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ABSTRACT
This study focuses on the implementation of the phoreffects of
vowel accentuation in automatic speech recognition (ASFhe
durational and spectral effects of accentuation arestigaged separately
by manipulating the transition and observation prok#sliin hidden
Markov models. We also attempt to implement the undetshoo
hypothesis [1], which describes spectral reduction as rectdi
consequence of shortening. Our findings support the widespetid
that the transition probabilities, which indirectlyodel durational
effects, are negligible, and that the distinction betwaccented and
unaccented vowels is determined by the observation Ipilibigs.

1. Introduction

Accented and unaccented vowels differ in both duratiand spectral
properties [2]. The undershoot hypothesis [1] describegrshdot of the
target position for unaccented vowels as a directsemurence of vowel
shortening. More recently [3], undershoot of the eargosition was
described as an effect of speaking style and corti@mah demands. Since
the conversational demands on discriminability agé for accented parts of
the utterance, which carry the main informationséhenust not be reduced,
while unaccented parts of the utterance may show & Higpree of
undershoot.

The importance of accentuation effects on vowel satitn are evaluated in
a vowel recognition experiment by separately modellagrented and
unaccented vowels and comparing the results with twbea vowel models
pooled for accentuation are used (section 3.1). Inose8t the undershoot
hypothesis is implemented by shortening the self-loopbadsility of the
middle state of each hidden Markov model (HMM) toraccented vowels.
Since this decreases the recognition rates, we ihagstigated the effects of
separately modelling durational and spectral redudtiokiMMs (section
3.3). Finally, we shall show in section 3.4 that thgrele of accentuation can
be determined better than we should predict on the bade frequency of
occurrence of accented and unaccented vowels.

2. Method

As training and testing material we used the vowelghe prosodically
labelled part of the KielCorpus of German spontaneouskéé (sampled



with 16kHz/16Bit) — 88 minutes of 7 appointment-making dialsgok 32
speakers. Since the behaviour of vowel monophthongaceented and
unaccented conditions is well understood and, partigulsince we want to
attempt to implement the undershoot hypothesis, whiab developed on
the basis of monophthongs, only these are used inxpariments (29,565
tokens). Four levels of accentuation have been manietglled in the
database: 0O for 'unaccented’, 1 for 'partially accerftefir 'accented' and 3
for 'reinforced’ vowels. These levels constitutetesgre level prominence —
not lexical stress, although this is obviously implied dmcentuation (the
reverse is not true). Although all vowel monophthomgse used in the
experiments, only those vowels were consideredirfitarpretation which
provide enough data for testing and modelling oursd¥®wels which have
less than 90 occurrences in either the accented ocemtad category were
excluded from the presentation (all front rounded vewe®/ and /6/).

The speech signals were parameterised using a 25.6ms iktarmundow
with a preemphasis of 0.97 and step size 5ms. For eacte fi2 mel-
frequency cepstral coefficients (MFCCs), their fidgrivatives and energy
were extracted. The experiments were performed usingiTie toolkit [5].
Only self-loops and transitions to the next stateevadtowed in the HMMs,
which consisted of 3 states. For training only tingt fsix out of the seven
dialogue games were used, testing material consgdtatie seventh, i.e.
training material as well as testing material com#tgspeech samples of the
same speakers. By using the same speakers for trainthgesting, speaker
variation is better modelled. This allows us to com@de on the effects of
accentuation.

Our experiments differ from standard ASR experimenthan no lexicon or
language model was usdehone classification rather thaword recognition
was performed to ensure that we isolate the acoustficemnce of
accentuation on recognition.

3. Experiments

3.1. Accentuation and baseline experiments

In an accentuation experiment (Acc4) separate HMMs Withixtures in

each state were trained for each of the accenweklgl 1, 2, and 3
accentuation labels) and unaccented (level 0) vowdte four mixtures
were used to model variation due to other factors #tentuation.

As a baseline for comparison, two experiments werdechout in which

one overall HMM was trained for each vowel, i.ee thowels were pooled
for accentuation. In the first baseline experiment é8asfour mixtures per
state were used, while in the second (Base8) eigtitiras were used.

The results from the accentuation experiment were expéctée between
those from the two baseline experiments: on the omal, hthe Base4d
experiment has to model the complete variability indigaal with only four



mixtures per state, where the Base8 experiment has ddwbleutmber of

mixtures to model the different realisations of eaciwel. In the Acc4

experiment, the total number of mixtures across all tweeis is the same as
in the Base8 experiment, but by separately modelling tateand

unaccented vowels, four of the mixtures are explicitlgigmed to the

accented, the other four to the unaccented vowelgeShis may be less
effective than when the eight mixtures are left fieenodel any source of
variability in the signal, the Base8 experiment setsrédzognition ceiling for

the Acc4 experiment. On the other hand, since in dwhBase4 and the
Acc4 experiments we have four mixtures per state, but felata (less

variability) are modelled by each HMM in the Acc4 expemt, the Base4
experiment should determine the minimum recognition.

a | a: i: E e O U o: uj Toft:

Based4| 42.842.8| 52.8| 69.7| 60.3| 65.4| 51.5 56.2| 39.1] 67.8 48.0

Acc4 | 50.2|47.0/54.5|68.3| 62.4|60.3|55.6|57.7/40.2|72.9|49.4

Base8| 49.1]/49.4[51.6| 71.5]|65.4|60.7| 52.7| 64.3 | 39.5| 64.6] 50.8

Table 3.1. Recognition results (total rates for all monophthongs)

Recognition rates are shown in table 3.1. Please thatethe recognition
rates of Acc4 reflect recognition of vowel qualityespective of degree of
accentuation. Numbers in bold print indicate the highest recognitiate in
this set of three experiments. Most vowels are bestgresed in either the
Acc4 or Base8 experiment, as was expected. Five of tivelvare best
recognised in Acc4, four in Base8. The fact that digdhe vowels into two
accentuation groups does not lead to a general detiwio of the
recognition rates shows how important a factor aceion is in
determining variability among the vowels.

3.2. Modelling under shoot

Since there is a significant difference in the doret of the accented and
unaccented vowels and since the undershoot hypothesdicts the
automatic spectral reduction due to time constraintdirsh attempt to
implement the undershoot hypothesis was made by dgridibiMs for
unaccented vowelsom accented ones. Unaccented HMMs were derived by
decreasing the self-loop probability of the middle estait the HMM for the
corresponding accented vowel (and increasing the pwibability of this
state). This allows for modelling a reduction in theation of the vowel and
can at the same time model spectral undershoot. We ahgiemodelling
durational effects by changing the transition probadslits admissible, since
there is a significant correlation between mean duratand mean self-loop
probabilities (r=0.969).

Experiment AbsUS strongly reduces the self-loop probalblitythe middle
state of all unaccented vowels to 20%. In a second iexgrar (RelUS) the
self-loop probability is reduced according to the retatreduction in



duration. The proportions of the mean vowel duratiohsaccented to
unaccented vowels were significantly correlated @60) with the
proportion of the mean self-loop probabilities in the HMNI'he self-loop
probabilities of the middle state were shortened udirgegression formula
y=0.72+0.28*R (R = durational proportion of each accentegeldo its
unaccented counterpart). The self-loop probability for ce@ied vowels is
calculated as pty®, (p. = self-loop probability of the middle state of
accented vowels).

Vowel recognition rates were equally low in both expents (see table 3.2)
compared to Acc4, in which accented and unaccenteélsomere modelled
separately. This shows that the chosen implementatiotihe undershoot
hypothesis cannot be applied to derive unaccented fcoemted HMMs.
Interestingly, the recognition rates of the two usbeot experiments are
comparable, although the differences in the self-loopbatvilities of the
middle state were enormous (mean probability for AbsUS, Z0%6RelUS
70%). This leads us to believe that transition probadslitinly play a minor
role in the recognition of accented and unaccertectls.

3.3. Influence of transition and observation probabilities

In a third set of experiments we try to reveal tHfeu@mce of transition and
observation probabilities on the recognition rates. iksthe undershoot
experiments presented in the previous section, HMMsifiaccented vowels
were derived from those for accented ones.

In experiment Trans this is done by replacing titamsition probabilities

trained for accented vowels with those trained doaccented vowels in
Acc4. Likewise, in experiment Observ thbservation probabilities trained
for accented vowels were replaced with those trafoedinaccented vowels
in Acc4 (see also table 3.2).

Changing only the transition probabilities (Trans)dedo similarly poor
results as in the undershoot experiments, again showirg relative

unimportance of the transition probabilities for theogmition of accented
and unaccented vowels. Replacing the observation pritesbilo derive

HMMs for unaccented vowels from those for accentegels (Observ) led
to comparably good results as Acc4.

Exper. | Acc-model Unacc-model rale

Acc4 | Acc-vow | Unacc-vow 49.4

AbsUS|Acc-vow | Acc-vow, but self-loop prob. of2state red. tb41.7
20%

RelUS | Acc-vow | Acc-vow, but self-loop prob. of2state red.41.9
relative to dur. proportion of acc : unacc

Trans | Acc-vow | Acc-vow, but transition prob. of unacc-vow | 41.7

Obseryv| Acc-vow | Acc-vow, but observation prob. of unacc-vow 49.1

Table 3.2. Recognition rates for all accentuation experiments



3.4. Accent Recognition

We have modelled accentuation in ASR, because it impartant prosodic
means to transport information structure. In experimau4, all accented
vowels (except /I/ and /O/) are recognised better th@accented ones (not
shown in table 3.1). This is what we expected giverutiveduced forms of
accented vowels. Although considerable overlap shouleikpected between
accented and unaccented vowels due to other soureesiation, the accent
recognition rate is 59.2% for accented and 72.1% for eméed vowels.
This compares favourably with chance level, based enfrquency of
occurrence of accented and unaccented vowels, whi8b.B% for accented
and 63.7% for unaccented vowels in our corpus.

4. Discussion

It is shown that dividing our corpus into accented andccented vowels
(Acc4) leads to results which are comparable to thbseodelling the data
with the same number of mixtures, but leaving it up to HVbW the
variability in the signal is modelled (Base8). Thioyes the importance of
accentuation as a source of variation in the sighlé advantage with a
controlled splitting of the data is that we also obtaformation about the
degree of accentuation, which can be used for higivef-brocessing.

Table 3.1 shows that recognition rates decrease wieerirywto derive
models for unaccented vowels from accented modelsiroply decreasing
the self-loop probability of the middle state in order implement the
undershoot hypothesis. This may be due to the facthbattates in a HMM
are related to, but certainly do not exactly correspoadphonetic
“categories” like transitions and steady statesdi#ferent type of HMMs
which does not model the datapoints as independemrat®ns may be
more appropriate for this purpose. Further, both methodsdoiction of the
self-loop probabilities of the middle state (AbsUS, R&IU performed
equally poorly. This led us to believe that transifgwaobabilities only play a
minor role in recognition of accented and unaccenbekls.

The third set of experiments, in which HMMs for unated vowels were
again directly derived from those for accented \Jsweorroborates this
hypothesis. When unaccented vowels are modelled byaaiegl the
transition probabilities by those from the unaccented vowel HMM#&dc4
(Trans), this leads to an equally poor performancethes undershoot
experiments. Replacing thebservation probabilities with those from the
unaccented vowels to create HMMs for unaccented wowélbserv),
however, leads to recognition rates comparable teettwd Acc4, in which
both the observationand the transition probabilities were different for
accented and unaccented HMMs. Therefore, only theeradson
probabilities seem to be of importance in modelling #féects of
accentuation on vowels. In so far, our findings deviitom those of



experiments on speaking rate [6], where fast speech smasessfully
modelled by increasing the exit probabilities (= dednepshe self-loop
probabilities) of phones spoken at a normal rate.

Normally, human listeners use multiple cues to recognfssther a word is
highlighted or not. We show that accent can be pielicorrectly to 67.4%
from the vocalic portions only. Information about agocation may be
usable for “higher-level” linguistic processing, suchdasoding information
packaging, resolving lexical and part-of-speech ambéguiti

5. Conclusion

Durational and spectral reduction is caused by deacdimuaand is

explained by a greater amount of undershoot. As wasrshtig cannot be
modelled by simply increasing the transition probabdgitof the middle state
of HMMs for vowels (at least not for the type of HMMised here). It was
shown that transition probabilities in general canmoidel the effects of
deaccentuation and that spectral properties are decimivrecognising

accented and unaccented vowels.

Being able to determine accentuation is of great ratdge for subsequent
linguistic analysis. Since distinguishing accented anaccented vowels in
hidden Markov modelling does not deteriorate reitmyn results, this

approach should be preferred over models with simply muxtures to

model the variation in the signal.
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