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Abstract

We evaluate the predictions of two theories of syntacticgssing complexity, de-
pendency locality theory (DLT) and surprisal, against then@ee corpus, which
contains the eye-tracking record of 10 participants rep8ih 000 words of news-
paper text. Our results show that DLT integration cost isansignificant predictor
of reading times for arbitrary words in the corpus. Howel&T successfully pre-
dicts reading times for nouns and verbs. We also find evidé@rdategration cost
effects at auxiliaries, not predicted by DLT. For surprise¢ demonstrate that an
unlexicalized formulation of surprisal can predict reagiimes for arbitrary words
in the corpus. Comparing DLT integration cost and surpria@l find that the two
measures are uncorrelated, which suggests that a comipéetey twill need to in-
corporate both aspects of processing complexity. We cdecthat eye-tracking
corpora, which provide reading time data for naturally edag, contextualized
sentences, can complement experimental evidence as aftyasigories of pro-
cessing complexity.
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1. Introduction

Research on human sentence processing has traditionaligfld on syntactic ambiguity,
based on the observation that certain locally ambiguoustnastions pose difficulty for the human
sentence processor. Such difficulty manifests itself glfyicin the form of increased processing
time (e.qg., elevated reading times on the disambiguatigipmn.

While disambiguation is an important source of difficulty imman sentence processing,
difficulty can also arise in unambiguous sentences. A dassample are relative clauses, which
have been investigated extensively in the literature omesyic processing difficulty. Experimental
results show that English subject relative clauses as &) éke easier to process than object relative
clauses as in (1-b). Experimentally, this difficulty is esmded by the fact that reading times for the
verb attackedare shorter for subject relative clauses than for objeetive clauses (King & Just,
1991).

@ a. The reporter who attacked the senator admitted te err
b. The reporter who the senator attacked admitted the error.

Findings such as these have motivated processing thebaedd not rely on ambiguity resolution,
but instead capture the complexity involved in computing slgntactic dependencies between the
words in a sentence. One such theory is Dependency Locdigpr (DLT), proposed by Gibson
(1998, 2000). A central notion in DLT isitegration costa distance-based measure of the amount
of processing effort required when the head of a phraseeagiated with its syntactic dependents.
DLT is able to capture the subject/object relative claugenasetry in (1), as well as a wide range of
other complexity results, including processing overloadrnpmena such as center embedding and
cross-serial dependencies.

More recently, Hale (2001) proposed surprisal as an altigeeeasure of processing com-
plexity. Intuitively, the surprisal of a word in a senteht@ntext corresponds to the probability
mass of the analyses that are not consistent with the new. \Bamgbrisal requires a probabilistic
notion of linguistic structure (utilizing transitional @oabilities or probabilistic grammars), and has
its theoretical foundation in information theory (Levy,dB). It can be shown to capture a range of
complexity effects, including the subject/object relatslause asymmetry, certain garden path ef-
fects, speed-up effects in verb-final contexts, and woréroadymmetries in German (Hale, 2001,
Levy, 2008). Another more recent incarnation of surprisgds@n’s (2006) approach, which com-
bines top-down syntactic predictions with bottom-up lekjeredictions.

A number of other theories of syntactic processing comptesist, including dynamic sys-
tem models (e.g., McRae, Spivey-Knowlton, & Tanenhaus81%3abor & Tanenhaus, 1999) and
neural net models (e.g., EIman, 1991). However, in the ptgsaper, we will focus on DLT and
surprisal, as these two approaches are maximally différemt each other. In particular, they make
complementary assumptions about the source of processimplexity. DLT’s integration cost cap-
tures the cost incurred when a head has to be integrated wétbependents that precede it. Sur-
prisal, on the other hand, accounts for the cost that reshién the current word is not predicted by
the preceding context. Therefore, integration cost carebarded as a backward looking cost (past
material has to be held in memory and integrated), whiler@atis a forward-looking cost (syn-
tactic predictions have to be discarded if they are no longerpatible with the current word). This
observation leads to a general empirical prediction, timt integration cost and surprisal should
be uncorrelated, and should account for complementarycspéreading time data. The present
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paper will test this prediction.

While DLT and surprisal have been evaluated against a rahgeperimental results, so far
no broad coverageevaluation of theories of syntactic processing compleliyg been carried out.
Existing studies rely on lab experiments, which have theaathge of giving the experimenter full
control over the experimental setup and the materials, endfastablished reliability and validity.
However, this approach also has its drawbacks. It typidallglves the presentation of artificially
constructed sentences containing a narrow range of si;&aictures. Also, the same structures
occur many times in a given experiment, raising the postsilof habituation effects or the devel-
opment of strategies in participants. The sentences tosbedtare often presented in isolation, i.e.,
without an appropriate textual context, potentially leadio behavior that is different from normal
reading. Finally, only a small number of items can be testeithé typical psycholinguistic exper-
iment. DLT and surprisal effects have successfully obthimesuch an experimental setting, but
these methodological limitations leave open the possiliiiat the effects are rare or absent when
arbitrary words in large amounts of naturalistic, contakied text are considered.

The aim of the present paper is to address this problem anttpra broad coverage evalua-
tion of DLT and surprisal on the Dundee Corpus, a large cttlacf newspaper text for which the
eye-movement record of 10 participants is available. Fidmdorpus, a range of eye-tracking mea-
sures can be computed, which can then be evaluated aganstettiictions of theories of syntactic
complexity. Such broad coverage studies yield resultshblak for naturalistic, contextualized text,
rather than for isolated example sentences artificiallysttoted by psycholinguists. They have al-
ready been applied successfully to individual phenomamnz) as the subject/object relative clause
asymmetry (Demberg & Keller, 2007). The aim of the presepiepés to show that corpus studies
can also be used to systematically test theories of syotpoticessing complexity. Such studies
provide a source of evidence that corroborates experirhergalts, but also yields new theoretical
insights, as it makes it possible to evaluate multiple teeoal predictors against each other on a
large, standardized data set.

2. Background
2.1. Dependency Locality Theory

According to Gibson’s (1998, 2000) Dependency Locality diigeprocessing complexity is
caused by the cost of the computational resources consugnétk lprocessor. Two distinct cost
components can be distinguished:iidegration costassociated with integrating new input into the
structures already built at a given stage in the computatiod (i) memory costnvolved in the
storage of parts of the input that may be used in parsing jetes of an input. Here, we will focus
on integration cost, as “reasonable first approximationsoofiprehension times can be obtained
from the integrations costs alone, as long as the linguisgmory storage used is not excessive at
these integration points” (Gibson, 1998, p. 19f). This igfe fassumption for our studies, as we use
corpora of carefully edited newspaper text, which are @tyiko incur excessive storage costs (in
contrast to artificially constructed experimental matsjiaGibson’s definition of integration is as
follows:

(2) Linguistic Integration Cost
The integration cost associated with integrating a newtit@ad h with a head h that
is part of the current structure for the input consists of paots: (1) a cost dependent on
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the complexity of the integration (e.g. constructing a nescalurse referent); plus (2) a
distance-based cost: a monotone increasing function i@gg units (EUs) of the number
of new discourse referents that have been processed siashiast highly activated. For
simplicity, it is assumed that I(n) = n EUs. (Gibson, 19981 2xf)

According to this definition, integration cost is dependamtwo factors. First, the type of element to
be integrated matters: new discourse referents (e.gfimitdeNPs) are assumed to involve a higher
integration cost than old/established discourse refgr@ntified by pronouns. Second, integration
cost is sensitive to the distance between the head beirgraéel and the head it attaches to, where
distance is calculated in terms of intervening discourfereats.

As an example, consider the subject vs. object relativeselayample in (1). At the embedded
verb attackedin (1-a), two integrations take place: the gap generatethéydlative pronourvho
needs to be integrated with the verb. The cost for this is H8)zero new discourse referents have
been processed since the gap was encountered. In additeoentbedded verattackedneeds to
be integrated with its preceding subject. Again, this isee integration since no discourse referent
occurs between the verb and the subject NP. However, thareast for building a new discourse
referent (the embedded verb itsglfleading to a cost of I(1). The total costattackedis therefore
I(1). Thisis illustrated in Figure 1, which depicts the degencies that are built, and the integration
costs per word that are incurred.

SRC:

) The reporter who attacked the senator admitted the
Disc.ref. X X X X

Integ. Cost1(0) I(1) 1(0) 1(1) 1(0) I(1) I(1)+I(3) 1(0) I(1)

) The reporter who the senator attacked admitted the
Disc.ref.

X X X X
Integ. Cost1(0) I(1) 1(0) 1(0) I(1) I(1)+I(2)(1)+(3) 1(0) I(1)

Figure L An example of integration cost computations: subjecttiadaclauses (SRC) vs. object relative
clauses (ORC), with word-by-word markup for discourse nexfiéand integration costs. The links between
the words represent syntactic dependencies.

At the verbattackedin the object relative clause, three structural integretitake place:
(1) integration with the subject Nfhe senatorno integration costs occur since no new discourse
referents occur in between the verb and the NP, (2) an empégay for the relative pronoun
is integrated, but again, the integration is local and ndscoscur, (3) the object position empty
category is co-indexed with the preceding relative pronetin. There is an integration cost of 1(2)
for this step due to the two discourse refereatsackedandthe senatomvhich occurs in between.

1DLT assumes that verb introduce event discourse referents.
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In addition, there is a cost of I(1) for constructing the disise referent attacked which leads to
a total integration cost of I(1) + I(2) at the embedded worthef object relative clause. So overall,
DLT predicts that the verb of object relative clauses is mubffecult to process than that of subject
relative clauses.

Note that Gibson assumes that the integration cost funiimientity, i.e., I(n) = n. However,
other functions are possible here; we will return to thisiéss Section 3.2.

2.2. Surprisal

An alternative measure of syntactic complexity has beepgwed by Hale (2001) in the form
of surprisal. Surprisal is compatible with a parallel parséhich builds structures incrementally,
i.e., it constructs all possible syntactic analyses coibleatvith the input string on a word-by-word
basis? Intuitively, surprisal measures the change in probabiiiigss as structural predictions are
disconfirmed when a new word is processed. If the new worddfiens predictions with a large
probability mass (high surprisal), then high processingglexity is predicted, corresponding to
increased reading time. If the new word only disconfirms jotezhs with a small probability mass
(low surprisal), then we expect low processing complexitgt eeduced reading time.

Returning to (1), we expect differences in surprisal betwgeb) and (1-a). Hale (2001)
demonstrates that the mean surprisal for the object relatause is higher than for the subject
relative clause, i.e., that on average, the words in thecobgdative clause require hypotheses with
a greater probability mass to be disconfirmed than in theestibglative clause. Surprisal theory
therefore predicts that object relative clauses are haalerocess than subject relative clauses,
which is in line with experimental findings (but see Levy, 80fbr additional relative clause results
using surprisal).

Technically, surprisal can be defined using the conditipnabability P(T|w; - - - wy), i.e., the
probability of a tre€l’ given the sentence prefix - - - wg. This is the probability thaf is the correct
tree, given that the string of word; to wordwy has been encountered. Surprisal is then defined as
the change in the conditional probability distributionrfrev, to wi, 1. As Levy (2008) shows, this
can be formalized using the Kullback-Leibler divergencdative entropy). The Kullback-Leibler
divergence between two probability distributiodRrgndQ is defined as:

® DEIQ =3Py

The surprisal at encountering wowg . 1 then corresponds to the Kullback-Leibler divergence be-
tweenP(T |wy - --Wi11), i.€., the probability distribution of all syntactic tremit are consistent with
wordsws - -- W1, andP(T |ws - --wy), the probability distribution of the trees that are comiplati
with the prefixwy - - - wi:

P(T|wy---Wi1)

2 =9 P(T|wyg---Wky1)lo

( ) S(+l Z ( | 1 k+l) g P(T|Wl Wk)

This expression can be simplified using the following fact:
P(T,wy W) P(T)

(3) P(T|wg---wy) = P(Wp - W) :P(Wl"'Wk)

2While surprisal is compatible with a fully parallel parsiefjoes not necessarily require one. It is possible to comput
the probabilities of a limited set of analyses and then usselio track changes in the probability distribution. Irt,fewe
Roark (2001) parser used in this paper performs beam-sdacldoes not compute all possible analyses, and thus we
reply on such a limited-parallelism version of surprisal.
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This equation holds because we know that each tree dontains the wordsv; - - - wg, therefore
P(T,wz---wgk) = P(T). We can now substitute Equation (3) into Equation (2). We ttem sim-
plify the definition of surprisal using the fagty = P(Tvgk 5= = 1 (the probabilities of all syntactic
trees given a particular prefix sum up to one), and performmrgle straightforward logarithmic

transformations:

P(T)
P(W1- Wi 1) P(wy - - - W)
4 -lo =1-log ——————
@S Tem e P A
P(wy - Wk+1)
— _Jogt W) . jogp
g PW1- W) gP (Wi 1w - - - W)

This derivation shows that the surpril 1 at wordwy, 1 corresponds to the negative logarithm of
the conditional probability ofw.. 1 given the sentential contexy - - - wi. This is an important sim-
plification, as it means that surprisal can be computed withtaking representational assumptions
(i.e., the syntactic tre& does not figure in the definition of surprisal). In practices imeans that
a number of ways of computing surprisal are possible, iniizither simple probabilistic models
of language (such asgram models) or more sophisticated ones, such as prattabdontext-free
grammars (PCFGSs).

Surprisal can be reformulated in terms of fiefix probabilitiesof wordswy andwy 1, which
can be obtained easily from a PCFG. The prefix probability wbed wy is obtained by summing
the probabilities of all tree$ that span fronw; to w:

(5) P(wp---wy) = ZP(T,Wl- W)

The formulation in Equation (4) is therefore equivalent tm@mulation that uses prefix probabili-
ties:

P(Wy---Wik1)

(6) Sc1=-lo P(W1- W)

=log Z P(T,wy---w) — IogZ P(T, w1 W1)

SurprisalSc, 1 at wordwy 1 thus corresponds to the difference between the logarithtiheoprefix
probabilities of wordwy andw. 1. We give an example that illustrates how prefix probabditie
can be computed using a PCFG. In a PCFG, each context-freexgmarule is annotated with its
probability, as in Figure 2. The rule probabilities are tlised to calculate the prefix probability of
a word.

For example, ifw. 1 is the wordwhoin the example in Figure 2, then the prefix probability
STP(T,wi---W 1) is the sum over the probabilities of all possible trees thalude the prefix
w1 - --Wki 1, Where each tree probability is computed as the product dfi@lrules that are needed
to build the tree (Figure 2 shows only one such tree).

2.3. Non-syntactic Predictors

It is well-known that reading times in eye-tracking dataiafienced not only by high-level,
syntactic variables but also by a number of low-level vddapboth linguistic ones and oculomotor
ones (see Rayner, 1998, for a review). The low-level linguigriables include word frequency
(more frequent words are read faster), word length (sherteds are read faster), and the position
of the word in the sentence (later words are read fasteradtaiso been found that the frequency
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S
NP VP
/\
NP SBAR
/\
D|T N|N WHNP S
The reporter V\|/p -
|
who

Example Rule Rule probability
The reporterwho ... S+ VP NP p=0.6
The reporter who ... NP> NP SBAR p=0.004
The reporter NP— DT NN p=0.5
The DT— the p=0.7
reporter NN— reporter p = 0.0002
who ... SBAR— WHNP S p=0.12
who WHNP— WP p=0.2
who WP — who p=0.8

Figure 2 Example derivation of prefiXhe reporter whand rules from a probabilistic context free grammar
(PCFG) that would be needed in order to calculate its prefibability.

of the previous word influences reading time at the presemtwmresumably due to parafoveal
preview. Oculomotor variables include previous fixationd{cating whether or not the previous
word has been fixated), launch distance (how many charategwene between the current fixation
and the previous fixation), and landing position (whichdeth the word the fixation landed on).

Together with variation between readers, these low-lexgables account for a sizable pro-
portion of the variance in the eye-movement record. Thezeakso a number of well-known corre-
lations between the independent variables: short wordasrally more frequent than long words,
the fixation landing position depends on word length, etc.

Recently, it has also been shown that information abouteéhjeential context of a word can
influence reading times. In particular, McDonald and Sbdlc(2003b) present data extracted from
an eye-tracking corpus (a smaller corpus than the DundegguSarsed here) that show that forward
and backward transitional probabilities are predictivdiist fixation and first pass durations: the
higher the transitional probability, the shorter the fimattime.

By forward transitional probabilityMcDonald and Shillcock (2003b) refer to the conditional
probability of a word given the previous woR{wy|wi_1). This captures the predictability of the
current word given a one-word context. For example, the giodity of the wordin given that
the previous word wasterestedis higher than the probability ah if the last word wasdog
Thebackward transitional probabilitys the conditional probability of a word given the next word
P(wg|wi1). This provides an estimate of how predictable the curremthvijogiven the next word,
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e.g., of how probable it is to santerestedor dog next, given the current word is. A possible
interpretation of why material that is further back in thettean benefit the current word and lead to
shorter reading times for words with high backward traosgi probabilities are preview effects and
backward saccades. These corpus results are backed uplty desnonstrating the role of forward
transitional probabilities in controlled reading expegints (McDonald & Shillcock, 2003a; but see
Frisson, Rayner, & Pickering, 2006, who equate transitipnabability and Cloze predictability).

It is interesting to note that the forward transitional pablity P(wi|w_1) is a simple form
of surprisal, viz., one that takes into account only the joev wordwy_1, rather than the whole
prefixw; - --wi_1 (see Equation (4)). Another difference is that forward ¢iaonal probabilities are
estimated using word bigrams, while surprisal is typicaisfimated using syntactically generated
probabilities, based on Equations (5) and (6). We will netto this issue in the context of our
discussion of surprisal in the Dundee Corpus in Section 5.

In the current paper, we are interested primarily in syitgmtocessing effects such as the
ones captured by DLT integration cost and surprisal. Weethez need to make sure that these
metrics account for variance in the eye-movement recordati$ not captured by the low-level
linguistic and oculomotor variables discussed above. fiieally, this can be achieved by running
hierarchical mixed effect models which include both the-lewel and the high-level variables as
predictors, as well as partitioning out subject variandds Will be detailed in Section 3.1.2.

3. Experiment 1: Integration Cost

The aim of this experiment is to provide a broad-coveragede&ibson’s DLT by inves-
tigating whether integration cost is a significant prediabeye-tracking measures obtained on a
corpus of naturally occurring, contextualized text.

3.1. Method
3.1.1. Data

For our data analysis, we used the English portion of the Bar@@brpus (Kennedy & Pynte,
2005), an English language eye-tracking corpus based ¢ ftexn The Independenmewspaper.
The corpus contains 20 texts, each comprising approxigntitelsame number of words, split into
40 five-line screens. The corpus consists of 51,502 tokend 9,776 types in total. It is annotated
with the eye-movement records of 10 English native speakdrs each read the whole corpus, and
answered a set of comprehension questions after each tedeeye-tracking data were acquired
using a Dr. Boise eye-tracker, which recorded the movenwritse right eye with a sampling rate
of 1 ms and a spatial accuracy of 0.25 characters. (See Ke@g€ynte, 2005, for further details
on the Dundee Corpus.)

Before carrying out our analyses, we excluded all cases iohathe word was the first or
last one of the line, and also all cases where the word wamsafetl by a any kind of punctuation.
This eliminates wrap-up effects that occur at line brealat tine end of sentences. Furthermore, we
excluded all words that were in a region of four or more adyaeeords that had not been fixated,
since such regions were either not read by the participasubject to data loss due to tracking
errors. This left us with 385,467 words.

3The token number refers to tokens as tokenized in the Dundgeu€ for presentation to the participants, i.e., punc-
tuation marks are attached to the words. If words and putiotuemarks are counted separately, then there are a bit more
than 56k words in the corpus.
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The fixation sequence obtained from the eye-tracking exyais can be analyzed by com-
puting a range of eye-tracking measures (see Rayner, 1&98nfoverview). The most commonly
used ones are first fixation duration, first pass duration tetadl reading timeFirst fixation dura-
tion is the length of the first fixation that lands on a region. Th&asure is often assumed to reflect
lexical access, but also oculomotor processes and visopépres of the regiorkirst pass duration
(also known agjaze duratiohis the sum of all fixations on a region between first enteriregregion
and first leaving it. This measure is thought to be indicatifzearly syntactic and semantic process-
ing (as well as lexical access). Thatal reading timeof a region is the sum of all fixations on a
region, including refixations of the region after it was l&fhis measure is assumed to be indicative
of textual integration processes (as well as lexical antbsyic/semantic processing).

For the regression analyses reported in this article, weianluded those words which had
a non-zero reading time for a given measure (i.e., only tkases that were not skipped). For first
fixation duration and first pass duration, we thus had 200¢&84 points, and 240,157 data points
in the total duration analysésThe reader is referred to the Appendix for details regardiatn
preprocessing.

3.1.2. Statistical Analysis

The statistical analyses in this paper were carried ougusiear mixed effects models (Pin-
heiro & Bates, 2000). These models can be thought of as aaj&aaion of linear regression that
allows the inclusion of random factors (such as participamtitems) as well as fixed factors. The
fixed factors can be discrete (such as whether the previotswaes fixated) or continuous (such as
word frequency). More specifically, we used hierarchiaaddir mixed effects models, which make
it possible to partition the variance to be accounted far emnumber of levels; participants were
entered as a separate level in the model, following Rich{@006) recommendations for the treat-
ment of reading time data (this is a generalization of an @gugr initially proposed by Lorch &
Myers, 1990; for alternative proposals using mixed modsde, Baayen, Davidson, & Bates, 2008).

A separate mixed effects model was computed for each of ttee thependent variables
(first fixation duration, first pass duration, and total regdime). The following low-level predictor
variables were entered into each of the models: word lengttharacters, log-transformed word
frequency, forward transitional probability, backwardrisitional probability, word position in the
sentence, whether the previous word was fixated or not, kadistance, and fixation landing posi-
tion. In addition, one or more predictor variables wereudeld that represented the target measure,
i.e., integration cost or surprisal.

Minimal models were obtained by entering all predictors alhgpossible binary interactions
between them into the model and then simplifying the modelguthe Akaike Information Criterion
(AIC). The AIC is a measure that optimizes model fit by takintpiaccount the amount of variance
explained as well as the number of degrees of freedom. Thiedure ensures that a model is ob-
tained which achieves the greatest fit to the data with thénmairn number of predictor variables.
In the remainder of the paper, we will give the coefficientd aignificance levels for those predic-
tors that remain in the minimal model. All of these coeffitgeare statistically significant, with the
possible exception of main effects, which are only removechfthe minimal model if there is no
significant interaction that depends on them.

4By data point we mean the word reading times according toefezant measure.
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3.1.3. Implementation

Non-syntactic PredictorsThe non-syntactic predictors used were word length inadiar
ters (WORDLENGTH), word position in the sentence ESTENCEPOSITION), whether the pre-
vious word was fixated (ReviOUSWORDFIXATED), the distance between the previous fix-
ation and the current fixation @UNCHDISTANCE), and the character on which the eye
lands in the word (BNDINGPOSITION). These values can be read off directly from the
Dundee Corpus. The predictors logarithmic word frequenéyoRDFREQUENCY), logarith-
mic word frequency of the previous word KBVIOUSWORDFREQUENCY), forward transi-
tional probability (FORWARDTRANSITIONALPROBABILITY), and backward transitional probabil-
ity (BACKWARD TRANSITIONALPROBABILITY) need to be estimated from a training corpus. We
used the British National Corpus (BNC) (Burnard, 1995) astiheated unigram and bigram proba-
bilities using the CMU-Cambridge Language Modeling Tob(kllarkson & Rosenfeld, 1997). For
the bigram model, many of the bigrams from the Dundee Corpare wot observed in the BNC
training data. To avoid having to assign a bigram zero pritibajust because it did not occur in the
training data, we smoothed the bigram probabilities, seme of the probability mass of the seen
events was redistributed to unseen events. We used thenVEietk smoothing method (Witten &
Bell, 1991), which is predefined in the CMU Toolkit.

Integration Cost It is not feasible to manually compute values for the predititegration
cost (INTEGRATIONCOST) for the whole Dundee Corpus, given its size. We therefoliedeon
automatic methods which can handle a large amount of dataafbuypotentially error-prone). We
parsed the corpus with an automatic parser and implemenfigaicon that uses these parses to
assign integration cost values to the words in the corpus.plinser used was Minipar (Lin, 1998),
a broad-coverage dependency parser for English. Minipeffisent and has good accuracy: an
evaluation with the SUSANNE corpus (Sampson, 1995) shoatsttachieves about 89% precision
and 79% recall on dependencies (Lin, 1998) on SUSANNE. A mggecy parser was chosen be-
cause the dependency relationships that it returns areélyexatat we need to calculate integration
costs (see Figure 1 for an example).

In our implementation, integration costs are composed @tthst of (a) constructing a dis-
course referent and (b) the number of discourse refereatsodtur between a head and its de-
pendent, excluding the head and the dependent themsehlissefuires discourse referents to be
identified in the corpus; we used the approximation that alids that have a nominal or verbal part
of speech are discourse referents. Using part of speeclasagmed by the parser also allows us to
differentiate between auxiliaries, modals and full veerg] to automatically identify nouns that are
parts of compound nouns.

It is important to note that two versions of integration a@gst in the literature: one based on
Gibson'’s (2000) DLT, and the earlier version based on Giksgd998) syntactic prediction locality
theory, a predecessor of DLT. The difference between thevsysions only concerns nouns; in
this paper, we assume the Gibson (2000) version of integratbst (though we conducted some
experiments with the 1998 version, see Section 4.3). DLTl&ias been extended and revised to
provide a more extensive account of noun phrases (e.g.eWé&rnGibson, 2002), but this revised
version of DLT has not been formalized, and thus would be hbargnplement without making
additional assumptions.

We evaluated our integration cost implementation using atdiext that had been hand-
annotated with integration cost values. This evaluatisegus an estimate of how well our auto-
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matic annotation tool performs. We found that the integratiost values assigned automatically to
the 764 words in the evaluation text were correct 83% of time tiFurther analysis revealed that
the automatically assigned integration cost values wesifgiantly correlated with the manually
assigned ones (Pearson’s- 0.697, p < 0.001). This result needs to be regarded as a lower bound.
Unlike the Dundee Corpus, the evaluation text was not a nepeptext. Rather, it was a manually
constructed story created in order to contain sentencdshigh integration cost. The sentences in
the evaluation text are often long and complicated, ancthes hard to analyze with our automatic
tool. Mean integration cost in the evaluation text was 0 ffijevin the Dundee Corpus it was 0.55.

3.2. Results

In Experiments 1 and 2, we will only consider results for fpass durations in detail. The
results for first fixation durations and total times are bipasimilar, and will only be discussed
briefly. We will return to this in Experiment 3, which provigle comparison of the results for the
three eye-tracking measures for a model that contains @lpthdictors used in this paper (see
Section 5.3).

Tables 1 and 2 show the coefficients and significance leve&sraa when running hierar-
chical linear mixed effects models on first pass durationisaeted from the Dundee Corpus. Both
models include all the non-syntactic predictors and irgegn cost, and were computed over all
words in the corpus. The difference between them is thatliheTh, all predictors were included as
main effects only, i.e., no interactions between predictoere included. The interactions between
predictors also have explanatory power, but it is inforgeato first consider a mixed effect model
without these interactions. We use this simpler model tdegxmow to interpret mixed effects mod-
els; many of the previously established findings in the megditerature are confirmed by our data.
Table 1 shows an intercept of approximately 275 ms. This earetparded as the base reading time
of a word, to which the value for each predictor multipliedthg coefficient for that predictor is
added to obtain the predicted reading time for that word.

For example, the coefficient of WRDLENGTH is approximately 15 ms, which means that
for each letter of the word, an additional 15 ms are addeddoabrd’s predicted reading time.
The fact that the coefficient of WRDLENGTH is positive means that longer words have longer
reading times, a basic finding in the reading literature. Ve abserved a negative coefficient for
logarithmic word frequency (WRDFREQUENCY), which means that more frequent words are read
faster than less frequent words.

We also find that the presence of a fixation on the previous WRrdVvIOUSWORDFIXATED)
reduces reading time by 25 ms, i.e., fixation time is longeemvthe previous word was skipped.
There is also an effect of landing positionAIWDING POSITION), whose negative coefficient indi-
cates that reading time decreases with increasing landisitigmns, at a rate of approximately 10 ms
per character. It has been claimed that readers speed up tlvbit move through a sentence (Fer-
reira & Henderson, 1993). Our data support this, since waiolat small negative coefficient for the
position of the word within the sentencei$TENCEPOSITION), which means later words are read
faster. There was no significant effect of launch distanceULCHDISTANCE), which probably
indicates that any variation in reading time due to launchadice is already explained bgrBvi-
OUSWORDFIXATED and LANDINGPOSITION. (Recall that non-significant predictors are removed
by our model fitting procedure, that is whyaAUNCHDISTANCE does not appear in Table 1.)

For forward transitional probability (P(RWARDTRANSITIONALPROBABILITY), we ob-
served a negative coefficient, which means that words wigh kiansitional probability are read
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Predictor Coefficient  Significance
(INTERCEPT) 275.25 rxk
WORDLENGTH 14.69 rxk
WORDFREQUENCY —-12.16 ol
PREVIOUSWORDFREQUENCY -5.76 Fokok
PREVIOUSWORDFIXATED —24.65 rxk
LANDINGPOSITION —9.99 ok
SENTENCEPOSITION —-0.23 *xk
FORWARDTRANSITIONALPROBABILITY —0.54 *
BACKWARD TRANSITIONALPROBABILITY 3.41 Fxk
INTEGRATIONCOST —2.28 ok

*p < 0.05, *p < 0.01, ** p < 0.001

Table 1: First pass durations for all words in the Dundee Gerpoefficients and their significance levels for
a model that includes all predictors only as main effects.

faster, in line with McDonald and Shillcock’s (2003b) reasuHowever, while McDonald and Shill-
cock (2003b) also find a negative coefficient for backwardditeonal probability, while in our data
BACKWARD TRANSITIONALPROBABILITY shows a small positive coefficient, which means that
words with higher backwards transitional probability shelightly higher reading times.

While the coefficients for the non-syntactic predictors englausible interpretations that
are consistent with the previous literature on reading,réfselt for the integration cost predictor
(INTEGRATIONCOST) is disappointing: we obtained a significant negative cokeifit, which means
that higher integration cost leads to shorter reading taoetrary to the prediction of DLT.

The same significant predictors were obtain we ran mixecceffeodels for first fixation
duration and in total reading times (we omit the tables hevéh one exception: for first fixations,
there was no effect of word length and no effect of integratiost.

One potential explanation for the lack of an effect of inggm cost may be the fact that
(following Gibson), we assumed identity as our integragost function, i.e., I(n) = n. It is possible
that there is a logarithmic relationship between integratiost and reading time (e.g., similar to that
between frequency and reading time). We tested this bymeing the analysis reported in Table 1
with the integration cost function I(n) = log(n+1). Howeyagain a significant negative coefficient
for INTEGRATIONCOST was obtained (though model fit improved slightly).

We now return to Table 2, which lists the results for a mixddaf model that includes all
predictors as main effects and all binary interactions betwpredictors, and was optimized by re-
moving all predictors that do not improve model fit (see SecB.1.2). The results are broadly
similar to those obtained using main effects only, with tixeeption that launch distances is
now a significant, negative predictor. However, we find gigant interaction in this model which
makes the coefficients harder to interpret. For exampletragnto expectation, frequency now
has a positive coefficient. This needs to be interpretedarctntext of the negative coefficient of
WORDLENGTH:WORDFREQUENCY, the interaction between word length and frequency.

This interaction means that short, frequent words havedongading times (positive co-
efficient of WORDFREQUENCY) than less frequent words with equal lengtExamples include

SMore precisely, the coefficient of frequency becomes negdtir words with two letters or more, @s+ 2¢; < 0,
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Predictor Coefficient  Significance
(INTERCEPT) 16806 rxk
WORDLENGTH 29.64 rxk
WORDFREQUENCY 7.54 Fokok
PREVIOUSWORDFREQUENCY -5.67 Fokk
PREVIOUSWORDFIXATED —25.62 rxk
LANDINGPOSITION 1.92 ok
LAUNCHDISTANCE —-1.35 rxk
SENTENCEPOSITION -0.21 ok
FORWARDTRANSITIONALPROBABILITY —2.00 rxk
BACKWARD TRANSITIONAL PROBABILITY 2.14 Fokok
INTEGRATIONCOST —-2.01 rxk
WORDLENGTH:WORDFREQUENCY -3.87 bl
WORDLENGTH:LANDINGPOSITION —-1.71 rxk

*p < 0.05, *p < 0.01, ** p < 0.001

Table 2: First pass durations for all words in the Dundee Gerpoefficients and their significance levels for
a model that includes all predictors as main effects anddiry interactions, minimized using the AIC.

abbreviations, or expressions sucls Among longer words, more frequent ones are read faster,
as expected (negative coefficient ofdDLENGTH:WORDFREQUENCY). Similarly, we observe a
significant negative coefficient for the interaction of waedgth and landing position. The inter-
pretation is analogous to that of theQNDLENGTH:WORDFREQUENCY interaction: the positive
effect of landing position on reading time is reversed foigier words.

Crucially, the coefficient for integration cost is negatiso in the model that includes all pre-
dictors an all binary interactions. Again, this runs agaihs DLT prediction that higher integration
cost should lead to higher reading times.

When we fitted mixed models for first fixation times and totalds, we again found the same
pattern of results as for first pass time, with the exceptiat the NTEGRATIONCOST effect was
not significant in first fixations.

3.3. Discussion

In this experiment, we fitted mixed effect models on the negdimes for all words in the
Dundee Corpus, and found that integration cost is a significagative predictor of reading time,
i.e., that higher integration cost values correspond tatshoeading times, contrary to the prediction
of DLT. This result can be explained by the fact that DLT onhpypdes a partial definition of
syntactic processing complexity: integration costs aflg assigned to nouns and verbs. All other
words have an integration cost of zero, while there are v@myrfouns or verbs with an integration
cost of zero (only non-head nouns in compounds).

We therefore further investigated the relationship betweading time and integration cost.
We re-ran the mixed effects model in Table 2 on all words indbus and included integration
cost as a factor, i.e., as a discrete predictor. When the Dédigtions are entered into the regression
as categorical values, separate coefficients are estirfatedch integration cost value.

wherecs andcy; are the coefficients of WRDFREQUENCYand WORDL ENGTH:WORDFREQUENCY, respectively.
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These separate coefficients allow us to assess the influémaads with an integration cost
of zero: the negative overall coefficient for integratiorstcas a continuous variable may be due
to the fact that words with integration cost O are problematiecause not all of them may be
covered by the theory. Therefore it is interesting to seethdrethere is an overall positive trend
for words that are assigned an integration cost. Figure 3 johbegration cost values against their
model coefficients and shows a general trend of higher iategr cost values corresponding to
greater coefficients (i.e., increased reading times), edigted by DLT. The figure also shows that
the coefficients for integration cost values one to nine agative, i.e., the reading times for words
with these integration cost values is shorter than the nggtitne for words with zero integration cost
(which the model takes as the base value and assigns a aadffidizero). This finding indicates
that words with integration cost 0 can still generate difficibut that this difficulty is not captured
by DLT, which only makes predictions for nouns and verbssThBsult also means that the current
coverage of DLT is clearly not sufficient for naturally ocdng text. Most words in the corpus have
integration cost values between zero and fiffdis explains why we found an overall negative
coefficient of integration cost in Table 2 (wheneTEGRATIONCOST was entered as a continuous
predictor), even though higher integration cost valuesgaly correspond to higher reading times
in Figure 3.

20 30
|

10

Coefficient

-10

0 2 4 6 8 10 12

Integration Cost

Figure 3 Coefficients for the factor integration cost in a mixed effemodel on the words in the Dundee
Corpus.

As Figure 3 shows, the average residual reading time of weitiszero integration cost is
higher than those of words with slightly higher integratamst. Since DLT traditionally only makes
predictions for verbs and nouns, it would be interestingrid but at what other word types a sim-
ilar cost might be incurred. To test whether some types ofda/idake longer to read than others

81n fact, the largest influence on the regression coefficientes from words with integration cost 0 (approx. 125,000
fixated words) and integration cost 1 (approx. 84,000 fixateds).
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after factoring out low level effects, we computed residulding times on the Dundee Corpus
by building a mixed effects model that contains all the ngntactic predictors, and subtracted the
reading times predicted by this model for the observed ngatines. We analyzed these data by
partitioning them according to the words’ parts of speedB$P We found that adjectives, preposi-
tions, sentence adjectives, and expletives have meamuatsehding times larger than zero, which
means they are read slower than would be expected accoalingrtl length, frequency, and the

other non-syntactic predictors. The data suggests thatiitide interesting to extend DLT in a way

that makes it possible to also assign an integration cosbetword categories.

4. Experiment 2: Integration Cost for Verbs and Nouns

In Experiment 1, we obtained a negative coefficient for irdéign cost when we fitted a
mixed effects model to predict reading times for all wordghia Dundee Corpus. We concluded
that this finding is due to the fact that DLT does not make irggn cost predictions for words
other than verbs and nouns. In the present experiment, wexpibre this link further by providing
a detailed analysis of integration costs for nouns and verbs

4.1. Method

Data, statistical analysis, and implementation used weresame as in Experiment 1.

4.2. Results

Again, we will only consider results for first pass duratiagmsletail; the reader is referred to
Experiment 3 (see Section 5.3) for a more detailed compan§cesults for first fixation durations,
first past times, and total times.

Nouns We first fitted a mixed effects model for the first pass duretifor all the nouns in the
Dundee Corpus (49,761 data points for the early measurgs®dlata points for total durations)
that included all predictors as main effects and all binaitgractions, minimized using the AIC.
Integration cost was not a significant, positive predictareading time in this model.

When the data set was restricted further, viz., to nounsmatirzero integration cost (45,038
and 51,613 data points respectively), a significant, pesitbefficient for integration cost was ob-
tained. Furthermore, we found that model fit improves shglvhen using the logarithmic integra-
tion cost function I(n) = log(n + 1) compared to when usingreedir one. The coefficients of this
model are listed in Table 3. The significant positive coedfitifor integration cost in this model
means that nouns with higher integration cost take longezad.

We fitted mixed models for first fixation durations and totatds, and found the same set
of significant predictors, with the following exceptiongr ffirst fixations, there was no signifi-
cant effect of WORDLENGTH, and the effect ofNTEGRATIONCOST was small, and there were no
significant interactions. For total timesyTEGRATIONCOST narrowly failed to reach significance
(p=0.07).

We further investigated why the effect of integration cashouns was only present if nouns
with zero integration cost were excluded. This is partidul@uzzling as it is rare that nouns re-
ceive an integration cost of zero; there is only way for tbisiappen in the corpus: the first word
of noun-noun compounds and pronouns. We re-ran the modehle B, but included pronouns (an
additional 4,840 data points for the early measures, 6, Hd8 ploints for total durations), despite
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Predictor Coefficient  Significance
(INTERCEPT) 12824 rxk
WORDLENGTH 30.90 rxk
WORDFREQUENCY 14.50 ol
PREVIOUSWORDFIXATED —18.05 ok
LANDINGPOSITION —-4.18 rxk
LAUNCHDISTANCE —-191 ok
SENTENCEPOSITION —-0.12 *
FORWARDTRANSITIONALPROBABILITY -3.27 Fokok
BACKWARD TRANSITIONALPROBABILITY 3.96 rxk
log(INTEGRATIONCOST) 5.86 *
WORDLENGTH:WORDFREQUENCY —4.98 rxk
WORDLENGTH:LANDINGPOSITION —-1.02 ok

*p<0.05,*p<0.01, *** p<0.001

Table 3: First pass durations for nouns (with non-zero iratégn cost) in the Dundee Corpus: coefficients
and their significance levels for a model that includes abjxtors as main effects and all binary interaction,
minimized using AIC.

their integration cost of zero. Again, a significant, pesitcoefficient of integration cost was ob-
tained. First parts of compounds were relatively frequarthe Dundee corpus: there were 7,121
data points for total durations and 6,118 data points foretndy measures; a large proportion of
these cases consisted of proper names (such people’s natitesp

Verbs Just as for nouns, we fitted a mixed effects model for thegass durations for all the
verbs in the Dundee Corpus (the model again included all eféétts and all binary interactions).
No significant, positive coefficient for integration costsaabtained in this model. We re-ran the
model with verbs that exhibit a non-zero integration costl with a logarithmic instead of a linear
integration cost function. Again, integration cost was asignificant, positive predictor of reading
time.

We then fitted a model that included the part of speech of tHeasa predictor. The rationale
behind this is that verb reading time differs by part of speexcg., inflected verbs are read more
slowly than infinitives. This model only included verbs witbbn-zero integration costs and used
a logarithmic integration cost function. We found that greion cost was a significant, positive
predictor of reading time (though the size of the coefficigas smaller than for nouns).

In order to further investigate the integration cost eftbat we found for verbs, we computed
residual reading times for this data set (see Section 3.3Xh@ residuals, we then fitted a model
that includes a predictor that indicates the part of spedédheodependent that is integrated at a
given verb (or sequence of parts of speech if multiple depetsdare integrated). The coefficients
in this model indicate which dependents lead to higher oefowtegration costs, see Table 4. We
observe that, as predicted by DLT, the integration of noyrest$ of speech NN, NNP, NNS) or
adverbs (part of speech RB) leads to longer reading timéassithere is also an auxiliary (AUX)
that occurs before the verb. The auxiliary thus seems tbtédeiintegration of nouns at the verb.
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Dependents Coefficient  Significance N
PRP-AUX-NN —81.45 o 15
PRP-AUX —76.24 o 13
NNP-AUX-AUX —6241 o 21
RP —62.34 * 12
NNP-AUX —5952 * 17
PRP-MD —56.44 * 17
NNS-AUX-AUX —35.65 * 57
NNS-MD-AUX -30.75 o 110
PRP-AUX-PR-PAUX  —29.72 ok 184
NN-MD-AUX —25.35 o 153
PRP-AUX —22.64 ok 700

PRP-AUX-RB —21.75 * 133
AUXG —20.26 * 121
NNP-AUX —19.05 i 301
TO-PRP -16.97 ok 723

NNP 1201 ok 1372
NN-RB 2226 * 127
AUX-NNP 66.11 * 15
VBP 67.69 * 10
RB 7588 ok 15
NN-NNS 7643 ok 25

PRP-MD-PRP-MD-JJ 108 * 65

Table 4: First pass durations for verbs (with non-zero irgggn cost) in the Dundee Corpus: coefficients for
the verbal dependents and their significance levels for sehfibiéd on residual reading times. Abbreviations
in the table refer to part of speech tags used by the Penndm&eimnotation: AUX: auxiliary, PRP: personal
pronoun, NN: singular or mass noun, NNP: proper noun, sargiRP: particle, MD: modal, NNS: plural
noun, RB: adverb, AUXG: auxiliary present participle, TQepositionto, JJ: adjective, VBP: non-third
person singular present verb.

4.3. Discussion

In Experiment 1, we saw that DLT integration cost does notstiite a broad-coverage
theory of syntactic complexity, in the sense that integratost failed to emerge as a significant,
positive predictor of reading time on the whole of the Dun@eepus. We hypothesized that this is
due to the fact that DLT only makes partial integration cosdctions, viz., for nouns and verbs
only. In the present experiment, we investigated this &rrthy analyzing the performance of DLT
on verbs and nouns in more detail.

We showed that integration cost is a significant, positivdmtor of reading time on nouns
with a non-zero integration cost, and thus supports the tingses in DLT. However, this result
reflects only effects on a small amount of the data: In itsdsesh form (Gibson, 2000), DLT does
not make very interesting predictions for nouns. By defalllihouns have an integration cost of one,
because a discourse referent is built. The only cases irhwidans can receive an integration cost
of greater than one are in constructions suctegeest for permissigrwherepermissioris analyzed
as the head of the NP, genitive constructions the Nation’s criminalsand copula constructions.
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In the latter, nouns are considered to be the head of theghrakintegrate the veli® This means
that the integration cost for the noun depends on the numbdiscourse referents intervening
between the noun aruk

We also investigated the two cases in which DLT assigns agtiation cost of zero to nouns.
The first case is pronouns, which DLT assumes to constitdteistourse referents, not incurring a
cost. We extended our model by including pronouns (as thermmlins with zero integration cost),
and still found that integration cost was a significant, fiasipredictor, which provides evidence for
the DLT assumption that pronouns carry zero integration. dd® second case of zero integration
cost is noun-noun compounds, for which DLT assume that teerfoun incurs no integration cost.
However, when we fitted a model on all nouns (including thesomith zero integration cost), we
failed to obtain a significant coefficient for integratiorstdr his indicates that the DLT assumption
of cost-freeness for the first noun of a noun-noun compousdscorrect. Rather, we have to as-
sume that a discourse referent is already being establighed the first noun in the compound is
encountered, i.e., this noun should incurs a non-zero cost.

At this point, it becomes important which version of DLT isdgo compute integration cost
values. In contrast to the Gibson (2000) version used inghjser, the Gibson (1998) version of
DLT assigns higher integration costs to nouns that occer #fieir head noun. In order to test how
crucial this assumption is, we implemented the 1998 veraimhconducted the same experiments
as with the 2000 version, but this failed to yield an improfiedn our data set.

In addition to looking at nouns, we also investigated thati@hship between reading times
and integration cost for verbs and were able to show thagjiaten cost is a significant positive
predictor of verb reading times. However, the coefficiensweall compared to that found for
nouns; also, this result was only obtained for a model thadudes the parts of speech of the verbs
as an additional predictor. This indicates that integratiost only has a small overall effect on
reading time for verbs, and that this effect is variable ssngarts of speech.

As verb integration cost is at the heart of DLT (which preslianly limited variation in noun
integration cost, see above), we investigated this reattlér. We fitted a model on the residual
reading times that included the parts of speech of the degmsdo be integrated at the verb as
a predictor. This analysis revealed the following pattexee(Table 4): positive coefficients were
obtained for the integration of nominal dependents (irtthgathat this integration leads to increase
reading time), while negative coefficients were obtainedtli@ integration of auxiliaries (which
means that this integration decreases reading time). fncibmtext, it is interesting to note that
Warren and Gibson (2002) found a reading time effect forlauiés. Auxiliaries following definite
NPs were read more slowly than auxiliaries following promauT his result in consistent with our
findings in the Dundee Corpus, i.e., that auxiliaries, andusi main verbs, show integration cost
effects. However, Warren and Gibson (2002) interpret tiiling as a spillover effect.

5. Experiment 3: Surprisal

Experiments 1 and 2 indicate that there is evidence that Dtégration cost is a predictor of
reading time in the Dundee Corpus. However, DLT cannot bardsgl as a broad coverage model,
as we found integration cost effects only if we limited ourdals to verbs and nouns with non-zero
reading times. The present experiment has the aim of ewradustirprisal as an alternative model
of syntactic processing complexity. Unlike DLT, surprisaldesigned to make predictions for all
words in a corpus, on the basis of a probabilistic grammarwilfeest two versions of surprisal
(lexicalized and unlexicalized), and compare them agaiastsyntactic probabilistic predictors of
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reading time (forward and backward transitional probabiliFinally, we will also investigate a
possible relationship between surprisal and integratost. ¢

5.1. Method

Data and statistical analysis were the same as in Expersnieantd 2. For calculating the sur-
prisal values for the words in our corpus, we parsed the Dai@tepus with an incremental parser
which returns a prefix probability for each word in the corawes, the probability in Equation (5).
We can then use Equation (6) to obtain the surprisal valua feordw, 1: we subtract the loga-
rithmic prefix probability forwy; from the logarithmic prefix probability fon,. The parser used
was Roark’s (2001) incremental top-down parser. This isobailistic parser trained on the Penn
Treebank (Marcus, Santorini, & Marcinkiewicz, 1993), am of English text manually annotated
with phrase structure trees. Only the Wall Street Jourrai@eof the Penn Treebank was used for
training. The parser achieves a broad coverage of Engliglatel is highly accurate, with a preci-
sion and recall of 85.7% for labeled brackets reported byrlR@001). As the Dundee Corpus also
consists of newspaper text comparable to the Wall Streehdbtext the parser was trained on, we
can expect a similar performance on the Dundee Corpus.

We estimated surprisal in two different ways. The first vamnsivas fully lexicalized, i.e., it
takes into account the exact words of a string when calagattructural and lexical probabilities.
This lexicalized version was obtained using the defaulfigonmation of the Roark parser. The sec-
ond version was unlexicalized, i.e., only used the strattorobabilities. The unlexicalized model
does not take into account word frequency or the probabilitg word being assigned a specific
POS tag (i.e., there are no lexical rules of type- wrote). This structural version of surprisal helps
us to factor out frequency effects, but is also limiting iattmo subcategorization information is
available to the model for calculating structural probigib#, as this information is contained in
the lexical rules. To use the Roark parser for calculatingir@exicalized version of surprisal, we
replaced each word by its own part-of-speech tag and tralmegdarser on the POS tag sequences.
This eliminates the effect of word frequencies.

5.2. Results

Table 5 shows the coefficients and significance levels abdaivhen running a mixed effects
model on first pass durations in the Dundee Corpus. As in Exeat 1, this model was computed
over all words in the corpus, and included all non-lingaigtiedictors as well as lexicalized surprisal
(LEXICALIZED SURPRISAL), unlexicalized surprisal (NLEXICALIZED SURPRISAL), and forward
and backward transitional probability

Table 5 shows unlexicalized surprisal is a significant, fnaspredictors of reading time (high
surprisal leads to longer reading time). The coefficientJoiL.EXICALIZED SURPRISAL is small,
but this has to be interpreted in the context of the rangeisfitedictor: the values for unlexicalized
surprisal range from 0.04 to 18.1, with a mean surprisal 46.2.

Lexicalized surprisal (EXICALIZED SURPRISAL) does not figure in Table 5, which means
that it was not a significant predictor of reading time, and whminated from the model during
model selection. However, forward transitional prob#pilas a significant negative predictor of
reading time (higher probability means lower reading tinagd backward transitional probability
has a positive coefficient. As detailed in Section 2.3, fedieansitional probability can be regarded
as a simple form of surprisal that only takes into accountitm@ediate context (the preceding
word). This indicates that lexicalized surprisal does mqil@n any variance in the eye-movement



EVIDENCE FROM EYE-TRACKING CORPORA 20

Predictor Coefficient  Significance
(INTERCEPT) 13567 rxk
WORDLENGTH 29.77 rxk
WORDFREQUENCY 857 ol
PREVIOUSWORDFIXATED -17.70 Fokok
LANDINGPOSITION 1.13 *x
LAUNCHDISTANCE —1.63 ok
SENTENCEPOSITION —-0.20 rxk
FORWARDTRANSITIONALPROBABILITY —1.60 Fokok
BACKWARD TRANSITIONALPROBABILITY 2.06 rxk
UNLEXICALIZED SURPRISAL 1.03 ok
WORDLENGTH:WORDFREQUENCY —-4.01 rxk
WORDLENGTH:LANDINGPOSITION —1.66 ok

*p<0.05,*p<0.01, *** p<0.001

Table 5: First pass durations for all words in the Dundee Gerpoefficients and their significance levels for
a model that includes all predictors as main effects, anbiiadlry interaction, minimized using the AIC.

record over and above what is explained by forward tramstiprobability and unlexicalized sur-
prisal.

We also fitted mixed effect models for first fixation duraticarsd total times, which also
showed an effect of unlexicalized surprisal, and the alesehtexicalized surprisal. Also the other
significant factors listed in Table 5 were significant fortfifixations and total times, except for
fact that the interaction of WRDLENGTH and LANDINGPOSITION was not significant for first
fixations; also all effect sizes were much smaller for thismge.

5.3. Discussion

This experiment showed that surprisal can function as adecosierage model of syntactic
processing complexity: we found that unlexicalized swsgdrivas a significant, positive predictors
of reading time on arbitrary words in the Dundee Corpus. $ats surprisal apart from integration
cost, which does not make predictions for all words in thgasy and for which we only obtained
significant effects on verbs and nouns.

We failed to find a corresponding effect for lexicalized siggl. This indicates that means
that forward transitional probability and structural susal taken together are better predictors of
reading times in the Dundee Corpus than lexicalized swpnighich combines these two compo-
nents. Forward transitional probability can be regardea sisnple approximation of surprisal (see
Section 2.3), and our results indicate that this approdonas sufficient, at least when it comes to
predicting the reading times in the corpus.

Unlexicalized surprisal, on the other hand, takes stratfunobabilities into account, but dis-
regards lexical probabilities, and therefore is a signifigaedictor of reading time, even if forward
transitional probability is also entered into the model. &aclude that structural surprisal is able
to explain a component in the reading time data that neitisdcalized surprisal, nor transitional
probabilities, nor any of the other non-syntactic preditwan explain. This is evidence for Hale’s
(2001) and Levy’s (2008) hypothesis that the incrementsdaifirmation of syntactic hypotheses
by the parser can explain processing complexity.
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This raises the more general question of overlap betweewatti@us measures of syntactic
processing complexity investigated in this paper. To asklthis issue, we computed correlations
between integration cost and the different incarnationsuoprisal (lexicalized and unlexicalized
surprisal, forward and backward transitional probalesiji and word frequency. The result is given
in Table 6; all correlations are statistically significantcept for the pair VORDFREQUENCY—
UNLEXICALIZED SURPRISAL (even small correlations are significant due to the large barmof
observations). As expected, forward and backward tramsitiprobability are highly correlated.
Furthermore, the lexicalized measures (lexicalized sapand transitional probabilities) are highly
correlated with word frequency. The high correlation betwvkexicalized surprisal and forward tran-
sitional probability confirms the intuition that these tweasures are in fact both incarnations of
surprisal, but of a different level of granularity. On thdnet hand, structural surprisal is not sig-
nificantly correlated with the other measures, includingdvisequency (though there is a weak
correlation with lexicalized surprisal). This confirms thanlexicalized surprisal really captures
structural probability effects, without taking lexicalgimabilities into account. Crucially, Table 6
also shows that integration cost is orthogonal to surpesdithe other frequency-based predictors:
there is no strong correlation betweeMTEGRATIONCOST and any of the other predictors. This
is supporting evidence for our hypothesis that both DLT amgbrésal capture relevant aspects of
processing difficulty, but that these aspects are complanersince DLT describes difficulty in-
curred through memory load effects and reactivating presvinaterial to integrate it into the current
context, whereas surprisal captures the predictabilitthefcontext and changes in the maintained
interpretations.

This finding holds even if we compute correlations only far therbs in the Dundee Corpus
(not shown in the table): the correlation between integratiost and unlexicalized surprisal is ap-
proximately 005 for verbs, while the correlation between integration eosl lexicalized surprisal
is approximately M1 for verbs. This confirms that integration cost and suapase orthogonal: if
there was a relationship between them, it should manifssifibn verbs, as verbs are the words
with the largest variation in integration cost (compareddons, which mostly have an integration
cost of one, and the other words in the corpus, which have t@griation cost of zero; see also
Section 4.3).

Finally, we fitted a mixed effects model that includes lelimsl and unlexicalized surprisal,
forward and backward transitional probability, as well aegration cost. To illustrate the differ-
ences between various eye-movement measures, we fittecgtgepeodels for first pass duration
(the measure discussed so far), and additionally first @raiime, and total timé.The results are
given in Table 7. We will first discuss first pass times, whiblowsed that integration cost, unlex-
icalized surprisal, lexicalized surprisal, as well as farvand backward transitional probability
are all significant predictors of reading time. However, ¢befficient of integration cost was neg-
ative, confirming that integration cost is not a broad-cager predictor of reading time (as shown
in Experiment 1). Furthermore,BXICALIZED SURPRISAL, while significant, has a small negative
coefficient, meaning that words with higher lexicalizedmisal show longer reading times. This
is compatible with the model in Table 5, which failed to findigngficant effect of unlexicalized
surprisal.

Turning to the results for first fixation times (see Table 7¢, again found a significant neg-

"Note that these models are based on different subsets ofatag since the data sets include all words that have
non-zero reading time. This means that total times have miata points (in addition to first pass and first fixations all
those that were not fixated in first pass, but at some later pass
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INTEGR WORD LEX UNLEX FORWTRANS
CosTt FREQ SURPRIS SURPRIS ProB
WORDFREQUENCY —0.25
LEXSURPRISAL 017 -057
UNLEXSURPRISAL —0.07 004 036
FORWTRANSPROB —0.20 062 —0.66 —-0.10
BACKTRANSPROB —0.26 062 —0.53 004 068

Table 6: Correlation coefficients (Pearsory®etween the predictors, for fixated wordés-£ 237,163).

ative effect of forward transitional probability, and arsficant positive effect of backward transi-
tional probability. Unlexicalized surprisal was a posstpredictor of reading time, while integration
cost and lexicalized surprisal were removed by the modekcteh procedure because they were
non-significant. As in the previous experiments, the caefiiis for first fixation times were smaller
than the ones for first pass times.

The results for total time (see also Table 7) replicated éiselts for first pass; again forward
and backward transitional probability, integration castd lexicalized and unlexicalized surprisal
were significant predictors. The coefficients for integnatcost and surprisal were negative, also
replicating the findings for first pass times.

First Fix First Pass Total Time
Predictor Coef Sig Coef Sig Coef Sig
(INTERCEPT) 19325 *** 143.17 *** 196.15 ***
WORDLENGTH 174 ** 2954 ** 2373 ***
WORDFREQUENCY —2.57 x** 7.05 x** 4.49 Fxx
PREVIOUSWORDFIXATED —6.42 ** 1772 ** 2751 **
LANDINGPOSITION rem - 123 ** n/a -
LAUNCHDISTANCE —181 ** 162 *** n/a -
SENTENCEPOSITION —0.05 *=* 020 *** _—(0.26 ***
FORWARDTRANSITIONALPROBABILITY —2.06 ** 214 ** 245 x**
BACKWARD TRANSITIONAL PROBABILITY 0.45 ** 155 = 155 **
log(INTEGRATIONCOST) rem — =537 *x _£Q99 **
LEXICALIZED SURPRISAL rem - =073 ** 116 ***
UNLEXICALIZED SURPRISAL 0.39 *** 1.39 = 2.18 x**
WORDLENGTH:WORDFREQUENCY —-047 ** 386 ** 415 ***
WORDLENGTH:LANDINGPOSITION rem — =167 *** 0.13 -

*p < 0.05, *p < 0.01, ** p < 0.001

Table 7: First fixation times, first pass durations, and tttaé for all words in the Dundee Corpus coeffi-
cients and their significance levels for a model that incéudigth surprisal and integration cost as predictors,
minimized using the AIC. Predictors marked “n/a” are notlaggble for this measure; Predictors marked
“rem” were removed from the regression because they didigoifeantly reduce the AIC.
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6. General Discussion

In this paper, we evaluated two theories of syntactic pisingscomplexity against reading
time data extracted from a large eye-tracking corpus: @Gisgd998, 2000) Dependency Locality
Theory (DLT) and Hale’s (2001) surprisal. We selected thegeapproaches for our investigation
because they make complementary theoretical assumpfiifiSs integration cost captures the
cost incurred when a head has to be integrated with the depenthat precede it. Surprisal, on the
other hand, accounts for the cost that results when therdumard is not predicted by the preceding
context.

This paper evaluated integration cost and surprisal ushmgad coverage approach, i.e., we
investigated whether the two theories provide accuratigiiens for arbitrary words in naturalistic,
contextualized text (as opposed to artificially constrdagperimental materials, presented out of
context and repeated many times). For this investigationsed the reading time data in the Dundee
corpus, a large corpus of newspaper text annotated withmmyement data.

We found that DLT’s integration cost was not able to providading time predictions for
the Dundee corpus as a whole. This was largely due to thedatOLT only assigns integration
cost values to verbs and nouns; this means that the majdritoals in the corpus have an inte-
gration cost of zero. However, we were able to show that matémn cost is a significant predictor
of reading time if the verbs and nouns in the corpus are aedlgeparately. We also identified
limitations of DLT’s treatment of nouns. One example is tasuamption that the first noun in noun-
noun compounds carries zero integration cost. This is ipatitnle with our results, which indicate
that the integration cost should be spread over the wholgoand. Furthermore, we observed that
DLT only makes a restricted range of predictions for nounish fiew exceptions, all head nouns
are assigned an integration cost of one. Arguably, thigdinfie power of the theory in explaining
reading time data for noun phrases in a corpus, which are cftenplex. This problem could be
address by extending DLT along the lines suggested by WandrGibson (2002). They provided
evidence that processing complexity at the verb varies thighreferential properties of the NP to
be integrated, as expressed by the NP’s position on the @@ssnHierarchy (Gundel, Hedberg, &
Zacharski, 1993). They find that complexity increases fraonpuns to names to definite NPs to
indefinite NPs. Warren and Gibson (2002) suggest that araomis integration cost metric needs
to be developed that takes the givenness status of theatgegh P into account. This would result
in a wider range of integration cost values for the nouns énRiindee Corpus, potentially making
it possible to explain more variance in the reading time ma.co

When we tested DLT predictions against the verbs in the Deiicdepus, we found evidence
that the integration cost definition for auxiliaries neealbé revised: verbs that integrate an auxiliary
and a nominal dependent exhibit a reduced integration acwspared to verbs that only integrate a
nominal dependent. This result has an interesting imjdiodor DLT. On the one hand it confirms
the DLT assumption that an integration cost is incurred atiérb when nominal dependents are
integrated. On the other hand, it shows that this does nehdxb cases where an auxiliary precedes
the main verb. A possible explanation is that the relevategiration cost is not incurred at the main
verb, but at the auxiliary itself, which integrates nomidapendents and thus incurs a non-zero
integration cost (DLT assume that auxiliaries are cos)fr&Vhen the auxiliary is then integrated
with the main verb, it facilitates integration (hence thgaieve coefficient), as the main work of
the integration of the nominal dependents has already In@ppat the auxiliary. Note that this
assumption is compatible with syntactic theories such amdHiiven Phrase Structure Grammar
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(Pollard & Sag, 1994), which assume that auxiliaries irthied subcategorization frame of the main
verb, and that dependents are unified (integrated) intoubeagegorization frame at the auxiliary.

At this point, it is worth considering a more radical depegttrom DLT'’s assumptions. Inte-
gration cost is standardly defined in terms of the numbersifalirse referents intervening between
a head and its dependents, but alternatives have been pbjpathe literature. For example, Alex-
opoulou and Keller (2007) show that two types of extractimmfwh-phrases can differ in process-
ing complexity, even though they involve the same numbentefvening discourse referents. Based
on this result, they argue that the number of interveningastit heads (rather than discourse refer-
ents) is the crucial factor for determining integrationtcdsis is a hypothesis that could be tested
against the Dundee Corpus. A head-based definition of iatiegr cost would results in different
complexity predictions for a large number of words in thepes;, possibly resulting in a better fit
with the reading time data. We leave this as an issue forduesearch.

In the second part of this paper, we evaluated the predgtibiiale’s (2001) surprisal mea-
sure on the Dundee corpus. We computed surprisal in two Mexisalized surprisal was estimated
using a probabilistic parser that utilizes lexical (worsbd) probabilities as well as structural (rule-
based) probabilities. Unlexicalized surprisal was edsttiaising a parser that only has access to
structural probabilities. We found that only structuralmisal was a significantly positive predictor
of reading times. This finding can be explained by the fact ldvdcalized surprisal is highly cor-
related with word frequency and transitional probabilifsasitional probability can be seen as a
simple approximation of lexicalized surprisal). Therefdiexicalized surprisal fails to explain any
additional variance in the eye-movement record. Unleidedl surprisal, however, is uncorrelated
with word frequency and transitional probability and iseabtcounts for a part of the variance in
reading time that no other predictor captures. This reslivs that unlexicalized surprisal is a good
candidate for a broad-coverage model of syntactic procgssimplexity; it generates accurate nu-
merical predictions for all types of words in the corpus, just for nouns and verbs, as integration
cost does.

Our findings regarding lexicalized surprisal indicate tadtully lexicalized parsing model
does not offer an advantage over an unlexicalized one. Hewvthis does not mean that there is
no role for lexical information in modeling reading timesiélexperimental literature offers broad
evidence for the fact that sentence processing relies aalérformation, such as subcategorization
frame frequencies (e.g., Garnsey, Pearlmutter, Myers, tdky, 1997; Trueswell, Tanenhaus, &
Kello, 1993) and thematic role preferences (e.g., Garnisaly,d997; Pickering, Traxler, & Crocker,
2000). Recent probabilistic models of human sentence psaotg have attempted to integrate such
information with the structural probabilities generatgdabparser (Narayanan & Jurafsky, 2002;
Pado, 2007). It seems likely that these models (which &eetdfely unlexicalized model augmented
with a limited form of lexical information) would yield a meraccurate account of reading times in
the Dundee Corpus.

Our surprisal results are corroborated by Ferrara Bostaig,HKliegl, Patil, and Vasishth’s
(2008) work using the Potsdam Sentence Corpus. They fowatdittiexicalized surprisal is a sig-
nificant predictor of reading times, even though the Pots8amience Corpus differs in a number
of ways from the Dundee corpus: it uses a different langu&srban) and it consists of uncon-
nected sentences, which were manually constructed forriexgetal purposes, rather than taken
from naturally occurring text. Also, it is smaller in term&items (144 sentences), but larger in
terms of participants (272 participants) than the Dundepuso It is therefore encouraging that our
results are consistent with Ferrara Boston et al.’s (2068&)pite of these corpus differences. Ferrara
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Boston et al. (2008) did not test lexicalized surprisal aegmation cost on their data set, but they
compared two versions of unlexicalized surprisal, es@uagither using a context-free grammar
(i.e., in the same way as in the present paper), or using andepey grammar. In both cases, the
surprisal estimates were a significant predictor of reatings.

The analyses reported in this paper were carried out onpfass-reading times computed
from the Dundee corpus. We also investigated another eagfsare (first fixation durations) and a
late measure (total times). The results for these two measare very similar to the ones for first
pass, except that first pass showed no effect of integratiet) even if verbs are considered sepa-
rately. Unlexicalized surprisal, on the other hand, wagaicant predictor in all three measures.
This finding could indicate that integration cost is asseciavith later processes in comprehension
(that do not manifest themselves in first fixations), whilgsisal is associated with both early and
late processes (including lexical access, which is oftendht to be reflected in first fixation times).
This result is corroborated by Ferrara Boston et al. (2088} also report that unlexicalized sur-
prisal is a significant predictor for all the eye-trackinganeres they tested (their analysis involved
eight different measures).

Another central finding of the present paper was the factsingtrisal and integration cost are
uncorrelated, both for arbitrary words in the corpus, amdiésbs (for which DLT makes the bulk of
its predictions). This result suggests that a completerthefcsentence processing complexity needs
to include two mechanisms: a backward-looking one as pexpby DLT, and a forward-looking
one as proposed by surprisal. When a new word is procesgealiitwo types of processing cost:
the cost of integrating material that has been processetbpsty with the new word, and the cost
of discarding alternative syntactic predictions that aseaompatible with the new word. The first
type of cost corresponds to locality effects that have bdmewed extensively in the literature
(see Gibson, 1998 for an overview). The second type of casespmonds to anti-locality effects
which have been reported recently (Konieczny, 2000; Vési&hlewis, 2006). In order to capture
both types of cost (and yield broad-coverage results on esftragking corpus), we need to develop
a unified model that encompasses both the prediction of uppgpmaterial and the subsequent
verification and integration processes (for a first step td&/gauch a model see Demberg & Keller,
2008).

Another point to consider is the fact that the predictiondath DLT and surprisal depend
on the grammar formalism that they are operating on. In Dyiitactic structures (head—dependent
relations) determine the amount of integration cost thatdarred by a given sequence of words.
While there are many clear cases of what constitutes the, tieadlependent and the relation be-
tween them can be subject to debate in the linguistic likeeain the current paper, we assumed that
the dependency structures output by Minipar form the bds$hedntegration cost computations (see
Section 3.1.3). Minipar uses one particular codificationlgbendency grammar (Sampson, 1995),
and it is therefore conceivable that our results would chahge computed integration cost using
a parser that makes a different set of representationairgssns.

Itis important to note that surprisal also requires repreg@nal assumptions. The definition
of surprisal in Equation (4) does not mention syntacticcities explicitly. However, in order to
compute the conditional probability in this equation, pegfiobabilities have to be obtained, which
requires summing over all possible analyses of a string. ritmber and type of these analyses
will differ between grammatical frameworks, which entaitat representational assumptions do
play a role for surprisal. In the present paper, we only itigated the predictions of one type of
syntactic representations, viz., those of Roark’s (20@t3¢r, which generates Penn Treebank-style
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structures. It is possible that other syntactic modelsyiglld different surprisal estimates and fit the
reading time data more closely, or model different aspetcteendata. (This has been investigated
by Ferrara Boston et al., 2008, who compare dependency aadephtructure versions of surprisal,
as detailed above.)

Apart from its theoretical contribution, this paper alsokesma methodological contribution.
To our knowledge, this is the first time that theories of sec¢eprocessing have been tested on
broad-coverage data extracted from an eye-tracking cdrj\s believe that our corpus-based ap-
proach constitutes an important new method for evaluatingets of sentence processing. Such
models are currently tested exclusively on data obtainedstdated, artificially constructed sen-
tences in controlled lab experiments. The validity of thedele can be enhanced considerably if we
are able to show that they scale up to model reading data froeyextracking corpus, which con-
tains naturally occurring, contextualized sentencesthéumore, the use of eye-tracking corpora
has the advantage of convenience and flexibility: it make®dsible to study arbitrary syntactic
constructions, provided that they occur sufficiently frewly in the corpus. There is no need to run
a new experiment for every construction or every hypothiesize investigated.

While the corpus-based approach has great potential, #teriimitations as well. The fact
that naturally occurring sentences are used means thanitég more difficult to control for con-
founding factors. In the present paper, we have attemptéaactaode all potentially confounding
factors as co-variates in mixed effects models, thus chinyofor the influence of these factors.
However, it is possible that there are some confounds thdtawve failed to identify, and therefore
they could introduce artifacts in our models. In an expentaksetting, the experimenter will often
construct materials so that they are matched across comgliti.e., the sentences only differ in the
aspects that the experimenter wants to manipulate, an @néddl in all other ways. This reduces
the possibility that there are confounding factors thatehawt been taken into account. Another
limitation of the corpus-based approach is data sparseNessorpus can be so big that it contains
all syntactic structures that an experimenter might wamjetiodata on. For example, if we want to
investigate prepositional phrase attachment, then tsemeggbod chance that there are enough rele-
vant sentences in the Dundee Corpus. If we want to investigaiuced relative clauses, on the other
hand, then probably there are not enough tokens. This igituit even worse if we want to study
structures that are ungrammatical or cause serious pingesisruption (such as multiple center
embeddings). These probably do not occur in the corpus.at@bummarize, experimental data
and corpus data have complementary strengths and weaknasgeshould be used in conjunction
to maximize the evidence for or against a given theoretioaltipn.
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Appendix: Technical Details in Processing the Dundee Corpu
Skipping

The Dundee corpus has arelatively high skipping rate: 45%rft pass reading and 35% for
total reading times. This is higher than previously rembrtambers, e.g., Brysbaert and Vitu (1998)
found a skipping rate of only just over one third in first pasading. Therefore, many words have
a reading time value 0. If we included these data points intoregressions, they would heavily
influence the data. This is particularly problematic sirfeermeaning of skipping a word is not the
same as the meaning of a very short fixation (closed to 0 m&xefdre, all the regressions in this
article were run on fixated words only, and skipping was de#lt in a separate, logistic regression,
which included a binary response variable that specifiedhane word was fixated or not. We here
only reported the regressions on fixated words because thay@e informative.

Track Losses

The rate of track losses is relatively high in the corpus. \&kné a track loss as a sequence
of four adjacent words that are not fixated. Out of the half Bianitracked words (approx. 50,000
words x 10 participants), 7.3% of the data points are invalid duedokt losses. We remove them
for the regression analyses because the large proportidrack losses otherwise could lead to
substantial distortion of the results, in particular fairaating skipping and refixation probabilities.

Spill-Over

Spill-over effects are delays on the target word caused bygssing difficulty in the preced-
ing work. We try to capture spill-over effects by includirgetfrequency of the previous word, a flag
that indicates whether the previous word was fixated or mat Jaunch distance as predictors in our
models.

Issues Specific to Corpus Data

Newspaper text contains many types of words that are usnatlpresent in specifically de-
signed psycholinguistic experiment items, such as numdreisspecial characters. We found these
words to require special treatment. For example, in ourueeqy statistics (which we estimated
based on word occurrences in the British National Corpus@RBdfter stripping off punctuation),
we found an unexpectedly high number of short words with legtfiencies (in general we expect
that length is negatively correlated with word frequendy also found that these low frequency
words were skipped with higher probability than expectad] eeceived fewer fixations. This in-
dicated that some words were assigned to an inapproprietgidncy class. We dealt with this
problem by excluding all words that contain numbers, spetiaracters such as punctuation and
hyphens, and acronyms (words with more than one capital)elfhe variation in the word length
of rare words is then considerably lower, and both skippirabability and fixation numbers be-
come monotonous functions, with the rare words skipped Eften and fixated (and regressed to)
most often.

An alternative treatment of the problematic words would de&hange their frequency as-
signments. For instance, a psycholinguistic reason fongihg the frequency of digits would be
that they are probably considered as a class of signs in tmamyprocessor and therefore should
be annotated with their class frequency. Compounds witthéyp on the other hand should not be
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annotated with the frequency for the whole compound, agtisezvidence in the literature on com-
pound reading that the reading durations of compounds areply dependent on the frequency
of the first part of the compound (Juhasz, Starr, Inhoff, &Rég 2003).

Alignment of Tokenizations

Tokenization in the Dundee corpus is often different frore tbkenization used by the
parsers. Therefore, it is necessary to realign the parséavith the Dundee corpus segmentation.
If a word in the Dundee corpus corresponds to multiple wondthé parsed version, we have to
combine the theories’ predictions for those two words insingle prediction for that token, or split
up the Dundee token into two bits. We here decided to comihiegtedictions for two different
words into a single value and use the Dundee corpus tokérizat

For both surprisal and integration cost, we decided to compredictions by summarization
(instead of, e.g., computing the average). Surprisal ceptimhe amount of probability mass of anal-
yses that are not compatible with the current input giverptiedix. Two words which are one token
in the Dundee corpus (likeve'll) carry the same information as two separate adjacent tqkens
and’ll, and thus rule out the same structures, such that the salrpfige’ll is exactly the same as
the surprisal ofve plus the surprisal ifll (see Equation (7)).

(7)  Sct1+Seq2 = —1ogP(Wiy1|Wy--- W) 4+ —l0gP(Wic2|W1 - - - Wiy 1)
_ logP(wy: W) logP(Ws - Wi o)
P(wy - - - W) P(Wy---Wik1)

= —logP(wy-- W 1) +logP(wy - -- W) —
logP(wy - - Wi 2) + logP(Wy - - Wi 1)
— logP(ws W) — logP(Wy Wi 2)
P(wy - - Wiy 2)
P(wy--- W)
= —logP (Wi 1, Wi 2|Wy - - - W)

= —log

= Saikt2

Similarly, we also decided to add up integration costs, bsedhe relevant quantity is the combined
integration cost of the two components, which means thatagugg would not be an appropriate
measure.
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Figure 4 The first column shows word length distributions, skippprgbability and numbers of fixation
on a word for words of different frequency classes. The seamiumn matches the plots from the first
column, but the data set of the second column excludes atlswoith symbols that are not characters, such
as numbers, punctuation, compounds with a hyphen or sysgia.



