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1 Introduction

The PaIntE model (Möhler and Conkie, 1998; Möhler, 2001) was originally
developed for F0 modeling in text-to-speech (TTS) synthesis. Its purpose
was to generate F0 contours that are as close to natural, human-produced
F0 contours as possible. We will show in this chapter that it can also be
used for more general research on intonation. The PaIntE model assumes
that only the F0 contour in the vicinity of so-called intonation events con-
tributes to the intonational meaning of an utterance, whereas the stretches
in between these events arise from interpolation and do not affect the over-
all meaning. This view is manifested in the model’s name, Parameterized
Intonation Events, or PaIntE for short.

PaIntE can be classified as a sequential model of intonation, in that it
composes the F0 contour from a sequence of local contours, each associated
with some kind of meaningful tonal event, and that these events or local
contours do not interact or affect each other. PaInte shares this view with
the well-known, phonologically motivated, Tone Sequence Model (TSM,
Pierrehumbert, 1980) for instance. The sequential approach is also popular
in speech synthesis, with the Tilt model (Taylor, 1998) as probably the most
wide-spread example.
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While the PaIntE model has long been successfully used to generate
perceptually appropriate F0 contours in speech synthesis, we will show in
this chapter that PaIntE is also well suited for intonation research beyond
speech synthesis.

To this end we will introduce the PaIntE model in some detail in section
2, focussing on several aspects: First, we will show that PaIntE shares as-
sumptions with autosegmental models of intonation (section 2.1). Second,
in contrast to many other models, which aim to identify typical shapes that
correspond to intonation categories, PaIntE assumes that several dimen-
sions contribute to the meaning of tonal events, and quantifies these di-
mensions by continuous parameters. The overall shape of the event is then
determined by these parameters, as illustrated in some detail in section 2.2.
Next, we will provide more information on how the PaIntE parameters can
be derived from a database (section 2.3), or how they can be predicted for
speech synthesis (section 2.4).

In section 3 we will illustrate that the PaIntE intonation events can be
related to categories posited by autosegmental approaches to intonation.
Also, as we will show in section 4, PaIntE can be used for answering typical
questions in intonation research. To this end we will discuss some recent
studies that have used the PaIntE model to investigate intonation, some
from an autosegmental perspective, and some from an exemplar-theoretic
perspective. Thus sections 3 and 4 show that PaIntE is compatible with
an autosegmental approach to intonation, but can also serve an exemplar-
theoretic approach. Its flexibility lies in the fact that on the one hand, it can
take autosegmental categories into account, and that the PaIntE parameters
can be linked to these categories. On the other hand however it does not
necessarily assume that such categories exist. We discuss the advantages of
this property of PaIntE in section 5 and offer some conclusions in section 6.

2 The PaIntE model and its parameters

To motivate the requirements and objectives of an F0 model in the context
of speech synthesis, we briefly sketch the role of such a model in the TTS
synthesis process. We will then consider the commonalities between into-
nation models for synthesis and more general models of intonation from
a theoretical point of view, before turning to the specific implementation
of PaIntE in terms of its parameters, and how these parameters can be ex-
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tracted for analysis, or predicted for synthesis.

2.1 Intonation models and speech synthesis

Most TTS systems generate speech starting out from a given, text-only,
specification of the utterance to be synthesized. This specification is passed
through a pipeline of mostly independent modules, each of which incre-
mentally adds linguistic, phonological, and phonetic information. Towards
the end of this process, an F0 model adds concrete F0 values to the speci-
fication, and at the end of the pipeline, synthesized speech is generated by
concatenating speech segments from a recorded database and manipulat-
ing these segments to match the F0 values that the F0 model has predicted.

What F0 models for synthesis and more general intonation models have
in common, at the very least, is that they are interested in relating aspects
of meaning to tonal contours. For instance, a TTS system might want to
relate sentence-internal major syntactic phrase boundaries to rising into-
nation contours, and sentence-final syntactic phrase boundaries to falling
contours. Or it may relate exponents of information structure to contours
conveying the intended meaning.

Many TTS systems treat the problem of predicting F0 contours follow-
ing what may be called a phonological approach. According to Ladd (1996,
p. 11), a phonological model of intonation has to minimally consist of two
ingredients: first, a finite set of intonation categories, and second, a map-
ping from these categories to continuous acoustic parameters. In this vein,
many TTS systems take into account linguistic properties inferred from the
text to first predict the occurrence of a finite set of intonation categories
such as pitch accents or bounday tones, and then generate concrete F0 val-
ues in a second step. In fact, in the context of TTS the term F0 model often
refers just to this second step, i.e. the generation of an F0 contour given
a specification that already contains the desired location of some kind of
intonation categories in the utterance.

In the case of a phonological approach to the TTS problem as outlined
above, an additional commonality is that both types of models have to ad-
dress two issues: (i) identify the relevant categories and (ii) specify how
these categories are implemented phonetically in terms of F0 (and, realis-
tically, in terms of other prosodic cues such as duration).

A TTS system which follows such a phonological approach has the ad-
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ditional objective to specify a mapping from linguistic properties to into-
nation categories. This is not necessarily an objective of a more general
model of intonation. However, in order to establish a distinction between
two intonation categories, even a more general model would have to show
that exchanging the two categories in some utterance context changes the
meaning of the utterance.1 Therefore a more general intonation model
cannot be entirely silent regarding the relation between meaning and in-
tonation categories. The exact nature of this relation is still an open issue.
For instance, there is consensus that in West-Germanic languages such as
English and German, information structure affects pitch accent placement
(Terken and Hirschberg, 1994; Féry and Kügler, 2008) and even the type
of pitch accent (Pierrehumbert and Hirschberg, 1990; Chen et al., 2007).
However, to capture this impact, researchers have to refer to fine distinc-
tions in information status that näıve speakers are probably not aware of.
Pierrehumbert and Hirschberg (1990), e.g., elaborate differences between
five meanings, termed new, addition of new value, accessible, modification of
given and given by Baumann et al. (2015), that are claimed to give rise to
different pitch accents. However, Baumann and Grice (2006) show that for
German a more fine-grained notion of accessibility is needed since accent
types differ depending on the way in which the accessible information can
be inferred from the text. Similarly, Baumann et al. (2015) differentiate
10 classes of information status which differ in accentedness and type. A
crucial difference then is that a TTS system can only rely on more coarse-
grained meaning that can be estimated from raw text, viz. text without
annotation or markup, because this is what serves as input to a TTS sys-
tem. Even worse, the TTS system has to expect that the estimated meaning
may be incorrect at times.

Given these difficulties, most TTS systems treat the mapping from lin-
guistic properties to intonation categories as a separate task, which is
addressed as part of the linguistic analysis of the text to be synthesized
(Sproat, 1998; Taylor, 2009). Then the task of the F0 model is “only” to
map from a specification of the utterance which already includes intona-
tion categories to concrete intonation contours. In other terms, the task
of the F0 model in synthesis is to provide the phonetic implementation of

1This holds under the assumption that establishing intonation categories works analo-
gously to the segmental domain, where segmental categories are motivated by providing
minimal pairs of words that differ only in the segmental category and have different mean-
ings.
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phonological categories that have been determined in a preceding linguis-
tic analysis step. This separate treatment is fostered by the dissemination
of speech corpora with manually annotated ToBI labels (e.g., Ostendorf
et al., 1996; Rapp, 1998; Calhoun et al., 2010; Eckart et al., 2012), which
conveniently serve as training and testing data for this second step in F0
modeling.

Arguably, the separate treatment may also reflect a split in research
approaches between studies that relate meaning to intonation categories
(e.g., Beckman, 1996; Büring, 1997; Féry, 1993; Pierrehumbert and
Hirschberg, 1990, among many others) and studies that investigate pho-
netic detail in the implemenation of F0 contours (e.g., Pierrehumbert,
1981; Kohler, 1990; Ladd et al., 2000; van Santen and Möbius, 2000,
among many others).

The PaIntE model follows the practice of separating the prediction of
categories from the actual F0 modeling. It does not necessarily state what
the exact nature of the categories is—all that is said is that they are “into-
nation events”, and the core task of the PaIntE model then is to generate
concrete F0 contours that implement these intonation events. However,
PaIntE acknowledges that ToBI categories are an obvious and convenient
choice in that respect, and provides means to take ToBI categories as the
relevant intonation events for which local F0 contours have to be gener-
ated by way of a configuration parameter. Before we go into detail on how
the PaIntE parameters of a given contour can be extracted, and how the
parameters can be predicted in speech synthesis, we will first discuss how
they determine the concrete F0 shapes.

2.2 The PaIntE parameters

All intonation models dedicated to F0 modeling for speech synthesis pa-
rameterize the F0 contour in some way. In case of PaIntE, the shape of
the F0 contour around local intonation events is captured by six linguisti-
cally motivated parameters. Together they determine the F0 contour in a
window of up to three syllables centered around the event. In the original
implementation the events were taken to be pitch accents and boundary
tones posited by a German ToBI variant (Mayer, 1995), i.e. the PaIntE pa-
rameters served to specify the exact shape of the F0 contour on and around
pitch accents and boundary tones. The global contour then arises by inter-
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polation between these events.
Mathematically PaIntE employs a function of time, with f(x) giving the

F0 values. It is defined as follows:

f(x) = d− c1
1 + e−a1(b−x)+γ

− c2
1 + e−a2(x−b)+γ

(1)

This function yields a peak shape (Figure 1), where the first term, the
d constant, gives the upper bound. We will see below that d can be inter-
preted as peak height parameter. From this d constant, two sigmoids are
subtracted, the second and third terms in the equation. The first of these
two sigmoids alone would result in a falling shape, starting at zero in neg-
ative infinity (limx→−∞ = 0) and ending at −c1 in infinity (limx→∞ = −c1).
The most pronounced part of this fall starts approximately at the value for
parameter b. Since this sigmoid is subtracted from the d constant, this ef-
fectively yields a rise towards d, i.e. towards the peak height parameter.
The amplitude of this rise is c1, and the pronounced part of the rise ends
approximately at the value for parameter b. In the same way, subtracting
the second, originally rising, sigmoid adds a fall component to this rising
shape. The pronounced part of the fall starts close to parameter b, i.e. ap-
proximately at the point where the first sigmoid levels off. Thus we get a
pronounced peak with the peak location affected by the b parameter; in
other words, b can be interpreted as the peak alignment parameter. As the
upper bound for rise and fall, and thus the upper bound for the peak, is
d, this parameter corresponds to peak height. The amplitudes of the rising
and falling parts are determined by parameters c1 (rise amplitude) and c2
(fall amplitude), and their steepness by parameters a1 (steepness of rise) and
a2 (steepness of fall).

PaIntE provides several methods to normalize the time axis. In the stan-
dard variant, which is called sylnorm normalization, the time axis inside the
approximation window is normalized such that syllable boundaries occur
at integer values, with the syllable related to the intonation event begin-
ning at 0 and ending at 1. In the sylnorm case, b determines the temporal
alignment of the peak in terms of relative position within the syllables in
the approximation window. A hypothetical example peak contour for a syl-
lable associated with a pitch accent, using sylnorm normalization, is given
in Figure 1. The PaIntE function as specified in equation (1) above is indi-
cated by the solid line. Syllable boundaries are indicated by vertical lines,
the syllables themselves are indicated by σ symbols, and the pitch-accented
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Figure 1: Example PaIntE contour in a window of three syllables around a
pitch-accented syllable (σ*). See text for more details.

syllable is marked as σ∗. The location of the b parameter (peak alignment)
is marked by the bold vertical line; parameters c1 (rise amplitude) and c2
(fall amplitude) are indicated by the arrows, and the d parameter (peak
height) by the dashed tick at the y-axis. Parameters a1 (steepness of rise)
and a2 (steepness of fall) cannot be read off the graphical representation in
the same way as the other parameters, but they are hinted at in Figure 1.

The shape with the pronounced peak is not prototypical for all syllables
that are associated with some intonation event. Often, we observe just a
falling or just a rising contour, without a clear peak. To accommodate such
cases when parameterizing existing F0 contours, the PaIntE model first tries
to detect a peak in the three-syllable window. It uses the PaIntE function
as specified in (1) only in case there is a peak. If no peak is detected,
the function is used with only the first sigmoid for rising contours or only
the second sigmoid in case of falling contours, yielding the following two
functions.
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frise(x) = d− c1
1 + e−a1(b−x)+γ

(2)

ffall(x) = d− c2
1 + e−a2(x−b)+γ

(3)

We have indicated these alternative functions by dashed lines in Fig-
ure 1. They are partly hidden by the PaIntE function (solid line), but it can
be seen that the b parameter, indicated by the bold vertical line, does in-
deed occur at the point where the dashed line for the rising sigmoid starts
to level off, or where the fall in the dashed line for the falling sigmoid is
about to become more pronounced. It is thus a reasonable estimate of the
end of the rise, given that mathematically the rise does not end at all be-
cause it never reaches d before infinity. Similarly the fall effectively starts
in (negative) infintity, not somewhere in the window depicted here. The
same argument can be made for parameter d—it is only an estimate for the
height of F0 at the end of the rise, or the beginning of the fall, respectively,
and is never really reached. However, it can be seen in Figure 1 that for the
two example sigmoids the difference between d and the function values at
the edges of the three-syllable window is not detectable by eye: the dashed
line for the falling sigmoid seems to reach the y-axis exactly where the tick
for d is located.

It should also be noted here that in the case of the “full” PaIntE function
with the peak as given in (1), the b parameter is again only an approxima-
tion of the temporal alignment of the peak in the syllable structure: it can
be seen in Figure 1 that the peak’s exact temporal location, as indicated by
the dotted line, is actually a small distance to the right of the b parameter
itself, which is indicated by the bold vertical line. The exact displacement
depends on the values of the a1, a2, c1, and c2 parameters. In this specific
example for instance, the true peak is 0.04 units to the right of the b value,
i.e., if the last syllable in this example were 200 ms long, b as an approx-
imation of the temporal alignment of the peak would be off by 8 ms. If a
better estimate of the peak alignment is desired, one can resort to sampling
the curve specified by the PaIntE function and finding the point where the
maximum sample occurs2.

To get an impression of the accuracy of b for approximating the loca-
tion of the peak covering a representative number of contexts, we have

2There is no closed-form expression for the true location of b, so the peak location must
be approximated using numerical methods.
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estimated both b and the true temporal alignment of the peak for ap-
prox. 17,000 syllables in a database of 2 hours of speech which had been
approximated using the full PaIntE function in (1). The mean absolute er-
ror in syllable units was approx. 0.052, and the median 0.039. In absolute
time, this corresponded to a mean absolute error of approx. 10 ms, and a
median of approx. 8 ms. Since the time resolution in deriving F0 from the
speech signal is usually in this order, we consider the approximation to be
exact enough. However, if necessary, it is easy to estimate the true location
of the peak given the six PaIntE parameters as suggested here.

The same point can be made for the d parameter (peak height). In the
example in Figure 1 the d parameter is 199 Hz, while the true peak height is
at approx. 197.3 Hz. For the 17,000 syllables from our database, the mean
absolute error was approx. 1.380 Hz, and the median absolute error was
approx. 1.167 Hz. This is in the order of the just noticeable difference of
approx. 1 Hz in human perception of complex tones at pitch levels below
500 Hz (Kollmeier et al., 2008, p. 65). This leads us to conclude that
the approximation is accurate enough for almost all purposes. If a higher
accuracy is needed, we again recommend estimating the true peak height
numerically by sampling.

So far we have only discussed the application of PaIntE using the syl-
norm normalizaton, however PaIntE also provides an alternative called
anchor norm normalization. In this case, each syllable is split into three
parts representing the (unvoiced) onset of the syllable, its sonorant nu-
cleus, which is defined as containing the nucleus and possibly preceding
voiced consonants in the onset, and, finally, the coda. This normalization is
motivated by findings that indicate that timing in F0 movements is relative
to syllable structure (House, 1996, 1997; van Santen and Möbius, 2000).
Using anchor norm normalization, each syllable in the approximation win-
dow is again normalized to length one with the same values for syllable
boundaries as in the sylnorm case. Syllable-internally, the unvoiced onset is
adjusted linearly to a length of 30% of the syllable duration. The sonorant
nucleus then spans another 50%, i.e. it ranges from 30% to 80% of the syl-
lable duration, and the coda finally goes from 80% to 100% of the syllable
duration.

It should be noted that the approximation window may in fact be
shorter than three syllables depending on the context. This is the case
if silence intervals intervene between the syllables. Also, as stated above,
PaIntE can be configured to take information regarding prosodic categories
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associated with the syllables into account. In this case, the window does
not extend to neighboring syllables that also carry a pitch accent, or across
syllable boundaries that are associated with a phrase boundary. Reduc-
ing the approximation window in these cases is motivated by the fact that
speakers before boundaries compress tonal contours that in another con-
text would extend into the following syllables (Mayer, 1995; Grabe, 1998;
Jilka et al., 1999). Similarly, in cases where it is known that a syllable is
associated with a pitch accent that exhibits a late peak (e.g. in an L*H ac-
cent as assumed by Mayer (1995)), the approximation window does not
contain the preceding syllable. However, it is possible to configure PaIntE
to enforce the three-syllable window in all contexts, just as it is possible to
parameterize every single syllable in cases where no prosodic annotation is
available that indicate where intonation events are expected.

2.3 Extracting the PaIntE parameters

Before the PaIntE parameters of a given F0 contour can be approximated,
the raw F0 contour is smoothed in order to eliminate microprosodic effects
and outliers. To this end, PaIntE uses the smooth f0 algorithm provided
with the Edinburgh Speech Tools (Taylor et al., 1999). smooth f0 is a me-
dian smoother which interpolates across unvoiced regions, but not across
silences.

In preparing the approximation, PaIntE then first looks for an F0 peak in
the smoothed contour in the middle of the approximation window, as well
as local minima to the right and left of the maximum. The locations of the
maximum and the minima, as well as the number of frames available, are
used to determine which of three approximation methods is appropriate in
that particular context:

• Mean F0 approximation. No PaIntE approximation takes place if
there are less than two voiced frames for the current window or if
the two minima are less than 5 frames apart. In these cases, PaIntE
reverts to a simple approximation called meanf0 by just determining
the mean F0 value in that window as the d parameter (peak height);
the five other PaIntE parameters are set to 0.

• Single sigmoid approximation. If either the left or the right min-
imum coincide with the maximum, i.e., a rise or fall have been de-
tected, but not a clear peak, the PaIntE approximation is modified to
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leave out one of the two sigmoids, as described above in section 2.2.
Depending on which sigmoid is left out, this is called the rise sigmoid
or the fall sigmoid method. In this case, the a parameter (steepness
of rise or fall) of the missing sigmoid is set to -1, and its c parame-
ter (rise or fall amplitude) is set to 0. The remaining parameters are
determined by the single sigmoid approximation.

• PaIntE approximation. In the standard case, in which a peak has
been detected, i.e. neither minimum coincides with the maximum,
the approximation is carried out using the PaIntE function as defined
in equation (1) above. This is called the pfun method.

The approximation itself determines the PaIntE parameters using the
appropriate functions listed above, choosing the parameters so that the
root mean standard error (RMSE) between actual F0 values and the corre-
sponding values in the PaIntE function is minimized. Finding the optimal
combination of parameters is an optimization problem, and PaIntE uses a
conjugate gradient method to arrive at a local optimum.

2.4 Predicting the PaIntE parameters

There are several ways in which the PaIntE parameters can be used to gen-
erate F0 contours in speech synthesis. As discussed above, speech synthesis
systems often approach predicting F0 contours as a two-step problem, in
which first a set of intonation categories, for instance, the ToBI categories,
is predicted from text. As a result, one would have a specification of the ut-
terance to be synthesized which already includes concrete ToBI categories.
The task of F0 modeling can then be viewed as mapping from the ToBI cat-
egory to the PaIntE parameters, taking linguistic and phonological context
into account.

Typically, this mapping would be learned using machine learning tech-
niques on a database that is annotated with all the context properties that
will be available at synthesis time, and with the category labels. Most ma-
chine learning schemes predict only one parameter at a time, thus, one
approach would be to train six models, each of which predicts one PaIntE
parameter given the context. However, even if each predicted parameter
may be plausible, this does not ensure that the combination of the six pre-
dicted parameters is plausible, too. One way to avoid this problem is to first
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determine a finite number of “typical” combinations using clustering tech-
niques. For instance, Möhler and Conkie (1998) used vector quantization,
experimenting with between 4 and 32 clusters, whereas Möhler (2001)
used up to 64 clusters. Then the actual F0 modeling consists of mapping
from the given context to one of the clusters instead of to the continuous
parameters, thereby turning the regression problem into a classification
problem.

The idea of determining a number of typical phonetic implementations
by clustering may lead to the question of whether the ToBI categories could
be completely replaced by clusters found in this way. However, Möhler
(2001) found that the results are better if GToBI(S) categories are taken
into account, both in terms of RMSE between synthesized contour and orig-
inal, and in terms of correlation between the two. This finding is just one
indication that there is a correlation between ToBI-like categories and the
PaIntE parameters. In the following section we will show that indeed there
is a systematic relationship between these categories and the PaIntE param-
eters, as the parameters reflect properties that are related to the defining
characteristics of the ToBI categories.

3 Relating PaIntE to prosodic categories

The PaIntE parameters can be related to established categories in a straight-
forward way. To demonstrate this we will show here that the PaIntE pa-
rameters reflect the expected shape of contours associated with ToBI-style
categories, in our case the tonal categories assumed by the German ToBI
variant proposed by Mayer (1995). We refer to this variant as German ToBI
(Stuttgart variant), or GToBI(S) for short in the following. To this end we
will examine PaIntE parameters of pitch-accented syllables extracted from
a large database of German read speech.

The database that we will use for this purpose was recorded for unit
selection speech synthesis (Barbisch et al., 2007) in the course of the
SmartWeb project (Wahlster, 2004). It was read by a professional male
speaker of Standard German and contains typical, isolated utterances of
five different genres, usually consisting of one, or at most two, short sen-
tences, corresponding to several prosodic phrases. All utterances were an-
notated on the segment, syllable, and word level, and prosodically labeled
according to GToBI(S). Prosodic labeling for each utterance was carried
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out by one of three human labelers, supervised and instructed by the first
author, in the process of building a database for unit selection speech syn-
thesis. The database amounts to 2 hours of speech, containing 72,000
segments, 28,000 syllables, and 14,000 words.

GToBI(S) assumes five basic types of pitch accents, L*H, H*L, L*HL,
HH*L, and H*M, sometimes described as rise, fall, rise-fall, early peak, and
stylized contour, respectively. Just like other ToBI approaches it assumes
that pitch accents are characterized by either a high, or a low, target asso-
ciated with the accented syllable, and indicates this association using the
“starred tone” notation H* or L*. It also assumes that the contour before
and after the starred tones is determined by trailing and leading tones. In
contrast to many other ToBI variants the notation for these tones is without
a + sign to separate trailing and leading tones from the starred tone, but
this is a purely notational difference.

Another, less trivial, difference is that GToBI(S) allows tritonal accents:
the L*HL accent has two trailing tones, H and L, and the HH*L accent
has both a leading H and a trailing L tone. Also, it assumes that the L*H
accent and the H*L accent have slightly less prominent allotonic variants,
i.e. alternative realizations that do not change the underlying meaning of
the accent: Mayer (1995) suggests that they can be realized by just the
starred tone on the accented syllable, and that the trailing tone can be
split off and realized later (partial linking), or can even be omitted com-
pletely (complete linking). This results in two monotonal accents H* and L*,
which are interpreted as variants for the H*L and L*H accents, respectively,
which only differ in perceived prominence, but not in meaning. Another
important difference to the wide-spread GToBI labeling scheme proposed
by Grice and colleagues (Grice and Baumann, 2002; Grice et al., 2005) is
that GToBI(S) does not distinguish between an L+H* and an L*+H pitch
accent. GToBI(S) provides only the latter category, viz. L*H in Mayer’s no-
tation. Cases where other GToBI variants assume L+H* are accounted for
in other ways, for instance by assuming a monotonal H*, where the low
pitch level just before the accented syllable is caused by other factors, for
instance by partial linking of a preceding accent.

Apart from this, the expected shape of the pitch contour for each accent
is manifested in its notation, as in all ToBI dialects: the contour is expected
to reach the target for the starred tone ideally in the middle of the accented
syllable, the targets for leading tones on the pre-accented syllable, and the
targets for the trailing tones on the post-accented syllable or syllables.
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Figure 2: PaIntE contours for some GToBI(S) pitch accents. Dotted lines
indicate syllable boundaries, σ symbols represent syllables, the accented
syllable is indicated by σ∗. Solid vertical lines indicate the peak alignment
parameter b, and dashed lines indicate the “true” peak location as esti-
mated using the sampling method outlined above. The type of pitch accent
according to manual prosodic annotation is indicated within each panel.

Figure 2 shows parametrization results for 9 pitch-accented syllables se-
lected for illustration from the database described above. We find that the
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properties expected given the GToBI(S) categories are reflected in the con-
crete contours, although there are some differences in the detailed imple-
mentation. For instance, in the first accent, identified as an L*HL accent,
the rise already starts at the beginning of the accented syllable, reaches
the peak at the boundary to the following syllable, and falls within the
post-accented syllable. It is thus realized in a more compressed way than
expected given its description by Mayer (1995). In the middle panel of
the first row, the peak in the H*L accent is at the boundary between the
accented and the post-accented syllable, i.e. later than the middle of the
accented syllable. In the next three accents, all L*H accents, the rise starts
on the accented syllable and continues into the next syllable, reaching the
peak early in this syllable (in the right panel in the first row), well within
this syllable (in the left-most panel in the middle row), or late in this syl-
lable (middle panel in the middle row). Note that in this last example the
contour exhibits a pronounced peak with an abrupt fall, which could be
due to a reset to a low pitch level for the next target and thus does not
necessarily reflect a property of the L*H accent in question. It should also
be noted that the first of these three L*H accents does not exhibit a peak:
it was parameterized using the function with only the rising sigmoid.

In the following panel (the right-most panel in the middle row) we
can see a prototypical example of a monotonal H* accent, with a less pro-
nounced, broad peak, and relatively low amplitudes, which corresponds
well to its characterization as being less prominent than the bitonal H*L
variant. Similarly, the three accents in the bottom row reflect the expected
properties well: the H*L has a high target in the accented syllable, the L*H
rises to a peak at the boundary of the next syllable, and in the HH*L, the
contour is already high throughout the preceding syllable and falls to a low
level in the post-accented syllable.

To return once more to the question of how accurate the b and d pa-
rameters are, we have indicated the “true” values for peak height and peak
alignment by dashed lines in all cases where the approximation was carried
out using the full PaIntE function. It can be seen that there is no discernible
gap between the peak height in the contour and the horizontal line which
indicates the “true” peak height. However, the “true” temporal alignment,
indicated by the dashed vertical line, is at some distance to the b parameter
as specified in the PaIntE function, indicated by the solid vertical line. This
is most obvious in the two H*L accents in the top middle panel and in the
bottom left panel, as well as in the HH*L accent in the bottom right panel.
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However, as can be seen in these examples, these larger differences always
occur in cases with broader peaks, where one could argue that it is hard to
tell where exactly the peak should lie anyway.

The above examples demonstrate that it is possible to find the expected
properties of pitch accents reflected in the PaIntE parameterization results.
But does this also hold on a larger scale, across many examples? To inves-
tigate this question, we will examine density plots of parameters b (peak
alignment), c1 (rise amplitude), c2 (fall amplitude), and d (peak height), ob-
tained from the database introduced above. Since GToBI does not make
any predictions about the steepness of the contours, we will not discuss
parameters a1 (steepness of rise) and a2 (steepness of fall) here. Because
of limitations in space we will only address the most frequent of the basic
GToBI(S) accents, viz. the L*H, H*L, and L*HL accents3

Figure 3 shows density plots of the b parameter (peak alignment). They
are based on parametrization results of the approx. 3,200 syllables with
L*H accents, approx. 1,800 syllables with H*L accents, and approx. 270
syllables with L*HL accents in our database. Density plots show how likely
a certain range of values is in the underlying data: Peaks appear at values
that are more likely to occur for the underlying sample, whereas valleys
appear at values that are less likely to occur.

We again indicate syllable boundaries by vertical lines. Thus the broad
peak in the blue dashed line for H*L accents in the left panel, between
the two vertical lines, indicates that H*L accents are most likely to have
their peak in the middle of the accented syllable. For L*HL accents, which
are indicated by the red dot-dashed line, surprisingly, the peak is also on
the accented syllable. From the description of L*HL accents given by Féry
(1993, p. 94) and Mayer (1995), one would expect this peak to be on
the post-accented syllable in many cases. Nevertheless, compared to H*L
and H*, the peak for L*HL accents is shifted further towards the syllable
boundary. It is also slightly more narrow than the two peaks of the H*L
and H* distributions, indicating less variation of b for L*HL accents.

Finally, the density for L*H accents (solid green line) is bimodal: L*H
accents are almost equally likely to have their peak either right before the
syllable boundary, just as L*HL accents did, or in the later part of the post-
accented syllable. One might interpret this as evidence for two distinct

3Also, the HH*L and H*M accents were not frequent enough in our data to reliably
estimate their densities.
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Figure 3: Density plots of the b parameter (peak alignment) for some
GToBI(S) accents. Left panel: H*L accents (blue dashed line) have their
peak earlier in the accented syllable than L*HL accents (red dot-dashed
line). L*H accents (green solid line) have their peak either on the accented
or on the post-accented syllable. Right panel: The bimodal distribution for
L*H accents (solid line, repeated from left panel, different scaling) obvi-
ously arises because L*H accents in word-final syllables (dashed line) have
their peak on the accented syllable, and L*H accents in word-internal syl-
lables (dot-dashed line) have their peak on the following syllable.

categories L+H* (with the peak on the accented syllable) and L*+H (with
the peak on the post-accented syllable) as in the more wide-spread GToBI
variant (Grice and Baumann, 2002; Grice et al., 2005); however, the right
panel in Figure 3 shows that this bimodal distribution comes about be-
cause L*H is realized differently on word-final syllables than on non-final
syllables4. Here, the dashed line represents L*H accents that occurred on
word-final syllables, and the dot-dashed line represents L*H accents that
occurred on word-internal syllables. Obviously, these two contexts cause
the bimodal distribution: L*H accents on word-final syllables almost always
have their peak in the accented syllable, while word-internal L*H accents

4Thanks to Jörg Mayer for suggesting word finality as a possible explanation for the
earlier peak.
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Figure 4: Density plots of the d parameter (peak height) for the most fre-
quent accents and for unaccented syllables. H*L accents (blue dashed line)
exhibit the lowest values for d; L*HL accents (red dot-dashed line) and
L*H accents (green solid line) are characterized by higher and more vari-
able values for d.

tend to have their peak on the post-accented syllable. In other words, the
tonal movement on L*H accents usually does not cross word boundaries,
instead it is timed to occur earlier before word boundaries.

The example of the alignment parameter b above shows that the PaIntE
parameters not only capture well-known properties of the GToBI(S) ac-
cents, but that they can also serve to investigate context-dependent aspects
of phonetic implemenation, as in the case of word-internal vs. word-final
L*H accents above.

Figure 4 gives density plots for parameter d (peak height). Values for
d in Hertz are indicated on the x axis: values to the right indicate higher
peaks. Figure 4 thus shows that syllables associated with H*L accents (blue
dashed line) are very likely to exhibit low values for d: the peak in the
blue line indicates that values just below 120 Hz for peak height are most
probable. Compared to L*H (green solid line) and L*HL (red dot-dashed
line) the peaks of H*L accents are lower. This is due to the prevalence of
nuclear, i.e., phrase-final, H*L accents over pre-nuclear H*L accents: 93%
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Figure 5: Density plots of the c1 parameter (rise amplitude, left panel) and
the c2 parameter (fall amplitude, right panel) for the most frequent accents.
H*L accents (blue dashed line) usually exhibit low c1 and high c2 values;
vice versa, L*H accents (green solid line) exhibit low c2 and high c1 values.
L*HL accents (red dot-dashed line) are characterized by high values of both
c1 and c2.

of the H*L accents in the database are nuclear accents. For nuclear accents,
lower peaks must be expected because of F0 declination, i.e. the global
trend of F0 to decline over the course of the utterance (e.g., Cooper and
Sorensen, 1981; Gussenhoven and Rietveld, 1988; Pierrehumbert, 1979).
Indeed, the density plot for non-nuclear H*L accents (not depicted here) is
shifted to the right and broader, similar to the distribution for L*H accents.
Peaks of L*HL accents (red, dot-dashed line) are high even though they are
usually nuclear accents in our data (84%). The distribution for L*H accents
(green, solid line) is similar to that of L*HL accents (red, dot-dashed line),
although there is again more variation for L*H accents.

The last two PaIntE parameters to be discussed here, c1 and c2, deter-
mine the amplitude of the rise towards the peak (c1) and the amplitude of
the fall after the peak (c2) in Hertz. Figure 5 shows the distributions of
c1 (left panel) and c2 (right panel) for different accent types. Looking at
H*L accents first, which are indicated by the blue dashed line, there is little
surprise. It is obvious that they tend to have low values of c1 (rise ampli-
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tude), but higher values of c2 (fall amplitude): their c1 distribution shows
a pronounced peak for c1 values of around 0 to 10 Hertz, and although
the distribution extends to the right with values of c1 up to 60 to 80 Hertz,
the higher values are much less likely. Their c2 distribution, on the other
hand, shows a clear dominance of moderately high c2 values with values of
around 0 being rather improbable. There is a broad peak between 20 and
40 Hertz, indicating that these are typical values of c2 for H*L accents. In
short, H*L accents have small rise amplitudes but higher fall amplitudes,
as expected for falling accents. L*H accents (green solid line) show just the
opposite behavior: their c1 values are typically between 20 and 60 Hertz,
while their c2 values tend to be close to 0, as one would expect for rising
accents. The distributions for L*HL accents are given by the red dot-dashed
lines. They exhibit higher values for both c1 and c2, reflecting their charac-
terization as rise-fall accents.

Thus, we have shown for the PaIntE parameters b (peak alignment), d
(peak height), c1 (rise amplitude), and c2 (fall amplitude) that their distribu-
tions differ depending on which GToBI(S) pitch accent they are associated
with, and that the PaIntE model captures the tonal characteristics of the
pitch accents well. As a direct consequence of its versatility and accuracy,
as well as its linguistic underpinnings, the PaIntE model has recently been
employed in a number of intonation studies, which we detail next.

4 PaIntE in intonation research

In this section, we will present several case studies to illustrate PaIntE’s
potential for intonation research. Moreover, we will demonstrate that into-
nation modeling by means of PaIntE can subserve both the autosegmental-
metrical approach (section 4.1) and an exemplar-theoretic approach to in-
tonation research (section 4.2).

4.1 Autosegmental case studies

We have shown that general rules concerning the phonetic implementation
of intonation categories can be detected in the distributions of the PaIntE
parameters as in the case of peak alignment in L*H accents discussed in
section 3 above. This methodology can also be employed to test more gen-
eral hypotheses regarding the implementation of F0 contours. For instance,
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Dogil and Schweitzer (2011) investigated the alignment of F0 peaks in sev-
eral German and English databases in this way. Their hypothesis was that
there is a quantal effect in peak alignment that causes speakers to place
F0 peaks either before or after syllable onsets, but not within onsets. This
hypothesis can be motivated by House’s (1996) model of tonal perception,
which claims that tonal contours within onsets are perceived differently
from contours in the nucleus or coda, or by the observation that syllable
onsets are considered ‘weightless’ (Goedemans, 1998).

To investigate if peaks in F0 systematically avoid syllable onsets, Dogil
and Schweitzer (2011) modified the PaIntE anchor norm normalization
method described in section 2.2. Originally, using this normalization, in
each syllable, the unvoiced onset is adjusted linearly to take up the first
30% of the syllable duration, the voiced onset together with the nucleus
to range from 30% to 80%, and the coda to span the remaining 20% of
the syllable duration. In the modified version, voiced and unvoiced onset
consonants were treated the same, i.e. the onset, regardless of whether it
was voiced or unvoiced, was always mapped to the first 30% of the syllable
duration.

Using this modified normalization, Dogil and Schweitzer (2011) ex-
tracted PaIntE parameters from the unit selection database described
above, as well as from a very similar database of a female speaker. Both
databases had been manually prosodically labeled according to GToBI(S).
The density plots for all pitch accents in these databases exhibited valleys
within syllable onsets in their distributions for the b parameter (peak align-
ment), i.e. both speakers avoided placing the peak within onsets. The same
procedure was applied to a part of the Switchboard corpus of telephone
conversations between non-professional speakers (Godfrey et al., 1992),
which was annotated for accent location (Calhoun et al., 2010), and to
German audio book recordings from the Librivox project,5 for which no
prosodic annotations were available. The valleys were also present in the
onsets when looking at the distributions of just the accented syllables from
Switchboard, and when looking at the distributions of all syllables in the
audio book corpus, irrespective of whether they were accented or not.

Investigating PaIntE parameter distributions is of course not the only
way to carry out intonation research using the PaIntE model. It is also pos-
sible to investigate the parameters in a more direct way, for instance by

5https://librivox.org
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fitting linear mixed models to find which factors affect the PaIntE parame-
ters. For instance, Kelly and Schweitzer (2015) used PaIntE to investigate
lexical accents in Trøndersk, a dialect spoken around Trondheim in cen-
tral Norway. Norwegian distinguishes two lexical accents, named accent 1
and accent 2, respectively. Previous research had found that in Trøndersk
the two accents have a similar shape with a high target followed by a low
target, but that they differ in the alignment of tones with the segmental
string, with a later timing for accent 2 (Kristoffersen, 2006). Also, accent
2 had been shown to have a higher F0 minimum than accent 1 (Kelly and
Smiljanić, 2014).

Using PaIntE, Kelly and Schweitzer (2015) could confirm the previous
findings on the later timing of the peak in accent 2: they found that a lin-
ear mixed model predicting syllable-normalized parameter b (peak align-
ment) with accent type as a fixed effect was significantly better than the
corresponding model without accent type, i.e. peak alignment depends on
accent type. The study also provided new findings, i.e. that accent 2 has
a higher F0 maximum than accent 1, and that the amplitude of the fall is
smaller in accent 2, again by showing that parameters d (peak height) and
c2 (fall amplitude) depend on accent type.

The Kelly and Schweitzer (2015) study is, to our knowledge, the first
study using PaIntE to investigate lexical accents. The results demonstrate
that the PaIntE parameters can be used to assess aspects of phonetic im-
plementation of lexical accents yielding observations comparable to “clas-
sical” implementation studies that measure F0 maxima, minima, or turning
points. The advantage of the PaIntE model is that these measurements can
be derived automatically. This facilitates the investigation of intonation
using data on a much larger scale.

4.2 PaIntE in exemplar-theoretic approaches

We have demonstrated in section 3 that the PaIntE parameters are com-
patible with an autosegmental view of intonation in that they can serve
to specify, or investigate, detailed context-dependent phonetic implemen-
tations of ToBI-like categories. This is in fact what PaIntE was designed for
originally. Here we will show that PaIntE can also subserve an exemplar-
theoretic account of intonation. We will briefly introduce the ideas behind
examplar theory, and then give examples of research that has used PaIntE
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to this end.
In recent years, exemplar theory has gained increasing attention, espe-

cially in the segmental domain. The key idea in exemplar theory as ap-
plied to speech (e.g., Lacerda, 1995; Goldinger, 1996, 1997, 1998; John-
son, 1997; Pierrehumbert, 2001, 2003) is that speakers have access to
memory traces (“exemplars”) of previously perceived instances of speech
in which almost full phonetic detail is retained. Categorizing new instances
in speech perception is based on the stored exemplars and their categories
(Lacerda, 1995; Johnson, 1997; Pierrehumbert, 2001, 2003); in speech
production, production targets are derived from stored exemplars (Pierre-
humbert, 2001, 2003).

Under an exemplar-theoretic account phonetic categories are instanti-
ated by accumulations of similar exemplars in memory. It is sometimes
claimed that exemplar models negate abstraction in speech production and
perception, but this is not the case. The difference to abstractionist models
is that exemplar models assume that abstraction arises as a consequence
of generalizing over a large set of exemplars (Pierrehumbert, 2003). The
aggregation of many exemplars with fine phonetic detail implicitly yields a
more abstract linguistic concept with all the properties that the exemplars
have in common, leaving all the details in which they vary underspecified.
Often it is even explicitly assumed that the exemplars contain category la-
bels (e.g., Johnson, 1997; Pierrehumbert, 2001; Walsh et al., 2010; Wade
et al., 2010).

Few studies have looked at prosody in an exemplar-theoretic frame-
work. However, it was shown already in one of the first exemplar-theoretic
studies (Goldinger, 1997) that exemplars seem to retain prosodic detail, in
addition to segmental phonetic properties: In shadowing experiments, sub-
jects tended to adapt their pitch from their baseline pitch towards the pitch
of the stimulus token, and to match the durations of their productions to
the stimulus token. The effect was stronger for low-frequency words. This
indicates that pitch and duration are stored with the word exemplars, and
that these properties are retained in production.

Building on this, Schweitzer (2011) suggested that even more fine-
grained prosodic properties, such as peak height, peak alignment, or rise
and fall amplitudes, as quantified by the PaIntE parameters, might be stored
in memory. In this vein, Calhoun and Schweitzer (2012) proposed that
words and short phrases in American English are stored with their into-
nation contours, and that discourse meanings of highly frequent word–
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contour pairings can spread by analogy to less frequent pairings. To sub-
stantiate this claim, they used PaIntE to parameterize the contours, and
calculated duration z-scores for the segments. Representing the contours
by attributes derived from these parameters, they identified 15 “typical”
contours using clustering techniques. They found that certain words and
contours form collocations, i.e., they appeared together more often than
would be expected based on their individual frequencies, supporting the
hypothesis that words are stored together with their contours. In a per-
ception experiment, they then confirmed that the discourse meanings of
the most frequent pairings spread to other word–contour pairings, which
constitutes evidence that the contours were indeed lexicalized.

Further evidence for exemplar storage of prosodic properties comes
from a series of three experiments (Schweitzer et al., 2015) which demon-
strate that phonetic implementation of pitch accents, again in terms of
PaIntE parameters, is subject to frequency of occurrence of the linguistic
context. We will only address the first of these three experiments in more
detail here, as it investigates accent implementation in terms of PaIntE pa-
rameters directly and thus can serve to illustrate how the PaIntE parame-
ters could be interpreted as dimensions in storing intonation contours. The
other two experiments also utilize the PaIntE parameters, however they are
used to assess frequency effects on the similarity or dissimilarity of accent
shapes.

The experiment described by Schweitzer et al. (2015) uses a database
which was manually annotated for GToBI(S) pitch accents (Mayer, 1995).
Using generalized linear mixed models, the authors show that accent range
in L*H and H*L accents, as quantified by PaIntE parameters c1 and c2, re-
spectively, is significantly affected by the frequency with which the accent
and the specific word cooccur. Traditional autosegmental models of into-
nation, which assume that intonation is post-lexical, cannot easily account
for such frequency effects, while exemplar models offer a parsimonious ac-
count: It is assumed that in production, a number of examplars that match
the required target best are activated, and that speakers average over these
exemplars, or randomly sample from them, to arrive at a concrete produc-
tion target. Thus if a pitch-accented word is to be produced, and if sufficient
pitch-accented instances of this word are stored in the speaker’s memory,
the derived target will match those exemplars and is thus expected to ex-
hibit an F0 amplitude that is appropriate for pitch-accented words. If on
the other hand only few pitch-accented exemplars of this word are stored,
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other, non-accented exemplars will contribute in deriving the production
target, leading to a reduced F0 amplitude.

In summary, we would like to argue here that in an exemplar-theoretic
account of intonation, the detailed intonational properties that are assumed
to be stored with each exemplar can be captured by the PaIntE parameters.
We do not necessarily advocate an exemplar-theoretic approach to intona-
tion, but we would like to note that given the problems with labeler con-
sistency and human labeling time which will be discussed in the following
section, an exemplar account does have a certain appeal. However, at least
in the second study discussed here (Schweitzer et al., 2015) it is still as-
sumed that exemplars might be labeled with concrete intonation category
labels.

5 Discussion

In this section we will discuss several theoretical and practical problems of
intonation modeling arising from the assumption that the intonation struc-
ture of utterances can be described in terms of a linear sequence of intona-
tion events that represent intonational categories. We will then move on to
discuss the characteristics of PaIntE that allow for a mapping of F0 contours
to established intonational categories, but also for analyzing and generat-
ing F0 contours in a scenario in which one prefers to remain agnostic with
respect to the validity of such categories.

Autosegmental models of intonation aim at establishing a set of intona-
tion categories which, analogously to phonemes in the segmental domain,
serve to distinguish meaning. This idea has driven most intonation research
in the past 50 years or so (e.g., Goldsmith, 1976; Bruce, 1977; Gussen-
hoven, 1984; Ladd, 1996), with the Tone Sequence Model (TSM, Pierre-
humbert, 1980) and its extension to the ToBI labeling system for American
English (Beckman and Ayers-Elam, 1997) as one of its most prominent and
probably most widely accepted approaches. However the categories pro-
posed by these models are far from being as established as their segmental
counterparts: Even models that do agree on the autosegmental approach
differ in the specific inventory of categories that they suggest. In the case
of American English, Dilley and Brown (2005), for instance, propose a set
of categories for American English that differs from that of the TSM, or
ToBI. Similarly, for German a number of models have been proposed in the
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autosegmental tradition, all of which assume different category inventories
(Kohler, 1991; Féry, 1993; Mayer, 1995; Grice et al., 2005; Peters, 2014).
The ToDI transcription system for Dutch intonation (Gussenhoven, 2005)
focuses on the transcription of tones and limits the number of boundary
categories to two, viz. utterance and intonation phrase boundaries, with-
out accounting for different strengths of boundaries (unlike ToBI).

Setting aside the problem of agreeing on one authoritative set of cate-
gories, a further problem is that even if the categories are taken as given,
it is not easy to unambiguously identify these categories in speech data,
as evidenced by the moderate consistency with which human labelers can
identify them. For instance, regarding labeler consistency for ToBI pitch
accents in spontaneous data from the Switchboard corpus (Godfrey et al.,
1992), Yoon et al. (2004) report a Kappa coefficient of κ ≈ 0.51 for inter-
annotator agreement on the type and presence of pitch accents.6 However,
these moderate consistencies are achieved only when collapsing ToBI pitch
accents into two broad categories H* and L* plus a class X* for uncertain
cases; the consistency for the original ToBI inventory must be expected to
be even lower. Another study (Syrdal and McGory, 2000) on read speech
using the original ToBI inventory reports more promising values of κ ≈ 0.67
for ToBI pitch accents in a male corpus, and of κ ≈ 0.69 in a female cor-
pus, indicating substantial, but far from perfect7, agreement. These cor-
pora, however, consist of read speech by professional newscasters, which
has been claimed to be easier to annotate than more spontaneous speech
(Mayo et al., 1997, p. 234), and they were annotated by trained and expe-
rienced transcribers only.

While newer studies report the κ coefficient to quantify between-labeler
consistency, the first systematic evaluation for ToBI assesses consistency
in terms of percentage of matching transcriber/word pairs (Pitrelli et al.,
1994). To calculate the percentage of matching transcriber/word pairs,
they carried out pair-wise comparisons for each word and each transcriber,
accumulating the number of cases where any two transcribers agreed on
a particular label (or non-label) for a word, and finally dividing this num-
ber by the total number of pairs where transcribers either agreed or dis-
agreed. Using this measure, they reported 68.3% consistency for pitch ac-

6Note that research papers cited in this section are not always explicit about which
version of Kappa (e.g., Cohen’s Kappa, Fleiss’ Kappa, etc.) they have used.

7Perfect agreement is said to occur when κ ≥ 0.81 (Landis and Koch, 1977).
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cents, while Syrdal and McGory (2000) report 71% for their female corpus
and 72% for their male corpus. Similar values of 71% were reported for
GToBI pitch accents in German speech data (Grice et al., 1996) and slightly
lower values for GlaToBI pitch accents in spontaneous Glaswegian English
with 62% for non-expert labelers, and 69% for expert labelers (Mayo et al.,
1997). Yoon et al. (2004) report a higher percentage of 86.57%, but this
again refers to the consistency in labeling their reduced set of pitch accents.
Insufficient transcriber reliability was the motivation for the development
of ToBI Lite (Syrdal et al., 2000b), reducing the set of pitch accent cate-
gories in American English to two (rising vs. falling), which also served as
the basis for the automatic recognition of these categories with high accu-
racy (the actual inter-transcriber consistency was not reported).

Both κ coefficients and transcriber/word pair accuracies suggest that
intonation categories are more elusive than the categories in the segmental
domain, where κ values above 90% are not unusual (e.g., Gut and Bayerl,
2004). In addition, to make use of these categories in intonation research,
sufficiently large databases need to be available which are annotated ac-
cordingly. However, manual annotation of these categories is extremely
time-consuming. Syrdal et al. (2000a), for instance, found that experi-
enced labelers take 100 to 200 times real time for annotating ToBI labels.

The fact that human labeling of intonation categories is both time-
consuming and prone to labeler inconsistencies makes automatic labeling
of these categories all the more attractive. One of the most interesting as-
pects of the PaIntE model is that it can actually be used to tackle this issue:
Schweitzer and Möbius (2009) used the PaIntE parameters to predict pitch
accents and boundary tones. They obtained accuracies of approx. 78%
in the annotation of pitch accent types, and accuracies of approx. 86%
when addressing the annotation as a two-class problem, i.e. when predict-
ing presence vs. absence of pitch accent rather than type of pitch accent.
These results are slightly but probably not significantly better than those
reported for read data by other recent studies8 (e.g., Hasegawa-Johnson
et al., 2005; Sridhar et al., 2008; Rosenberg, 2009).

Unfortunately it is not valid to directly compare the accuracies reported
above to human labeler consistencies in terms of percentage of correct tran-

8Comparing these results is straightforward because the data are similar: they all report
results for the two-class problem, deriving the accent status from ToBI labels. All corpora
consist of news-style read speech by professional speakers. However, it should be noted
that the corpora are from two different languages with different ToBI systems.
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scriber/word pairs, and studies on automatic labeling do not usually pro-
vide κ values. However to give an impression of the expected values, we
used the WEKA toolkit (Witten and Frank, 2005) to calculate κ values for
the results reported in Schweitzer and Möbius (2009), obtaining κ ≈ 0.62
for presence/absence and type of pitch accent. This indicates that there
was a better consistency between the automatically predicted labels and
the human gold standard labels than between human labelers in the study
by Yoon et al. (2004), who reported κ ≈ 0.51, but a lower consistency than
that reported by Syrdal and McGory (2000) for experts’ labels, which was
κ ≈ 0.67 and κ ≈ 0.69 in a male and a female corpus, respectively.9

To conclude this section, we have argued here that the categories as-
sumed by phonological models of intonation are more elusive than the cate-
gories in the segmental domain. Thus, two advantages of the PaIntE model
are, first, that it does not depend on the assumption of such categories.
Instead, the PaIntE parameters allow for quantifying established parame-
ters such as peak height, peak alignment, or rise and fall amplitudes, on a
continuous scale. This can also be exploited under an exemplar-theoretic
account of intonation, as discussed in section 4.2. Second, if a phonologi-
cal perspective is preferred, the PaIntE model can be used to automatically
label intonation events with an accuracy close to that of human labelers.

6 Conclusion

The PaIntE model can be used, in an analysis mode, to approximate the
shapes of natural F0 curves and, in a synthesis mode, to generate F0 con-
tours that sound convincingly like natural ones. The model considers the
intonation structure of an utterance as consisting of a sequence of intona-
tion events, which can be mapped to elements of the linguistic structure,
with simple contour interpolations between these events.

By default, PaIntE considers ToBI categories as relevant intonation
events. This is an obvious choice, given the prevalence of the autosegmen-
tal model in intonation research. ToBI categories are, at least, a good ap-
proximation of salient intonational events. Mapping PaIntE parameter val-

9We have only reported consistencies for pitch accents here; it should be noted that
consistency for boundary tones is usually higher than for pitch accents, indicating that the
boundary categories are easier to identify than pitch accents and in that respect are less
problematic in our view.
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ues to these categories therefore facilitates the comparison of results across
otherwise different approaches in phonological and phonetic intonation re-
search. Moreover, evidence of a correlation between ToBI-like categories
and the PaIntE parameters was found by Möhler (2001) who reported that
the acoustic distance between natural and generated F0 contours is smaller
when GToBI(S) categories are taken into account than when parameter val-
ues based on generic clustering were used. However, if no annotation of
intonation events is available, PaIntE parameters can be extracted for each
syllable in a given utterance. This approach was taken, for instance, in first-
language acquisition studies with young children whose productions can-
not be described adequately by means of adult ToBI-like categories (Lintfert
and Möbius, 2012).

In this chapter we have presented the motivation behind the PaIntE
modeling approach and its mathematical formulation. The PaIntE func-
tion comprises a small number of parameters with a linguistic interpre-
tation whose values are estimated, learned, and generalized from speech
databases. We explained the procedure of extracting the parameters from
observed F0 contours and how to predict them, for instance, in the context
of speech synthesis. Furthermore, we discussed the relation between the
PaIntE intonation events and intonational categories posited by autoseg-
mental approaches to intonation modeling. Finally, we presented several
recent studies employing the PaIntE model. They show that PaIntE is a valu-
able contribution to intonation research beyond speech synthesis, which
can serve to answer research questions both in the autosegmental tradition
and in an exemplar-theoretic framework.
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Möhler, G. and Conkie, A. (1998). Parametric modeling of intonation using
vector quantization. In Proceedings of the Third International Workshop
on Speech Synthesis (Jenolan Caves, Australia), pages 311–316.

Ostendorf, M., Price, P., and Shattuck-Hufnagel, S. (1996). Boston Univer-
sity Radio Speech Corpus. Linguistic Data Consortium, Philadelphia. Web
Download.

Peters, J. (2014). Intonation. Winter, Heidelberg, Germany.

Pierrehumbert, J. (1979). The perception of fundamental frequency decli-
nation. Journal of the Acoustical Society of America, 66:363–369.

Pierrehumbert, J. (1980). The phonology and phonetics of English intona-
tion. PhD thesis, MIT, Cambridge, MA.

Pierrehumbert, J. (1981). Synthesizing intonation. Journal of the Acoustical
Society of America, 70:985–995.

Pierrehumbert, J. (2001). Exemplar dynamics: Word frequency, lenition
and contrast. In Bybee, J. and Hopper, P., editors, Frequency and the
Emergence of Linguistic Structure, pages 137–157. Benjamins, Amster-
dam.

Pierrehumbert, J. (2003). Probabilistic phonology: Discrimation and ro-
bustness. In Bod, R., Hay, J., and Jannedy, S., editors, Probability Theory
in Linguistics, pages 177–228. The MIT Press.

Pierrehumbert, J. and Hirschberg, J. (1990). The meaning of intonational
contours in the interpretation of discourse. In Cohen, P. R., Morgan, J.,
and Pollack, M. E., editors, Intentions in Communication, pages 271–311.
MIT Press, Cambridge, MA.

Pitrelli, J., Beckman, M., and Hirschberg, J. (1994). Evaluation of prosodic
transcription labeling reliability in the ToBI framework. In Proceedings of

34



the International Conference on Spoken Language Processing (ICSLP, Yoko-
hama), pages 123–126.

Rapp, S. (1998). Automatisierte Erstellung von Korpora für die Prosodie-
forschung. PhD thesis, Univ. Stuttgart. Arbeitspapiere des Instituts für
Maschinelle Sprachverarbeitung (Univ. Stuttgart), AIMS 4 (1).

Rosenberg, A. (2009). Automatic Detection and Classification of Prosodic
Events. PhD thesis, Columbia University.

Schweitzer, A. (2011). Production and Perception of Prosodic Events—
Evidence from Corpus-based Experiments. Doctoral dissertation, Univer-
sität Stuttgart, Germany.
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