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The main goal of the speech synthesis group in SmartKkom wdswvelop a natural
sounding synthetic voice for the avatar “Smartakus” thatidgyed to be agreeable,
intelligible, and friendly by the users of the SmartKom syst

Two aspects of the SmartKom scenario facilitate the achieve of this goal.
First, since speech output is mainly intended for the irtitwa of Smartakus with the
user, most of the output corresponds to dialog turns geselat the language gener-
ation module (see Chapt@?). Therefore, most speech output can be generated from
linguistic concepts produced by the language generatiauted“concept-to-speech
synthesis”, CTS) instead of from raw text (“text-to-spesghthesis”, TTS). The ad-
vantage of CTS over TTS is that it avoids errors that may hedhtced by linguis-
tic analysis in TTS mode. Second, the CTS approach narrows dlee SmartKom
synthesis domain from a theoretically open domain to aictstt domain, which
makes unit selection synthesis a promising alternativegbahe synthesis for the
SmartKom application.

Multimodality introduces additional requirements for thethesis module. The
visual presence of Smartakus on the screen during speephtaetjuires lip syn-
chronization. Furthermore, Smartakus executes pointegjuges that are related to
objects which are also referred to linguistically. Thesénpog gestures influence
the prosodic structure of the utterance and necessitago@ialignment of the ges-
tural and linguistic modes. Another momentous requirennext that the graphical
design of Smartakus was given before the voice databasessaied. This entailed
that the appropriateness of the speaker’s voice for Smasteduld be included as an
important factor in the speaker selection process.

In developing the synthesis voice for Smartakus, we purthetbllowing strat-
egy: after the speaker selection process, a diphone voisedereloped first. This
voice served both as a starting point for implementing a seliéction voice by the
same speaker tailored to the typical SmartKom domains, arttieadefault voice
for external open domain applications that require TTSdadtof CTS. The diphone
voice and the unit selection voice were both evaluated imptbgress of the project.

This chapter is organized as follows. We focus on the progeaeration in CTS
mode in the subsequent section. The speaker selectiongsriscdescribed in Sec-
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tion 2. Section 3 concentrates on the unit selection voige sinchronization and
gesture-speech alignment are discussed in Section 4l\ithe two evaluation pro-
cedures are described in Section 5.

1 Concept-to-speech synthesis

The motivation for CTS synthesis is the view that the lingaoisontent of an ut-
terance determines its phonological structure and praspdiperties. It has been
shown that prosodic structure can reflect aspects of syatsteticture, information
structure, and discourse structure [12, 30, 10, 16, 1, 9, P2 challenge in TTS
is that text represents only a very reduced version of thieifiguistic content of
an utterance. It not only lacks marking of higher-level liiggic structure, but may
also be ambiguous with respect to syllabic and segmentadtstie due to abbrevia-
tions and homographs. All these properties have to be iediéfrom the text in TTS.
The idea of CTS is to use the full linguistic structure of atergnce, i.e. the orig-
inal “concept”, instead of its raw textual representatidhis structure is available
in dialog systems which generate utterances dynamicallgnhartKom, it is avail-
able with some exceptions: many utterances contain mhtetigeved from external
databases, such as movie titles or geographical namesugtithe overall structure
of such utterances is known, the internal structure of thigereed items is unknown.
They may contain abbreviations, material in unknown lamgsaor, particularly in
the case of movie titles, may even have their own interngliistic structure.

The main advantage of CTS in SmartKom is therefore the aiilitlaof higher-
level linguistic structure, which influences the prosodimisture of an utterance.
Cinque [10] gives a detailed account of how syntactic stmectletermines the de-
fault location of sentence stress. We have implementedgoritim motivated by
Cinque’s findings. The prediction of prosodic structureliiing pitch accent and
boundary types from linguistic structure is described irrendetail in [28]. Here we
only give a brief description of the concept structure, thediction of phrasing, and
the implementation of Cinque’s account for accent placeémen

1.1 Concept input

Concepts in SmartKom contain information on three lindaiktvels. The highest
level of annotation used for prosody prediction is shetence level. Sentence mode
(declarative, imperative, yes/no-question, or wh-quegtis annotated on this level.
This kind of information is mainly required for the prediati of boundary tones.
The next lower level isyntactic structure. Syntactic trees in SmartKom are
binary branching, and they may include traces resultinmfroovement of syntactic
constituents. They are generated from smaller tree segmathiin the tree-adjoining
grammar framework [4]. Semantic and pragmatic informat®imtegrated into the
syntactic structure as follows. For each node of the syiat&rete, its argument status
(subject, direct or indirect object, prepositional objesgtntential object, or adjunct)
and its information content (new vs. given) can be specifieixis is also specified
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Fig. 1. Integration of additional information into the syntactindalexical structure of the
sentenceHier sehen Sie eine Auswahl aus dem aktuellen Programuhis example, deixis
(deictig and argument statuadjunct subject objec) are added. These values are indicated
in italics.

on the syntactic level. Deictic elements occur when Smadakkecutes pointing
gestures referring to objects on the screen.

The lowest level of annotation is tHexical level. On this level, material that
originates from database queries is inserted. The domalraargyuage of this ma-
terial are annotated if available. An example of the symteamd lexical levels of a
concept structure is given in Figure 1.

1.2 Prediction of prosodic phrases

The first step in prosody generation is the prediction of pdis phrase boundaries.
There are two levels of phrases: intonation phrases ardriated by major breaks
(“big breaks”, BB) and can be divided into several internageliphrases, which in
turn are separated by minor breaks (B).

Syntactic structure has been shown to be useful in the grediof prosodic
phrasing [29]. Particularly the insertion of prosodic pgedreaks between topical-
ized constituents in thgorfeld (i.e., constituents preceding the finite verb in verb-
second sentences) and the rest of the sentence has provedat@dmmon phe-
nomenon in natural speech, if the material in the Vorfeldbisgl enough [29]. The
Vorfeld corresponds to a syntactic constituent, a maxinnajggtion, that is in the
specifier position of another maximal projection (depegdin the syntactic theory
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a verbal, inflectional or complementizer projection). Pris breaks can also occur
between constituents in thdittelfeld. Another observation is that breaks are less
likely between heads and complements than between headslpmitt constituents.
In any case, the longer the constituents are, the more likeloreaks are inserted.
Usually, the inserted breaks are minor breaks; occasigreaién major breaks occur.
These observations motivate the two rules in (1) and (2)ckirisert optional
minor breaks. The+B] feature indicates that a break can be inserted at the end of
the respective constituent. The rules each have two vari@)tand (b), which are
mirror images of each other.

1) a XP
PN
YP[iB] XP

b. XP
P
XP[iB] YP

2) a. XP

/\
X+ YP
adjunct
b. XP

/\
YP[i Bl X
adjunct

The first rule states that maximal categories (the YPs int{ig) are daughters
of other maximal categories (the dominating XPs in (1)) casséparated from their
sister node by a minor break. S constituents are also treatethximal projections.
Since we do not distinguish X-bars from XPs, rule (1) appiesny maximal projec-
tion that is not the sister of a head. Examples of the apjdicatf (1) are the insertion
of boundaries between topicalized constituents and thesvi?ell as between adja-
cent constituents within the VP. The second rule allowskséabe inserted between
the head of a phrase (the X in (2)) and its sister node, butibthy sister node is an
adjunct. Thus, phrase boundaries between a head and itmengare excluded.

Deictic elements often trigger additional minor phraseakse A pilot study on
material from 26 speakers showed that deictic expressi@ngxpressions that were
accompanied by pointing gestures, were usually marked blgrasp break or an
emphatic pitch accent or both. This effect is modeled byriivsg mandatory minor
breaks preceding and following deictic expressions.

The result of the phrase break insertion for the sentencégir€& 1 is shown in
(3). Mandatory phrase breaks are (trivially) at the end efutterance, and after the
deictic AdvPhier, indicated by thé+BB] and[+B] features, respectively. Optional
phrase breaks are inserted after theSi€according to rule (1-a), and after the noun
Auswahlaccording to rule (2-a). These optional breaks are markethéyfeature
[£B]in (3).
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(3) Hier[+B] sehen Si¢+B] eine Auswah([+B]
aus dem aktuellen PrograniwBB]

In a second step, harmonization algorithm selects candidates from the set of
possible combinations of prosodic phrases. Candidatesevhmean phrase length
lies in a given optimal range and which show an even phrasgthedistribution
are favored over other candidates. Thus, the observatairttb insertion of breaks
depends on the length of the resulting phrases is accouatedrfd sequences of
phrases that are unbalanced in terms of number of syllakleshyase are avoided if
possible. The optimal range for the mean phrase length wasifto be more than 4
to less than 11 syllables.

For the example in Figure 1, the optimal candidate is show@4a). The other
candidates are given in (4-b) through (4-d). Syllable nunplee phrase, mean phrase
length and variance are indicated in italics. (4-b) is dided because its mean phrase
length is not in the optimal range. From the remaining thraedidates, (4-a) is
chosen because it has the smallest variance.

(4) a. Hier[+B] sehen Sie eine AuswalB] aus dem aktuellen Programm

[+BB]
syllables: 1, 7, 8; mean: 5.33; variance: 9.55

b. Hier[+B] sehen Si¢+B] eine Auswah[+B] aus dem aktuellen Programm
[+BB]
syllables: 1, 3, 4, 8; mean: 4; variance: 6.5

c. Hier [+B] sehen Sig+B] eine Auswahl aus dem aktuellen Programm
[+BB]
syllables: 1, 3, 12; mean 5.33; variance: 22.89

d. Hier[+B] sehen Sie eine Auswahl aus dem aktuellen Progr&niB]
syllables: 1, 15; mean 8; variance: 49

Finally, boundary tones are assigned to each predictedrrphjase boundary.
For sentence-internal phrase boundaries, a rising boyndae is assigned to in-
dicate continuation. In all other cases, the boundary tapedds on the sentence
mode.

1.3 Accent prediction

The default location of sentence stress is determined bgyhtactic structure ac-
cording to [10]. We have adapted this procedure to predetigfault accent location
for each prosodic phrase. Additionally, semantic fact@s cause deaccentuation.
Pitch accent types depend on the information content of ¢eerded word, on its
position in the phrase, and on sentence mode.

According to [10], the default accent is on the syntacticatiost deeply em-
bedded element, as illustrated by the prepositional pkrasés) (from [10]). The
underlined words are the most deeply embedded elementsheydre accented by
default.
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However, depth of embedding on the non-recursive sidedfeivant, as shown in
(6) (from [10]): in neutral accentuation, the pitch accealisfnot on the overall most
deeply embedded elemehglienern, but onimpfstoff This is because NPs are right-
recursive. Depth of embedding according to [10] is only dedron a path along the
X-bar axis (e.g., connecting XP and X’, X’ and X’) and on theuesive side of each
projection XP (e.g., connecting X’ to a YP embedded on thesiek, if XP is a left-
recursive category; or connecting X' to a YP embedded onitite side, if XP is a
right-recursive category). The main path of embedding é&sghth that reaches the
top node. The overall most prominent element is the mostlgespbedded element
on the main path of embedding. In constituents on the nonrsae side, depth of
embedding determines the locally most prominent elemetitdrconstituent, but its
depth of embedding is irrelevant for the location of the netiess.
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This procedure had to be modified for two reasons. First, énsyntactic struc-
tures used in SmartKom, there are no X-bars. Thus, the mamipalong an axis
connecting XPs with embedded XPs, or connecting an XP wittagimmal projec-
tion YP on the recursive side of the XP, if YP is a sister to thadX of XP. Second,
large syntactic trees will usually be split into smallertsriy the phrase prediction
algorithm. In the phrases that do not contain the globallsthpsominent element
according to the definition above, we still need to assign @remt to the locally
most prominent element. The resulting procedure works ksafe. In each phrase,
the element with the smallest number of branches on the aecursive side is ac-
cented. If there are several elements with the same numlmanthes, the last one
is accented. Depending on the information structure of &grance, accentuation
can deviate from the default accentuation: words are dededéf they are marked
as “given” in the respective context, and narrow focus madahesaccent from the
default location to the focused constituent.

For each accented element, its accent category depends position in the
phrase, its information content, and the sentence mode.sé&/a subset of the pitch
accent inventory of the German ToBI labeling system as d&=stin [21], viz. L*H
as a rising accent, H*L as a falling accent, and L*HL as an eatiplaccent. For
the diphone voice, the type of accent determines the tempis¢d for modeling
the fundamental frequency contour [24]. For the unit s@ectoice, it restricts the
candidate set to candidates realized with a similar aceeet $ection 3).

1.4 An example

The complete prosody prediction algorithm is illustratedtie example in (7) and
(8). An optional phrase break is inserted between the ttipethobjectDas Doku-
mentand the finite vertwurde The harmonization algorithm selects (8-a) because
(8-b)’'s mean phrase length exceeds the upper limit of 1lkldbk per phrase and
is therefore not considered in the selection step. Othenitisvould have been pre-
ferred over (8-a) because its variance is smaller.

(7) DasDokumentwurdeanNils Nagerverschickt.
Thedocumentwas to Nils Nagersent
The document was sent to Nils Nager.

(8) a. Das DokumeritB] wurde an Nils Nager verschicktBB]
syllables: 4, 8; mean: 6.00; variance: 4.00
b. Das Dokument wurde an Nils Nager verschici@B|
syllables: 12; mean: 12.00; variance: 0.00

The syntactic structure of (8) is shown in Figure 2. The maithpf embedding is
indicated by the nodes in bold face. For the first phrase, ¢fi;udt accent is assigned
to the nourDokumenbecause the path from the top of the tree to the noun contains
only one branch (connecting S to the NP on its left) that ishegion the recursive
side nor on the X-bar axis. The branches connecting NP to NifNdhto N are on
the recursive side because NPs are right-branching. Tietpahe determinebas
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Fig. 2. Syntactic structure for the example “Das Dokument wurde ds Nager verschickt”
(The document was sent to Nils Nagdrhe main path of embedding is marked by the nodes
in bold face. The default accents for the two phrases argredito the underlined words.

contains two branches that are on the non-recursive siddarinches connecting S
to NP and NP to Det, respectively. In the second phrase, time Ndls Nageris on

a path exclusively along the X-bar axis or along branche$enécursive side. It is
therefore accented.

Since the sentence is a declarative sentence, it is teradihgta falling boundary
tone. The accented element in the second phrase is assigiadith@ accent for
the same reason. The accent in the first phrase is predictesligsing because the
sentence continues across the intermediate phrase bguretareen the two phrases.
Thus, the prosodic structure for (7) is as shown in (9).

(9) Das Dokumentwurde an Nils Nageverschickt.
L*H - H*L L%

2 Speaker selection

Several constraints have to be met in the speaker seleatimess. On the one hand,
users’ expectations include not only intelligibility busa more subjective proper-
ties such as agreeableness, pleasantness, and naturAbtegsacy of the voice for
the target application may be even more important than stibgepleasantness. For
instance, Smartakus is a small blue-colored cartoon-lilegaxcter reminiscent of the
letter “i”. This visual appearance did not seem to go welhwahe particularly deep
candidate voice, which was rated high by listeners only wiresented independent
of Smartakus.
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There are additional, more technical and practical, regqoénts, such as the ex-
perience of the speaker, which can decisively reduce the tieeded for the record-
ings, but also foreign language skills, which are requiredsome non-native di-
phones, as well as the speaker’s availability over a longgogd of time.

The subjectively perceived properties of a diphone voieescarrrently not pre-
dictable from the speaker’s natural voice. The predict®less difficult for unit se-
lection voices because they preserve the characteridtitse mriginal voice much
better by reducing the number of concatenation points aadathount of signal
processing. However, the number of concatenation pointstmasimilar to that in
diphone synthesis, in which case the subjective voice gualialmost as hard to
predict as in the diphone case. To ensure that the selectadtesfs voice is suitable
for diphone synthesis in the sense that the resulting diphoite is still judged to
be agreeable, we built a test diphone voice for each spedighis end, a small
diphone set was recorded that covered the diphones redoireginthesizing three
short sentences. The speaker with the best test voice watestl

Since recording and building a diphone database is very-tiomsuming even
for the rather small set of diphones needed for the test gpige split the speaker
selection process in two phases. In the first phase, we agleakears to record
some SmartKom specific material. This material includedatstiialog typical of
a SmartKom domain, a list of (nonsense) diphone carrier syaadd three short ex-
cerpts from movie reviews in German, English, and Frencim&epeakers sent in
demo tapes, and some were recorded in an anechoic recormatiig &t our lab. Al-
together, we collected demo material from 40 speakers, 2@lieand 11 male. For
each voice, some representative sentences were selectedtad for their subjec-
tive qualities in an informal evaluation procedure. Mosttiggpants in this rating
procedure were colleagues from our institute.

In the second phase, the ten best speakers from the first,ghasde and 6 fe-
male, were invited to our lab to record the diphone set regufor our three test
sentences. The diphones were manually labeled and afeigsvmocessed by the
MBROLA! group at Mons. We carried out a formal evaluation with 57 iparants;
20 participants were experienced and 37 “naive” with respespeech technology.
The three target sentences were synthesized for each spesike different signal
processing methods (MBROLA [14], PSOLA [26] and Waveforretpolation [25])
and different prosody variants (the speaker’s originalspaty vs. prosody as pre-
dicted by our TTS system, with the pitch range adapted to éspeactive speaker’s
pitch range in the latter case). Some of the stimuli weregmeesl as video clips
showing Smartakus speaking, but without correct lip syootmation. Participants
were asked to rate the stimuli for naturalness on a five-psate from -2 to +2,
where -2 corresponded to “not natural” and +2 corresponaéektry natural”. Mean
scores were calculated for every stimulus.

The most important outcome of the evaluation procedure hatsthe subjective
ranking of speakers was different for the two steps. Foraimst, the left panel in
Figure 3 shows that for the best four male speakers from teiestiep, the MBROLA

Isee http://tcts.foms.ac.be/synthesis/
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Fig. 3. Mean scores of audio stimuli for the male voices (left paaelll the female voices
(right panel), broken down by signal processing methodaBges are indicated on the x-axis,
mean scores on the y-axis. Averaged over the different ndstiehite bars), the MS voice
was rated the most natural, but when looking at MBROLA voiorly (black bars), KK'’s
voice was clearly better.

diphone voice of KK, who was originally ranked third, was ¢edl to be the most
natural diphone voice, and the second most natural diphoiee was from MS,

who was originally ranked fourth. Other signal processiregmods yielded different
rankings; in these cases, the MS diphone voice was judged tbhebmost natural.
Similar effects are evident in the ranking of the female dipd voices in the right
panel of Figure 3. This confirmed our expectation that thgesative quality of the

diphone voice does not correlate directly with the subyectjuality of the original

voice.

Itis evidentin Figure 3 that MBROLA turned out to be the béghal processing
method in all cases. Male voices were generally rated b#ttar female voices,
especially for signal processing methods other than MBROLA

In spite of Smartakus’ relatively androgynous featuresigtwas an even stronger
preference for the male voices in the video clips. This isstitated in Figure 4. Only
the results for the MBROLA voices are presented here, whietevagain rated bet-
ter than the other voices. In the video condition, only theedgrs’ original prosody
was used, which was transplanted onto the diphone voiceas3ess the influence
of the natural prosody in the ratings of the video stimuli, weluded the ratings
for audio stimuli with natural prosody in the diagram. Theference for MS in the
video condition was not due to the natural prosody: while M8 KK were rated
similarly good for those stimuli, MS was clearly preferredthe video condition.
Thus, as alluded to above, the speaker rated best for the-andl stimuli was rated
much lower for the audio-video stimuli, presumably becaafdgs low pitch, which
did not seem to go well with the cartoon-like features of Satars.
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Fig. 4. Mean scores for MBROLA voices presented in audio mode, geeraver natural and
rule-based prosody (black bars), with natural prosody (&) (gray bars), and for MBROLA
voices presented in video mode with natural prosody onlyitembars). All except one voice
(MT) are rated better when the speaker’s natural prosodgesl in the audio-only condition.
In the video condition, the ranking is different. MS is rategbt in video mode. Generally, the
male voices are preferred in this mode.

Based on these results, MS was selected as the speaker fotk6ma We
recorded both a diphone and a unit selection database afgkiker. The diphone
voice was used in the project during the development of thiesetection voice, and
it was also used as a baseline synthesis voice in the evatuattithe unit selection
voice.

3 Restricted domain unit selection synthesis

The SmartKom domains are restricted but not limited: uttees are generated from
a number of lexicalized partial syntactic trees [4] (see [Z&a??), but open slots
are filled with names, proper nouns, movie titles, etc., fdynamically changing
external and internal databases. The vocabulary is therefdimited, although it is
biased toward domain specific material. The predominana®ofain specific ma-
terial calls for a unit selection approach with a domain #pespeech database to
ensure optimal speech synthesis quality for frequent gistd$owever, since the vo-
cabulary is theoretically unlimited, domain independeatenial must be taken into
account as well. This is especially important because tlvalwaary shows typical
LNRE (Large Number of Rare Events) characteristics [23halgh each infrequent
word on its own is very unlikely to occur, the probability afiing an arbitrary in-
frequent word in an utterance is very high.

Domain specific and domain independent materials poserelifteequirements
for the unit selection strategy. Domain specific phrases aftgn be found in their
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entirety in the database. In this case, it may be unnecessanen consider candi-
dates made up of smaller non-coherent units. Domain indgematerial, on the
other hand, will usually have to be concatenated from muchllemunits, such as
single segments, demanding a carefully designed databtseptimal coverage and
a selection algorithm that can handle larger amounts ofiplessandidates. There-
fore, a hybrid approach was implemented combining two mdsdtrategies [27]. It
is described in the following section. Details on the camstion of the unit selection
corpus are presented in Section 3.2.

3.1 Unit selection strategy

Current unit selection approaches mostly use segments/[18], or subsegmental
units such as half-phones [6, 11] or demiphones [3] as thie bag. For each unitin
the target utterance, several candidates are selectedtimspeech database accord-
ing to criteria such as segment identity, segmental andiigtig context. For each
candidate, itdarget costexpresses how well it matches the specification of the tar-
get unit. For each pair of candidates, thedincatenation cogneasures the acoustic
distortion that their concatenation would cause. Then #wgience of candidates is
chosen which simultaneously minimizes target and conediamcosts. Since there
is no distortion for originally adjacent units, longer stiges of successive units are
favored over single non-adjacent units, reducing the nurmbeoncatenation points
and rendering a more natural voice quality. We will call thibottom-up approach
because, starting from the segmental level, the selectioomplete syllables, words
or phrases arises indirectly as a consequence of the lowmeatenation costs for ad-
jacent segments.

Such an approach faces two challenges. First, target codtsomcatenation costs
must be carefully balanced. Second, for frequent units éimgliclate sets can be very
large, and the number of possible sequences of candidates giramatically with
the number of candidates. For performance reasons, thedzdaaedets must be re-
duced, at the risk of excluding originally adjacent cantkda

One way to achieve the reduction of unit candidate sets iduster the units
acoustically in an off-line procedure and to restrict thedidate set to the units of the
appropriate cluster [7]. We will refer to this method as tlvewstic clustering (AC)
approach. The idea is to cluster all units in the databaserdic to their linguistic
properties in such a way that the acoustic similarity of simitthin the same clus-
ter is maximized. In other words, the linguistic propertileat divide the units into
acoustically similar clusters are those properties thategntly have the strongest
influence on the acoustic realization of the units in thetelu®uring synthesis, the
linguistic context determines the pertinent cluster. Aller units are ignored, which
reduces the number of candidates.

Some approaches [32, 31] use a different strategy. Camdidae searched top-
down on different levels of the linguistic representatidrttee target utterance. If
no candidates are found on one level, the search continutaearext lower level. If
appropriate candidates are found, lower levels are ignforgtie part of the utterance
that is covered by the candidates. For the phonologicatttre matching (PSM)
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algorithm [32], candidates can correspond to various noflés metrical tree of an
utterance, ranging from phrase level to segment level,efBil] uses only the word
and segment levels. Both approaches are designed fordirddenains and benefit
from the fact that most longer units are represented in thaebdase. The advantage
of such a top-down approach is that it favors the selectiothe$e longer units in
a straightforward way. If candidates are found on leveldhbighan the segment
level, this strategy can be faster than the bottom-up aghembecause there are
longer and therefore fewer unit candidates. Still, pattidy on the segment level,
candidate sets may be very large.

The LNRE characteristics of the SmartKom vocabulary witlingted number
of very frequent domain specific words and a large number of vdrequent words
originating from dynamic databases suggested a hybriteglyahat integrates the
two approaches described above. The PSM strategy ensgitegbality synthesis
for frequent material by directly selecting entire wordgbrases from the database.
If no matching candidates are found above the segment letith will typically
be the case for domain independent material, the AC appreamies to reduce the
amount of candidate units.

Our implementation of the PSM algorithm differs from thegimnial implementa-
tion [32] in some aspects. First, the original algorithmuiegs candidates to match
the target specification with respect to tree structure agdnent identities, but they
may differ in stress pattern or intonation, phonetic or gaf@ontext, at the expense
of higher target costs. This reflects the view that a prosdlyicuboptimal but co-
herent candidate is better than the concatenation of snmate coherent units from
prosodically more appropriate contexts. We kept the matghbndition more flex-
ible by more generally defining two sets of features for eastell of the linguistic
hierarchy.Primary featuresare features in which candidates have to match the tar-
get specification (in addition to having the same structusdlle they may differ
in terms ofsecondary featuresismatch of secondary features causes higher target
costs, just as the mismatch of prosodic features increbeesit score in the original
algorithm. The primary features typically are the unit itlgnand the classification
of prosodic events occurring on the respective unit. Seagntbatures are mostly
positional features expected to have a strong influence@®adbustic realization of
the unit. More details can be found in [27].

Another, more important, difference to the original PSMaalthm is that candi-
date sets can optionally be reduced if their size exceedstairtéhreshold. In this
case, the candidate set is filtered stepwise for each segofeddure, thereby ex-
cluding candidates that do not agree on the respectiverteaituntil the size of the
candidate set is below the threshold. However, the PSM Béarwt performed be-
low the syllable level because the initial candidate setaldvbe too large. Instead,
the AC algorithm [7] takes over on the segment level, addisgdédates for those
parts of the target utterance that have not been covered yet.

As for the final selection of the optimal sequence of unitadidate units found
by either search strategy are treated in the same way, h&y,dre subject to the
same selection procedure. Thus, longer units are treage@gushorter units in that
the optimal sequence of candidates is determined by a Viddgbrithm, which si-
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multaneously minimizes concatenation costs and targes.cGencatenation costs
for two longer units are the concatenation costs for the tegngents on either side
of the concatenation point.

3.2 Text material design and cor pus prepar ation

The requirements for the contents of the database are agfnedt for domain
specific vs. domain independent material. For the limitedam of domain specific
material, it is conceivable to include typical words in salelifferent contexts [31]
or even to repeat identical contexts. In contrast, for thenegomain part a good
coverage of the database in terms of diphones in differentesdés is essential, as
emphasized by [33, 23].

We followed [33] by applying a greedy algorithm to selectrira large text cor-
pus a set of utterances which maximizes coverage of units.pfbcedure was as
follows. First, the linguistic text analysis component b&tIMS German Festival
TTS system [18, 29] was used to determine for each sentere&grman newspa-
per corpus of 170 000 sentences the corresponding phonersszgias well as their
prosodic properties. We built a vector for each segmentitial its phonemic iden-
tity, syllabic stress, word class, prosodic and positigmaperties. Thus, we obtained
a sequence of vectors for each sentence. Additionally, wesméned the diphone se-
quence for each sentence. Sentences were then selectedsively by the greedy
algorithm according to the number of both new vectors and digivone types that
they covered. For German diphone types that did not occulr atexconstructed sen-
tences that would contain them, added these sentences tores, and repeated
the selection process. This ensured that at least a fulbdipboverage was obtained,
and at the same time the number of phoneme/context vectes typs increased.

We added 2643 SmartKom specific words and sentences to thaimdnade-
pendent corpus. They included excerpts from demo dialagsalbo domain typical
slot fillers such as people’s names and place names, numiekdays, etc. Movie
tittes, many of them in English, constituted the largesugrof domain specific ma-
terial, partly to make up for the omission of English phonethie systematic design
of the text material.

The speech database was recorded using the same proféspieateer as for the
diphone voice and amounts to about 160 minutes of speechattbenatically gen-
erated transcriptions were manually corrected accorditvghat the speaker had said
together with the corresponding orthographic notatiore fiand-corrected transcrip-
tions were then used for sentence-wise forced alignmemteo$peech signal on the
segment, syllable and word levels. Pitch accents and boyhaldes were automati-
cally predicted from the orthographic notation and subsadjy corrected manually.

The corrected version of the database contains 2488 diptypes. 277 of the
2377 originally predicted types were not realized in theadase, mostly because of
incorrect predictions; instead, 388 additional types ol Similarly, the database
had been predicted to cover 2731 out of 2932 phoneme/contekdr types from
the complete text corpus. 687 of these were not realizeddanréhorded database,
whereas 791 new ones occurred, which yields 2835 types.e3éthew vector types,
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only 10 belong to the 201 vectors that had been in the comf#gtecorpus but not
in the subset selected for the recordings.

These figures show that more than 90% of the diphone types eoxered as
expected, and many new types involving foreign phonemes aeded. As for the
coverage of phoneme/context vectors, the situation is roomgplex. Combinatori-
ally, 19440 phoneme/context vector types are possible. $\ienate that no more
than 4600 are theoretically possible because the contegepties are not indepen-
dent. For instance, boundary tones only occur on phrasesiiables. Some con-
sonants are phonotactically not allowed in syllable onsatsers not in the rhyme,
and vowels are in the rhyme per definition. Also, pitch acsan¢ always realized on
syllables with syllabic stress, and function words usula#lye no pitch accent. How-
ever, only approximately 60% of these 4600 types were caveven with a careful
database design. One reason for this is that some of thesedyp so rare that they do
not occur even in large corpora [23]. Apart from that, cogeraf phoneme/context
vectors was problematic because many of the predicted reestere incorrect. This
was partly due to foreign language material in the text cesphich could not be ad-
equately dealt with using the monolingual German lexicdsg aunknown words,
mostly compounds, abbreviations and acronyms, had often beedicted incor-
rectly. We expect that the prediction of context vectorsleasignificantly improved
if foreign material is reliably marked as such in a prepreogg step. However, the
prosodic contexts are difficult to predict, and often selval@rnative realizations
are possible. Giving the speaker additional directionseamng intended prosodic
realizations, on the other hand, may add too much load inrsigreg the recordings
and moreover might result in unnatural realizations.

4 Lip and gesture synchronization

It has been shown that visual segmental information canrerghsegmental speech
perception [20]. Vice versa, inconsistencies betweeralignd acoustic information

can significantly decrease intelligibility to the extrerhatthe segmental identity is
compromised: [19] demonstrated that acoufilig is perceived as /da/ when pre-
sented with the visual information ¢§g. Thus, correct lip synchronization is an
important issue in multimodal speech synthesis.

4.1 Lip synchronization

In contrast to lip synchronization for more human-lookingtars which may require
modeling of various parameters such as the position of thgtfee upper and lower
lip, teeth, tongue tip, and tongue root, only two parameteesnecessary for Smar-
takus because of his cartoon-like features: jaw openindgipmdunding. His teeth
and tongue are never visible.

We used a simple mapping procedure to map phonemes to solw@emes
Visemes are visually contrastive speech elements [15]utrview, visemes are sets
of feature-value pairs, where the features correspondtdifferent articulators and
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almost closedi -y

mid

Fig. 5. IPA vowel space diagram of the vowels used in SmartKom swighan SAMPA nota-
tion. The lip opening degree for each vowel is indicated anldft. The dashed lines indicate
the boundaries between different degrees of opening.

the values indicate their target positions. Movement tedubm interpolating be-
tween the target positions specified by the visemes. Eachgvhe is represented by
one ore more visemes. Visemes can be underspecified regaudliticular features.
In this case, the value of the feature consists of a range sdiple values. Under-
specified visemes inherit the missing values from the cdntelxich allows us to
model coarticulation.

In SmartKom, only two features are specified for visemes(dipjaw) opening
and lip rounding. Four degrees of lip opening (closed, atrolwsed, mid, open) and
two degrees of lip rounding (unrounded, rounded) are difitiated. Visemes cor-
responding tovowels are fully specified for both opening and rounding. Figure 5
shows the vowels used in SmartKom arranged in the Intemati®honetic Associ-
ation (IPA) vowel diagram, in SAMPAnotation. The position of each vowel in the
IPA diagram reflects the tongue position in articulationu¥hthe vertical position
of the vowels indicates tongue height, and the horizontsitjpm indicates the front-
back position of the tongue. To map vowel positions in theydien to lip opening
degrees, we stipulate that tongue height and lip openinglate, but that the hori-
zontal position is irrelevant for lip opening. The resuftimapping from the position
in the diagram to the opening degree of the correspondirgmésis indicated on
the left of Figure 5. Schwa vowels (/6/, /@/) are an exceptibay are usually real-
ized in a reduced way, in which case the correlation betwipesplening and tongue
height seems to be less strong. Both schwas are therefdimebaith almost closed
lips. Rounding trivially follows the phonological speciton of the respective vow-
els. Diphthongs are represented by a sequence of two viseonesponding to the
visemes representing the underlying vowels.

Visemes forconsonants, on the other hand, may be underspecified. This is moti-
vated by the hypothesis that consonants whose place dilattan is to the back can
be articulated with an almost closed jaw or with an open jasngdnants with an an-
terior place of articulation, however, can only be articethwith a relatively closed
jaw. Also, most consonants can be articulated with roundedth unrounded lips.
Thus, visemes corresponding to consonants are unspeciftedegard to lip round-
ing, and the farther back their place of articulation is, kthigher is the degree of

2SAMPA is a wide-spread standard used for convenience itstithe IPA notation.
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place of articulation
labial|labiodentaldentalalveolafpostalveolalpalatalvelafuvularglottal

plosives | pb td kg ?
nasals m n N
fricatives fv TD| sz | SZ C X R h
approximants Ir i w
jaw opening
minimal 0 1 1 1
maximal 0 1 2 3

Fig. 6. IPA chart for the consonants used in SmartKom, in SAMPA matafupper part of the
table) and mapping to ranges of jaw opening degrees (low). fdaces of articulation are
arranged in the chart from front (labial) to back (glott@pssible jaw opening degrees are 0
(closed), 1 (almost closed), 2 (mid), and 3 (open). The raigalues depends on the place
of articulation of the corresponding phoneme. Velar, ugdad glottal consonants exhibit the
highest degree of underspecification for jaw opening: thgeaof jaw opening degrees is from
1to 3.

underspecification for jaw opening. In Figure 6, the mapgimm place of articu-
lation to jaw opening degree is again demonstrated by an H&t containing the
consonants used in SmartKom.

After mapping phonemes to visemes, the resulting sequevfcpartly under-
specified visemes and the corresponding time intervalsivelto the beginning of
the speech signal are passed to the presentation manageCiiapter??), which
resolves underspecification and concatenates video seegienrresponding to the
visemes.

4.2 Gesture-speech alignment

Smartakus may execute gestures while he is speaking. licdbks, temporal align-
ment of speech and gesture is required. Pointing gestwsesrdgluence prosody, as
mentioned in Section 1.

Building on the Sketch Model [13], speech is synthesize@rahdently of the
temporal structure of the accompanying gesture. Instédgésture is executed in
temporal alignment with the speech signal. According td,[§8stures can be di-
vided in three phases, viz. the preparation phase, theespioise, and the retraction
phase. The stroke phase is the core phase, which accompamiesponding speech
material. Preparation and retraction phases of gesturepeadjusted to align the
stroke phase with the relevant speech material. In Smartkoost of the gestures
occurring during speech are pointing gestures, which apamydeictic elements in
the linguistic structure. In this case, the timing inforioatfor the deictic material is
passed to the presentation manager to enable alignmerd sfrtike phase with the
corresponding deictic element.
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5 Evaluation of the speech synthesis module

Due to the complexity of multimodal systems, it is difficudtévaluate single com-
ponents because they are not designed to perform in a stand-amode, isolated
from other system components that they interact with. Alse,performance of the
system as a whole, not the performance of its modules, isideavhen it comes to
user acceptance or usability. Consequently, the Smartlgsters has been evaluated
extensively as a whole (Chapte?).

However, in addition to an end-to-end evaluation of the cletepsystem, the
evaluation of its speech synthesis component is necessagivé more detailed,
possibly diagnostic, insights into potential synthesiscéic problems. This can be
difficult since the boundaries between system componeet®fien not clear-cut
from a functional point of view. In SmartKom, language gextien and synthesis
are strongly linked. Without language generation, simngatoncept input for CTS
synthesis is tedious. But if concept input is generatedraatzally for synthesis
evaluation purposes, the language generation componanpigitly evaluated to-
gether with the synthesis module. A second problem is tleedipfpropriateness of the
synthesis voice for Smartakus cannot be evaluated withetdrimation component.

To detect possible synthesis specific problems, we cartieéaluations of the
synthesis module, detached as far as possible from the Komarsystem, at two
times’. The first evaluation took place early in the project andeete verify that the
diphone synthesis voice produced satisfactory inteliigyh the second evaluation
was carried out in the last project phase to assess theyjagitie new unit selection
voice, particularly in comparison with the diphone voiciglfe 7 shows an overview
of the tasks performed in the evaluation procedures.

5.1 First evaluation

The first evaluation involved a total of 58 participants, @fhican be classified in
two groups. The first group comprised 39 students of the Usityeof UIm. These
subjects are referred to as “naive” because they reportbdve had no prior expe-
rience with speech synthesis or language processing. Toadgroup consisted of
employees of DaimlerChrysler at Ulm, who were experiencith vegard to speech
technology. All participants completed three dictatioek& one with SmartKom
specific utterances rendered by the diphone voice, one \eitastically unpre-
dictable sentences (SUS [5]) recorded from a speaker, aadusimg SUS stimuli
synthesized by the diphone voice.

The SmartKom specific dictation task was intended to vehiéi the intelligibil-
ity of the diphone voice was satisfactory for the use in SKam. The participants
transcribed nine system turns in a continuous dialog betwlee system and a user.
93% of these system turns were transcribed without any&ré6 involved obvious

3The significant contributions of Martin Ernst (DaimlerChigr, Ulm) and Gerhard Kre-
mer, Wojciech Przystas, Kati Schweitzer, and Mateusz Wi@idéS) to the synthesis evalua-
tions are gratefully acknowledged.



Multimodal speech synthesis 19

1St evaluation 2"'evaluation
pilot study full experiment
material| voice |material] voice | material| voice
natural diphones
dictation SUS diphones SUS us
SK | diphones
listening open | diphoneg
comprehension domain us
.SUbJeCt'.Ve SK | diphonesg SK diphones SK us
impression us

Fig. 7. Overview of the tasks performed by participants in the eatitun procedures. The
general type of task is indicated in the left column. Theddists text material, viz. normal text
(open domain), semantically unpredictable sentences \StSmartKom specific material
(SK), and the voices used to generate the stimuli, viz. diphaice or unit selection voice
(Us).

typing errors, and in 2% of the transcriptions there weremrwhich can probably
be attributed to memory problems rather than to intelligipi These figures show
that the diphone voice offers excellent intelligibilityrfioormal speech material.

The SUS dictation tasks are perceptually more demandingusecthe linguis-
tic context does not provide any cues in cases of locallyffitsent intelligibility.
The tasks thus aimed at testing the intelligibility of thehthne voice under more
challenging conditions. The sentences were generatednatit@lly using five dif-
ferent templates, which are listed in Figure 8. The mateddill the lexical slots
in the templates came from lists of words selected from CELEMaccording to
their morphological and syntactic properties. The listsen@andomized before gen-
erating the SUS stimuli. All lexical items were used at leaste, but in varying
combinations.

The SUS task using natural stimuli immediately precededakk with the di-
phone stimuli. It served to estimate the upper bound of scioresuch a task. The
subjects transcribed 15 stimuli in each of the two tasks.tRematural stimuli, the
sentence error rate was 4.9%. Of these, 0.6% were obviousgtgprors. The error
rate for the synthesized stimuli was 33.9%. Again, 0.6% vixgpeng errors. The er-
ror analysis for the diphone stimuli showed three relatifegquent error types. One
concerned the confusion of short and long vowels. This cahatly be attributed to
the duration model used for determining segmental durati@hich had been trained
on a speech corpus from a different speaker. We replacednibie! with a speaker
specific model trained on the unit selection voice data lmtéie project. Another
problem was that sometimes the subjects did not correctiygrize word bound-
aries. We expect that in these cases listeners should afsditokom the improved
duration model. The other two types of errors concernedaiuosives preceding
vowels in word onsets, and voiced and voiceless plosivesegiag /R/ in the same
position. We claim that the latter is a typical problem inltpe synthesis: the two
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template constituent lexical slots
subject determiner (sg.) + noun (sg.)
SVO verb transitive verb (3rd person sg.)
object plural noun
subject determiner (sg.) + noun (sg.)
SVPP verb intransitive verb (3rd person sg.)

adjunct PPpreposition + determiner (acc. sg.) + noun (acc.|sg.)
adjunct PP preposition + determiner (dat. sg) + noun (dat. $g.)

PPVSQ verb transitive verb (3rd person sg.)
subject determiner (nom. sg.) + noun (nom. sg.)
object determiner (acc. sg.) + noun (acc. sg.)

verb transitive verb (imperative pl.)
VSO! | subject “Sie”
object determiner (acc. sg.) + noun (acc. sg.)
verb transitive verb (3rd sg.)
VS O?| subject determiner (nom. sg) + noun (nom. sg)
object determiner (pl.) + noun (pl.)

Fig. 8. Overview of syntactic templates used for the generation @8 Stimuli. The table
shows the lexical slots in the templates correspondingeaatimstituents in each of the tem-
plates. Although not explicitly stated here, noun phraseeevelso congruent in gender, and
the complements of transitive verbs and prepositions wetled appropriate case.

/R/-diphones concatenated in these cases are two diffposittonal variants of /R/,
viz. a postconsonantal variant, and an intervocalic varian

After performing the dictation tasks, participants werkeasfor their subjective
impression of the diphone voice. They rated the voice on affaiat scale rang-
ing from -2 to +2 for each of the two questiottdow did you like the voice?(-2
and +2 corresponding to “not at all” and “very much”, resjpeat), and“Did you
find the voice easy or hard to understand?2 and +2 corresponding to “hard” and
“easy”, respectively). Subjects also answered “yes” or"‘tocthe questiorfWould
you accept the voice in an information systemPhe results strongly indicate that
non-naive subjects generally rated the voice better théwrersubjects. The mean
scores for the first two questions broken down by experienite speech technol-
ogy were +0.53 and +1.37 for non-naive participants, an2ll-and +0.67 for naive
participants, respectively. Of the non-naive subject$»3aid they would accept the
voice in an information system, whereas only 72% of the naivgjects expressed
the same opinion. In summary, the first evaluation confirnhatl the diphone voice
yielded satisfactory results.

5.2 Second Evaluation

The second evaluation focused on the unit selection voieee the diphone voice
served as a baseline for the dictation and listening congmgbn tasks. The ac-
tual evaluation was preceded by a pilot study on the acciipyadf the unit selec-

tion voice versus the diphone voice specifically for typi€ahartKkom utterances.
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The subjects in this pilot study were students from Stuttgad their parents. The
younger student group and the older parent group each tedsi§25 participants.
Subjects listened to 25 SmartKom specific dialog turns irdoamized order, both
rendered in the unit selection voice and in the diphone vdifierwards, they were
asked to answer the questiditfow do you judge the intelligibility of the synthesis
voice?” andHow do you judge the suitability of this voice for an inforinatsys-
tem?” on a five-point scale ranging from -2 (“very bad”) to +2 (“vaggod”). There
was a similar effect observable between the younger andlties group as in the
first evaluation between the non-naive and the naive grohp.ybunger group was
more tolerant to diphone synthesis regarding intelligiysithe mean scores for the
diphone voice were +0.83 for the younger group and +0.51Herdlder one. The
unit selection voice was rated significantly better by botbugs; the mean score
was +1.76 in both cases. The results for the question regatte suitability of the
voices in an information system show that the unit selectimice is strongly pre-
ferred. Mean scores were clearly below zero for the diphareev(-1.21 and -1.33
for the younger and the older group, respectively), andrisledoove zero for the unit
selection voice (+1.79 and +1.23 for the younger and ther@dmup, respectively).

In the following evaluation, 77 subjects participated, @ai which had taken
part in the earlier evaluations. Three tasks were complietéis evaluation. Parti-
cipants first transcribed SUS stimuli. The stimuli were takem the first evaluation,
but they were synthesized using both the diphone and theseleittion voices. The
results are comparable to the earlier results: the sentmoerate was 27% includ-
ing typing errors for the diphone voice (earlier: 33%). Thimws that the diphone
voice has gained in intelligibility compared to the first laxagion. For the unit se-
lection voice, however, the error rate was 71%. This is dutéofact that the SUS
stimuli contained only open-domain material. The unit siéd® voice was designed
for a restricted domain with prevailing SmartKom specifictenal (Section 3). In
this respect, completely open domains are a worst-casasoem which the syn-
thesis quality must be expected to be inferior to that of $iKwan specific material.
Additionally, at the time of conducting the evaluation, gpeech database was still
in the process of being manually corrected. Informal resalitained at the end of
the project, i.e. two months after the formal evaluation aftdr extensive manual
correction of prosodic and segmental corpus annotationkcate that the subjec-
tive synthesis quality especially for open-domain matéras improved since the
completion of the evaluation.

After completing the SUS dictation task, participants wamresented three video
clips showing the SmartKom display during a user’s inteceictvith Smartakus.
The user’s voice had been recorded by a speaker. The systein&in the video
clips was the unit selection voice, synchronized with Salars’s lip movements
and gestures. Subjects were asked to answer three qudsgi@ujusting a sliding
bar between two extremes. The three questions fildosv do you judge the in-
telligibility of the voice?”with possible answers ranging from “not intelligible” to
“good”, “How natural did you find the voice?Wwith answers between “not natural
at all” and “completely natural”, antHow did you like the voice?'with answers
between “not at all” and “very well”. The results for the teranswers were 71% for
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intelligibility, 52% for naturalness, and 63% for pleasaeds. These figures show
that in the SmartKom specific contexts, the unit selectidoesis very well accepted
and judged to be satisfactorily intelligible. This confirthg results obtained in the
pilot study for audio-only stimuli.

In the last task, the listening comprehension test, theestbhjlistened to four
short paragraphs of open-domain texts. After each paragthpy were asked three
guestions concerning information given in the text. Twadexere rendered using
the diphone voice, two using the unit selection voice. Tiseilts were again better
for the diphone voice, with 93% of the answers correct, wiBé6 were correct for
the unit selection voice. In this context, both voices wexted lower than in the
SmartKom specific task. The scores for intelligibility, mainess, and pleasantness
were 53%, 34%, and 42% for the diphone voice, and 23%, 22%&¥dfor the unit
selection voice, respectively. Again, we expect much bedsults after the manual
correction of the speech database.

5.3 Conclusion

To summarize, the superiority of the unit selection voiceviglent for the SmartKom
domain. This was confirmed by the pilot study and the SmartKpetific part of the
second evaluation. The quality of the diphone voice has avgat between the first
and the second evaluation. We attribute this effect mamth¢ new duration model
obtained from the unit selection data of our speaker. Th@imggmanual correction
of the unit selection database is evidently effective. Ecifdjely, the synthesis quality
has improved since the completion of the second evaludtowever, this will have
to be confirmed in more formal tests.

Future work will focus on the extension of our unit selectapproach from the
restricted SmartKom domain to open domains in general. Mpereence gained
in working with the SmartKom unit selection voice suggestat taccuracy of the
database annotation is crucial for optimal synthesis guallso, the strategy to deal
with large numbers of unit candidates as they often occupgnedomain sentences
without excluding potentially good candidates will needhgomore attention in the
future.
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