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Abstract

In Germanic languages like English and German, intonation is usually thought to be ‘post-lexical’. That is, it is usually assumed that
the choice of intonation contour and the form of the realised contour itself are largely independent of the words used. We present three
corpus experiments which show clear evidence of lexical storage of intonation, contrary to these assumptions. Specifically, in each exper-
iment, we show that distributional properties of words affect the prosodic realisation of those words, including accent and boundary
placement, and the shape of pitch accents. The first experiment looks at the frequency of occurrence of a given word with a particular
pitch accent type and its effect on the shape of accents on that word. We found that the more frequently a word and an accent type
appear together, the greater the amplitude of the accent. The second experiment investigates the effect of both the absolute and relative
frequency of occurrence of a given word with a particular accent type and their effect on the variability of the shape of these accents. We
found that while absolute frequency increases the variability in pitch accent shape, relative frequency reduces it. The final experiment
looks at the effect of the relative frequency of a word in its lexical (trigram) context on both variability in its prosodic context and
on accent shape variability. We found that both kinds of prosodic variability decrease as the relative frequency of the word in its lexical
context increases. We argue that all of these findings are expected within an exemplar approach assuming storage of tonal information
with lexical items, and discuss the implications of this for the production and mental representation of intonation.
� 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In Germanic languages like English and German, it is
usually assumed that the choice of intonation contour,
and the form of the pitch contour itself, are independent
of the words used (save for pitch peak alignment effects
caused by the syllabic form of the words, etc.). Our
research, conducted within the framework of Exemplar
Theory, provides strong evidence for frequency-based
storage of intonation with words – suggesting that the
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choice of intonation contour, and its form, are not inde-
pendent of the words used.

Below, we first describe Exemplar Theory in Section
1.1, followed by a discussion of its relationship to auto-
segmental-metrical models of intonation (Section 1.2),
and how it can be employed to investigate the possibility
of lexicalised storage of intonation (Section 1.3). In Sec-
tion 2 we set out the findings from three corpus studies
examining intonation parameters with respect to possible
lexical frequency effects. We examined if the frequency
with which lexical items and pitch accents occur together
is related to the detailed acoustic realisation of the pitch
accent tokens. Moreover, we examined if the relative fre-
quency of a word in its trigram context is related to how it
is realised on the tonal level. If distributional properties of
the lexical level have an influence on intonation, this is
consistent with storage of intonation features with the
lexical items. The results of these studies are discussed in
Section 3.

1.1. Exemplar Theory

Exemplar Theory was introduced in psychology to
model perception and categorisation (Kruschke, 1992;
Medin and Schaffer, 1978; Nosofsky, 1986; Nosofsky
et al., 1992). In recent years, it has also been applied to
speech perception (Goldinger, 1997; Johnson, 1997) and
production (Pierrehumbert, 2001; Wade et al., 2010;
Walsh et al., 2010). The key idea of Exemplar Theory in
language and speech is that linguistic stimuli are stored
as highly detailed episodes which are then employed in
speech production and perception. Exemplars are assumed
to carry information about, e.g., the detailed acoustics, the
speaking situation, the context when that exemplar was
used, etc.

New exemplars are categorised by similarity to exem-
plars stored in memory. Stored exemplars are accessed as
production targets. The exemplar memory is constantly
updated, and is highly sensitive to frequency and recency
effects. Frequent units are represented by many exemplars,
infrequent units are represented by few exemplars. The var-
iance that occurs within a category is implicitly encoded: all
the realisations of a given unit are stored and will influence
new productions. Frequency effects have been shown to
occur in a variety of linguistic domains, and phonetic
research has documented various phonetic parameters,
articulatory as well as acoustic, which are influenced by fre-
quency of occurrence (Bybee and Scheibman, 1999;
Carreiras and Perea, 2004; Cholin et al., 2006; Jurafsky
et al., 2001; Losiewicz, 1992; Pluymaekers et al., 2005).

Effects of frequency on stored exemplars are well docu-
mented on the lexical level, where frequency influences seg-
mental parameters. For instance, Losiewicz (1992) found a
dependency between the duration of the past tense mor-
pheme -ed in segmentally similar (i.e. rhyming) verbs and
the lexical frequency of the verbs under investigation, with
the morpheme being shorter in high-frequency verbs.
Pluymaekers et al. (2005) found effects of word frequency
on the duration of three Dutch affixes in a corpus study
that controlled for effects of speech rate, position of the
word in the utterance, disfluencies, and phonetic contexts.
The affixes were shorter (either in affix duration or in seg-
ment duration or both) in high frequency words. Bybee
and Scheibman (1999) carried out a study demonstrating
that the degree of the phonetic reduction of the word don’t

in conversational speech is greater in frequent collocations.
A similar relationship was found by Bybee (2000) who
showed that the rate of t/d-deletion is related to the lexical
frequency of the word in question. Further, Jurafsky et al.
(2001) found the relative frequency of a word in its lexical
context to be positively correlated with phonetic reduction.
For a detailed overview of results on phonetic reduction see
Ernestus (2014).

There is also evidence that frequent units display less
variation. For instance, during language acquisition, the
variability of a phonetic category decreases (Lee et al.,
1999). From an exemplar-theoretic perspective, such a find-
ing can be accounted for by entrenchment – decreasing var-
iability with increased production practice (implicitly
captured by an increased number of exemplars).
Pierrehumbert (2001) illustrates the phenomenon with the
example of a child learning a stringed instrument: whereas
in the beginning the notes will be highly variable, after
years of practise (having produced and stored a large num-
ber of exemplars) there will be considerably less variance.

Given the frequency effects discussed above, the exem-
plar-theoretic assumption that linguistic events are stored
as single instances, rich in detail, seems plausible. Conse-
quently, fundamental frequency could also form part of
stored representations. On this assumption, in this article
we adopt an exemplar-theoretic approach to investigating
how distributional properties of words are related to their
tonal realisation.

1.2. Autosegmental-metrical theory of intonation and
exemplar-theoretic effects

The most widespread models of intonation (e.g.
Silverman, 1992, Baumann et al., 2001 often subsumed
under the term autosegmental-metrical (AM) models, pre-
dominantly building on Pierrehumbert, 1980), are silent on
any effects of frequency of occurrence. As the name suggests,
these models assume that intonation is assigned autono-
mously from the segmental level according to top-down
information such as syntactic, semantic or pragmatic infor-
mation (e.g. Ladd, 2008). That is, on the basis of such infor-
mation, a sequence of tones is chosen from a discrete set of
phonological categories for that language variety. These
tones are then associated with the words in the utterance
according to their metrical structure. The separation of the
lexical and the tonal level in English is explicitly stated by
Pierrehumbert (2000, p. 20): “. . .pitch accents are not under-
lying properties of words. Instead, they are independent
pragmatic morphemes which are co-produced with words.”
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AM models assume that the realisation of the pitch con-
tour is then determined by phonetic rules which refer solely
to the sequence of tones and the metrical organisation of
the utterance, e.g. syllables in the word, location of word
stress (as well as a module specifying the pitch range of
the phrase). Therefore, the phonetic realisation of pitch
accents and boundary tones is rule-based, and should not
be influenced by the particular words chosen.

Consequently, the assumptions of AM theory are at
odds with the idea of storing acoustic detail together with
the lexical item, as suggested by exemplar models. If
pitch-accenting is assumed to be post-lexical and solely
rule-based, the frequency of occurrence interactions
between intonation and the lexical level presented below
are hard to explain. There is no inherent reason within
the theory why the choice of tonal contour and its phonetic
realisation should be affected by the frequency of occur-
rence of the word.

1.3. Lexicalised storage of intonation

If the basic principle of exemplar models, i.e. storage of
rich (phonetic) detail, holds for fundamental frequency,
then the stored exemplar representations contain pitch con-
tour information, that is, pitch information can be stored
lexically.

However, current exemplar models do not take account
of intonation (e.g. Johnson, 1997; Pierrehumbert, 2001;
Wade et al., 2010; Walsh et al., 2010). Further, there has
been very little research on frequency effects on prosody.
However, there is evidence that the acquisition of the pro-
sodic word is frequency driven (Vigário et al., 2006), that
word stress assignment can be inferred by instance-based
learning (Daelemans et al., 1994), and that distributional
properties of syllables influence the predictability of their
durations (Schweitzer and Möbius, 2004; Walsh et al.,
2007). For tonal parameters, there is very little research
investigating frequency effects, with the exception of
Braun et al. (2006) who showed that random tonal con-
tours gravitate towards frequent contours in an iterative
mimicry study. There is also very little research that explic-
itly tackles the question whether intonation can be stored
lexically. Goldinger (1997) mentions a pilot study in which
speakers in a shadowing experiment adapted their pitch to
the pitch of the stimuli. Such a result can be interpreted as
evidence for storage of F 0. Moreover, Calhoun and
Schweitzer (2012) present a corpus study paired with a per-
ception experiment that indicates lexical storage of
intonation.

Besides these two studies which come from an exemplar-
theoretic angle, there is other work that indicates storage of
sentential intonation. These studies are firstly situated in
the domain of psycholinguistics, where several experiments
demonstrate that the familiarity or frequency of prosodic
parameters influence speech processing, perception and
production (Braun et al., 2006; Braun and Johnson, 2011;
Braun et al., 2011; Mandel et al., 1994; Van Lancker and
Canter, 1981; Van Lancker et al., 1981). A second research
area which provides evidence for lexicalised storage of into-
nation is the area of machine learning, where various stud-
ies showed that word identity helps in predicting pitch
accent location (Brenier et al., 2006; Nenkova et al.,
2007; Pan and Hirschberg, 2000; Pan and McKeown,
1999), and where instance-based learning of prosody out-
performs other types of learning (Marsi et al., 2003).

We can see, then, that while there is a range of circum-
stantial evidence for frequency-based storage of intonation
with lexical items, this has not been tackled directly in most
previous research. The work presented below attempts to
do this by investigating the relationship between frequency
of occurrence and intonation.

2. Corpus analyses

If exemplar-theoretic assumptions hold, and intonation
can indeed be stored with segmental information, i.e. with
the word itself or with sequences of several words, then fre-
quency effects on tonal parameters would be expected; just
as has been found in the segmental domain.

This prediction is explicitly targeted in the experiments
presented below. They test for potential dependencies
between both the prosodic pattern used and the pitch
accent shape and frequency of occurrence. Both the fre-
quency of the combined type of word and tonal event, as
well as the influence of pure lexical frequency on pitch
accent shape, are examined.

More specifically, experiment 1 demonstrates how pitch
accent realisation is influenced by the frequency of the
word + accent pair, i.e. the combination of a word and the
accent it occurs with (cf. Schweitzer et al., 2010a). Experiment
2 then looks at the relative frequency of such pairs in
production. High relative frequency implies that of all the
instances of that word the majority occurs with the respec-
tive accent. From an exemplar-theoretic viewpoint this
entails that the majority of available production targets
carries the same accent, which could lead to differences in
variability. The experiment shows that indeed the produc-
tion of pitch accent tokens can be influenced by the relative
frequency of the pairs (cf. Schweitzer et al., 2010b), in addi-
tion to their absolute frequency. Finally, experiment 3
investigates the relationship between the relative frequency
of the middle word in a given sequence of three words and
the prosodic variability of the word sequence, demonstrat-
ing that word sequences that occur together relatively often
display less prosodic variability (cf. Schweitzer et al., 2011).

An overview of the experiments is given in Table 1. All
experiments relate a tonal parameter to a frequency mea-
sure. To get a comprehensive picture of the nature and
validity of frequency of occurrence effects at various levels,
different units and different ways to calculate frequency are
examined. In order to get as much data as possible for
each experiment, we used one corpus for the first two
experiments, and a different corpus for the third. For the
first two experiments, we needed to use a corpus with tonal



Table 1
Overview of the experiments. Various tonal parameters, frequency measures, languages and speaking styles are examined to achieve a comprehensive
picture. (PA = Pitch accent).

Experiment 1 Experiment 2 Experiment 3

Unit
word
PA
+

word
PA
+

context

word
+

Frequency measure Absolute Absolute and relative Relative
Tonal parameter Pitch Accent (PA) shape PA shape variability PA shape variability prosodic context variability
Language German German American English
Genre Radio Radio Spontaneous

Fig. 1. The PaIntE model function in a three-syllable window, normalised
for syllable length. The starred syllable r� is the one bearing the pitch
accent. Four of the six free parameters of the PaIntE function are marked
in the figure: while c1 and c2 denote the amplitude of the accent’s rise and
fall (in Hz), parameters d and b define the temporal alignment (b) and the
height (d) of the peak. The two additional parameters a1 and a2 are not
displayed: they give the amplitude-normalised steepness of the rising and
falling slope, respectively. (Figure from Möhler, 2001, p.2)
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pitch accent type annotations, which restricted the choice
of corpora substantially. For experiment 3, however, this
was not necessary, so we used the largest available suitable
corpus. This had the added advantage that we could ensure
that the effects found were not language or speaking style
specific: German and American English were examined,
in news broadcasts as well as spontaneous speech.

To determine pitch accent shape, a parametric intona-
tion model (“PaIntE”, see Möhler, 2001) was employed.
The remainder of this section first provides a description
of the PaIntE model and then describes our three corpus
experiments.

2.1. Parametrisation of pitch accent shape

The PaIntE-model (“Parametric Representation of Into-
nation Events”, cf. Möhler and Conkie, 1998; Möhler,
2001) is a data-based approach to intonation modelling,
originally implemented for F 0 generation in speech
synthesis. The model approximates stretches of F 0 and
interpolates between them. The approximation is imple-
mented as a (linguistically motivated) mathematical func-
tion with six free parameters defining the tonal contour
within an analysis window spanning the syllable marked
with a tonal event and potentially the neighbouring sylla-
bles. The function is composed of two sigmoids which cre-
ate a curve with a peak.

An example of a PaIntE generated contour is given in
Fig. 1. Here, the function defines a curve that is shaped like
a rising accent – like L*H in the GToBI(S) taxonomy
(Mayer, 1995). The starred syllable is the accented one.
The figure illustrates the linguistic interpretation of the
function’s parameters: parameter b marks the alignment
of the highest point in the curve, i.e. the alignment of the
accent’s peak, with the syllables. Parameter d determines
the height of this peak. Parameters c1 and c2 model the
amplitude of the rising and the falling sigmoid, respectively.
Linguistically, they give the range of the accent. Parameters
a1 and a2 estimate the steepness of the rise and the fall,
respectively. They are normalised for the amplitude of the
respective slope, i.e. the actual values of the gradients are
divided by c1 or c2, respectively (Möhler, 2001).

It is important to note that the PaIntE model allows for
different approximation methods. The default case is to
model the pitch accent using two sigmoids. However, if
the original F 0 is modelled better with only one sigmoid
the model tries to approximate the accent using only one
(cf. Schweitzer, 2010, for more detail). In such cases, the
c parameter for the unused sigmoid (c1 or c2) is assigned
0, and the respective a parameter for the unused sigmoid
(a1 or a2) is set to �1. Note that those two values differ
in whether they are meaningful or not: while it is reason-
able to say a non-existing slope has an amplitude of 0
(parameter c), the assignment of �1 for the gradient of
the slope does not result in an interpretable value. This
has some consequences for the methodology employed in
experiments 2 and 3 (see below).

The PaIntE parameters were used to measure changes in
pitch accent shape in the following experiments.
2.2. Experiment 1: Absolute frequency of pitch

accent + word pair

The first experiment was designed to investigate if and
how the pitch contour can be influenced by the word on
which it occurs. The frequency with which linguistic units
occur has been shown to influence phonetic detail (Bybee
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and Scheibman, 1999; Carreiras and Perea, 2004; Cholin
et al., 2006; Jurafsky et al., 2001; Losiewicz, 1992). Regard-
ing pitch, in previous work (Schweitzer et al., 2010a) we
found that the frequency with which a specific word occurs
together with a given pitch accent, is related to properties
of the pitch accent’s realisation: specifically, we found
increased accent ranges with increasing frequency of a
word + accent pair. In the experiment presented here we
analyse a larger dataset (more than 5 h compared to under
3 h in Schweitzer et al., 2010a) with respect to such a
correlation between word + accent pair frequency and
pitch accent ranges.
2.2.1. Data

The experiment was carried out on the prosodically anno-
tated part of the DIRNDL-Corpus (Eckart et al., 2012) con-
sisting of 55 German radio news broadcasts (5 h and 16 min,
5 male and 4 female speakers). The corpus is annotated for
pitch accents and boundary tones according to the GTo-
BI(S) guidelines (Mayer, 1995). It comprises 7817 L*H and
6118 H*L accents. For each word type, the frequency of
the combination of this type with an accent type (a wor-

d + accent pair, e.g. “Berlin + H*L”) was calculated. The
frequency of word + H*L pairs ranged from 1 to 46, the fre-
quency of word + L*H pairs from 1 to 52. For each pitch
accent in the corpus, the PaIntE parameters were calculated.

Then we extracted two datasets, one comprising H*L
pitch accents, and one comprising L*H accents. Tokens
with outlying values for any of the PaIntE dimensions were
removed. Outliers were defined as tokens that fell outside
the whiskers in a boxplot, i.e. they were more than 1.5
times the interquartile range (IQR) away from the
quartiles. Thus 6588 L*H tokens and 4663 H*L tokens
remained in the analysis.

Since the data processing preceding the PaIntE paramet-
risation includes several steps (manual labelling, F 0

approximation and F 0 smoothing) and since each step
increases the number of potential errors, the pitch accent
tokens were tested with a very conservative methodology
for their plausibility before they were included in the anal-
ysis. Only pitch accent tokens that were clear examples of
either L*H or H*L were extracted. Clear examples were
defined as meeting one of the following criteria:

1. If both of the function’s sigmoids were used to model
the accent – hence F 0 was approximated according to
the two-sigmoid (standard) case – then, for H*L, the
amplitude of the fall had to be greater than the
amplitude of the rise. Similarly, for L*H, the ampli-
tude of the rising sigmoid had to be greater than the
amplitude of the falling one.

2. If only one sigmoid was used, it had to be the falling

sigmoid for H*L and the rising sigmoid for L*H.

These plausibility checks restricted the datasets to 2587

tokens (H*L dataset) and 5378 tokens (L*H dataset).
The ranges of the frequencies of the word + accent types

were unaffected (H*L [1–46], L*H [1–52]). In order to

inspect the excluded pitch accent tokens we used WEKA’s

(Hall et al., 2009) simple k-means algorithm to cluster them

into four groups. To visually compare the excluded accents
and the included ones, we plotted the centroid of the
excluded clusters for each accent type along with the cen-
troid for the included accents. Fig. 2 shows the resulting
plots for H*L and L*H. As can be seen, the cluster cen-
troids of the included data correspond to the canonical
pitch accent types in GToBI(S) (Mayer, 1995): H*L is
defined as a peak in the accented syllable followed by a
low target in the post-accented syllable. The solid black line
in the left graph illustrates that the included accents are
plausible examples of H*L. Analogously, L*H is defined
as a low target in the accented syllable followed by a rise
in the post-accented one. The solid black line in the graph
on the right-hand side shows that the included L*H accents
are plausible L*H examples. (Note that the PaIntE func-
tion does not model valleys in the contour, but only peaks,
i.e. we cannot expect to see a valley in the accented syllable,
but only the contour coming from the bottom part of the
register.) The cluster centroids of the excluded accents in
both graphs (dashed/dotted lines), do not correspond to
the definition of the respective accent type.

It is important to note that the source of the implausible
pitch accents shape could be labelling errors, smoothing
errors or cases where for example due to creaky voice,
the fundamental frequency contour could not be derived
correctly. Also, these could be cases where the PaIntE
approximation failed. Investigation of these excluded
tokens will be the subject of future work. For the present
studies, which rely on an accurate description of the
pitch accent shape, we adhered to the above-described,
conservative way of data cleaning, even though it consti-
tuted a substantial data reduction in the case of H*L
accents.
2.2.2. Methodology

The two pitch accent sets were analysed with respect to
whether the accent range of the pitch accent tokens
increased with increasing frequency of the word + accent
pair (Schweitzer et al., 2010a). The accent range is captured
by the PaIntE parameter c1 for L*H accents and by PaIntE
parameter c2 for H*L accents. We will use the term accent

range in the following instead of the two specific parame-
ters in order to have a single term for both datasets. We
used the lme4 package (Bates et al., 2013) in R (R Core
Team, 2013) to fit linear mixed effect models with accent
range as the dependent variable. The frequency of
word + accent pairs was tested as a fixed effect. The
frequency values were logged and centred, in order to
alleviate the problems associated with Zipfian distributions.
Several additional linguistic factors which are known to
influence accent shape (Jilka and Möbius, 2007; Mücke
et al., 2006; Van Santen and Möbius, 2000) were tested as
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fixed effects. Firstly, we looked at the number of accents to
the next intonation phrase boundary, as a measure of the
distance to the end of the tonal phrase whereby the differ-
ence between pre-nuclear and nuclear accents can also be
captured. In addition, two aspects of syllable structure were
taken into account, viz. coda and onset size in terms of num-
ber of segments, as well as the Van Santen/Hirschberg-clas-
sifications (Van Santen and Hirschberg, 1994) for coda and
onset, as determined by the German extension (Institut für
Maschinelle Sprachverarbeitung, Universität Stuttgart,
2010) to the Festival speech synthesis system (Black,
1997). The Van Santen/Hirschberg-classification distin-
guishes onsets and codas with regard to their segmental con-
tent, i.e. whether they consist of unvoiced segments only
(�V), of sonorants only (+S), or of voiced segments not
including sonorants (+V–S). Additionally, we included ran-
dom intercepts and slopes for word and speaker.

For each data set, we determined the best fitting linear
mixed model by carrying out model comparisons using like-
lihood ratio tests (in a similar fashion to Baayen, 2008;
Baayen et al., 2008; Winter, 2013). Starting with the best
model comprising only random factors, we added each fixed
factor separately, retaining the new model only if the added
factor significantly improved it. Subsequently, we tested in
the same way for random slopes.

We considered a new model to be better than its prede-
cessor if the improvement was significant (pðv2Þ < 0:05)
and if the AIC value (Akaike’s information criterion, see
Akaike, 1973) was at least 2 points smaller (Burnham
and Anderson, 2002).2
2 If the p-value and the AIC value returned contradicting results when
adding a factor, we retained the simpler model, but once the final winning
model was established, we tested whether this factor could augment the
winning model.
The p-values reported for each factor were obtained by
comparing the winning models to the models without the
factor under investigation.
2.2.3. Results

Linear mixed models assess the relationship between the
fixed factors and the dependent variable by finding an equa-
tion that predicts the value of the dependent variable as a lin-
ear combination of the fixed factors plus some intercept, plus
possible random effects. The coefficients in this linear combi-
nation are estimated from the data. We can then interpret the
coefficients for the fixed factors as indicating the expected
effect of the factor in question, and the intercept as a kind
of “default value” that is expected when all fixed factors
are zero (for linear factors, or the ‘default’ value for categor-
ical factors).
2.2.3.1. H*L accents. For the H*L dataset, the model term
for the linear mixed model fitting the data best is given in
Eq. (1). The model incorporates the (logged and centred) fre-
quency of word + H*L pairs word.accent.freq as a fixed
effect. None of the other linguistic factors tested as fixed
effects improved the model significantly. As random effects,
the model has intercepts for word and speaker, represented in
the model equation below as (1jword) and (1jspeaker),
respectively. Additionally, the model had by-speaker and
by-word random slopes for distance.to.phrase.end, repre-
sented by the terms (0 + distance.to.phrase.endjspeaker)
and (0 + distance.to.phrase.endjword).

accent:range � word:accent:freqþ ð1jwordÞ þ ð1jspeakerÞ
þ ð0þ distance:to:phrase:endjspeakerÞ
þ ð0þ distance:to:phrase:endjwordÞ ð1Þ



Table 3
Estimated coefficients, SE, and t-Value for the linear mixed model
predicting accent range for the L*H dataset in experiment 1.

Estimate SE t-Value

(Intercept) 33.82 3.18 10.65
word.accent.freq 1.08 0.34 3.21
distance.to.phrase.end �1.71 0.27 �6.44
coda.type + S 1.91 0.76 2.49
coda.type + V–S �0.64 5.36 �0.12
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An overview of the fixed effects in the model described in
Eq. (1) is given in Table 2. Given this model, we expect the
intercept value of 31.73 Hz for cases where word.accent.freq

is zero. The parameter of interest, the frequency with
which a word type occurred with an H*L in the data,
affects the range of the fall of the H*L accent significantly
(v2 ¼ 4:6243; p < 0:05 compared to the respective null
model). The estimated coefficient is 0.89 Hz ± 0.42 (SE,
standard error), i.e. the range is increased by approx.
0.89 Hz for each unit increase in logged frequency of occur-
rence, i.e. for each multiplication by e � 2:7182 in the
unlogged frequencies. This would for instance correspond
to an increase of 3.47 Hz for a word + accent pair with fre-
quency 50 in our dataset compared to one with frequency
1. This increase might sound small at first, however, an
increase in accent ranges due to distributional properties
must be expected to be very subtle.
2.2.3.2. L*H accents. For the L*H dataset, the model term
for the linear mixed model fitting the data best is given in
(2).

accent:range � word:accent:freq

þ distance:to:phrase:end þ coda:type

þ ð1jwordÞ þ ð1jspeakerÞ ð2Þ

The model incorporates the (logged and centred) fre-
quency of the word + L*H pair (word.accent.freq), the dis-

tance.to.phrase.end, and the coda.type as fixed effects, and
random intercepts for speaker and word. An overview of
the model’s fixed effects is given in Table 3. The correlation
of the fixed effects was very low (r < 0:1 as computed by
R’s lme4 package, cf. Bates et al., 2013).

The intercept of the model is the value predicted for
word.accent.freq = 0, distance.to.phrase.end = 0, and coda.

type = �V (unvoiced). Note that such a setting does not
exist in the data, because the current accent is always
included when counting accents before the next phrase
boundary, i.e. distance.to.phrase.end is never below 1 for
pitch accented words. The predicted value of the intercept
is 33.816 Hz.

The parameter of interest, the frequency of word + accent
affected the accent range significantly (v2 ¼ 10:23; p < 0:005
compared to the respective null model). The effect is a positive
effect, i.e. we expect greater accent ranges for more frequent
word + accent pairs. Each unit increase in logged frequency
of occurrence (i.e. each multiplication by e � 2:7182 in the
unlogged frequencies) is predicted to increase the range by
about 1.08 Hz ± 0.34 SE. This would for instance corre-
Table 2
Estimated coefficients, standard errors (SE), and t-values for the linear
mixed model predicting accent range for H*L dataset in experiment 1.

Estimate SE t-Value

(Intercept) 31.73 3.41 9.32
word.accent.freq 0.89 0.42 2.15
spond to an increase of 4.24 Hz for a word + accent pair
with frequency 50 compared to one with frequency 1.

Two of the factors tested to control for other known
effects on accent shape proved significant. The distance of
the accent to the end of the phrase significantly affected
accent ranges (v2 ¼ 41:33; p � 0:0001 compared to the
respective null model): As the number of intermittent
accents between an accent and the next phrase boundary
increases, the predicted range of the accent in question sig-
nificantly decreases (resulting in a negative coefficient for
distance.to.phrase.end in the model). In other words, at
the beginning of a phrase (where a greater number of
accents occur between the accent under investigation and
the phrase boundary), accent ranges are smaller, and
towards the end of the intonation phrase, accents tend to
have higher ranges, possibly reflecting increased acoustic
prominence of nuclear accents, which are usually phrase-
final. Coda types also significantly affected the accent range
(v2 ¼ 6:3083; p < 0:05 compared to the respective null
model) with sonorant codas having greater ranges. Voiced
codas without a sonorant did not differ significantly from
voiceless ones (t ¼ �0:12, corresponding to p � 0:9, cf.
Table 3).
2.2.3.3. Summary. The results from this experiment demon-
strate how pitch is subtly but significantly influenced by the
frequency with which a particular pitch accent occurs with
a particular word. Specifically the frequency of the combi-
nation of pitch accent and word was shown to be signifi-
cantly related to the accent range, i.e. the amplitude of
the rise for rising accents (L*H) and the amplitude of the
fall for falling accents (H*L). This finding is in keeping
with our earlier work (Schweitzer et al., 2010a), however
here we employ a more extensive dataset and a more rigor-
ous methodology.

These effects demonstrate that the word and the tonal
level are intertwined and that they are subject to frequency
effects. Section 3 elaborates on what implications this result
has for models of intonation.
2.3. Experiment 2: Relative frequency of pitch accent

+ word pair

Experiment 1 showed that pitch accent shape is sensitive
to the absolute frequency of pitch word + accent pairs. The
second experiment sets out to further investigate how pitch
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accents are influenced by distributional characteristics of
the words on which they are realised, this time looking at
relative frequency. Segmental parameters have been shown
to be related to the relative frequency of a word given its
context: the greater the relative frequency, the higher the
degree of phonetic reduction (Jurafsky et al., 2001). Pho-
netic reduction is also related to the relative frequency of
a word given the number of phonetically similar words
(Wright, 1997), a factor which is also influential on the
intelligibility of stimuli (Luce, 1986). With regard to supra-
segmental features, Nenkova et al. (2007) showed that the
accent ratio, which is derived from the relative frequency
with which a word type occurs with an accent in a corpus,
is highly predictive of accent placement. In a previous
experiment using American English radio broadcast news
(Schweitzer et al., 2010b), we showed that the relative fre-
quency with which a word and a given pitch accent type
occur together (given all pitch accented instances of the
word) influences how variable the realisation of those pitch
accent tokens are: the higher the relative frequency, the
lower the pitch accent realisation variability. Here, we
aimed to replicate this result using a larger corpus of Ger-
man. In the present experiment, for each combined type of
pitch accent and word, we calculated a value which reflects
the variability in the realisation of the pitch accent tokens
and related this to the relative frequency with which that
accent occurs on that word, while controlling for absolute
frequency.
2.3.1. Data

For the second experiment, we used the same two data-
sets as in experiment 1 (cf. Section 2.2.1).
2.3.2. Methodology

The two pitch accent datasets were analysed with respect
to whether the variability of the pitch accents changed with
the relative frequency of a word + accent pair. To this end,
we calculated pitch accent variability amongst all realisa-
tions of each word + accent pair and related this value to
the relative frequency of word + accent pair.
3 However, it has to be noted that choosing a middle range distance
value for the constant, the results remain the same, so changes in
variability are not only due to the one-sigmoid cases.
2.3.2.1. Calculation of pitch accent variability. To measure
the variability amongst tokens of word + accent pairs, we
used the six PaIntE parameters extracted for each
pitch accent token. To normalise the values, the PaIntE
parameters were z-scored for each speaker and accent type
separately, i.e. each PaIntE parameter was represented by a
z-scored value showing how many standard deviations the
raw value was away from the mean value of that parameter
for a given speaker and a given accent.

Each pitch accent was then represented as a vector of z-
scored PaIntE values.

To measure variability, we calculated for each accent + -
word pair type which occurred at least twice in the pro-
cessed datasets, the Euclidean distance to every other pair
of the same type. This was calculated according to Eq.
(3), where dðx; yÞ is the Euclidean distance between the vec-
tors x and y.

dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

dim2Painte
ðxdim � ydimÞ

2
q

;

PaIntE ¼ fa1; a2; b; c1; c2; dg ð3Þ

Then, we calculated the average of these comparisons. That
is, for a token that occurred 10 times in the dataset (for
instance, “Porsche + L*H”), each token was compared to
the remaining 9 tokens and the average of these distances
was calculated. The average distance of a pair from all
the other instances of the same pair is the variability
measure for this token: the smaller the distance to the other
tokens of the same type, the greater the similarity.
Analogously, a larger value in average Euclidean distance
indicates greater variability.

This was straight-forward for the accents which were
parametrised using two sigmoids. However, we needed to
adapt the method for those cases where the PaIntE model
employed only one sigmoid to parametrise one or both
accents being compared. Recall that the a-values are not
meaningful in those cases where accents were modelled
using only one sigmoid (cf. Section 2.1). Therefore, we
adapted the calculation of Euclidean distance so that a
comparison between a two-sigmoid-accent and a one-sig-
moid-accent resulted in a categorical distinction on the a-
dimension – to model the difference between an existing
and a non-existing parameter (see Fig. 3 for an illustration
of the possible comparison permutations), which is a cate-
gorical distinction and should not be measured on a contin-
uous scale. This was achieved by setting the distance
between the a values of a one-sigmoid-accent and a two-
sigmoid-accent to a large constant value. The constant
was chosen so that it was higher than the largest difference
between a-parameters that occurred in the data set.3

Note that in the z-scoring preceding the variability cal-
culation the meaningless a values were not included.

2.3.2.2. Statistical testing. The H*L and the L*H datasets
were again analysed using the lme4 package in R (Bates
et al., 2013). Linear mixed effects models were fitted with
variability as the dependent variable. The relative fre-
quency of the word + accent pair was tested as a fixed
effect, as was the absolute frequency. Both frequency values
were logged and centred. Further, as a control for other
factors known to affect accent shape, we again tested the
distance to the end of the tonal phrase and the coda type
which had been shown to significantly influence the shape
of L*H accents in experiment 1. The word was incorpo-
rated as a random effect. Note that the data was already
normalised for speaker-specific differences because the
PaIntE values were z-scored (cf. Section 2.3.2.1). For this
reason, we did not include speaker as a random effect.
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(c) Two different sigmoids

(b) Two one−sigmoid cases, same sigmoid

(d) One one−sigmoid case and one two−sigmoid case

(a) Two two−sigmoid cases

Fig. 3. Possible combinations when calculating the Euclidean distance between two accent tokens (experiments 2 and 3). In the PaIntE approximation,
each accent token can either be approximated by two sigmoids, by a falling sigmoid, or by a rising sigmoid. In the two-sigmoid case, all PaIntE values are
assigned a meaningful value, in the one-sigmoid case, one of the a dimensions is assigned a dummy value (grey box). The calculation of the Euclidean
distance between the two respective tokens varies for the different combinations: in case (a) Euclidean distance was determined as usual, in case (b), the
non-meaningful a dimension was ignored, and in cases (c) and (d), the distance on the respective a dimension was set to a large constant. Note that case (c)
cannot occur in experiment 2 because variability is calculated among accents of the same type and the plausibility tests exclude cases where the accent was
parametrised with the wrong sigmoid. However, it can occur in experiment 3 where pitch accent type is not examined.

Table 4
Estimated coefficients, SE, and t-Value for the linear mixed model
predicting average distance for H*L dataset in experiment 2.

Estimate SE t-Value

(Intercept) 3.92 0.15 26.81
rel.freq �0.30 0.09 �3.30
abs.freq 0.36 0.10 3.52
coda.type + S �0.60 0.16 �3.66
coda.type + V–S �1.91 1.58 �1.21
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Analogously to experiment 1, we determined the best fit-
ting model using likelihood ratio tests (Baayen, 2008;
Baayen et al., 2008; Winter, 2013). Starting with the sim-
plest model, we tested each factor to see if its inclusion
made the model a significantly better fit to the data. When
comparing two models, we assumed a model was better
than its competing simpler model if the improvement was
significant ðp < 0:05Þ and if the AIC value was at least 2
points smaller; p-values reported for each factor were
obtained by comparing the null models to the models with
the respective factor.
2.3.3. Results

2.3.3.1. H*L accents. For the H*L dataset, the model term
for the linear mixed effects model fitting the data best is
given in Eq. (4). The model incorporates the (logged and
centred) relative (rel.freq) and absolute (abs.freq) frequency
of the word + accent pair, and the coda type as fixed effects.
The correlation of the fixed effects was very low (r < 0:1 as
computed by R’s lme4 package, cf. Bates et al., 2013). The
model has a random intercept for word.

dist � rel:freqþ abs:freqþ coda:typeþ ð1jwordÞ ð4Þ
An overview of the model’s fixed effects is given in
Table 4. As outlined above, the intercept corresponds to
the baseline condition where all factors have the “default”
value, to which the effects of the other factors are added.
The baseline for the model was the value predicted for
rel.freq = 0, abs.freq = 0, coda.type = �V (unvoiced). The
coefficient of each significant predictor gives the deviation
from the baseline. For the numerical frequency values it
indicates the change with each unit increase in frequency,
for the categorical value coda type, it indicates the devia-
tion for the given level of the variable (i.e. for sonorant
(+S), or for voiced, but not sonorant (+V–S)).

The parameter of interest, the relative frequency with
which a word type occurs with an H*L accent, affects the
average distance, and thus the variability of the pitch
accent tokens, significantly (v2 ¼ 10:766; p < 0:005 com-
pared to the respective null model). The coefficient is neg-
ative (cf. Table 4), that is, with increasing relative
frequency of a word + accent pair, the variability of the
accent tokens decreases (reflected by a decrease in average
Euclidean distance).

Interestingly, absolute frequency was also a significant
predictor of pitch accent variability with the opposite
effect: while relative frequency lowers pitch accent variabil-
ity, absolute frequency had an increasing effect
(v2 ¼ 12:23; p < 0:0005 compared to the respective null
model).

Coda type was a significant predictor as well
(v2 ¼ 14:063; p < 0:001) with sonorant codas decreasing
the variability. The effect for codas that are voiced, but
not sonorant is not significant (t ¼ �1:21, corresponding
to p � 0:22, cf. Table 4).



74 K. Schweitzer et al. / Speech Communication 66 (2015) 65–81
2.3.3.2. L*H accents. As for the L*H dataset, the model
which fitted the data the best was characterised by a model
term (given in Eq. (5)) including only the absolute fre-
quency of word + accent pair as a fixed factor and a ran-
dom intercept for word.

dist � abs:freqþ ð1jwordÞ ð5Þ
That is, contrary to our hypothesis, the model did not

include the relative frequency of a word + accent pair. Abso-
lute frequency, however, showed the same effect as observed
in the H*L dataset: with increasing absolute frequency of
word + accent pair, pitch accent variability increases as well
(b ¼ 0:25� 0:07 SE, v2 ¼ 14:917; p < 0:0005 compared to
the null model). The discussion (Section 3) offers some pos-
sible explanations for the absence of the effect of relative fre-
quency for L*H.

2.3.3.3. Summary. The results from experiment 2 demon-
strate further that the absolute frequency with which the
pitch accent and the word occur together influences pitch
accent shape. Moreover, the effects of relative frequency
found in the H*L dataset indicate that relative frequency
is also an influential factor for pitch accent shape realisa-
tion. The greater the relative frequency, i.e. the greater
the proportion of tokens where a specific word occurs with
H*L (compared to all pitch accented instances of the
word), the smaller the variability in the realisation of the
H*L accents.

Again, these results highlight that intonation is
affected by characteristics of the word level and the dis-
tributional properties of the combined types. The impli-
cations for theories of pitch accent assignment are
discussed in Section 3.

2.4. Experiment 3: Relative frequency of word in lexical

context

Experiments 1 and 2 demonstrated that distributional
properties of combinations of pitch accents and words
influence the acoustic detail of pitch accent realisation, thus
supporting the hypothesis of a relationship between the lex-
ical and the tonal level. Our third experiment looked at the
relative frequency of a word given its left and right neigh-
bour. In Schweitzer et al. (2011) we showed that relative
word frequency in trigram contexts affects the variability
of the prosodic context in which a word occurs as well as
the variability of pitch accents on that word, if it is
accented. However, here, we use linear mixed effects mod-
els to replicate these findings, as mixed models avoid some
problematic aspects that arise when using regular linear
regression models on our data. This experiment adds
another dimension to the ways in which the lexical level
of linguistic structure influences the tonal level: in this
experiment, frequency effects on the lexical level alone (as
opposed to the frequency of word-pitch accent combina-
tions in experiments 1 and 2) are shown to influence tonal
realisation.
Pitch accent placement has been shown to be dependent
on relative word frequency (Pan and Hirschberg, 2000) and
it has been argued that idioms are expected to occur with a
narrow range of tonal contours (Bolinger, 1985), but the
detailed prosodic properties of frequent lexical sequences
have, to our knowledge, not been investigated before our
experimental work.

2.4.1. Data

In this experiment, a subset of the Switchboard corpus
was analysed: it consists of a collection of spontaneous tele-
phone conversations between American English speakers
(Godfrey et al., 1992). 76 of the conversations, or around
6 h of speech from 114 speakers, are annotated for pitch
accent location and prosodic boundary location (Calhoun
et al., 2010) according to the ToBI standard (Beckman
and Hirschberg, 1999). Pitch accent type is not marked.

2.4.1.1. Prosodic realisation. For the two analyses presented
here, two different datasets were extracted. For the exami-
nation of prosodic pattern variability, trigrams that
occurred at least 4 times in the prosodically annotated part
of Switchboard were extracted. Trigrams involving some
hesitation fillers were set aside, resulting in a dataset of
3705 tokens (124 word types of the middle word in the tri-
gram, which occurred in 541 trigram types – both trigrams
and words ranged from 4 to 50 tokens per type). We will
refer to this dataset as the prosodic pattern dataset.

For the investigation of pitch accent variability, we
extracted only trigrams that occurred with an accent on
the middle word. Since the calculation of pitch accent var-
iability involves some data processing which reduced the
data (e.g. outlier removal and exclusion of pitch accents
which could not be modelled with one or two sigmoids,
see below), we restricted the analysed data to those tri-
grams which occurred at least 4 times with an accent on

the middle word in the reduced dataset (400 tokens, 67 tri-
gram types, 34 word types with the word types ranging
from 4 to 407 tokens per type, and the trigrams ranging
from 4 to 93 tokens per type; the dataset before applying
these restrictions comprised 649 tokens, 104 trigram types
and 48 word types). This dataset will be called the pitch

accent variability dataset in the following.

2.4.1.2. Lexical frequency. To calculate relative word fre-
quency, word and trigram frequencies were extracted from
the whole Switchboard corpus, along with the Callhome
American English corpus (Kingsbury et al., 1997), a smal-
ler corpus of spontaneous telephone conversations. The
combined corpus comprised just over three million words.

The frequency of each trigram was divided by the fre-
quency of the middle word (in any trigram context) in
the combined corpus; the resulting value is the probability
of that word in that trigram context. Table 5 lists the
trigrams with the highest relative word frequency in
Switchboard and Callhome for the two analysed datasets.
Most of these would be considered collocations in English,
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affirming that our relative frequency measure is working as
intended.

2.4.2. Methodology

2.4.2.1. Calculation of prosodic context variability. To cap-
ture the prosodic context of a word, we determine for each
trigram token its prosodic pattern. To this end, each word
in a trigram was classified as being accented or not, and as
carrying a boundary or not. Then, the prosodic pattern of
the token was given by the sequence of classifications of the
three words. For example, for the trigram a lot of, if there
was an accent on lot and a boundary after of, the prosodic
pattern of the word sequence a—lot—of was encoded as
NoAcc-NoBound—Acc-NoBound—NoAcc-Bound.

For each trigram type (e.g. the type “a lot of”) we deter-
mined the most common prosodic pattern in which the
middle word occurred. For example, the word “lot”
occurred in 10 different prosodic patterns in the prosodic
pattern dataset. The most common pattern, i.e. the pattern
in which “lot” occurred most often was NoAcc-NoBound—

Acc-NoBound—NoAcc-Bound. We then determined for
each trigram token with “lot” as a middle word, whether
or not the trigram was realised with the prosodic pattern
NoAcc-NoBound—Acc-NoBound—NoAcc-Bound.

If a large portion of the trigram tokens for a given word
are realised with one dominant prosodic pattern, the cou-
pling between the word and its prosodic context is strong,
i.e. there is little variability in prosodic realisation. On the
other hand, if for a given word the most common prosodic
pattern on its trigram tokens is still relatively infrequent,
this means that there is no dominant prosodic pattern for
that word in its trigram context; rather, there is high vari-
ability in the prosodic realisation of that word.

2.4.2.2. Calculation of pitch accent variability. The calcula-
tion of pitch accent variability was analogous to the meth-
odology employed in experiment 2. For all the accent
tokens, PaIntE parameters were extracted. Since the data
Table 5
Trigram types with the highest relative word frequency of the middle word in

Prosodic pattern dataset

P lex Trigram

1 0.738 the rest of
2 0.659 a lot of
3 0.609 I grew up
4 0.544 as far as
5 0.541 be able to
6 0.494 a couple of
7 0.484 to worry about
8 0.432 a matter of
9 0.4 a nursing home

10 0.397 as soon as
11 0.279 I don’t know
12 0.278 I used to
13 0.272 it seems like
14 0.268 a little bit
15 0.217 I ended up
was not annotated for pitch accent types, we used all
accents that could be approximated using one or two sigm-
oids. Outlying tokens were removed analogously to exper-
iment 1 and 2, i.e. outliers were more than 1.5 interquartile
range (IQR) away from the quartiles. In one case the
PaIntE function returned a negative value for c2, this pitch
accent token was removed. Then we determined the pitch
accent variability as described in Section 2.3.2.1. However,
this time, for each token of a trigram type with an accent
on the middle word, the average distance to all other
tokens of the same trigram type was determined.

2.4.2.3. Statistical analysis. The prosodic pattern dataset
and the pitch accent variability dataset were again analysed
using the lme4 package in R (Bates et al., 2013).

For the prosodic pattern analysis, we fitted a generalised
linear mixed model using the logit link function. The
dependent variable was the binary most.common.intona-

tion, indicating whether or not the trigram was realised
with the most common prosodic pattern in which the mid-
dle word occurs. We tested the logged and centred relative
lexical frequency in the large Callhome/Switchboard cor-
pus, the logged and centred absolute word frequency (to
control for effects of absolute frequency of the unigram)
and the logged and centred trigram frequency as fixed
effects. As random effects, we tested the speaker, the word,
and the trigram.

For the pitch accent variability analysis, we fitted a lin-
ear mixed model using variability as the dependent vari-
able. The logged and centred relative lexical frequency
was tested as a fixed effect, as was the position of the word
in the phrase and the logged and centred frequencies of
word and trigram. As random effects, we tested the trigram
and the (middle) word. Note that, as in experiment 2, we
did not have to include speaker as a random factor, since
our methodology for measuring the pitch accent variability
uses z-scored PaIntE values and therefore normalises for
speaker differences (cf. Section 2.3.2.1).
the combined Switchboard and Callhome in the two analysed datasets.

Pitch accent variability dataset

P lex Trigram

0.738 the rest of
0.659 a lot of
0.544 as far as
0.484 to worry about
0.432 a matter of
0.279 I don’t know
0.278 I used to
0.272 it seems like
0.268 a little bit
0.164 take care of
0.108 I guess I
0.106 the point where
0.094 it’s kind of
0.093 that kind of
0.092 and stuff like
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Analogously to experiment 1 and 2 we determined
whether each factor significantly improved the model using
likelihood ratio tests (Baayen, 2008; Baayen et al., 2008;
Winter, 2013). The p-values reported for the factors below
were obtained by comparing the null models to the models
with the respective factor included.
2.4.3. Results

2.4.3.1. Prosodic context variability. For the prosodic pat-
tern analysis, the model term for the generalised mixed
model fitting the data best is given in Eq. (6). The model
incorporates the (logged and centred) relative lexical fre-
quency in the combined corpus (rel.word.freq)) and the
(logged and centred) absolute frequency of the middle
word (word.freq) as fixed effects. As random effects, the
model has intercepts for word, speaker and trigram.

most:common:intonation � rel:word:freqþ word:freq

þ ð1jwordÞ þ ð1jspeakerÞ
þ ð1jtrigramÞ ð6Þ

An overview of the model’s fixed effects is given
in Table 6. As the relative lexical frequency increases,
the likelihood of the most common prosodic pattern for
that word in its trigram context increases significantly
(v2 ¼ 208:63; p� 0:0001). An increase in absolute
word frequency decreases this likelihood (v2 ¼ 14:069;
p < 0:0005). That is, similarly to the result for H*L in
experiment 2, an increase in relative frequency yields a
decrease in prosodic variability, whereas an increase in
absolute frequency affects variability in the opposite
direction.

Note that in this model, the estimators of the two fixed
effects were correlated (r ¼ 0:67, as computed by R’s lme4

package, cf. Bates et al., 2013), which might indicate collin-
earity. Though their variance inflation factor (VIF ¼ 1:8)
and the condition number (j ¼ 2:6) are uncritical (Myers,
1990; Menard, 1995), we fitted a linear regression model
which predicted word frequency on the basis of relative
word frequency. We then replaced word frequency by the
residuals of the regression as a predictor in the linear mixed
model. In the resulting model, correlation of the fixed
effects was very low (r ¼ �0:09 as computed by lme4, cf.
Bates et al., 2013). An overview of this corrected model is
given in Table 7. Comparing it to the respective null models
results in significance for the effect of relative word
Table 6
Estimated coefficients, SE, and z-Value for the generalised linear mixed
model predicting occurrence with most common prosodic context in
experiment 3.

Estimate SE z-Value

(Intercept) �1.16 0.11 -10.13
rel.word.freq 0.11 0.06 1.96
word.freq �0.31 0.08 �3.87
frequency (v2 ¼ 38:179; p � 0:0001) and for the effect of
word frequency (v2 ¼ 14:069; p < 0:0005).

As the relative lexical frequency increases, the likelihood
of the most common prosodic pattern for that word in its
trigram context increases significantly. The intercept of
�1.16 is the value the model would predict for cases where
the logged and centred relative frequency is 0. This hypo-
thetical value corresponds to a raw relative frequency value
of 0.013. The predicted value then gives the log-odds of
being accented with the most common intonation pattern,
and for the intercept of �1.16 this corresponds to a prob-
ability of approx. 0.24. For the lowest relative frequency in
our data (0.000046) the model predicts a log-odds of �2.71,
or a probability of 0.06, of being accented with the most
common intonation pattern. For the highest relative fre-
quency in our data (0.74) the model predicts a log-odds
of �0.05, or a probability of 0.49, of being accented with
the most common intonation pattern.

2.4.3.2. Pitch accent variability. For the pitch accent vari-
ability analysis, the model term for the model fitting the
data best is given in Eq. (7). Relative lexical frequency
(rel.word.freq) is a fixed effect, and trigram a random effect.

dist � rel:word:freqþ ð1jtrigramÞ ð7Þ
An overview of the fixed effects in the model is given in

Table 8. Relative lexical frequency affects pitch accent var-
iability (i.e. average distance) significantly (v2 ¼ 19:233;
p� 0:0001), in that with increasing relative frequency
pitch accent variability decreases.

2.4.3.3. Summary. The results in experiment 3 add further
evidence that realisation at the tonal level is influenced by
distributional properties at the lexical level. In addition
to probabilistic aspects of the combination of a specific
pitch accent with a specific word (demonstrated in the first
two experiments), probabilistic factors of the word level
alone influence intonation. Both parameters measuring
prosodic variability, on or around the word, indicate that
prosodic variability decreases as the probability of a word
in its (lexical) context increases.

While autosegmental theories of intonation are silent on
such frequency effects, exemplar models would in fact
expect them. Exemplars are assumed to contain detailed
acoustic information, hence they are likely to also contain
the fundamental frequency contour. The implications of
these findings are set out in more detail in the following.
Table 7
Estimated coefficients, SE, and z-Value for the corrected generalised linear
mixed model predicting occurrence with most common prosodic context
in experiment 3.

Estimate SE z-Value

(Intercept) �1.16 0.11 �10.13
rel.word.freq 0.27 0.04 6.44
Residuals (word.freq � rel.word.freq) �0.31 0.08 �3.87



Table 8
Estimated coefficients, SE, and t-Value for the linear mixed model
predicting pitch accent variability in experiment 3.

Estimate SE t-Value

(Intercept) 4.25 0.12 34.88
rel.word.freq �0.38 0.08 �4.72
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3. Discussion and conclusion

Our experimental work aimed to test whether there is
evidence for interactions between prosody and the lexicon,
i.e., whether prosody and words are stored together, as
would be anticipated by an exemplar-theoretic view of lex-
ical storage. Specifically, the experiments presented here
sought to determine whether there are lexical frequency
of occurrence effects on tonal parameters, consistent with
the storage of intonational information in the lexicon. An
overview of our findings is given in Table 9.

Experiment 1 looked at types of pitch accents on specific
words (such as “Berlin + H*L”) and demonstrated that the
tonal realisation of pitch accents is sensitive to the fre-
quency with which the pair occurs. The results demon-
strated that the accent range (amplitude of the rise for
rising accents, amplitude of the fall for falling accents) sub-
tly but significantly increases with increasing frequency of
the combined types. This relationship between the word
level and the tonal level has no obvious explanation in
autosegmental-metrical theories of intonation. Theories
of episodic storage, on the other hand, expect linguistic
units to be stored as concrete, highly specified instances.
Therefore, properties of the lexical level are expected to
be interwoven with the tonal level.

The direction of the effect may at first seem surprising,
as lexical frequency has previously been shown to be linked
to phonetic reduction, as outlined in Section 1.1. However,
the data we analyse are crucially different from the studies
mentioned above: we look at pitch accents, which are
mostly assigned to put emphasis on words and draw the lis-
teners’ attention to them. Ernestus (2014) offers a listener-
driven account of effects of phonetic reduction: “Speakers
would like to reduce as much as possible in their articula-
tory effort, but only reduce those units that can easily be
Table 9
Overview of the experiments and their outcomes.

Experiment 1 Experiment 2

Unit
word
PA
+

word
PA
+

Frequency measure Absolute Absolute and relat
Tonal parameter PA shape PA shape variabili

Language German German
Genre Radio Radio
Result Greater accent amplitudes

with increasing frequency
Greater variability
absolute frequency
increasing relative
recognised by the listener[. . .]” (p.5; see also Lindblom,
1990). From this perspective, it would not be expected that
words which receive a pitch accent are phonetically
reduced. Rather, we believe that basic assumptions of
exemplar models can offer an explanation: during speech
production, the exemplars that match the intended utter-
ance best are employed in constructing the production tar-
get. Therefore, the exemplars matching the communicative
goal best are selected. In this case, the communicative func-
tion of the intended utterance requires “prominence”, so
the selection is among stored tokens with increased prom-
inence, i.e. pitch accented tokens. The new instance is pro-
duced involving production noise (due to imprecision
inherent in the production process) causing it to be slightly
more or less prominent than the production target, and is
then stored in memory again. If the production noise
caused the exemplar to be realised with increased acoustic
prominence, the new exemplar is likely to be selected as
forming the production target in future productions when
the communicative function “prominence” is required.
Therefore, with increasing frequency, exemplars would be
expected to be realised with slightly increased acoustic
prominence. This behaviour would then be expected to
be entrenched (cf. Pierrehumbert, 2001) over time, in order
to avoid excessive prominence.

Experiment 2 then looked at the variability in pitch
accent shape among the tokens of pitch word + accent
types and related their similarity to the relative frequency
of that type, controlling for the effects of absolute fre-
quency. For H*L accents, relative frequency had an effect
on the variability of the accent tokens. The more often a
word type and H*L occurred together in the analysed data,
relative to the occurrence of the word with any pitch accent
type, the less variable the realisations of the H*L tokens.
Moreover, for both accent types, H*L and L*H, an effect
of the absolute frequency of the word + accent pairing
was found in that greater frequency entailed greater vari-
ability. Again, these findings demonstrate an interdepen-
dence between the lexical and the tonal level with details
in the tonal realisation being influenced by distributional
properties involving the lexical items.

These effects would be expected in an exemplar-theoretic
model which assumes storage of tonal features with words:
Experiment 3

context

word
+

ive Relative
ty PA shape variability

prosodic context variability
American English
Spontaneous

with increasing
, less variability with
frequency for H*L

Less variability with increasing relative
frequency



78 K. Schweitzer et al. / Speech Communication 66 (2015) 65–81
While generally greater frequency in the stored exemplar
cloud entails greater variability (with the individual exem-
plars coming from different contexts, speakers, situations,
dialects etc.), the relative frequency with which an accent
contour and a word occur, has the opposite effect: when
pitch accented instances of a word are selected to form a
production target, the intended production has a particular
communicative goal which entails a specific tonal contour
(marked as a specific pitch accent type in the data). If the
word was often realised with a communicative function
entailing the same accent (hence, the relative frequency of
accent type and word is high) then the set of exemplars
forming the production target is more homogeneous than
in the case of low relative frequency. Therefore, the new
token is more likely to be produced similarly to the existing
tokens of the specific accent than in the low relative fre-
quency case. Consequently for high relative frequency
cases the exemplars are expected to be more similar to each
other than for low frequency cases.

In this study, however, we only found an effect for H*L
accents, not for L*H. One possible explanation for this is
difficulties with the PaIntE parametrisation of the pitch
accent tokens. Recall that PaIntE attempts to fit two sigm-
oids to each accent, one representing the accent rise and the
other the fall; however, if a model with either a rising or a
falling sigmoid fits the accent shape better, then PaIntE
reverts to a one-sigmoid based parametrisation. Our meth-
odology aimed to make the one-sigmoid cases comparable
to the two-sigmoid cases, however it remains the case that
there is less variation among the one-sigmoid cases since
essentially two dimensions (the steepness and range of the
unused sigmoid) do not contribute to the calculation of
variability. In the analysed L*H dataset, a much greater
percentage of the tokens was approximated with only one
sigmoid (54% one-sigmoid cases, as opposed to 19% for
H*L). It is possible, therefore, that the greater proportion
of one-sigmoid cases in the L*H set might have reduced
the variability in the dataset sufficiently to mask any fre-
quency effect. Investigating the one-sigmoid cases more clo-
sely, will be the subject of future work.

Experiment 3 completed the picture by investigating how
relative word frequency influences pitch accent shape. It was
found that the more probable a word in its lexical context,
the more homogeneous the prosodic contexts it occurs in.
Further, the shape of pitch accents on probable words (in
a trigram context) turned out to be less variable than on
words with a low probability. Together, the two findings
demonstrate that an increase of lexical probability in a tri-
gram context correlates with a decrease of tonal variability.
This presents further evidence for cohesion between the
word and its prosodic realisation. Within an exemplar
framework, it is expected that words which collocate
together will be stored together, and may acquire particular
phonetic characteristics that those words do not have in
other contexts (Hay and Bresnan, 2006). We have shown
that those characteristics include prosodic properties.
The relationship between the lexical level and the
tonal level revealed by our analyses makes it unlikely
that prosodic realisation is solely determined by a com-
bination of ‘top-down’ syntactic, semantic and pragmatic
factors (e.g. given/new status), and the phonological con-
text (e.g. syllable structure, or how close together accents
are). While these factors are undoubtedly relevant, the
robust relationship found between low prosodic contour
variability and high relative lexical frequency (Experi-
ment 3) strongly suggests that sequences of tonal events
(pitch accents and boundary tones) are stored with lexi-
cal sequences (at least trigrams). The choice of words
then seems to directly influence the choice of prosodic
contour as well, rather than this being determined solely
by syntactic, semantic and pragmatic factors; though
more research is needed to determine exactly how lexical
and syntactic/semantic/pragmatic factors interact. Fur-
thermore, our results show that the acoustic detail of a
given tonal contour is influenced by the distributional
properties of the word level, albeit subtly: absolute fre-
quency influences the accent range of pitch accents
(Experiment 1), and relative frequency influences pitch
accent shape variability (Experiments 2 and 3). These
effects on pitch accent realisation are reminiscent of
the effects of “word-specific phonetics” reported by
Pierrehumbert (2002). That is, a given phonological
entity (in this case a tonal event) varies in systematic
ways depending on the distributional properties of the
word it occurs on. Hence, one might even speak of
“word-specific prosody” which adds to other, known
effects of phonological context influencing prosodic
realisation.

The question then arises of exactly what prosodic infor-
mation is stored with words, and how this affects what is
selected in production. One option is that word tokens
and accent type tokens are stored separately, but are co-
indexed if they occurred together. The other option is that
the particular pitch contour is stored with the word (or col-
location) as a single unit, conceivably also with the prag-
matic function, i.e. the contextualised meaning, of that
unit. In case of the former option, the observed effects on
the acoustic detail of the realisation of accents could theo-
retically arise from the co-indexing of accent types with
particular words. Co-indexing would imply that there is a
link between an accent type token and a word token, and
selecting either one would increase the likeliness of select-
ing the other. Take a word, e.g. yeah, produced with an
L*+H accent, and used as an uncertain affirmation. It
could be that a speaker selects the word, and then the
accent type (L*+H) on the basis of its pragmatic function.
Then because originally co-occurring instances of yeah

and L*+H are indexed together, the speaker is more likely
to select an L*+H token that originally occurred on yeah

than an L*H that occurred elsewhere. In this way, storage
could impact upon the acoustic detail of the accent on that
word.
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However, we think it is more likely, and consistent with
our results, that the word(s), contour and pragmatic func-
tion are stored as a combined unit if they co-occur fre-
quently enough. In our scenario, the speaker would wish
to convey uncertain affirmation and on that basis select a
combined unit of yeah + L*+H-like contour. The pitch
contour on this word would display entrenched intonation
because of the frequency of the combination (cf. Calhoun
and Schweitzer, 2012). Thus, our results suggest that prag-
matic function is part of the selection criterion of lexical
exemplars in the production process (cf. Pierrehumbert,
2001), because tonal parameters are part of the exemplar
representation.

It should be acknowledged, however, that the effects
presented here seem to indicate a relatively subtle effect
of lexical frequency on intonational realisation; though
the effects are statistically significant. We think that this
is because storage of intonational information is very
uneven across the lexicon, so that the size of the effect
might not be easy to show across a range of words as wide
as tested in our models. This is supported by results
reported by Calhoun and Schweitzer (2012), where effects
of lexical storage of intonational information were shown
to be strong for certain types of words, e.g. adverbs and
discourse markers, but less clear for other types of words,
e.g. concrete nouns.

It is possible, though we believe unlikely, that the
results found here arise by coincidence, not co-storage
and co-selection. That is, to take the example above, if
the word yeah is often used with a particular pragmatic
function, then it would be likely to be produced with a
particular intonation type. This means that the tokens
of yeah in the database would be likely to show less pro-
sodic variability than a word with a less stable pragmatic
function, without necessarily implying cognitive storage
of the word with the contour. We believe that this
approach offers a much less satisfactory explanation of
our findings, however. It is now well established within
the literature on Exemplar Theory that phonetic detail
can be stored with words, and pragmatic function with
phrases, and that these have effects on usage that cannot
be explained without assuming storage (Bybee, 2006);
there is no obvious reason why intonation should not
work the same way. Among the results presented here,
it is particularly hard to see why the first set of results
should follow by coincidence: there is no obvious reason
why frequent pairings of words with a particular accent
type should have a pragmatic function that leads to them
being realised with increased pitch amplitude. On the
other hand, there is a natural explanation in the exemplar
approach. We are looking, however, into possible meth-
odologies that could test this directly. For example, we
could extend the iterative mimicry study by Braun et al.
(2006) to see whether the type of intonation attractors
changes depending on the frequency of the words in the
phrase.
Our results demonstrate effects on intonation that
should be considered in exemplar-theoretic models. In
addition to the findings indicating that tonal features
should be considered part of the exemplar representation,
the evidence presented here also indicates that pragmatic
functions are selection criteria and that entrenchment
should be modelled for tonal parameters. However,
although our results provide evidence for the lexicalised
storage of intonation, we are not claiming that pitch con-
tour is solely accessed through the lexicon. Nevertheless,
for traditional approaches to intonation, our data indicate
that it is crucial that frequency of occurrence effects are
acknowledged in order to attain a comprehensive picture
of the production of intonation.
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Gösta Bruce. Kluwer, Dordrecht, pp. 11–36.

Pierrehumbert, J., 2001. Exemplar dynamics: word frequency, lenition and
contrast. In: Bybee, J., Hopper, P. (Eds.), Frequency and the
Emergence of Linguistic Structure. Benjamins, Amsterdam, The
Netherlands, pp. 137–157.

Pierrehumbert, J., 2002. Word-specific phonetics. In: Gussenhoven, C.,
Warner, N. (Eds.), Laboratory Phonology 7. Mouton de Gruyter,
Berlin, Germany, pp. 101–140.

Pluymaekers, M., Ernestus, M., Baayen, R.H., 2005. Lexical frequency
and acoustic reduction in spoken Dutch. J. Acoust. Soc. Am. 118 (4),
2561–2569. http://dx.doi.org/10.1121/1.2011150, <http://link.aip.org/
link/?JAS/118/2561/1>.

R Core Team, 2013. R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria.
<http://www.R-project.org/>.

Schweitzer, A., 2010. Production and Perception of Prosodic Events –
Evidence from Corpus-based Experiments, Doctoral dissertation,
Universität Stuttgart.
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