
DEVELOPING NEW LANGUAGE TOOLS FOR MARYTTS:
THE CASE OF LUXEMBOURGISH

Ingmar Steiner1,2, Sébastien Le Maguer1, Judith Manzoni3, Peter Gilles3, Jürgen Trouvain1

1Saarland University
2DFKI GmbH

3University of Luxembourg

steiner@coli.uni-saarland.de

Abstract: We present new methods and resources which have been used to cre-
ate a text to speech (TTS) synthesis system for the Luxembourgish language. The
system uses the MaryTTS platform, which is extended with new natural language
processing (NLP) components. We designed and recorded a multilingual, phoneti-
cally balanced speech corpus, and used it to build a new Luxembourgish synthesis
voice. All speech data and software has been published under an open-source li-
cense and is freely available online.

1 Introduction

With three official languages, the Grand Duchy of Luxembourg has approximately 400 000
speakers of Luxembourgish, the vast majority of which are also fluent in French and/or Ger-
man. Moreover, Luxembourgish routinely imports words and expressions from both of those
languages, and the result can be difficult to process from a monolingual perspective. With these
facts in mind, it may be unsurprising that the speech technology industry has not invested into
developing automatic speech recognition (ASR) or text to speech (TTS) products localized for
Luxembourgish. While Adda-Decker et al. [1] have presented progress towards ASR in that
language, no TTS synthesis was previously available for Luxembourgish.

Although various systems for English TTS synthesis cover at least two locales (British and
American English), German synthesis is typically restricted to the variety spoken in Germany,
although some efforts have been made to produce other dialects as well [2]. Although Lux-
embourgish is recognized as a sovereign language, it shares many characteristics with regional
dialects of German along the Luxembourgish border. Meanwhile, methods and tools (e.g., [3]),
have also become available to create synthesis systems of reasonable quality from limited lin-
guistic resources and data.

In this paper, we describe the process to create natural language processing (NLP) com-
ponents for Luxembourgish using the multilingual, open-source TTS platform MaryTTS [4].1

We designed and recorded a speech corpus produced by a native speaker of Luxembourgish and
German, who is also fluent in French. Finally, we built a synthesis voice from this corpus and
integrated it into MaryTTS.

1.1 Current state and limitations

The process and tools required to extend MaryTTS with support for a new language were first
developed for the Blizzard Challenge 2009 [5] and are described in more detail by Pammi et al.
[6]. The workflow can be summarized as follows:

1http://mary.dfki.de/

186



1. A snapshot dump of Wikipedia in the new language is downloaded.
2. This dump is then uncompressed and split into individual pages, one per article.
3. Each page is converted from the MediaWiki markup format to plain text.
4. A list of unique words is created, sorted by frequency.

MaryTTS provides some shell scripts to automate these steps, but they suffer from numer-
ous severe limitations. These include the reliance on a Linux environment, and administrative
access to a running MySQL service. Accordingly, users who are unfamiliar with Linux (and
command line interaction), and who have no experience with MySQL or a similar relational
database management system can quickly run into any of numerous unhandled edge cases or
other issues. These are exacerbated by the fact that all intermediate data is stored in the database
itself and cannot by inspected at the file system level, making debugging and user support ex-
tremely tedious.

Incidentally, the software dependency used to extract the plain text from the MediaWiki
markup2 had not been actively maintained since 2009, and is also not free of problems.

5. The word list is phonetically transcribed by hand.
6. Letter to sound (LTS) rules are trained automatically.

Having extracted a list of the most frequent words in the new language, the user is required
to manually create phonetic transcriptions, and then use them to train LTS rules, all within a
Java GUI. Unfortunately, this GUI suffers from several usability and accessibility issues, which
are difficult to debug and can even lead to data loss, not to mention user frustration. But of
course the main issue is that the user is assumed to have some degree of phonetic expertise.

These steps are intended to produce resources which are needed for minimal NLP compo-
nents to support the new language in MaryTTS.

7. Java code is developed for new language component classes.
8. Maven3 is used to test and package the classes and resources into a new software compo-

nent.

The requirement to develop new code and package it into a software component assumes
that the user has a working understanding of software engineering for Java. Moreover, the
user also needs familiarity with concepts specific to the Maven build tool, and there are several
additional pitfalls, including a failure to correctly prepare a ServiceLoader, without which the
new language component will simply not be “found” by a running MaryTTS instance.

9. Features are extracted from the Wikipedia sentences, including diphones and generic
prosody symbols (derived from ToBI, [7]).

10. A list of prompt sentences is generated, maximizing the feature coverage via a greedy
algorithm.

Assuming the minimal NLP components have been successfully created and loaded in a
running MaryTTS instance, the proficient user can then run more shell scripts which connect
MaryTTS with the MySQL database containing the Wikipedia sentences. These scripts rely on
the output of the previous steps to predict the pronunciation of each sentence, and store it as
features for a greedy algorithm [8], which aims to maximize diphone and prosodic coverage
and finally, generate an optimal prompt list for recording.

2org.wikipedia:mwdumper:1.16
3https://maven.apache.org/

187



11. Prompt recording is done via yet another Java GUI, which displays the prompts and pre-
pares them for voicebuilding.

Unfortunately, this recording tool (called Redstart) suffers from similar issues with usabil-
ity and accessibility, and moreover is not free of bugs, which can even affect the recorded audio
signal.

It seems plausible that the decision to rely fully on MySQL for handling the Wikipedia
dump processing to generate the word and prompt lists was precipitated by the fact that the
mwdumper library already took that approach. However, the MySQL connection adds a sig-
nificant layer of provisioning overhead and obfuscation, which has caused problems for many
users; in retrospect, it may not have been a sound design decision. Moreover, the apparent moti-
vation to develop an end-to-end workflow using platform-independent Java GUIs is undermined
by the reliance on Linux shell scripts for the text data processing, and obsoleted by the user’s
potential preference for alternative, specialized software.

1.2 Solutions

Over the past few years, MaryTTS development has increasingly embraced a new, agile build
platform called Gradle.4 Like Ant5 and Maven, the previous build tools used for MaryTTS
development, Gradle uses Java, but unlike them, it is extremely flexible and can be extended
with new functionality and easily adapted to custom tasks. The first real proof of Gradle’s
flexibility and suitability for our purposes was delivered by using it to wrap and replace the
VoiceImportTools used for creating new MaryTTS voices [9].

For the creation of LTS resources for new (and existing) languages, we can also use Gradle
to radically streamline the process. The Wikipedia dump processing can be re-engineered by
streaming the compressed dumps and converting them to plain text either in memory or via
temporary files in MediaWiki format. The format conversion can nowadays be handled by
many freely available libraries and tools; thanks to Gradle’s flexibility, this task can also be
delegated by executing externally provided programs such as Pandoc6 from within the main
build process.

The manual transcription of entries in the word list cannot be easily automated, but at least
the user can freely choose which program to use; in the end, the list of transcribed words is
simply a text file. Once prepared, this file is easy to convert to the LTS resources required for
MaryTTS, using Gradle.

The basic Java source code required for the NLP components for the new language, is
also easy to generate and build automatically, lifting this burden from the user’s shoulders and
minimizing the potential for numerous errors.

Finally, the actual prompt recording is best done via mature, dedicated digital audio work-
station software, and there are numerous professional-quality programs available for all major
operating systems, both commercial and free.

2 Luxembourgish NLP components for MaryTTS

In order to add support for Luxembourgish to MaryTTS, we were fortunate to have several
assets at our disposal, including an existing pronunciation dictionary (see below), and access to
a native speaker of Luxembourgish.

4https://gradle.org/
5http://ant.apache.org/
6http://pandoc.org/

188



We implemented two new processing components for text normalization and pronunciation
prediction. Additional development can of course be done as needed in the future, but these two
components comprise a functional NLP core required for Luxembourgish TTS.

Incidentally, we decided to write the source code using the Groovy language,7 a lightweight
but powerful alternative that is fully compatible, and can in fact be mixed, with Java, which
allowed us to develop new code much more rapidly.

2.1 Text normalization

For the expansion of numeric content in Luxembourgish input text, we decided to rely on a third-
party library instead of painstakingly developing new code (as had been done for German in the
earliest version of MaryTTS). To this end, we declared a dependency on the ICU4J library,8 and
created a custom rule-based number format, which is used to spell out any numbers encountered,
allowing them to be properly pronounced by MaryTTS.

2.2 Pronunciation modeling

In order to model Luxembourgish pronunciation, we first defined the set of allophones required
for Luxembourgish TTS. With an initial set based on the inventory described by Gilles and
Trouvain [10], we added several non-native sounds which would be required to correctly pro-
nounce French, German, and English words (including [õ, ã], [y:, ø:], and [T, D], respectively,
among others).

Although we had begun our work by evaluating the existing workflow for new language
support in MaryTTS (including the MySQL-based Wikipedia dump processing), we did not
need to manually create phonetic transcriptions for the most frequent words. An existing web-
site,9 aimed at helping learners of Luxembourgish look up the meaning and pronunciation of
a vocabulary of 6000 words, was initially used to create the word list required to generate the
LTS resources for MaryTTS.

We quickly discovered, however, that many of the transcriptions provided had problems,
so we pruned and manually corrected many of them. Ultimately, we replaced this resource with
a manually transcribed word list after all, but only after the rest of the new language and voice
building process had shown success.

As Luxembourgish texts routinely contain words from French (and – to a lesser degree –
German), we added a custom rule which relies on the available French NLP components to
predict the pronunciation of certain out-of-vocabulary words.

3 Creating a Luxembourgish synthesis voice

Of course, creating NLP components for Luxembourgish is not enough for actual TTS synthesis
in that language; we needed an actual synthesis voice, built from suitable speech data. Accord-
ingly, we proceeded to create a new, phonetically balanced multilingual synthesis corpus.

3.1 Prompt list

We designed a prompt list containing Luxembourgish, French, and German material suitable
for TTS. Details of the prompt material are given in Table 1.

7http://www.groovy-lang.org/
8http://icu-project.org/
9http://www.6000wierder.lu/index.php

189



language duration (min)

Luxem-
bourgish

The Luxembourgish version of “The Northwind
and the Sun”

0.5

52 words spoken in isolation 0.5
584 phonetically balanced sentences from the
Luxembourgish Wikipedia

62

French 255 phonetically balanced sentences from the
French Wikipedia

47

German 198 sentences from the phonetically balanced
BITS corpus [11]

22

Table 1 – Prompt sets and durations. The orthography of the Luxembourgish Wikipedia had been
manually corrected. The French Wikipedia prompts were taken from the prompt list used for the French
MaryTTS voices created by Sathish Pammi at UPMC/ENST.

3.2 Recording procedure

In a single session (with several breaks), a female native speaker of Luxembourgish and Ger-
man, who also speaks French fluently without an accent, was recorded in the studio at the
Saarland University phonetics department. We used a close-talking microphone, as well as a
second microphone mounted approximately 30 cm from the speaker’s mouth. The audio was
sampled at 48 kHz with 24 bits per sample.

The prompts were presented individually on a computer screen, with each one automati-
cally triggering an inaudible beep that was recorded on a separate channel and used to automat-
ically segment the session into prompts.

Overall, the recording session produced approximately 2 h 11 min of speech (see Table 1
for details).

3.3 Processing and segmentation

The recording session was stored as a single long take, which was automatically segmented
into utterances based on the beeps triggered by the prompt display. These prompts were semi-
automatically labeled, then each prompt was automatically phonetically segmented in a forced-
alignment paradigm, using the MaryTTS wrapper for EHMM [12]. The segmentation for the
Luxembourgish subset of the corpus was manually checked and corrected where necessary.

In order to allow this synthesis corpus to be efficiently used in a variety of scenarios, we
losslessly compressed the audio and converted the metadata, following the FLAC+YAML con-
vention [13].

3.4 Voicebuilding

Using the new voicebuilding toolchain implemented as a plugin for the Gradle platform [14],
we built a Luxembourgish unit-selection voice from the corresponding corpus subset.

4 Conclusion

We have presented work that has produced a working TTS synthesis voice for the Luxembour-
gish language, using the MaryTTS platform. A live demo is available at http://mary.dfki.
de:59125/ (by selecting the voice “marylux”). The NLP components for Luxembourgish are

190



available online under the Lesser GPL license.10 We have also released the synthesis voice, free
for non-commercial use,11 and the source data – a phonetically balanced, multilingual speech
corpus – is publicly available under the same terms.12 While the quality is not perfect, the
open-source nature of this project’s deliverables make it straightforward to improve the quality,
and fix issues, as needed.

The development and integration of Luxembourgish support in MaryTTS coincided with
several major, ongoing changes in the architecture and tooling of MaryTTS. A significant limita-
tion still affecting the current version is the fact that each synthesis voice is by design associated
with exactly one language; this made it challenging to efficiently use the full corpus recorded in
Luxembourgish, French, and German together in single voice. However, we expect that moving
to a more flexible feature model [14] will allow us to build truly multilingual synthesis voices
in the future. Furthermore, we plan to apply incubating toolchains to also produce a statisti-
cal parametric voice, which would offer more flexible prosody control and a smaller memory
footprint, and to evaluate the quality of the synthesis output.

We have shown that, and how, it is possible to adapt a TTS system such as MaryTTS to a
new language. Most languages and language varieties are not considered for synthetic speech
(just as for speech technology in general). Thus, this will be an emerging task for the future in
this field. However, we have also shown that an adaptation to an existing TTS platform requires
not only resources such as pronunciation dictionaries, texts, and sufficient data from a voice
talent, but also a considerable know-how of technical adaptation. Therefore one task for the
future will be to set up routines for adapting new languages, in this case for MaryTTS.

Acknowledgments

This work was partially funded by the University of Luxembourg. We are grateful to Mau-
reen Tanuadji and Tristan Hamilton for their code contributions. We are also indebted to the
EXPRESSION team at IRISA (Lannion, France) for their assistance with the prompt selection.

References

[1] ADDA-DECKER, M., L. LAMEL, and G. ADDA: Speech alignment and recognition

experiments for Luxembourgish. In 4th Workshop on Spoken Language Technologies

for Under-Resourced Languages (SLTU), pp. 53–60. St. Petersburg, 2014. URL http:

//www.isca-speech.org/archive/sltu_2014/sl14_053.html.

[2] PUCHER, M., D. SCHABUS, J. YAMAGISHI, F. NEUBARTH, and V. STROM: Modeling

and interpolation of Austrian German and Viennese dialect in HMM-based speech synthe-

sis. Speech Communication, 52(2), p. 164–179, 2010. doi:10.1016/j.specom.2009.09.004.

[3] SCHULTZ, T. and A. W. BLACK: Rapid language adaptation tools and technologies for

multilingual speech processing systems. In Proc. International Conference on Acoustics,

Speech and Signal Processing (ICASSP). Las Vegas, 2008. Tutorial T-3.

[4] SCHRÖDER, M. and J. TROUVAIN: The German text-to-speech synthesis system MARY: A

tool for research, development and teaching. International Journal of Speech Technology,
6(4), pp. 365–377, 2003. doi:10.1023/A:1025708916924.

10https://github.com/marytts/marytts
11https://github.com/marytts/voice-marylux-lb
12https://github.com/marytts/marylux-data

191



[5] SCHRÖDER, M., S. PAMMI, and O. TÜRK: Multilingual MARY TTS participation in the

Blizzard Challenge 2009. In Blizzard Challenge Workshop. Edinburgh, UK, 2009. URL
http://festvox.org/blizzard/bc2009/dfki_Blizzard2009.pdf.

[6] PAMMI, S., M. CHARFUELAN, and M. SCHRÖDER: Multilingual voice creation toolkit

for the MARY TTS platform. In 7th International Conference on Language Resources

and Evaluation (LREC), pp. 3750–3756. Valetta, Malta, 2010. URL http://www.

lrec-conf.org/proceedings/lrec2010/summaries/720.html.

[7] WIGHTMAN, C. W.: ToBI or not ToBI? In Speech Prosody, pp. 25–29. Aix-en-Provence,
France, 2002. URL http://www.isca-speech.org/archive_open/sp2002/sp02_

025.html.

[8] HUNECKE, A.: Optimal Design of a Speech Database for Unit Selection Synthesis. Mas-
ter’s thesis, Saarland University, 2006. Unpublished.

[9] SCHRÖDER, M., M. CHARFUELAN, S. PAMMI, and I. STEINER: Open source voice

creation toolkit for the MARY TTS platform. In Interspeech, pp. 3253–3256. Florence,
Italy, 2011. URL http://www.isca-speech.org/archive/interspeech_2011/i11_

3253.html.

[10] GILLES, P. and J. TROUVAIN: Luxembourgish (Illustrations of the IPA).
Journal of the International Phonetic Association, 43(1), p. 67–74, 2013.
doi:10.1017/S0025100312000278.

[11] ELLBOGEN, T., F. SCHIEL, and A. STEFFEN: The BITS speech synthesis corpus for

German. In 4th International Conference on Language Resources and Evaluation (LREC).
Lisbon, Portugal, 2004. URL http://www.lrec-conf.org/proceedings/lrec2004/

summaries/72.htm.

[12] PRAHALLAD, K., A. W. BLACK, and R. MOSUR: Sub-phonetic modeling for capturing

pronunciation variations for conversational speech synthesis. In IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 853–856. Toulouse,
France, 2006. doi:10.1109/ICASSP.2006.1660155.

[13] STEINER, I.: A DevOps manifesto for speech corpus management. In 28th Conference on

Electronic Speech Signal Processing (ESSV), pp. 160–166. Saarbrücken, Germany, 2017.

[14] LE MAGUER, S. and I. STEINER: Uprooting MaryTTS: Agile processing and voicebuild-

ing. In 28th Conference on Electronic Speech Signal Processing (ESSV), pp. 152–159.
Saaarbrücken, Germany, 2017.

192


	Ingmar Steiner, Sébastien Le Maguer, Judith Manzoni, Peter Gilles & Jürgen Trouvain: Developing new language tools for MaryTTS: the case of Luxembourgish

