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Abstract 
In this study we describe a model of speech perception in 
which neither speaking rate nor lower level temporal cues are 
considered explicitly. Instead, newly encountered speech 
signals are encoded as sequences of detailed acoustic events 
specified in real time at salient landmarks and compared 
directly with previously heard patterns. When presented with 
obstruent-vowel sequences occurring in the TIMIT database, 
the model performs similarly to humans in relying on 
temporal information for consonant and vowel recognition—
and interpreting this information in a rate-dependent 
manner—when non-temporal cues are ambiguous; and by
being adversely affected by local rate variability. These results 
indicate that compensation for speaking rate in human 
perception may follow implicitly from even modest 
knowledge of the robust correlations between temporal and 
other properties of individual speech events and those of their 
surrounding contexts, and do not require special 
normalization processes. 

1. Introduction 
Changes in speaking rate are a major source of variability in 
speech production. In instances where linguistic information 
is cued by temporal properties of the speech signal (consonant 
voicing, gemination, vowel quantity, etc.), this variability is 
potentially problematic, since it often affects these cues such 
that they lack invariant first-order descriptions. Fortunately, 
though, human listeners tend to compensate for these effects 
by perceiving temporal properties of speech in a rate-
dependent manner. Quite a bit of research has attempted to 
characterize the normalization processes that would appear to 
drive this compensation, in terms of, e.g., under what 
conditions they operate, whether they result from speech-
specific or general auditory mechanisms, and how speaking 
rate may be monitored and encoded [e.g. 1-4]. In this study, 
we test a very different possibility, namely, that explicit rate 
normalization does not occur, nor is speaking rate directly 
tracked or considered at all. Adopting a strong exemplar-
theoretic position, we hypothesize instead that temporal (and 
other) properties of newly perceived sounds are directly 
compared with those of previously heard sounds, and that 
speech understanding is based on this comparison without any 
further abstraction. Critically, such a comparison must take 
into account surrounding context information, so that patterns 
of covariation between (temporal and other) cues in context 
and those directly related to a given category or contrast are 
preserved during recognition. 

It is almost universally assumed that some type of 
perceptual rate normalization is necessary, since it would be 
impossible to represent every speaking rate in memory. 
Phonetic exemplar models provide a basis for testing this 
assumption empirically, since they assume that 
categorizations are based on finite distributions of memories 
that would not provide a continuous representation of (for 

example) speaking rate. Several phonetic exemplar models 
have been proposed [e.g. 5, 6] to show (among other things) 
how human listeners might retain detailed acoustic 
information while seemingly abstracting away from this 
information during linguistic processing. However, these 
proposals have been much less specific concerning the 
encoding of context information, especially where context is 
distributed over, or critically incorporates, the temporal 
dimension. Therefore, in the present study we present a new, 
context-oriented exemplar model. This model is described in 
detail in the next section.  We then show that, based on 
realistic acoustic data, the model—and therefore the statistics 
of the language environment—implicitly predicts the 
following four facts about the perception of rate-varying 
speech: (1) when making phonetic decisions based on
primarily temporal cues, listeners tend to interpret these cues 
relative to the surrounding context rate, in a manner that 
mirrors, and thus tends to compensate for, rate-related 
variability in speech production [1]; (2) when other cues 
(spectral, amplitude, etc.) are available in addition to temporal 
cues, the perceptual effects of context rate are attenuated and 
may disappear when the other cues are very naturalistic and 
unambiguous [2]; (3) the same temporal context information 
that affects perception of the temporal properties of one sound 
must simultaneously serve as (primary or indirect) evidence 
related to nearby sounds (e.g. the duration of a vowel may 
serve as context information for interpreting a preceding 
consonant but may also be required to signal the identity of 
the vowel itself); and finally (4) perception of sounds is 
affected by variability in speaking rate. Notably, increasing 
rate variability can negatively affect the accuracy of 
perception [5]. The first three effects relate mostly to apparent 
normalization processes; the fourth has often been discussed 
in relation to exemplar memory for sounds as well [e.g. 6], 
since it might reflect the increased cost of encoding this 
variable rate information in memory. We will suggest that a 
simpler mechanism is responsible for all four effects. 

2. Model 
Our model adopts a pure acoustic exemplar approach to 
representation and comparison. Perception does not involve 
segmentation or structural analysis of incoming speech, nor is 
any distinction made between linguistic and extra-linguistic 
aspects of the signal. Higher-order information such as 
speaker identity or speaking rate are not extracted or 
considered; in fact, temporal cues are not explicitly encoded 
at all. Instead, perception makes use of a memory containing 
an ordered collection of richly specified, real-time acoustic 
descriptions of previously perceived sounds, not unlike a 
continuous recording of previous auditory input. This 
memory signal is sparsely “annotated” with connections to 
records of other events that originally co-occurred with the 
acoustic pattern. Realistically, we imagine these events would 
represent varied, perhaps heterogeneous, non-hierarchical 
collections of visual, tactile, and motor occurrences in 
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addition to more abstract linguistic analyses or identifications. 
For the purposes of the present study, since the effects we 
model all involve phonetic categorization, we conveniently 
assume that such collections can be represented simply by 
traditionally described feature or segment labels. In the 
model, then, perception involves (1) comparing a newly 
encountered acoustic signal in space and time with the entire 
memory, and (2) identifying feature labels occurring near 
regions of maximum similarity. 

Acoustic descriptions in our model take the form of 
potentially informative parameter values extracted at salient 
landmark locations in the signal [9]. This representation is 
selected less as a biologically plausible model than as a 
simple, transparent representation of some of the acoustic 
information that is likely to be of importance during 
perception, and the distribution of this information over time. 
In the current study we are interested in describing the 
perception of stop consonants in relation to neighboring 
vowels. Therefore, we considered three types of landmarks: 
abrupt consonantal (AC) landmarks occurring at consonant 
release bursts, abrupt (A) landmarks occurring at the onset of 
voicing, and vowel (V) landmarks occurring at points of 
minimal vocal tract constriction. 

Figure 1: Encoding, forgetting, comparing landmark-
based descriptions. Top: 3 arbitrary parameters from 
an AC-A-V sequence before encoding (vertical lines), 
after 1 and 3 forgetting cycles (smoothed lines). 
Bottom: 3 signals in succession, with summed cross-
correlation with the original signal. Arrows designate 
locations of labels; sequences match to the extent that 
landmarks with similar parameter values occur at 
similar intervals. 

In the model, temporal information is encoded in 
the locations of acoustic landmarks with respect to each other 
in time; spectral, amplitude and other information define the 
shape of the memory signal at these locations, in the 
following manner. The signal contains as many dimensions as 
there are parameters to be considered. Each dimension takes 
the (normalized) value of the relevant parameter at the 
location of the landmark where it is measured, and is zero 
elsewhere. Thus, memory resembles a multidimensional point 
process, with values in different dimensions occurring at 
different times, depending on the temporal distribution of 
landmarks. Examples of such signals are shown in Figure 1. 
Neither the acoustic parameter value nor the location of the 

corresponding landmark is encoded or remembered perfectly. 
Imperfection and the forgetting process are modeled by a 
single mechanism: the entire memory is smoothed with a 
narrow Gaussian window, such that values tend to regress 
slightly toward zero and their locations become distributed 
over time. During perception, a similarly encoded stimulus is 
compared with the entire memory by cross-correlation 
between the two signals, and connections to feature labels are 
activated as a function of their proximity to peaks in the 
resulting similarity function. Newly encountered sounds result 
in correlation peaks to the extent that the measured parameter 
values, and the relative locations of the landmarks at which 
they are measured, are similar. Again, however, no explicit 
temporal measurements are made. 

3. Simulation 

3.1. Acoustic data and training stimuli 

The model was trained with acoustic data extracted from CV 
sequences in the training portion of the TIMIT database. 
Specifically, we included all of the sequences of stop 
consonants followed by the vowels [ε] and [æ], across 
syllabic/prosodic status, gender and dialect, a total of 1453 
tokens. (Only [s]-voiceless stop clusters were omitted, since 
the de-aspiration that occurs in these cases is considerable and 
predictable by context but was not the focus of the current 
study.) 12 acoustic parameters were extracted and encoded in 
memory: at the AC landmark (taken to be the beginning of the 
consonant burst segment labeled in the database), the first 
three moments of the DFT distribution and the derivative of 
intensity (the difference between its value at the burst and 80 
ms later) were included. At A landmarks (taken to be the 
beginning of the labeled vowel segment), the derivatives of f0 
and the first three formants (again using an 80 ms difference) 
were included. Parameters considered at V landmarks (taken 
to be the maximum in the envelope of the CV below 500 Hz) 
were f0 and F1-3 values. F0 was estimated using an 
autocorrelation-based algorithm and formants using an LPC-
based method, both as implemented in [10]. Spectra and 
intensity values were based on relatively long 50 ms 
Hamming windowed segments, to conservatively model 
sensitivity to change in these parameters over time. All 
frequency measurements used a linear Hertz scale. 

Since there is no appreciable rate variability in the 
TIMIT corpus (or any similar, suitably labeled database that 
we are aware of), this variability was introduced artificially, 
employing linear expansion/compression of landmark offsets. 
All stimuli were presented to the model at three rates, by 
multiplying the distance from AC to A and V landmarks by 
0.5, 1, or 2. While this is certainly not a realistic 
representation of rate differences (e.g. it is well known that 
different segments are affected differently by changes in rate), 
it sufficed to simulate variability without introducing any 
artifacts that a more data-oriented method might have. 

Figure 1 shows the resulting distributions of 
landmark-to-landmark offsets, and thus the dependence of 
VOT on speaking rate, in the training set. While it was not the 
focus of the study, the acoustic measurements themselves 
contained substantial cues to both consonant and vowel 
identity. Voiced and voiceless consonants differed 
significantly (p<0.001) in terms of all six parameters 
measured, and [ε] and [æ] differed in all three formant 
locations. 
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Figure 2: Distribution of training data by landmark 
offset.

These data were used to create a 12-dimensional memory 
signal, as described in section 2. In each dimension, values 
were first normalized to a mean of zero, standard deviation 
one. For each dimension for each CV sequence, a signal was 
created that consisted of zeros everywhere except at the 
relevant landmark location, where it took the normalized 
parameter value. These sequences were sampled at 300 Hz 
and padded with 100 ms of silence. The resulting signal was 
then convolved with a Gaussian window, s.d. 5 ms, 
normalized to a total power of 1.0, and concatenated to the 
end of the memory sequence. Consonant voicing and vowel 
height values (1 or 0) were marked at the beginning of a CV. 

3.2. Test stimuli and procedure 

Perception consisted of locating the k(=9) peaks in the cross-
correlation function of an analogously constructed test 
stimulus with the entire memory sequence, and averaging the 
consonant voicing and vowel height values labeled nearest the 
corresponding point in the memory signal. 

A single set of test stimuli was used to simulate 
effects (1)-(3) above. 800 items were selected at random from 
the same set of acoustic measurements used to create the 
memory. Each value set was then used to create 10 test 
stimuli: the AC-to-A landmark offset (signifying VOT) was 
varied from 40 to 200 ms in 5 steps, and the AC-to-V offset 
(indirectly signifying syllable length or speaking rate) was 
either 100 or 300 ms. Effects (1) and (3) were observed by 
comparing activated [voiced] and [low] features as a function 
of the AC-V offset. Effect (2) was simulated by measuring the 
magnitude of this same rate effect as a function of the 
ambiguity of the parameter values represented at consonant 
landmarks, as follows. Each token was rated as ambiguous for 
voicing in terms of parameter values (i.e. disregarding 
temporal patterns) by comparing the squared distance of these 
values from the center of the distribution of voiceless sounds 
with the distance from the center of the voiced distribution. 
The difference between values was then taken as a measure of 
“voicedness”, with large positive values representing sounds 
that were much more similar to voiced than voiceless values, 
and negative values corresponding to more [-voiced] sounds. 
The absolute value of the voicedness measure was used to 
denote ambiguity: larger values indicate that the token is 
much more typical of one category than another, and thus less 
ambiguous. This value was then compared with the difference 
in [+voiced] activations generated by the resulting stimulus 

set as a function of the AC-V offset, averaging over the AC-A 
continuum. 

To simulate effect (4), a similar test set was used. 
However, since the rate variability effect depends on relations 
between individual test set items, it was necessary to include 
test items in the memory as well. 500 items were selected 
randomly from the acoustic parameter set, and each item was 
used to generate one fast (AC-A offset 0ms, AC-V 100 ms) 
and one slow (100, 200 ms) token. In three conditions, either 
a fast, slow, or a randomly selected token was presented to the 
model, as described above. Following perception, this item 
was appended to the end of the memory sequence, which then 
underwent one forgetting cycle (convolution with a Gaussian 
window of s.d. 2.5 ms). To simulate an inverse correlate of 
response accuracy, we used the average of the absolute 
correlation values corresponding to the nine largest peaks in 
the cross-correlation function as a measure of absolute 
activation of the selected exemplars.  

Figure 3: Raw averages of activated [voiced] labels 
depending on AC-A landmark offset (VOT) and AC-V 
offset (speaking rate)

4. Results and discussion 

4.1. Offset effects on consonant categorization 

Figure 3 shows the model’s perception of consonants based 
on AC-A landmark offset (VOT) and AC-V offset (speaking 
rate). Raw averages of activated [voiced] values are shown. 
These results cannot be taken to represent phonetic 
categorization directly, since they do not take into account (1) 
the prior probabilities of voiceless and voiced sounds in the 
database (voiceless sounds were about twice as frequent), or 
(2) the non-linear relationship between categorization 
probability and perceptual similarity. Nevertheless, they 
demonstrate the essential points that would hold in an 
appropriate transformation: general reliance on VOT at both 
rates, and an effect of speaking rate. Like human observers, 
the model considers tokens as more voiceless for a given 
VOT at faster speaking rates. The mechanism for this is 
straightforward: shorter AC-A offsets were likely to be more 
similar to [-voiced]-labeled memory tokens that also had short 
AC-V differences, because these two offset values covaried in 
memory. No normalization or overt specification of rate (or 
even VOT) is required. 
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4.2. Non-temporal cues and rate effect magnitude 

While consonant voicing perception was related to the AC-A 
offset, it also strongly correlated with the parameter 
voicedness measure described above (r=0.87; p<0.001), 
indicating that the spectral and amplitude parameters we 
included were also reliable cues to consonant voicing. Figure 
4 shows the size of the rate effect as a function of ambiguity. 
As seen in the figure, the robust rate effect seen for the more 
ambiguous stimuli and reflected in figure 3 nearly disappears 
for stimuli with unambiguous spectral and amplitude cues. 
This is also in line with data on human observers [2];

Figure 4: the size of the rate effect (difference in mean 
[+voiced] responses across rate conditions) as a 
function of ambiguity of acoustic parameters.

4.3. Offset effects on vowel categorization 

Vowel classification was also influenced by AC-V offset: on 
average, vowels received higher [+low] scores with slower 
offsets (p<0.001). This is consistent with the acoustic patterns 
observed in the database and generally, and demonstrates that 
the same information that serves as rate context for one sound 
can simultaneously provide primary evidence for another 
sound. 

4.4. Rate variability and activation strength 

Figure 5 shows average activation strength across 
presentation conditions over the course of testing. After the 
first few trials, activation becomes lower (signifying lower 
accuracy) in the mixed rate condition. The mechanism for this 
is related to, but simpler than, the suggestion [e.g. 6] that 
exemplar-style encoding of rate information is a resource-
demanding process. The forgetting process in the model 
dictates that, when there are very recently perceived items that 
are very similar to a stimulus along some acoustic dimensions 
(in this case timing properties of landmarks), these items have 
the potential to dominate the comparison process. The more 
similar recent items there are, the more likely a large positive 
(or negative) correlation value becomes, resulting in a more 
efficient recognition process. 

5. Conclusions 
We have presented a new phonetic exemplar model of 
perception in context, using it to demonstrate that several 
important facts about human perceptual compensation for 
speaking rate variability are straightforwardly predicted 
assuming detailed memory of a relatively small, highly 
variable set of productions. In reality, we assume that such a 

mechanism would represent only part of a massively hybrid 
system involving other modalities, processes, levels of 
representation. The model is therefore incomplete in that it 
does not incorporate these connections but depends on them, 
e.g. for the presence of feature labels. We are currently 
working to determine how these interfaces might be best 
characterized empirically, as well as to incorporate larger sets 
of acoustic parameters and more complicated landmark 
configurations into the model.  

Figure 5: activation of contributing exemplars at different 
levels of rate variability during perception. 
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