
in Figure 1(b). A derivation of a sentence is only
valid if all predicted nodes are matched. Our exam-
ple shows how the tree structure forthe horse sel-
dom is connected with the elementary tree offell.
Each node of the new elementary tree can either be
matched with a predicted node in the prefix tree,
or it can be added (in Figure 1(b) whenfell is inte-
grated withThe horse seldom, theS andVP nodes
are matched against the predicted nodes, while the
V node is added). It could therefore just as easily
unify2 with a transitive or ditransitive verb.

Issues arise in the verification process, e.g., how
to unify structures after additional material has
been adjoined. In our example, an additional VP
node has been introduced by the adverb. The new
nodes in the tree cannot unify with a random pre-
dicted node of the same category, but have to follow
constraints of accessibility and have to have iden-
tical dominance relations. For example, consider a
situation where we predict the structure between an
object relative pronoun likewhom and its trace (see

2Note that by unification we simply mean node matching
and we will use these two terms interchangeably in this paper.



the top tree in Figure 4). If we encountered a verb
next, we could match up the nodes of the verb el-
ementary tree (S, VP, V) with the predicted nodes,
and would still predict the subject noun phrase. If
we then encountered a noun phrase, and again did
not take into account any accessibility constraints
(the substitution node is not accessible any more
because filling it at this point would violate the lin-
ear order), we could substitute that noun into the
subject position. That is, we would accept impos-
sible RCs likewhom thanked Peter, or misanalyze
subject relative clauses as object relative clauses.

The horse

NP

S

VP

seldom

ADVP

VP

S

NP VP

unification

fell

V

The horse

NP

seldom

ADVP VP*

VP

adjunction
substitution

NP VP

predicted structure
S(a)

(b)

Figure 1: Example for prediction and verification
of predictions

3.2 Prediction from Substitution Nodes

Another source for predictions are the lexicon en-
tries themselves. Each substitution node that is
to the right of the tree’s anchor naturally consti-
tutes a predicted element during the parsing pro-
cess. This means that we do not predict modifiers
or any other kind of recursive structures, unless
we have already seen a word that depends on the
modifier (i.e., through connectivity, e.g., for a sen-
tence prefix such asthe horse very). Whether or not
modifiers are predicted syntactically is currently an
open research question. Preliminary evidence sug-
gests that modifiers are predicted when they are re-
quired by the discourse context.

We also exploit TAG’s extended domain of lo-
cality in order to construct lexicon entries that
are more appropriate for modeling psycholinguistic
findings. An example is theeither . . . or construc-
tion. Results by (Staub and Clifton, 2006) show

that hearing the wordeither triggers prediction of
or and the second conjunct: reading times on these
regions were shorter in theeither condition, and
participants also did not misanalyze disjunctions at
sentence level as noun disjunctions in the condition
whereeither was present.

As (Cristea and Webber, 1997) point out, there
are a number of constructions with two parts where
the first part can trigger prediction of the second
part in, similar toeither . . . or. A related form
of prediction is syntactic parallelism; experimental
findings by (Frazier et al., 2000) indicate that the
second conjunct of a coordinate structure is pro-
cessed faster if its internal structure is identical to
that of the first conjunct. This can be seen as a form
of prediction, i.e., the parser predicts the structure
of the second conjunct as soon as it has processed
the coordinator.

In the rest of this section, we will discuss in more
detail how either . . . or prediction can be imple-
mented our framework. Figure 2 shows an example
of how the wordeither impacts parsing of theeither
. . . or disjunction in PLTAG, as opposed to a simple
or disjunction: the lexicon entry foreither predicts
the occurrence of coordination with two entities of
the same category, and requiresor as a coordinator,
see Figure 2(a). Wheneither is not present, attach-
ment of coordination in a sentence likePeter read a
book (Figure 2(c)) is ambiguous at the coordinator
or, because theor auxiliary tree can be adjoined ei-
ther at the noun phrase level or at the sentence level
(see Figure 2(b)).

The position ofeither enables humans to predict
that a discjunction is coming up, and provides a
cue indicating at which level to attach the coordi-
nated phrase. These predictions enable humans to
process the coordinator faster and make them less
likely to misanalyzing S-level coordination as NP-
coordination wheneither is present. In PLTAG,
only one of the lexicon entries ofor, namely the
first in Figure 2(b) is compatible with the structure
predicted ateither. Using this way of analysingei-
ther, we can correctly predict processing speed-up
for the case whereeither is present as opposed to
coordination withouteither using the linking the-
ory proposed in Section 5.

Note that the analysis ofeither shown in Figure
2(a) means thator does not provide any new infor-
mation but only verifies previously predicted infor-
mation, since it doesn’t introduce any new nodes
into the tree, and that the auxiliary tree foror can-
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Figure 2: Example for the use of TAG’s extended
domain of locality to model expressions that trigger
predictions, such aseither . . . or

not be adjoined into the structure by standard ad-
junction, since both the head and foot node are al-
ready present in the predicted tree. There are two
options for how to handle this situation: To adapt
the lexicon entry foror such that it is not an aux-
iliary tree, or to redefine adjunction for this situa-
tion. In order to keep the lexicon small, we decided
in favour of the latter alternative, and redefine ad-
junction for cases where the anchor of the auxiliary
tree has been predicted such that the head node of

the auxiliary tree verifies the prediction as usual,
while the foot node does not expand the node, but
adopts the annotation of the node that it matches.
Any substitution nodes in theor-auxiliary tree sim-
ply update the timestamp3 of the substitution node.

4 Treebank-based Lexicon Induction

We induce the lexicon needed for our incremen-
tal version of TAG from the Penn Treebank, com-
plemented by Noun Phrase annotation (Vadas and
Curran, 2007), Nombank (Meyers et al., 2004) and
Propbank (Palmer et al., 2003), as well as Mager-
man’s head percolation table (Magerman, 1994).
These additional resources help determine the el-
ementary trees following procedures in (Xia et
al. 2000) and distinguish arguments from modi-
fiers. (Modifiers are not predicted unless they are
needed for a connection path.) Figure 3 shows
how a syntactic tree is composed out of elementary
trees: each inner node is indexed with the num-
ber of the word that is its lexical anchor in order
to show which parts of the syntactic tree belong to
which lexicon entry.

Once the parsed trees have been segmented into
elementary trees, we calculate connection paths for
each prefix, as proposed by (Lombardo and Sturt,
2002). A connection path for wordsw1 . . .wn is
the minimal amount of structure that is needed to
connect all wordsw1 . . .wn into the same syntac-
tic tree. The amount of structure needed at each
word for the sentencethe Italian people often vote
Berlusconi is indicated in Figure 3 by the structure
enclosed in the circles.

Berlusconi

NP
often

ADVP

VP

S

The

DET

Italian

ADJ

N

people

N

NP

vote

V

VP

1

1

2

2

3

3

3

2

4

4

4

5

5

5

6

6

5

Figure 3: Generating lexicon entries from the Penn
Treebank for an example sentence

We then use the connection paths and the canon-

3See Section 5 for details on the linking theory and the use
of timestamps.



ical elementary trees to determine which parts of
the structure are included in the connection path
for words w1 . . .wn, but not part of any of the el-
ementary trees with feetw1 . . .wn. In Figure 3, this
occurs twice: firstly whenItalian has been read,
and the determiner and adjective can only be com-
bined by predicting that they must be part of the
same noun phrase, and secondly atoften, when the
VP and S nodes have to be predicted.

By definition, all nodes of these connecting
structures are predicted nodes, and therefore anno-
tated as substitution nodes. We store these con-
necting structures as lexicon entries. They differ
from other lexicon entries in that all their nodes
are substitution nodes, and in that they are not lex-
icalized. The advantage of generating these sepa-
rate non-lexicalized entries over simply adding a
second predicted version of all lexicon entries is
that we retain a smaller lexicon, which reduces the
sparse data problem for training, and makes parsing
more efficient.

The connection structure is non-lexicalized, and
therefore creates additional challenges for the
parser: the non-lexicalized structures can be trig-
gered at any point in parsing, in particular when
simple substitution and adjunction are not success-
ful. They can also in principle be chained, i.e., sev-
eral non-lexicalized structures can be applied one
after the other, without ever applying any lexical-
ized rules. As a first approximation, we therefore
restrict these prediction rules to instances that we
encountered in the corpus, and do not only allow
several non-lexicalized rules in a row. This re-
striction means that there may be sentences which
this incremental parser cannot cover, even though
a non-incremental parser (or one without this re-
striction) can find an analysis for them. (CCG
has a similar problem with the application of type-
raising; in current CCG parsers, the search prob-
lem in type-raising is solved by lexicalizing type
raising.) Because of recursive rules in natural lan-
guage, embedding can in principle also be infinitely
deep. However, Lombardo and Sturt (2002) have
shown that for 80% of the word tokens, no connec-
tion paths are needed, and that two or more predic-
tions have to be made for about 2% of the tokens.

5 Linking Parsing Complexity to
Processing Difficulty

The grammar design proposed here implements
a specific set of assumptions about human lan-

guage processing (strong incrementality with full
connectedness, prediction, ranked parallel process-
ing) which can be tested by linking an incremental
parser for this formalism with a theory of human
sentence comprehension.

The relation between the incremental parsing al-
gorithm and processing difficulty can be formal-
ized as follows: At each word, a setE of syntac-
tic expectationse is generated (they can be easily
read off the syntactic structure in the form of sub-
stitution nodes). These expectations can be inter-
preted as denoting the categories needed to build
a grammatical sentence from the current input, and
are associated with probabilitiesP(e), estimated by
the parser. Each structure also has a timestamp
corresponding to when it was first predicted, or
last activated. Based on this, decay is calculated,
under the assumption that recently-accessed struc-
tures are easier to access and integrate (decay is
weighted in during verification (substitution of in-
ner nodes), regular substitution and adjunction).

In this model, processing difficulty is incurred
either when expectations are incompatible with the
current input (algorithmically, this corresponds to
the parser trying to substitute, adjoin, or verify a
new tree with the currently maintained structure,
but failing for all structures), or when successful in-
tegration takes place (i.e., unification of predicted
nodes and the elementary tree is successful, or a
node can be successfully adjoined). Intuitively, in-
tegration is costly because the parser has to bring
together the meaning of the matched categories.

Processing difficulty is proportional to the in-
verse probability of all integrated structures (less
activated structures are harder to integrate) plus the
probability of all deleted structures (more probable
structures are harder to discard), where both prob-
abilities weighted by recency:

Dw ∝ ∑
e∈Ei

f (
1

P(e)
)+ ∑

e∈Ed

f (P(e))

Here,Dw is the difficulty at wordw, andEi is the set
of expectations that could be integrated, whileEd is
the set of expectations that have been discarded at
w. A decay is implemented by the functionf .

6 Example

The following example aims to show how PLTAG
can explain increased processing difficulty at object
relative clauses (ORC) as opposed to subject rela-
tive clauses (SRC). We chose this relative clause



example because there is evidence that object rela-
tive clauses are more difficult for humans to pro-
cess from both experimental sources (King and
Just, 1991; Gibson, 1998) and broad-coverage cor-
pus data (Demberg and Keller, 2007).

Figure 4 shows two alternative structures for the
phrasegrand-parents who. The two analyses dif-
fer by whether they analyzewho as an object rela-
tive pronoun or as a subject relative pronoun, and
predict traces in different positions. Note the non-
TAG-standard lexicon entry for the relative pro-
nouns, which contains the RC phrase structure in-
cluding the traces, and allow us to use the same
lexicon entries for verbs in both main clauses and
relative clauses. The decision of assigning the rela-
tive pronoun a more “eager” lexicon entry is based
on the observation that encountering the object rel-
ative pronounwhom is sufficient to predict the ar-
gument structure of the relative clause (namely that
there has to be a head for the relative clause, and
that there has to be a subject, and a trace for the ob-
ject). We plan to investigate in future work whether
there is evidence that humans predict the whole
structure given the relative pronoun.

In our example, the probability of the analyses at
the relative pronoun is higher for the SRC (0.0003)
than for the ORC (0.00004), since SRCs are more
frequent (all probabilities in this example are ficti-
tious and just for illustrative purposes). When the
next word is encountered, that word may also be
ambiguous, such as the wordtime in our example,
whose probability is higher as a noun (0.08) than
as a verb (0.02). All possible elementary trees for
the new word have to be matched up with all prefix
trees (analyses whose probability is below a certain
threshold are ignored to limit the search problem
and simulate memory limitations). In our exam-
ple, the noun interpretation oftime is compatible
with the object relative clause interpretation, while
the verb interpretation can be unified with the SRC
analysis. The ORC structure still has lower proba-
bility than the SRC structure at this point, because
0.00003· 0.08 < 0.0004· 0.02. If an ORC verb
was encountered next, we would correctly predict
that this verb should be more difficult to process
than the SRC verb, because five nodes have to be
matched up instead of four, and the predicted nodes
in the ORC analysis are one clock-cycle older than
the ones in the SRC at the time of integrating the
verb.

On encountering a disambiguating word, the

processing difficulty proportional to the probabil-
ity mass of all incompatible structures would be
incurred. This means that higher processing diffi-
culty occurs when the more probable structure (the
SRC in our example) has to be discarded.
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Figure 4: Example of the interaction of lexical
probabilities and verification cost in PLTAG

7 Comparison with Other Grammar
Formalisms

We decided to use tree-adjoining grammar instead
of alternative formalisms like Combinatory Cat-
egorial Grammar (CCG) or Probabilistic Context
Free Grammar (PCFG) because we felt that TAG



best met our requirements of strict incrementality
with full connectivity.

In standard CCG with bottom-up parsing
(Steedman, 2000), it is not possible to always find
an incremental derivation. For example, in ob-
ject relative clauses, the subject NP of the rela-
tive clause cannot be integrated in an incremental
fashion because the category of the relative pro-
noun ((N\N)/(S/NP)) is too abstract: it does not
contain the category for the subject NP explic-
itly and the subject NP therefore has to connect
with the verb first. Another example are coordi-
nated clauses. The second conjunct can only be
combined with the first conjunct when they both
have the same category. However, (Sturt and Lom-
bardo, 2005) show that human sentence process-
ing is more incremental than the most incremental
CCG derivation for a sentence likethe pilot em-
barrassed John and put himself/herself in an awk-
ward situation, where the c-command relation be-
tween the pilot and himself/herself is understood
at the point of reading the reflexive pronoun, and
not only after reading the full second conjunct, as
CCG would predict under the assumption that the
syntactic relation has to be established first in order
to determine c-command relations.

Coordination in tree-adjoining grammar does
not have this problem. It is not necessary that the
end of the second conjunct must have been seen in
order to connect the second conjunct to the begin-
ning of the sentence, because the elementary tree
for and is an auxiliary tree and adjoins into the pre-
vious structure. It is therefore connected to the pre-
ceding context right away, andhimself can be sub-
stituted into a connected structure and will there-
fore be available for binding to the c-commanding
phrasethe pilot at an early processing stage.

Furthermore, pre- and post-modification is
asymmetric for incremental derivations in CCG
(and we are not aware of such an asymmetry in
human sentence processing). CCG requires either
type-raising at the head of a post-modified phrase,
or non-connectivity. The reason for the asymme-
try is that for pre-modification, e.g., an adjective
before noun, there is no type-raising necessary in
incremental processing (see Figure 5(b)). On the
other hand, for post-modification it is necessary
to type-raise the head before the post-modifier is
processed (see Figure 5(d)). This assymetry leads
to the unintuitive situation of having an ambiguity
for a noun when it is post-modified, but not when

it is pre-modified. Alternatively, the structure ei-
ther has to be undone once the modifier is encoun-
tered in order to allow for the composition (serial
account), or the noun is explicitly ambiguous as
to whether it will be modified or not (parallel ac-
count), or we cannot satisfy full connectivity. In
both cases, post-modification requires more oper-
ations than pre-modification. This is not the case
in TAG, because pre- and post-modification are ad-
joined into the tree in the same fashion (see Figure
5(a) and (c)).

NP

DT N↓

+ N

ADJ N*

→ NP

DT N

ADJ N↓

+ N

(a) TAG pre-modification

NP/N N/N N
>B

NP/N
>

NP
(b) CCG pre-modification

NP

DT N

+ N

N* ADJ

→ NP

DT N

N ADJ
(c) TAG post-modification

NP/N N N\N
>T

N/(N\N)
>B

NP/(N\N)
>

NP
(d) CCG post-modification

Figure 5: Comparision of pre- and post-
modification in TAG and CCG

In order to use PCFGs as a basis for the psy-
cholinguistic model it would be necessary to intro-
duce composition into the parsing process in order
to avoid having to predict all a processing difficulty
at the end of phrases. Standard arc-eager parsing
would for example complete a rule only once all of
its children have been seen. For a more in-depth
discussion of this question see (Thompson et al.,
1991). Composition is also needed to keep track of
the predictions. For example, once we have seen
the verb, we do not want to expect the verb phrase
itself anymore, but only any potential arguments.



Furthermore, PCFGs do not provide the extended
domain of locality that we exploit in TAG.

8 Summary

We propose a framework for a new version of
TAG which supports incremental, fully connected
derivations, and makes explicit predictions about
upcoming material in the sentence. This version
of TAG can be combined with a linking theory to
model human processing difficulty, and aims to ac-
count for recent findings on prediction and connec-
tivity in human sentence comprehension.
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