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Abstract
This paper introduces a model for segment-level phonetic re-
sponsiveness. It is based on behavior observed in human-human
interaction, and is designed to be integrated into spoken dia-
logue systems to capture potential phonetic variation and sim-
ulate convergence capabilities. Each step in the process is re-
sponsible for an aspect of the interaction, including monitoring
the input speech and appropriately analyzing it. Various param-
eters can be tuned to configure the speech handling and adjust
the response style. Evaluation was performed by simulating
simple end-to-end dialogue scenarios, including analyzing the
synthesized output of the model. The results show promising
ground for further extensions.
Index Terms: phonetic convergence, responsive spoken dia-
logue systems, human-computer interaction

1. Introduction
Phonetic convergence is defined as an increase in segmen-
tal and suprasegmental similarities between two speakers [1].
It has been observed in conversational human-human interac-
tion (HHI) scenarios on the segmental level [2, 3]. Investigat-
ing phonetic convergence in human-computer interaction (HCI)
paradigms is fundamentally different than in HHI, since the
computer needs to be aware of potential changes in speech over
time, as well as being able to produce them. While in HHI
any interlocutor can initiate such changes, in HCI the artificial
interlocutor is generally expected to be attentive to the human
interlocutors’ behavior (and potentially even to distinguish be-
tween different human interlocutors). To this end, the interac-
tive system must be able to define speech characteristics prone
to changes, detect and trace them on the fly, and finally, dynam-
ically produce speech in which these changes are realized.

In addition to the differentiation between HHI and HCI
paradigms, it is important to distinguish between imitation and
convergence. An imitating system would simply try to repro-
duce the human interlocutor’s speech characteristics every time
it generates speech, while ignoring previous utterances, abrupt
changes, etc. However, a system with convergence capabili-
ties would gradually accumulate speech evidences and match its
output while taking various considerations into account, such as
convergence rate, the frequency of the changes, desired degree
of convergence, and so forth.

This paper presents methods that aim to model computer-
side handling of speech exemplars as well as convergence be-
havior. The parameters and steps of the process are based
on the behavior observed in convergence occurring in natural
speech [4]. The model’s flow is described in Algorithm 1, and
all of its parameters and their effects are described in Table 1.

Algorithm 1: Phonetic Response
Input : ASRInput – recognized user speech

targetPhonemes – convergence features

Output: list of feature vectors with converged values

1 foreach (phoneme in ASRInput) ∈ targetPhonemes do
2 f eature← phoneme.associatedFeature
3 context← f eature.phoneticContext
4 if not matches(phoneme, context) then
5 break
6 if inRange(phoneme, allowedRange) then
7 if poolSize=maxPoolSize then
8 deleteOldestExemplar()
9 feature.addExemplar(phoneme)

10 else
11 break
12 if toUpdate = 0 then
13 method← f eature.calculationMethod
14 poolValue← method.calculate(pool)
15 newValue←

rate · poolValue+(1− rate) · f eature.value
16 threshold← convergenceLimit · poolValue
17 if newValue > threshold then
18 newValue← threshold
19 f eature.value← newValue
20 toUpdate← updatefrequency
21 else
22 toUpdate← toUpdate - 1
23 end

2. Background and motivation
Up to now, customization of spoken dialogue systems (SDSs)
has mostly concentrated on the dialogue’s flow (via the state
management component, as in [5]). More advanced systems
are capable of reacting to user input in terms of turn taking and
response generation [6] using incremental processing [7]. Yet,
while the content and timing of the response may be customized
for the user, the speech output would be the same for every user
using the same system in a similar configuration. Speech adap-
tation does exist in the field of text to speech (TTS) synthe-
sis. For instance, a new acoustic model can be created from
averaging multiple speech corpora (e.g., as the averaged mod-
els described in [8, 9]). However, seeing that such models are
averaged on the acoustic level, the outcome will be a voice that
sounds – as a whole – like an acoustic average of the other mod-
els. If an SDS is to use such a technique for converging its
speech to the user, the result will be an imitation of the user’s
voice. That might discourage users, making them feel like they
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Table 1: Summary of model’s parameters.

Parameter Description
target phoneme the phoneme that triggers the feature
phonetic context the environment in which the

phoneme is accepted
allowed range the value range in which new

instances are accepted
exemplar pool size maximum number of exemplars in

memory
update frequency how frequently a feature’s value is

recalculated
calculation method the manner in which the pool value

is calculated
convergence rate weight given to the pool value
convergence limit the maximum degree of convergence

allowed for a feature

are talking to themselves or that the system is mocking them.
To maintain the system’s voice and still match its speech to the
user, a more selective approach can be used, where segment-
level characteristic of the user’s speech are modeled. This re-
sults in a system converging to the user’s speech properties (like
dialectal differences, prosody, vowel quality, etc.), but in its own
voice. Given that such convergence occurs in HHI [2, 10], such
a system could ultimately lead to a dialogue that resembles natu-
ral behavior and is therefore easier to understand and to interact
with.

3. Model
As described in Algorithm 1, the response process consists of
several steps that are executed sequentially. These steps are
based on behavior observed in HHI. Some steps are optional de-
pending on their input, and others terminate the entire process if
a condition is not met. The first step is triggered whenever one
of the target phonemes (configurable) is detected by the speech
recognition component. Once such a phoneme is detected, its
context is examined. This step is necessary to verify that the
feature is captured only where its phonological rule is applica-
ble. For example, elision of [@] occurs only in some specific
contexts in German, as described in the following phonological
rule (simplified version adapted from [11, pp. 142–143]):

@−→∅� [-son] __ {#, [+const]} (1)

The environment in which the recognized phoneme se-
quence was found is compared to the one defined for the fea-
ture associated with the detected phoneme. In case a phoneme
is associated with more than one characteristic (for example, a
vowel can be associated with both a length feature and a quality
feature), this comparison – and any necessary subsequent step –
is done for each feature separately. These two steps model
the potentially varying characteristics of speech. If the context
matches, the process continues.

Each feature is measured with a specific measurement type,
e.g., formants, duration, label, etc. This measurement defines
the way the phoneme (and by extension the feature) is evalu-
ated. It also defines the manner in which evaluation (and later
also synthesis) is performed externally. As this is done exter-
nally, measuring and interpreting a feature’s values can easily
be changed and explored by language engineers without being
dependent on programmers.

A range of valid values is also defined for each feature.

This range is used to define the values considered reasonable
and expected for the specific feature, and helps to filter out any
unwanted values like outliers and recognition errors. If the mea-
sured value is not within this range, the exemplar is rejected and
the process is terminated for this phoneme. For features com-
posed of multiple values (e.g., multiple formants for vowels),
a range is defined for each value separately. In that case, it is
enough that one of the values is out of range for the whole ex-
emplar to be rejected. Accepted exemplars are stored in the
feature’s memory.

The feature’s memory is modeled by the exemplar pool.
The pool’s size is configurable and common to all features,
modeling a listener’s temporal memory. Once a feature’s pool
has reached its size limit n, exemplars will start to be deleted
(“forgotten”) on a first-in-first-out basis. That means that the
model takes only the n newest exemplars of a feature when cal-
culating its pool value (see below). Thus, the larger the pool’s
size limit is, the longer the time span influencing the process.

After an exemplar is added to a feature’s pool, an update of
the feature’s value may be triggered. Whether and how often
this happens is determined by the update frequency. If set to 1,
an update will occur every time an exemplar is added; if set to
2, every other exemplar, and so on. When set to 0, however, up-
dates will only take place when explicitly requested. This can
be useful when, for example, all features are to be updated at the
same time, regardless of how many exemplars have been accu-
mulated for each feature. Increasing the update interval means
that each new pool value will be affected by more new exem-
plars, which, depending on the calculation method used (see
below), might result in a smoother converging process. Addi-
tionally, a longer update interval also means that convergence
will generally take longer, since the model’s features are not
being updated as frequently.

Along with the size of the exemplar pool, another key de-
cision is how these exemplars will be used to calculate the pool
value the model will attempt to converge to. This decision is
made by the calculation method. Each feature can use another
calculation method, and the same calculation method is used for
all dimensions of the feature’s value. The most basic method
would be to average over the exemplar pool. This might be too
simplistic, for it does not take any property of the exemplars
into account, such as the order in which they were acquired or
how similar they are to other exemplars or the correct value.
One of the more dynamic methods is decaying average, which
recursively gives the newest exemplar a different (configurable)
weight. The calculation step can be described by:

M′
i = g(Mᵀ

i≤m) (2)

where Mᵀ ∈ Qm×n is the transposed exemplar matrix (which
comprises vectors of dimension values instead of vectors of ex-
emplar values), g is the chosen calculation method to apply to
each vector, M′ ∈ Qm×n is the matrix with the pool values for
each dimension of the feature, i is the vector index, and m is the
number of rows in Mᵀ.

Experimenting with a new calculation method merely re-
quires to implement a function for an input of number array and
to refer to it in the model’s configuration file.

Before setting the updated value as the feature’s value, the
balance between the feature’s current value and its calculated
pool value needs to be set; this is the convergence rate. The
purpose of this parameter is to model the tendency of a speaker
to converge. Having found in previous work that people’s con-
vergence in both HHI [4] and HCI [12] varies considerably, this
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Figure 1: Comparison between different convergence rates
when the calculation method is set to simple average. The “ex-
emplar” bar represents the feature’s last exemplar, and the “av-
erage” bar represents the accumulated effect of all exemplars
at each iteration. The empty first iteration represents the empty
exemplar pool of the model at the beginning of the process.

parameter needs to be tuned with respect to the other parame-
ters to obtain convergence steps that are comparable to natural
speech convergence.

A feature’s new value is calculated using

ϒ≡ Cu = ρυ +(1−ρ)Cu−1 (3)

where ϒ is the new feature value (i.e., the value after update
u), υ is the calculated pool value from M′ in Equation 6, Cu−1
is the current value of the feature (after the previous update),
and ρ is the convergence rate. A ρ value of 0 means that no
convergence occurs (the current value is retained), a value of
1 will result in complete convergence (the current value is ig-
nored), and ρ = 0.5 will result in an average between the two.
While the convergence rate is typically a value between 0 and 1,
smaller and greater values could be meaningful in some appli-
cations to achieve divergence or over-convergence, respectively.
For instance, in a tutoring system for pronunciation training, the
desired behavior might be for the system to diverge from users’
input when it detects that their pronunciation is wrong. By re-
flecting the users’ utterance with diverged pronunciation (in-
stead of explicitly pointing out their mistake), the user receives
auditory feedback in a more “conversational” learning process.

Finally, the convergence limit defines how close to the in-
put speech the model is allowed to converge. This emulates
the speaker’s flexibility and to what extent external stimulations
can influence their speech. As mentioned above, this flexibility
is subject to great variation across speakers. This parameter is
important, because it draws the line between a responsive sys-
tem with its own internal behavior and a system that aims to
mimic the user. For example, if set to 0.8, the individual fea-
ture (and each of its dimensions) will be limited to 80 % of the
new pool value. Hence, in case the new calculated pool value is
about to cross this threshold (based on the calculation in Equa-
tion 3), it will be set to the maximum allowed value defined by
the convergence limit. This value is calculated using

Λ = δυ (1−λ ) (4)

where Λ is the maximum convergence value allowed, δ is set
to 1 if the converging values are increasing or −1 in case they
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Figure 2: Comparison between the overall difference between
the features’ initial states and the observations covered by the
model’s predictions using different convergence rates using de-
caying average (µ = 0.3). The points represent the calculation
steps (first point is the initial value), and the ellipses represent
confidence levels of 90 %, 50 % and 10 %, respectively.

are decreasing (see Equation 5), and λ is the convergence limit
parameter (λ = 0.8 in the example above).

Note that the actual value of this limit depends on the direc-
tion in which the convergence occurs, which is defined by

δ =

{
1 if υ ≥ Ct

−1 otherwise
(5)

That is, if the converging values are increasing, the limit’s value
will be smaller than the pool value; and if the values are de-
creasing toward the pool value, the limit’s value will be greater
than the pool value.

Ultimately, the final updated value for the feature is deter-
mined as follows:

ϒ =

{
υ−Λ if υ−ϒ≤ δΛ

ϒ (unchanged) otherwise
(6)

4. Evaluation
The proposed model was evaluated in two steps. First,
the model’s predictions were examined and compared with
recorded audio (simulating the user’s speech input). Secondly,
the changes in the target features in the synthesized speech were
measured to test the adequacy of the model’s output. The speech
recognition component of the model integrates CMU Sphinx
4 [13] with a custom language model and dictionary, and the
speech synthesis component uses the frequency domain batch
filtering1 functionality of Praat.

The simulated speech used for the evaluation is a subset
of the stimuli used in [4]. These stimuli are suitable for sim-
ulating convergence, since they were constructed specifically
for triggering convergence in human speakers. Three segment-
level phonetic features that vary across native speakers of Ger-
man are incorporated in these stimuli: realization of the word-
medial vowel -ä- in stressed syllables as [e:] or [E:], realization
of the word-final sequence -ig as [Iç] or [Ik], and the elision
or epenthesis of [@] in the word-final sequence -en. The former

1more details in http://www.fon.hum.uva.nl/praat/
manual/Filtering.html
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Table 2: Summary of the convergence process for the feature
[E:] vs. [e:]. Values are the decayed averages (µ = 0.3) at the fi-
nal step. Coverage is the percentage from the overall difference
between the observations and the initial states covered by the
model’s prediction.

Value (Hz) Coverage
Rate F1 F2 F1 F2

0.1 528 2017 39.9 % 35.6 %
0.5 634 1869 94.8 % 88.8 %
0.9 643 1844 99.5 % 97.8 %

two features vary regionally, occurring roughly in the North and
South of the German-speaking region of Europe, respectively.

The model features’ initial values were always the average
of the stimuli (input exemplars) with the opposite feature value.
For instance, the feature that captures [@] elision (see Equa-
tion 1) consists of a single value, namely the [@] segment length.
That makes this feature gradual rather than categorical. When
letting the system start with segment length of 0 ms (i.e., com-
plete elision) and “listen” to input speech with perceptible [@]
segments of different lengths, the system responds by changing
its internal representation of [@] based on the audio input. This
was done to illustrate the significance of the parameter conver-
gence rate. Figure 1 summarizes the values of the system in
each iteration when using different rates. This figure also illus-
trates how the value is set based on the entire exemplar pool. For
example, when ρ = 0.5 (balanced average), the value in the third
iteration is larger than its predecessor, even though the exemplar
of this iteration introduces a lower value. This is due to the fact
that the previous two values were higher, so that the value cal-
culated from the entire pool is still larger than in the second it-
eration. With ρ = 0.9 the changes are much more abrupt, which
may lead to an instable and confusing output. With ρ = 0.1 the
changes are conservative due to the low convergence rate, even
though the pool values are much larger. This case represents a
speaker which is resistant to external influences. Finally, it is
worth pointing out that while the values with ρ = 0.9 are closer
to the pool value, the change with ρ = 0.5 is more gradual and
is less likely to overshoot and therefore presents a more natural
behavior.

Another phonetic characteristic is a vowel’s formants,
whose values determine the vowel quality. For example, the or-
thographic vowel -ä- in stressed position could be pronounced
as either [E:] or [e:]. This characteristic can be ascribed to di-
alectal or regional influences, and therefore can be subject to
convergence when speaking with different interlocutors.

In the first part of the evaluation, the system received input
of exemplars where the vowel -ä- is pronounced as [E:], and set
the initial values to those of the exemplars with the pronunci-
ation [e:]: 451 Hz, 2116 Hz, and 2763 Hz for the vowel’s F1,
F2, and F3 respectively. The rest of the model’s parameters (see
Table 1) were set as follows:

• exemplar pool size = 10,
• update frequency = 1,
• calculation method = decaying average (µ = 0.3),
• convergence rate = 0.1,0.5, and 0.9 (for comparisons),
• and convergence limit = 1 (i.e., no limit).

The convergence steps of the the feature [E:] vs. [e:] toward the
exemplars are shown in Figure 2. Table 2 summarizes the val-
ues and convergence distances covered, relative to the averaged
exemplar values using different convergence rates. Although

Table 3: Values and errors (from model’s predictions) of for-
mant frequencies in audio output sentence using the modified
[E:] vs. [e:] feature calculated by the model. The values in
brackets are the errors compared to the original audio input.

Value (Hz)
Rate F1 F2 F3

0.1 607 1516 2560
0.5 638 1581 2510
0.9 640 1584 2507

Error (Hz)

0.1 79(37) 501(322) 198(203)
0.5 5(6) 288(257) 254(253)
0.9 3(4) 260(254) 260(256)

the individual covered distance of F3 is larger for ρ = 0.5, the
overall convergence is superior when ρ = 0.9 (since the rate is
common to all dimensions of a feature). It may be assumed,
then, that a higher convergence rate generally performs better.
While that seems to be the case with steady and coherent input,
it could result in the undesired behavior of abrupt and frequent,
unexpected changes.

The second part of the evaluation concentrated on the real-
ization of the predicted values from the first part. For that, some
model output was synthesized based on one of the exemplar au-
dio files for the [E:] vs. [e:] feature, representing possible speech
output of an SDS that uses the model. The formant values in the
segment containing the feature in the synthesized audio were
manually measured at the vowel’s midpoint and compared to
the model’s prediction. Due to limitations of the used synthesis
method, the manipulation did not result in the exact values of
the model output (see Table 3). Nevertheless, the vowel realiza-
tions changed from [e:] to [E:], which means that the end-to-end
process successfully generated speech output that responded to
the initial speech input.

5. Conclusion and future work
A novel model for capturing and responding to segment-level
phenomena was presented and evaluated. Both the model pre-
dictions and synthesized output based on them were evaluated,
and the results demonstrate the feasibility of the concept and its
potential benefit as an SDS component. The model’s predic-
tions were found to be up to 99.5 % accurate. The synthesized
speech output was not as precise, but the realization of the tar-
get phonetic phenomena was nonetheless successfully changed
based on the simulated speech input. This is due to limitations
of the synthesis method and not the model itself, and is expected
to improve when using another method.

This model could, in principal, be extended to capture other
characteristics of HCI like prosody and other suprasegmental
features, turn-taking, and even lexical decisions, to customize
the interaction on other levels as well. Personalized behaviors
like these in computers can assist in the research of conver-
gence, since it offers a more controlled experimental environ-
ment. Our understanding of convergence in speech from the
theoretical point of view may benefit from such experiments.

Future work is planned to integrate the model into an SDS
using a framework such as OpenDial [14] or IrisTK [15]. Fur-
thermore, support for a broader range of phonetic phenomena
and more suitable TTS engines would also improve the system’s
speech output.
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