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Abstract. This paper presents a transfer learning approach that lever-
ages cross-linguistic transferability coupled with largely interpretable
acoustic features to improve dysarthria detection in Parkinson’s disease.
It uses features extracted from sustained phonation of /a/ and diado-
chokinetic exercises in Czech, Spanish, American English, and Italian.
The approach addresses data sparsity in clinical settings and accounts
for variability due to age and sex. Transfer learning models outperform
monolingual classifiers (i.e. classifiers trained and tested on the same
language) in most tests, demonstrating the effectiveness of this app-
roach in overcoming data limitations and enhancing Parkinson-induced
dysarthria detection.
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1 Introduction

Parkinson’s disease (PD) is a chronic, neurodegenerative disorder affecting
approximately 1% of the global population over 60 years old (late-onset PD)
and a smaller proportion of those aged 30-50 (early-onset PD) [1]. PD is char-
acterized by the progressive loss of dopamine-producing neurons in the substan-
tia nigra [1], leading to a range of motor symptoms—including rigidity, resting
tremor, and postural instability—as well as non-motor symptoms such as sleep
disturbances and cognitive impairments [2].

Speech impairments are highly prevalent in PD, with around 90% of patients
developing hypokinetic dysarthria (HD) [3]. This condition progressively affects
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all components of speech production, including respiration, phonation, articula-
tion, and prosody [4, 5], significantly reducing speech intelligibility and contribut-
ing to social withdrawal and diminished quality of life [6]. HD is characterized
by incomplete vocal fold adduction and abduction [7], bradykinesia [8], and
reduced articulatory control [9], resulting in increased acoustic noise, reduced
voice intensity, breathy and harsh vocal quality, monotone pitch, imprecise con-
sonant articulation, vowel centralization, and irregular speech rate with frequent
pauses [10,11].

Current methods for diagnosing dysarthria rely heavily on clinical expertise,
with studies showing that trained clinicians and neurologists achieve diagnostic
accuracies of 40-60%, depending on the available clinical data [12,13]. Specif-
ically, diagnosing PD is time-consuming, often taking an average of 2.9 years
to confirm with a 90% accuracy [14]. These shortcomings highlight the need for
objective, efficient, and accessible diagnostic tools that reduces clinician bias and
streamline the diagnostic process.

Since speech impairments often precede other motor symptoms in PD, auto-
matic speech analysis offers a promising and non-invasive approach for early
PD detection [15]. However, this approach faces two primary challenges: data
sparsity and demographic variability. Limited language-specific data pose a sig-
nificant barrier in training machine learning models, as data collection is time-
consuming, costly, and sometimes unfeasible [16]. Additionally, age and sex sig-
nificantly influence speech patterns, complicating the differentiation between
PD-related dysarthria and natural speech variations [17,18].

To address data sparsity, transfer learning (TL) has been applied alongside
convolutional neural networks showing promising results in two settings; within
PD across languages [19] and across conditions (from PD to Huntington’s dis-
eases) [20]. Vasquez et al. [19] trained CNNs time frequency representations on
Spanish, German, and Czech PD data. Transfer learning improved generaliza-
tion by balancing specificity and sensitivity while reducing variability. Despite
these advantages, time-frequency features lack interpretability which is crucial
for clinical applications.

To further enhance model performance, curriculum learning (CL)—which
organizes training data in a meaningful progression—has demonstrated advan-
tages over standard random shuffling, offering performance gains without intro-
ducing additional computational overhead [21]. Dhinagar et al. [22] demonstrated
a 3.9% performance improvement when training CNNs on T1-weighted MRI
scans ordered according to the Hoehn and Yahr (H&Y) scale. They began with
more severe, easier-to-classify Parkinson’s cases (H&Y = 4) and progressed to
milder ones (H&Y = 1), suggesting that data scheduling informed by domain
knowledge can improve learning efficiency and robustness.

This study develops neural classifiers using speech data from multiple lan-
guages and tasks to improve model robustness. By pretraining on one or more
languages and fine-tuning on another, our approach addresses data sparsity and
enhances performance in the target language. We pretrain our own classifiers,
allowing control over the pretraining data and enabling better understanding
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of how its characteristics influence TL effectiveness—unlike the vast, opaque
datasets used to train large models. Importantly, our method not only improves
dysarthria detection in PD but also leverages a largely interpretable feature set,
enhancing its potential clinical utility. To reduce demographic bias, we use linear
models to regress out age and sex effects. In addition to random data shuffling,
we explore curriculum learning principles through simple, domain-agnostic train-
ing schedules—specifically, by ordering the data from healthy controls (HC) to
PD individuals and from PD to HC. These simple strategies do not depend on
clinical severity scores, making it especially useful when such scores (e.g. HY,
UPDRS) are unavailable.
The key contributions of this research are:

— Evaluating the effectiveness of TL across languages for detecting PD-induced
dysarthria.

— Capitalizing on the transferability of largely interpretable acoustic features
extracted from diadochokinetic exercises and sustained phonation.

— Evaluating CL strategies agnostic to domain knowledge.

2 Data
2.1 Speech Tasks and Feature Extraction

To assess articulatory and acoustic characteristics, two speech tasks are
employed: sustained phonation of /a/ (SPA) and oral diadochokinesis (DDK).

In sustained phonation, participants are tasked to produce the vowel /a/ for
as long as possible with consistent pitch and amplitude. Two forms of DDK are
used: Alternating Motion Rate (AMR), where participants repeatedly produced
a single syllable (/pa/ or /ta/ or /ka/) as quickly and consistently as possible,
and Sequential Motion Rate (SMR), where they continuously repeat a syllable
sequence (/pa/-/ta/-/ka/).

Twenty task-specific acoustic features are extracted from the SPA task and 62
general acoustic features are extracted from the SPA and DDK tasks'. Feature
extraction is carried out using our in-house feature extraction engine.

SPA-specific acoustic features capture various aspects of voice stability, vari-
ability, and consistency over time. Among these, spectral features describe how
energy is distributed across frequencies in the voice signal. For instance, spectral
rolloff indicates the frequency below which most of the signal’s energy is concen-
trated, while spectral flatness reflects how noise-like versus tonal the sound is
[23]. Harmonic descriptors such as Tonnetz features, which capture relationships
between harmonic components, are also included, although they can be more
abstract and somewhat difficult to interpret directly [24].

General acoustic features assess voice characteristics across multiple domains
for both the DDK and SPA tasks. Articulation measures (e.g., F1 mean fre-
quency, F2 standard deviation) are tied to tongue and vocal tract movement [25].

1 See Appendix for a full list of these features along with short definitions.
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Pitch-related features (e.g., maximum pitch, pitch standard deviation) reflect
vocal fold tension and control [26]. Voice variability features, such as jitter and
shimmer, reflect the stability and regularity of vocal fold vibrations in terms of
frequency and amplitude, respectively [27]. Speech rhythm and dynamics (e.g.,
pause rate, duration) provide insight into motor control, while loudness fea-
tures (e.g., mean loudness, loudness peaks) are tied to respiratory strength and
vocal fold tension. Finally, spectral/harmonic features offer general speech qual-
ity insights reflecting overall vocal tract shape and resonances. Features in this
group, such as Mel-Frequency Cepstral Coefficients (MFCCs), are often con-
sidered black-box representations. However, recent research has shed light on
their interpretability—for instance, MFCC2 reflects a weighted ratio between
low- and high-frequency energy, which is linked to voice alterations caused by
disease. As we move to higher orders, MFCCs capture faster spectral variations
whose biological meaning becomes increasingly difficult to interpret [28].

These features offer a multidimensional profile of speech characteristics,
which is valuable because speech alterations in PD stem from impairments across
all subsystems of speech production—respiration, phonation, articulation, res-
onance, and prosody [4,5]. Moreover, the majority of these features are inter-
pretable, making them particularly suitable for clinical applications. General
acoustic features are particularly useful for TL, as they can be extracted from
both tasks, maximizing data and addressing sparsity. To leverage this, classifiers
are trained on both tasks combined and separately for clarity. For sustained
phonation, both general and task-specific features are evaluated together and
separately. While task-specific features are more limited since they can only
be extracted from sustained phonation, they remain valuable due to the task’s
widespread use in neurodegenerative disease research.

2.2 Datasets

We use speech data from five datasets: PC-GITA (Colombian Spanish) [29] and
its extended version (e-PC-GITA) [30], mPower dataset (American English) [31],
Parkinson’s Voice and Speech (Italian) [32], and the Czech PD dataset [33]. These
datasets include recordings from individuals with PD and HC across multiple
languages and varying recording conditions, providing a diverse and rich source
of speech data. Table 1 presents a summary of the demographic information for
the datasets.

We merge the PC-GITA corpus [29] with e-PC-GITA [30], forming a
larger set with 70 PD and 70 HC speakers, with equal sex distribution and
balanced age groups. Participants were recorded in either noise-controlled (50
PD, 50 HC) or real-life conditions using smartphones (20 PD, 20 HC). Tasks
included sustaining the phonation of the vowel /a/ and repeating syllables and
syllable sequences such as /pa-ta-ka/, /pa-ka-ta/, /pa-pa-pa/, /ta-ta-ta/ and
/ka-ka-ka/. There are three repetitions available of each task per participant.

A subset of the mPower dataset [31] is used, consisting of 797 recordings
of sustained phonation of the vowel /a/ from 397 HC and 400 PD individuals.
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These recordings, collected using smartphone technology, were selected follow-
ing a strict exclusion process that removed participants with confounding med-
ical conditions such as Alzheimer’s or depression. All participants were English
speakers, with a gender-balanced distribution across both groups.

The Italian Parkinson’s Voice and Speech dataset [32] includes 22
HC (13 females) and 28 individuals with PD (12 females). The tasks involved
sustained phonation of /a/ and diadochokinetic exercises (/pa/ and /ta/) in a
soundproof room, with two repetitions of each task per participant.

The Czech PD dataset [33] consists of 45 HC (17 females) and 35 PD par-
ticipants (17 females). Tasks included sustained phonation of /a/ and repetition
of the syllables /pa-ta-ka/, with two repetitions available for most participants.
Recordings were made in a quiet environment with minimal background noise,
using a condenser microphone positioned approximately 15 cm from the speaker’s
mouth.

Table 1. Demographics of the Speech Datasets

Dataset Language |PD Total |PD Age HC Total HC Age Tasks
(F) (F)
PC-GITA +|Spanish 70 (35F)  [61.12 (£10.94)70 (35F)  |61.43 (£9.45) |Sustained /a/, /pa-ta-ka/,
e-PC-GITA |(Colombia) /pa-ka-ta/, /pa-pa-pa/,
/ka-ka-ka/, /ta-ta-ta/
mPower English 400 (129F) 60.48 (+£10.61)[397 (128F) 37.55 (£13.72)Sustained /a/

(USA)
Parkinson’s |Italian 28 (12F) 66.62 (£9.35) [22 (13F) 68.79 (£4.29) |Sustained /a/,
Voice /pa-pa-pa/, /ta-ta-ta/
Czech PD  |Czech 35 (17F)  63.69 (+9.72) 45 (17F)  |62.57 (+10.02)Sustained /a/, /pa-ta-ka/

3 Methodology
3.1 Data Curation

We impute missing data based on the distribution of each feature, using the
Shapiro-Wilk test to assess normality separately for HC and individuals with
PD. For normally distributed features, we use the mean; for non-normal ones,
the median. Some features may be missing due to extraction limitations—for
example, the Amplitude Perturbation Quotient 11 (APQ11), which measures
short-term amplitude variation in the voice, requires at least 11 consecutive
pitch periods. If the voice sample is too short or irregular, APQ11 cannot be
computed and is therefore missing.

We aggregate and average multiple repetitions of each task per participant to
reduce noise caused by external factors like stress or distractions. This common
practice [34] enhances reliability and provides a more accurate representation of
participants’ speech profiles.

We perform data normalization (z-score) to standardize feature scales using
the training set. This prevents features with large ranges from dominating others
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and improves computational efficiency during model training by accelerating
convergence.

A multivariate linear regression model is applied to each feature to control
for age and sex effects. For each feature, the feature value serves as the depen-
dent variable, with age and sex as predictors. The resulting residuals—which
represent feature values with demographic effects removed—are used in sub-
sequent classification tasks. This adjustment helps establish clinically relevant
PD-related speech patterns from natural variations due to demographic factors.

All preprocessing steps are embedded within the cross-validation pipeline
(see Sect. 3.4) to maintain unbiased model evaluation and prevent data leakage.

3.2 Baseline

To assess the performance of the proposed models, we use monolingual feed-
forward neural networks (FFNNs) —trained and test on data from the same
language—as baselines. These models serve as benchmarks, allowing us to eval-
uate the effectiveness of TL approaches.

Four separate FFNNs are trained, one per language. All baseline models fol-
low a consistent architecture designed for binary classification (distinguishing
between individuals with PD and HC). Each network includes three fully con-
nected hidden layers, with Leaky ReLU activation functions: a negative slope of
0.2 for the first layer and 0.3 for the subsequent two. A dropout rate of 0.3 is
applied after each hidden layer to mitigate overfitting. The binary cross-entropy
loss function is used, and optimization is performed using Adam, chosen for its
efficiency and fast convergence.

The number of neurons in each hidden layer is determined via hyperparam-
eter search specific to each language’s dataset: 90 neurons for Spanish, 32 for
Czech, 64 for Italian, and 128 for American English. Additional hyperparam-
eters such as batch size (ranging from 32 to 128), learning rate (from 5e-5 to
5e-4), and the number of training epochs are also optimized per test. Training
is performed for a maximum of 120 epochs with early stopping (patience = 20,
delta = 0.002). In practice, all models converged within 15-30 epochs.

3.3 Transfer Learning Architecture

The TL models are initialized using the same architecture as their monolingual
counterparts, with the same number of layers, neurons, activation functions,
dropout rate, optimizer, and loss function. TL experiments are conducted under
two setups: (1) pre-training on a single source language and fine-tuning on a
target language, and (2) pre-training on a combination of all source languages
except the target language, followed by fine-tuning on the target.

To encourage effective weight initialization without full convergence, pre-
training is intentionally brief and limited to a maximum of 3 epochs. Fine-
tuning is performed with early stopping based on a validation split (20% of
the training set), using stratified sampling to preserve class balance. During
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fine-tuning, key hyperparameters such as batch size (ranging from 32 to 128),
learning rate (ranging from 5e-5 to 5e-4), patience (set to 20), and delta (set to
0.002) are re-optimized for each experiment.

3.4 Model Evaluation

Model evaluation is carried out using repeated stratified K-fold cross-validation
to ensure unbiased performance estimation. Specifically, we use 5 folds with 2
repeats, reserving 20% of the training data for testing at each iteration. Strat-
ification maintains class distribution across folds. For tests involving multiple
data points per participant (e.g., combining features from DDK and SPA tasks),
stratified group K-fold validation with 10 splits is employed to ensure that all
samples from a single participant are confined to either the training or test
set, thus avoiding data leakage. Model performance is measured using balanced
accuracy.

4 Results

Table 2 shows the PD-induced dysarthria detection results for different fine-
tuning languages. Transfer learning models achieve the highest balanced accu-
racy in most tests, surpassing baseline classifiers, highlighting the effectiveness
of this approach in PD-induced dysarthria.

In addition to randomly shuffling the data, we evaluate two simple curriculum
learning strategies that do not rely on domain knowledge: (1) training with data
ordered from HC to PD, and (2) from PD to HC. These ordering schedules are
applied consistently across training folds. For clarity, we report results only for
the baseline (random shuffling) and the better-performing curriculum strategy:
HC-to-PD.

When fine-tuning for Italian, Spanish emerges as the best pre-trained option,
surpassing the baseline in three tests. In contrast, pre-training on Czech improves
performance for the DDK task and marginally for the combination of tasks, while
American English yields results well below the established baseline. In Spanish,
pre-training on Italian consistently outperforms not only the baseline but also
Czech and American English across all tests. In Czech, there is at least one
pre-training language that improves performance over monolingual classifiers in
every test. However, Italian emerges as the best pre-training option for most sus-
tained phonation tests, while Spanish outperforms Italian when DDK-extracted
features are leveraged. Finally, American English exhibits a trend similar to that
of Czech, though less pronounced. All pre-training languages result in a perfor-
mance boost, but Italian stands out as the best pre-training data, regardless of
the features used.
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Table 2. Balanced Accuracy (%) of dysarthria detection across different feature sets.
Results from random shuffling (shown in parentheses) serve as the baseline, while scores
outside parentheses reflect the performance achieved using the HC-to-PD ordering
strategy. DDK = general acoustic features from DDK tasks, SPA = general and task-
specific acoustic features from sustained phonation of /a/, SPA (general) = general
acoustic features from sustained phonation of /a/, SPA (specific) = task-specific
acoustic features from sustained phonation of /a/, DDK 4 SPA = general acoustic
features from both tasks. The first column either specifies the pre-training language
or the baseline. The cases in which transfer learning improves upon the baseline are
indicated in bold.

Pre-training Fine-tuning | DDK SPA SPA SPA DDK + SPA
language language (general) (specific)

Italian (baseline) — 83.33 (80.42) |71.67 (68)  |79.58 (77.59) 69.17 (66.1) |84.16 (81.09)
Spanish Italian 87.91 (84.58)74.17 (73.14)[76.67 (74.87) 57.91 (56.31) 85.38 (83.74)
Czech 85.41 (83.33) 72.92 (71.27) [77.07 (76.58) 58.75 (56.45) 84.72 (84.11)
Am. English . 64.58 (62.90) 70.42 (68.33) 60.42 (58.56) |—

All 84.16 (80.58) (67.45 (66.07) [72.17 (70.18) |60.75 (57.91) |85 (81.68)
Spanish (baseline) | — 73.46 (72.15) 68.93 (65.88) [68.21 (65)  |56.07 (55.7) 169.51 (67.28)
Italian Spanish  |77.37 (75.7) |70.71 (67.85)70 (67.14) |57.86 (53.57)72.01 (71.85)
Czech 76.06 (74.59) (68.21 (67.14) 69.64 (66.42) 56.07 (52.14) 69.96 (68.46)
Am. English — 67.14 (64.28) (67.50 (65.71) [57.14 (55.71) |—

All 74.22 (74.95) |71.42 (68.57) [67.85 (75.42) 57.85 (54.28) 73.63 (71.12)
Czech (baseline) — 67.99 (66.38) (65.11 (63.47) [63.79 (61.77) |60.61 59.2)  68.16 (65.6)
Italian Czech 71.58 (69.74)60.13 (63.25) |69.08 (63.91)/67.30 (56)  66.67 (66.94)
Spanish 70.35 (69.5) (68.25 (63.83) [67.78 (63.58) 63.17 (58)  69.23 (64.89)
Am. English - 71.59 (67.83)64.76 (69.33) 65.00 (57.25) | —

All 69 (70.45)  |65.16 (64.08) 68.49 (64.66) 66.58 (55.83) 64.51 (68.56)
Am. English (baseline) 61.31 (58.83) 59.17 (57)  [60.72 (56.88)

Italian Am. English— 63.85 (62.72)/62.34 (59.08)/64.09 (60) |—

Spanish — 62.16 (60.46) (61.33 (57.71) [61.85 (61.96) |—

Czech — 63.10 (59.58) (60.96 (56.82) 62.88 (58.5) |—

All — 63.35 (61.02) 60.21 (58.46) 61.33 (59.45) |—

5 Discussion

The detection of PD-induced dysarthria using machine learning has advanced
significantly in recent years. However, training reliable models requires extensive
data, which is often challenging, costly, and time-consuming to collect in clini-
cal settings. Current experiments confirm previous studies [1,15] showing that
diadochokinetic exercises and sustained phonation tasks can be used to effec-
tively detect dysarthric speech in PD. In addition, current experiments indicate
that TL, when coupled with the acoustic features utilized, presents a promis-
ing solution to address data sparsity while benefiting from a feature space that
remains largely interpretable to clinicians.

As observed in various tasks [35], we find here that larger datasets do not
always guarantee better outcomes; instead, the quality of the dataset is the deci-
sive factor. If size were the sole determinant, the mPower dataset—significantly
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larger than the others—would consistently outperform smaller datasets as pre-
training data. However, it often produced suboptimal results, with smaller
datasets like Italian outperforming it. This underscores the nuanced role of
dataset size in TL, where factors such as linguistic proximity, separability of
pathological groups, and recording conditions often outweigh sheer volume.

Linguistic proximity plays a crucial role in the success of TL, as observed across
many tasks [36], with closely related languages exhibiting enhanced transferabil-
ity. This is particularly evident in the performance of Spanish and Italian, both
Romance languages, where TL demonstrates notable success in both directions.

Additionally, in line with [19], it is observed that datasets more easily sepa-
rable, namely Spanish and Italian, tend to perform better as pre-training data
in TL scenarios. In this context, separability refers to how easily data points can
be distinguished and correctly assigned to their respective categories—typically
evident through high baseline model performance in monolingual classification.
This suggests that the intrinsic structure of datasets plays a critical role in
facilitating effective knowledge transfer. The clearer distinctions within datasets
enable models to extract and generalize patterns more efficiently, resulting in
better performance when transferring knowledge to new languages. Other than
linguistic proximity, the bidirectional success of TL between Spanish and Ital-
ian could be explained by dataset separability. Italian is the best-performing
pre-training language for Spanish because it offers data more easily separable
compared to Czech and American English. In fact, the inherent separability of
the dataset may explain why knowledge transfer, while bidirectional, is more
successful from Italian to Spanish than in the reverse direction, as Italian is
more easily separable than Spanish.

In Czech, TL outperformed monolingual models in all tests. Italian and Span-
ish proved to be the most effective pre-training dataset for Czech. Similarly, for
American English, Italian emerged as the best pre-training language across all
conducted tests. Separability is the most likely explanation. This suggests that
the inherent characteristics of these datasets, rather than linguistic similarity,
drives their success in boosting performance for Czech and American English.

The separability of the dataset was significantly improved when training
data was arranged sequentially—beginning with HC and then progressing to
patients—compared to either random shuffling or ordering with patients before
HC. Notably, this HC-to-patient scheduling consistently outperformed random
shuffling across all tested configurations. We attribute this improvement to the
model’s ability to first establish a stable baseline from the presumed lower vari-
ability in healthy speech, which facilitates the subsequent learning of more com-
plex pathological patterns. Importantly, this ordering strategy enhances perfor-
mance without requiring domain knowledge or access to clinical severity scores.
As such, it offers a simple yet effective approach that is especially advantageous
in clinical settings where detailed annotations (e.g., H&Y or UPDRS scores) may
not be readily available.

Despite technological advancements, smartphone microphones still fall short
of professional-grade quality used in controlled data collection. TL models pre-
trained or fine-tuned on American English data showed only modest improve-
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ments, largely due to data quality limitations rather than flaws in the TL app-
roach itself. Unlike the Spanish dataset, the lack of complementary data collected
in ideal acoustic conditions limits the models’ ability to generalize. Notably,
higher accuracies achieved with Spanish data suggest that while noisy, real-
world data can improve robustness, when used as part of training, relying solely
on it poses significant challenges.

Pre-training on multiple languages and fine-tuning on just one often results
in suboptimal performance due to the conflicting features learned from linguisti-
cally diverse datasets. When multiple datasets are combined, the key factors that
previously contributed to successful transfer learning—such as linguistic prox-
imity, high data separability, and consistent recording quality—are weakened,
reducing the effectiveness of the learned representations.

Lastly, models trained on DDK-derived general acoustic features consistently
demonstrate the highest predictive performance, both in monolingual and trans-
fer learning scenarios. Following this, general acoustic features extracted from
SPA also show good predictive performance and cross-linguistic transferability,
although they are slightly less effective than their DDK-derived counterparts. In
contrast, models trained solely on SPA-specific acoustic features tend to perform
worse, often exhibiting lower balanced accuracies. Kruskal-Wallis tests showed
that general acoustic features—whether from DDK or SPA—contained a greater
number of statistically significant features capable of distinguishing between HC
and individuals with PD. Meanwhile, only a small subset of SPA-specific fea-
tures reached statistical significance. Given their higher transferability, broader
applicability across tasks, and higher interpretability, general acoustic features—
particularly those derived from DDK—are better suited for clinical applications.

6 Conclusions

The primary objectives of this research were threefold. First, it evaluated the trans-
ferabillity of various tasks and the features derived from them in dysarthria detec-
tion. Second, it sought to verify the effectiveness of TL in this task, leveraging data
from four languages. Third, evaluate CL strategies agnostic to domain knowledge.

DDK-derived features showed superior predictive capability and transferabil-
lity compared to those derived from sustained phonation. TL offers a promising
solution to data scarcity in clinical machine learning by leveraging knowledge from
various languages to develop more robust models. Its success depends on factors
like linguistic proximity, the initial separability of pre-training data, and recording
conditions. Notably, TL performance improved significantly when data was sched-
uled sequentially from HC to patients rather than randomly shuffled or reversed.
This approach is particularly advantageous as it does not require domain knowl-
edge.

Looking forward, further studies should continue exploring additional inter-
pretable speech-derived features beyond those used in the current research (e.g.
vowel space related features). Expanding the set of clinically meaningful fea-
tures could further enhance model robustness and improve dysarthria detection
in Parkinson’s disease.
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A key limitation of this research is the lack of a broader range of languages,
particularly non-Indo-European ones. Expanding language diversity in future
work is crucial for improving our understanding of dysarthria in Parkinson’s
disease and for further exploring the potential of transfer learning to enhance
performance.

In conclusion, acoustic features extracted from diadochokinetic exercises and
sustained phonation tasks can be effectively used to discriminate healthy from
dysarthric speech. More importantly, the implementation of transfer learning
in this research, through language-based knowledge transfer, demonstrates its
potential to address critical gaps in data availability in Parkinson’s disease and
related conditions.
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A Features

Table 3. Summary of all acoustic features used in this study. The table lists each fea-
ture’s name, a brief definition, and its category. Features are divided into SPA-specific
acoustic features, which are extracted only from the sustained phonation of /a/, and
general acoustic features, which are extracted from both the SPA and diadochokinetic
tasks.

Feature Definition Category

first loudness drop time The first point in time (in seconds) where the loudness |[SPA-specific
drops by 16.66% of the loudness range and at least 4dB.
If there is no such drop, the duration of the speech
signal is returned.

spectral contrast mean |Average energy difference between spectral peaks and  |SPA-specific
valleys across sub-bands.

spectral contrast sd Standard deviation of energy differences between SPA-specific
spectral peaks and valleys.

spectral flatness mean |Average ratio of geometric to arithmetic mean of the SPA-specific
power spectrum; indicates noisiness.

spectral flatness sd Standard deviation of spectral flatness; reflects variation |SPA-specific
in tonality vs. noisiness.

(continued)
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Table 3. (continued)

Feature

Definition

Category

spectral rolloff mean

Average frequency below which 85% of the spectral
energy is concentrated.

SPA-specific

spectral rolloff sd

Standard deviation of roll-off frequency across time;
indicates variability in spectral high-end content.

SPA-specific

tonnetz fifth x mean

Mean x-coordinate of tonal centroid for the perfect fifth
interval.

SPA-specific

tonnetz fifth x sd

Standard deviation of the x-coordinate for the perfect
fifth interval.

SPA-specific

tonnetz fifth y mean

Mean y-coordinate of tonal centroid for the perfect fifth
interval.

SPA-specific

tonnetz fifth y sd

Standard deviation of the y-coordinate for the perfect
fifth interval.

SPA-specific

tonnetz major third x mean

Mean x-coordinate of tonal centroid for the major third
interval.

SPA-specific

tonnetz major third x sd

Standard deviation of the x-coordinate for the major
third interval.

SPA-specific

tonnetz major third y mean

Mean y-coordinate of tonal centroid for the major third
interval.

SPA-specific

tonnetz major third y sd

Standard deviation of the y-coordinate for the major
third interval.

SPA-specific

tonnetz minor third x mean

Mean x-coordinate of tonal centroid for the minor third
interval.

SPA-specific

tonnetz minor third x sd

Standard deviation of the x-coordinate for the minor
third interval.

SPA-specific

tonnetz minor third y mean

Mean y-coordinate of tonal centroid for the minor third
interval.

SPA-specific

tonnetz minor third y sd

Standard deviation of the y-coordinate for the minor
third interval.

SPA-specific

vowel duration

Duration of the spoken vowel in seconds.

SPA-specific

average mfccs 1 Average of the 1st MFCC, reflecting overall spectral General
slope or broadband energy.

average mfccs 2 Average of the 2nd MFCC, interpreted as a low-to-high |General
frequency energy ratio.

average mfccs 3 Average of the 3rd MFCC, interpretable as a General

mid-frequency to (low-+high) frequency energy ratio.

average mfccs 4

Average of the 4th MFCC, representing the energy ratio
between two frequency bands and two slightly higher
bands.

General

alpha ratio mean

Mean ratio of summed energy in the 504A$1000 Hz and
1aAS5 kHz.

General

alpha ratio sd

Standard deviation of the ratio of summed energy in the
50aAS1000 Hz and 14AS5 kHz.

General

apq3 shimmer

Three-point Amplitude Perturbation Quotient—average
absolute difference between the amplitude of a period
and the mean amplitude of its two neighbors, divided by
the average amplitude.

General

(continued)
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Table 3. (continued)
Feature Definition Category
apgb shimmer Five-point Amplitude Perturbation Quotient—average |General

absolute difference between the amplitude of a period
and the mean amplitude of it and its four closest
neighbors, divided by the average amplitude.

apqll shimmer

Eleven-point Amplitude Perturbation Quotient—average
absolute difference between the amplitude of a period
and the mean amplitude of it and its ten closest
neighbors, divided by the average amplitude. A value
above 3.070% is considered pathological (MDVP
standard).

General

dda shimmer Average absolute difference between consecutive General
differences in the amplitudes of successive periods.

ddp jitter Average absolute difference between consecutive General
differences in durations of successive periods, divided by
the average period. Reflects rapid pitch variability
(jitter).

duration Duration in seconds. General

f1 bandwidth mean Mean bandwidth of the first formant. General

f1 bandwidth sd Standard deviation of the first formant bandwidth. General

f1 frequency mean Mean center frequency of the first formant (F1). General

f1 frequency sd Standard deviation of F1 center frequency. General

f1 relative energy mean Mean amplitude of the spectral envelope at F1 relative |General
to the spectral FO peak.

f1 relative energy sd Standard deviation of amplitude at F1 relative to the |General
spectral FO peak.

f2 bandwidth mean Mean bandwidth of the second formant (F2). General

f2 bandwidth sd Standard deviation of the second formant bandwidth. |General

f2 frequency mean Mean center frequency of the second formant (F2). General

f2 frequency sd Standard deviation of F2 center frequency. General

2 relative energy mean Mean amplitude of the spectral envelope at F2 relative |General
to the spectral FO peak.

2 relative energy sd Standard deviation of amplitude at F2 relative to the  |General
spectral FO peak.

3 bandwidth mean Mean bandwidth of the third formant (F3). General

f3 bandwidth sd Standard deviation of the third formant bandwidth. General

f3 frequency mean Mean center frequency of the third formant (F3). General

{3 frequency sd Standard deviation of F3 center frequency. General

3 relative energy mean Mean amplitude of the spectral envelope at F3 relative |General
to the spectral FO peak.

3 relative energy sd Standard deviation of amplitude at F3 relative to the |General
spectral FO peak.

h1l a3 harmonic difference mean/Mean ratio of energy of the first FO harmonic (H1) to  |General
the highest harmonic in the third formant region (A3).

h1l a3 harmonic difference sd  |Standard deviation of H1 to A3 energy ratio. General

h1 h2 harmonic difference mean Mean ratio of energy of the first FO harmonic (H1) to  |General

the second FO harmonic (H2).

(continued)
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Table 3. (continued)

Feature Definition Category

h1 h2 harmonic difference sd Standard deviation of H1 to H2 energy ratio. General

hammarberg index mean Mean ratio of the strongestuspectral peak in 0a4AS2 kHz |General
to the strongest peak in 28AS$5 kHz.

hammarberg index sd Standard deyiation of the rfztio of strongest spectral General
peaks in 04A32 kHz vs. 28A$5 kHz.

hnr mean Mean ratio of the strongestvspectral peak in 0aAS2 kHz |General
to the strongest peak in 28AS55 kHz.

hnr sd Standard deviation of the harmonic-to-noise energy General
ratio.

local jitter Average timing variability between pitch periods within |General
a segment of a signal, expressed in seconds.

local absolute jitter Mean absolute deviation in timing between pitch periods General
within a segment, in seconds.

local dB shimmer Average difference in amplitude (in dB) between General
consecutive FO periods.

local shimmer Average absolute difference between the amplitudes of | General
consecutive periods, divided by the average amplitude;
reflects cycle-to-cycle amplitude variability.

loudness mean Mean loudness in decibels during voiced intervals. General

loudness sd Standard deviation of loudness in decibels during voiced |General
intervals.

ppgb jitter Five-point Period Perturbation Quotient—average General
absolute difference between a period and the average of
it and its four nearest neighbors, divided by the average
period.

rap jitter Relative Average Perturbation—average absolute General
difference between a period and the average of it and its
two neighbors, divided by the average period.

rate loudness peaks Number of loudness peaks per second in voiced intervals. General

spectral slope 0 500 mean Meuan linear slope of the log power spectrum in the General
04AS5500 Hz band.

spectral slope 0 500 sd Standard deviation of spectral slope in the 04AS500 Hz |General
band.

spectral slope 500 1500 mean Meanu linear slope of the log power spectrum in the General
5004A51500 Hz band.

spectral slope 500 1500 sd Stan@ard deviation of spectral slope in the General
5004A51500 Hz band.

speech ratio Percentage of the audio signal identified as speech. General

utterance durations sum Total duration of all detected utterances. General

utterance durations mean  |Mean duration of detected utterances. General

vocal tremor Frequency of the most intense low-frequency modulation General
in the fundamental frequency.

pitch max Maximum perceived frequency of a sound, corresponding General

to the rate of vibrations of the sound wave.

(continued)
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Table 3. (continued)

Feature Definition Category

pitch min Minimum perceived frequency of a sound, corresponding General
to the rate of vibrations of the sound wave.

pitch mean Average perceived frequency of a sound, corresponding |General
to the rate of vibrations of the sound wave.

pitch std Standard deviation of the perceived frequency of a General
sound, corresponding to the rate of vibrations of the
sound wave.

pitch range Difference between the minimum and maximum General
perceived frequencies of a sound, corresponding to the
rate of vibrations of the sound wave.

pause rate Total length of pauses divided by the total length of General
speech (including pauses).

number of pauses|Number of pauses between speech segments based on General
voiced intervals.
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