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Abstract. One of the most serious challenges for speech synthesis is the systematic treatment of events in language
and speech that are known to have low frequencies of occurrence. The problems that extremely unbalanced frequency
distributions pose for rule-based or data-driven models are often underestimated or even unrecognized. This paper
discusses the problems pertinent to rare events in four components of speech synthesis systems: in linguistic
text analysis, where productive word formation processes generate a potentially unbounded lexicon and cause
heavily skewed word frequency distributions; in syllabification, where some syllables occur very frequently but
most phonotactically possible syllables are very infrequent; in speech timing, where most constellations of factors
affecting segmental duration are sparsely or not at all represented in training databases; and in unit selection
synthesis, where the uneven distribution of speech unit frequencies poses challenges to speech corpus design.
Currently available techniques for coping with the problem of rare or unseen events in each of these components
are reviewed. Finally, a distinction is made between a strictly closed domain with a fixed vocabulary and a merely
restricted domain with loopholes for unseen words and names, and the consequences of the respective type of
domain for appropriate synthesis strategies are discussed.
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1. Introduction

In this paper I intend to point out two common con-
cepts in speech synthesis that I consider delicate, if not
misguided and wrong. The first of these concepts is
the often nonchalant treatment of phenomena in lan-
guage and speech that are known or assumed to have
low frequencies of occurrence.

In the context of text-to-speech synthesis (TTS),
such low-frequency events play an important role
in linguistic text analysis, in the form of heavily
skewed word frequency distributions, caused to a
large extent by productive word formation processes
(Section 2.1), as well as in the context of syllabification
(Section 2.2). Extremely uneven frequency distribu-
tions are also observed in segmental duration modeling,
where most factorial constellations are sparsely or not
at all represented in training databases (Section 2.3).
The fourth area in TTS conversion that is affected by

non-uniform frequency distributions is the design of
acoustic unit inventories for data-driven speech syn-
thesis (Section 2.4).

Various statistical techniques have been developed
to cope with the problem of events that are rare or un-
seen in training databases and yet must be expected to
occur in the text input to an open-domain TTS system.
In the context of word frequencies and, more gener-
ally, language modeling, models based on Zipf’s law
and Good-Turing estimates are sometimes applied to
predict the frequencies of unseen events, such as un-
seen words formed by a given morphological process.
Another standard technique for assigning probabilities
to data unseen in the training corpus is the Expecta-
tion Maximization algorithm, which I will discuss in
some detail in the context of syllabification. A class of
statistical models known as sums-of-products models
has been shown to yield very good results for the task
of assigning segmental durations in speech synthesis.
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Finally, certain techniques that are well-established in
speech recognition have been applied to cope with
the LNRE problem in corpus-based unit selection syn-
thesis, such as the prediction of the properties of un-
seen units (e.g., triphones, phone-sized units, subphone
units) by interpolation from the known properties of
similar units. With the possible exception of duration
models, whose current performance appears to leave
little room for further improvement at least on the seg-
mental level, the LNRE problem is not removed in any
of the contexts discussed below.

The second concept that I consider questionable
is the notion of a “restricted” application domain
(Section 3). I suggest that, at least in languages with
a large number of distinct syllables, such as English
or German, word or syllable concatenation schemes
are only feasible in strictly closed domains, i.e. those
domains that have a fixed and unchanging vocabulary.
However, some progress has recently been made in the
design and construction of unit selection voices that of-
fer, on the one hand, very good synthesis quality when-
ever there is a close match between the application do-
main and the domain in which the speech corpus was
collected and, on the other hand, fair synthesis quality
for open-domain applications. The obvious impact of
the domain in these studies only emphasizes the im-
portance of a careful database design; how to achieve
the transfer from one limited domain to the other, let
alone to an open domain scenario with unrestricted text
input, remains a challenge for TTS research.

2. Rare Events

Several phenomena in language and speech can be char-
acterized as belonging to the LNRE class of distri-
butions. LNRE is the acronym for Large Number of
Rare Events, apparently first introduced by Khmaladze
(1987) as a descriptor of distributions for which the law
of large numbers does not hold. LNRE classes have the
property of extremely uneven frequency distributions:
while some members of the class have a high frequency
of occurrence, i.e. they are types with a large token
count, most class members are extremely rare. Even
logarithmically transformed word frequencies, for in-
stance, are not normally distributed but remain skewed.

A special case of such a distribution is known as
Zipf’s Law (Zipf, 1935, 1949), which gives a fairly
good approximation of, for example, word frequency
counts. However, Zipfian models suffer from the fact

that the model parameters change systematically as a
function of the sample size and thus need to be con-
tinuously adjusted to accommodate changes in sample
size. The same holds for the log-normal model, whose
parameters (mean and standard deviation) appear as
increasing functions of sample size (Baayen, 2001).

The relationship between Zipf’s law and Turing’s
formula (Good, 1953) was explored in Samuelsson
(1996). Both formulas are of interest in natural lan-
guage processing because they can be used to improve
probability estimates from relative frequencies as well
as to predict the frequencies of unseen events, such as
unseen words formed by a given morphological pro-
cess. Turing’s formula, in particular in the flavor of the
back-off method (Katz, 1987), is now a standard tech-
nique in speech recognition, where it is used to improve
the estimation of parameters in probabilistic language
models. Samuelsson shows that in contrast to common
belief in the field, the ideal Turing distribution does
not have Zipf’s law as some special or limiting form
but is qualitatively different. More concretely, Turing’s
formula provides an appropriate probability distribu-
tion even for infinite populations, whereas Zipf’s law
implies a finite total population.

In my work on German and multilingual speech syn-
thesis (Möbius, 1998a, 1999, 2001). I have encoun-
tered LNRE distributions in three contexts: in linguistic
text analysis, in segmental duration modeling, and in
acoustic inventory design. Many TTS systems rely on a
full-form pronunciation dictionary in conjunction with
generic pronunciation rules. Words in the input text are
usually looked up in the pronunciation dictionary or, if
not listed there, transcribed by rule. The main problem
with this approach is the productivity of word formation
processes, both derivational and compositional ones, in
particular in German but more generally in almost any
natural language.

The work of Baayen (2001) reveals that monomor-
phemic content words, viz. nouns, adjectives and verbs,
are outside the LNRE zone, but that frequencies of
words formed by productive derivational affixes, for
instance, have typical LNRE distributions. The LNRE
zone, according to Baayen, can be defined as the range
of successively increasing sample sizes taken from
a corpus where one keeps finding previously unseen
words. Note that samples in this definition are not inde-
pendent of each other: sample number n + 1 is assumed
to include sample number n. For word frequency esti-
mations, even large corpora (tens of millions of words)
are generally within the LNRE zone. This means that in



P1: GNM

INTERNATIONAL JOURNAL OF SPEECH TECHNOLOGY KL1538-07 September 27, 2002 16:16

Rare Events and Closed Domains in Speech Synthesis 59

open-domain TTS, the probability of encountering pre-
viously unseen words in the input text is very high. A
TTS system therefore needs to be capable of analyzing
unknown words (Section 2.1).

Languages with complex syllable structure, such as
English or German, are known to have a large inventory
of distinct syllables, whose frequency distributions also
display typical LNRE characteristics. A few hundred
distinct syllables account for the majority of realized
syllable tokens in speech production, whereas most syl-
lables in the inventory are very rarely used. Preferred
approaches to syllabification are therefore those that
can assign probabilities to under-represented or even
unseen syllables (Section 2.2).

Similarly unpleasant frequency distributions are ob-
served in segmental duration modeling (Section 2.3).
There are many factors that affect speech timing, such
as the identity of the speech sound and its neighbours
as well as positional and prosodic factors. The number
of different constellations of these factors is language-
dependent; for English and German more than 10,000
distinct constellations exist (van Santen, 1995; Möbius
and van Santen, 1996), and their frequency distribu-
tions belong to the LNRE class: most observed con-
stellations have a very low frequency of occurrence.

LNRE distributions also pose problems for the de-
sign of acoustic unit inventories for concatenative
speech synthesis (Section 2.4). This observation holds
especially for corpus-based synthesis systems that per-
form an online unit selection from a large annotated
speech database.

2.1. Morphological Productivity

Text input to a general-purpose TTS system is likely
to contain words that are not listed in the TTS lexicon.
All natural languages have productive word formation
processes, and the community of speakers of a language
creates novel words (and names) as need arises.

It has been suggested that productivity be distin-
guished from creativity (Schultink, 1961). Productivity
is a notion based on linguistic rules. Words formed by
means of productive morphological processes are usu-
ally not noticed by the listener as new words and not
formed by the speaker by any conscious, intentional
effort. Creativity, in contrast, is not restricted to mor-
phology but rather a general cognitive ability. Words
formed by creative processes are carefully and inten-
tionally produced and often perceived as new words.

Forming a new adjective by attaching the negation pre-
fix un- to an adjectival base will probably go unnoticed
by both speaker and listener in English or German, as
long as certain constraints are not violated. In contrast,
forming the new adjective kaputtbar in German by at-
taching the (productive) deverbal suffix -bar to an ad-
jectival base violates the constraint that this suffix can
only attach to transitive verb bases; this word forma-
tion product requires a conscious effort by the speaker
and will trigger a strong reaction by the listener. There
is a gray zone, of course: attaching a denominal suffix
to form the new adjective nerdulent is morphologically
regular and semantically transparent but involves an
unproductive pattern.

Productive word formation patterns are unlimited.
In German and a number of other languages, deriva-
tion and compounding are the most important means
of productive word formation, and they can generate an
unlimited number of new words. The construction of a
finite, exhaustive lexicon that contains all the words in
the language is therefore impossible.

In a language like German, where deriving the pro-
nunciation of a word from its spelling is difficult and
where pronunciation and syllabic stress rules require
access to the morphological structure of the word, a
TTS system needs a component that linguistically an-
alyzes words that are unknown to the system. This is
where the distinction between productivity and creativ-
ity is relevant. Productive processes are morphosyntac-
tically and semantically regular: this is why new words
formed by productive processes are not consciously
coined and not recognized as new words. It is therefore
useful to know which word formation patterns can be
modeled by rules and which ones have to be listed, and
quantitative studies can provide this knowledge.

A simple statistical estimate of productivity has been
suggested, and applied, by Baayen (1993). His ap-
proach exploits the observation that the proportion of
hapax legomena in a text corpus is much higher for in-
tuitively productive affixes than for unproductive ones.
Hapax legomena are here defined relative to a text cor-
pus. Given a particular word-forming affix, all distinct
word types in the corpus that are formed by this af-
fix are listed and their token frequencies are counted;
a hapax legomenon is a—morphologically complex—
word type with a token count of 1. Under certain sim-
plifying assumptions the productivity index (P) of an
affix can then be expressed as the ratio of hapax legom-
ena (n1) to the total number of tokens formed by that
affix in the corpus (N ): P = n1/N .
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This estimate of morphological productivity has
been integrated into the linguistic text analysis com-
ponent of the Bell Labs German TTS system (Möbius,
1999). It is applied to the analysis of morphologically
complex words (and names) that are unknown to the
system. This analysis component is based on a model
of the morphological structure of words and the phono-
logical structure of syllables, building on a quantitative
study of the productivity of word forming affixes in
German (Möbius, 1998b). Thus, the TTS system has
the capability to decompose unknown words morpho-
logically and to provide for these words an annotation
whose granularity approaches that of the annotation of
words listed in the TTS lexicon.

The productivity index (P) corresponds to the rate
at which new word types are encountered when more
and more tokens generated by a given morphological
process are sampled. More precisely, it uses as a mea-
sure of productivity the slope of the word type growth
curve after the entire corpus has been sampled. If the
vocabulary is defined as the number of distinct types
that a morphological process can generate, then a truly
productive word formation pattern may be character-
ized by an infinite vocabulary, whereas an unproduc-
tive pattern is expected to have a finite, and often quite
small, vocabulary (Evert and Lüdeling, 2001). Based
on a given text corpus, the word type growth curve of a
morphological process is obtained by plotting the num-
ber of distinct types (V ) encountered as a function of
the number of tokens (N ) formed by the process in the
corpus (Fig. 1). The growth curve of an unproductive
process will flatten out and converge to a constant value
after enough data have been sampled. The type count of
a productive pattern will continue to grow indefinitely.

Given the fact that word frequency distributions tend
to have large growth rates even at the full sample
and that many more word types are expected to be

Figure 1. Typical, idealized shapes of word type growth curves
(V = types, N = tokens): the curve pertaining to an unproductive pat-
tern will flatten out (left panel), whereas the type count of a productive
pattern will continue to grow indefinitely (right panel). Adapted from
Evert and Lüdeling (2001).

encountered whenever more word tokens are added,
Good-Turing estimates should be more appropriate
for measuring morphological productivity than Zipfian
models. Good-Turing estimates make a fraction of the
total probability mass free for the as yet unseen word
types; indeed, this fraction is equal to the word type
growth rate at a given sample size. Yet, the Good-Turing
method has its limitations too, and Baayen (2001) pro-
vides a thorough review of where and why this is the
case. For instance, he demonstrates that for sample
sizes in the LNRE zone the use of the relative sam-
ple frequencies results in a severe underestimation of
the vocabulary size and that this is a problem not only
for Zipfian models but for the Good-Turing method
too, even though the latter adjusts the sample-relative
frequencies. In addition, extrapolation to sample sizes
significantly larger than the sample size upon which the
model has been conditioned will break down for tech-
nical reasons. Thus, in a nutshell, the limitations are
pertinent to both interpolation and extrapolation from
a given sample size.

Further elaborate statistical methods exist for esti-
mating word frequency distributions and morphologi-
cal productivity and, more generally, for coping with
the LNRE distributions of word frequencies. A review
of these methods and further refinement of some of
them are presented in Baayen (2001), along with appli-
cations to word frequency distributions, morphologi-
cal productivity, consonant-vowel pattern distributions,
and word co-occurrences (bigrams).

One important conclusion from this work is that the
word type growth curve, and therefore also the produc-
tivity index (P), is a function of the sample size. Even
though Baayen proposes various statistical models that
address this problem, it is still hard, if not impossi-
ble, to compare the productivity of two morphological
processes with substantially differing sample sizes. For
instance, the slope of the growth curve of the unpro-
ductive pattern in Fig. 1 is flat for the full sample, as
expected, but in the early part of the unproductive curve
the slope may be as steep as, or even steeper than that
of the productive pattern for the full sample. If we do
not know where exactly in the curve we are, we can-
not compare the productivity indices of patterns with
substantially differing sample sizes.

Another relevant implication of Baayen’s work is
that the text corpora used in the earlier studies (Baayen
and Lieber, 1991; Möbius, 1998b) were too small for re-
liable estimates—too small by several orders of magni-
tude. As it turns out, even large corpora (tens of millions
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of words) are generally still within the LNRE zone; that
is, as the sample size increases incrementally, one keeps
finding previously unseen word types, and it is hard to
predict the future growth rate.

In a research project on derivational and composi-
tional morphology of German (Schmid et al., 2001) a
number of problems pertaining to the application of the
productivity measures was encountered. For instance,
it was demonstrated that corpus data have to be thor-
oughly preprocessed before they can be used in the
statistical models applied to the quantitative analysis
of morphological productivity (Lüdeling et al., 2000;
Evert and Lüdeling, 2001). Raw data correction and
clean-up is required because of errors in the corpus
(e.g., misspellings, or repeated sections that affect fre-
quency distributions) and because automatic annota-
tion is flawed (e.g., part-of-speech tagging errors). In
addition, there are linguistic factors that need to be
properly addressed: (i) compounding is a major source
of hapax legomena, but a complex word should be
counted as a new type only if compounding happens
before derivation (the complex German noun Kinder-
reichtum ‘having many children’ is a derivation of the
adjective kinderreich ‘prolific’ and therefore counts as
a new type; the erroneous reading as a result of com-
pounding Kinder ‘children’ and the already derived
Reichtum ‘wealth’ does not give rise to a new type);
(ii) the order in which affixes attach matters (un-
verzichtbar ‘indispensable’ counts as a new type of the
un- pattern but not of the -able pattern because -able
attaches first, and unverzicht is not a stem); (iii) acci-
dental substrings must be discounted (Balsam ‘balm’
is not formed by the suffix -sam); (iv) creative word
formation products must be discounted.

Figure 2. Computed word type growth curves of the German adjective-forming suffixes -bar and -sam. The raw curves (continuous lines)
suggest that the two morphological patterns have very similar productivity rates. Only after manual correction (dotted lines) do the curves reflect
the expected characteristics: -bar is intuitively productive, whereas -sam is intuitively unproductive. Adapted from Evert and Lüdeling (2001).

The nature of the problems described above is a se-
rious obstacle to automatic preprocessing: either the
problems are introduced by the automatic tools them-
selves, as in the case of flawed part-of-speech an-
notation, or the solution requires careful analysis of
linguistic structure, e.g. hierarchical morphological
structure, that presently cannot be performed auto-
matically. Indeed, designing tools with the desired ca-
pabilities presupposes precisely the kind of linguistic
knowledge that we are currently trying to build up—
a vicious circle. Therefore, only manual clean-up and
correction yields reliable input to the statistical mod-
els. Unfortunately, manual preprocessing is not feasible
for corpora of the required size, and the available au-
tomatic procedures, while yielding some improvement
over the uncorrected data, are not sufficiently reliable
(Lüdeling et al., 2000; Evert and Lüdeling, 2001).

Figure 2 displays raw and manually corrected word
type growth curves for the German adjective-forming
suffixes -bar and -sam. The raw curves suggest that the
two morphological patterns have similar productivity
rates. Both suffixes have sample sizes of the same order
of magnitude (N (-bar) = 37783, N (-sam) = 22667);
both appear to be productive because they generate
many new word types (P(-bar) = 0.0086, P(-sam) =
0.0034); and even though the axis scalings are not iden-
tical, it is clear that the shapes of the raw curves are quite
similar.

However, native-speaker intuition predicts that -bar
is productive, whereas -sam is intuitively unproductive.
Only the corrected curves reflect the expected char-
acteristics. In quantitative terms, this becomes mani-
fest in the productivity indices too (P(-bar) = 0.0053,
P(-sam) = 0.0002).
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The results of this case study (Evert and Lüdeling,
2001) lead us to conclude that sufficiently reliable cor-
rection results can only be achieved by a morphology
system that, besides derivation and compounding anal-
ysis (and generation) capabilities, also computes the
hierarchical structure of complex words, building on a
model of the order in which word formation processes
operate on a simplex form. In short, such an ideal mor-
phology system would perform like a human corrector.
Given the current state of the art in automatic linguistic
analysis, there does not seem to be a usable alternative
to manual preprocessing and correction.

2.2. Syllabification

Syllabification is an important component of speech
synthesis systems. In many languages the pronuncia-
tion of phonemes is a function of their location in the
syllable relative to the syllable boundaries. Location in
the syllable also has a strong effect on the duration of
the phone and on the temporal alignment of the fun-
damental frequency contour with the segmental chain
(House, 1996; van Santen and Möbius, 2000), and is
therefore a crucial piece of information for segmental
duration and intonation models.

The phonotactics of English and German allow com-
plex consonant clusters in both the onset and the coda
of syllables. The maximum number of consonants in
the onset is 3 in both languages, e.g. /str/ as in street in
English and /Str/ as in Straße in German. In German co-Disk

followed das, clusters of up to 5 consonants can be observed, e.g.
/mpfst/ as in du kämpfst ‘you fight’, whereas English
allows up to 4 coda consonants, e.g. /ksts/ as in texts or
/mpst/ as in glimpsed. Thus, the maximum number of
consecutive consonants across syllable boundaries is 8
in German and 7 in English.

The complexity of syllable onset and coda structure
poses serious problems for a syllabification algorithm
because—despite restrictions as to which consonants,
or classes of consonants, may occur in any given posi-
tion within the onset or coda of a syllable—ambiguous
and multiple alternative syllable boundary locations
are usually observed in polysyllabic words, notably in
compounds.

Syllable structure in English and German displays
typical LNRE characteristics. It has been observed that
out of the inventory of more than 12,000 distinct syl-
lables (syllable types) in either language, only about
500 syllable types are systematically and regularly used

in speech production. Levelt has argued that speakers
have access to a mental syllabary (Levelt, 1989, 1999;
Levelt and Wheeldon, 1994). A mental syllabary is an
inventory of fixed syllable programs, each comprising
a set of highly overlearned articulatory gestures. Ac-
cording to this syllabary concept, high-frequency syl-
lables are stored as complete gestural programs that
are executed during speech production, whereas low-
frequency and very rare syllables are assembled online
phone by phone, by using the segmental and metri-
cal information provided by the phonological encoder.
The decisive difference between holistic gestural pro-
grams and online assembly is that in the latter case
the segmental spellout, which is initially underspeci-
fied and rather abstract for each segmental unit, needs
to be specified to accommodate the particular context
in which the segment occurs, whereas in the former
case the spellout is already fully specified within the
syllable domain.

Typical state-of-the-art syllabification methods can
be characterized either as supervised learning of sylla-
ble structure from annotated training data or as unsu-
pervised learning from unannotated training data. For
instance, the finite-state syllabification method used in
some versions of the Bell Labs TTS system (Kiraz and
Möbius, 1998; Möbius, 1998b, 1999) was constructed
by obtaining syllables as well as their internal struc-
tures and their frequencies of occurrence from a lexical
database. Weights on the transitions between states of
the transducer were derived directly from the frequen-
cies of onset, nucleus and coda types in the database.
The weights reflect the plausibility of onset, nucleus
and coda types. This approach relies on the coverage
of distinct syllable types by the training data. A post
hoc hand-tuning procedure has been provided to cope
with syllable types whose numbers of observations are
extremely low or which do not occur in the training
data at all.

An unsupervised training method on unannotated
data which induces probabilistic syllable classes by
means of multivariate clustering has also recently been
proposed (Müller et al., 2000). This approach defines
the clustering task as induction of hidden parame-
ters of a probability model. The induction is achieved
by maximum-likelihood estimation from incomplete
data via the Expectation Maximization (EM) algorithm
(Baum et al., 1970; Dempster et al., 1977). The EM al-
gorithm is the stochastic basis of many machine learn-
ing algorithms for natural language processing. The
mathematical principles of EM theory were presented
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in Dempster et al. (1977), where several, non-linguistic
applications were illustrated too. A linguistic appli-
cation, namely error modeling in speech recognition,
was demonstrated by Baker (1979), who introduced
the inside-outside algorithm for context-free grammars
and compared it to the forward-backward algorithm for
hidden Markov models (Baum, 1972). Very recently a
formal proof has been given that the inside-outside al-
gorithm can be regarded as a dynamic-programming
variant of the EM algorithm (Prescher, 2002)—which
means that most of the probabilistic models used by
computational linguists (n-gram models, Markov mod-
els, hidden Markov models, tree bank grammars, prob-
abilistic context-free grammars) are in fact trained by
a version of the EM algorithm.

EM-based clustering has been shown to be appli-
cable to dyadic (two-dimensional) linguistic data, for
instance to the tasks of inducing semantic labels for
subcategorization slots of English and German lexi-
cal verbs as well as selecting among candidate English
translations of German nouns by using clustering mod-
els on English verb-noun combinations (Rooth et al.,
1998). Multidimensional data are observed in various
applications of natural language processing ranging
from phonology to pragmatics. In EM-based cluster-
ing for multivariate data, classes are defined as hidden
data which are learned from a training corpus of data
without class annotations (“incomplete data”). In such
an application the main task of EM-based clustering is
the automatic detection of the hidden class structure in
a given corpus (Müller et al., 2000; Prescher, 2002).

The new multidimensional EM-based clustering
method (Müller et al., 2000) was applied to syllable
structure, modeling either three dimensions (onset, nu-
cleus, coda) or five dimensions (position of the syllable
in the word and syllabic stress, additionally). Soft clus-
tering is performed in the syllabification task: a given
syllable type consisting of onset, nucleus and coda may
be a member of more than one class; a probability is
assigned to each individual class membership.

A very important property of probabilistic models
is their ability to cope with unknown data or, in other
words, their ability to assign probabilities to data un-
seen in the training corpus. In the syllabification task
the EM-based clustering will assign a positive prob-
ability to every possible syllable, even if it does not
actually occur in the training data. What constitutes
a possible syllable in a given language can be de-
scribed by, e.g., a probabilistic context-free grammar
(Müller et al., 2000). Another useful property of the

EM algorithm is that estimated parameters are avail-
able for inspection after each iteration; it is therefore
both reasonable and easy to perform a systematic lin-
guistic evaluation of estimated parameter values exter-
nally, in addition to the internal quantitative evalua-
tion in terms of log-likelihood-based stopping criteria
(Prescher, 2002). The qualitative assessment and in-
terpretation of obtained syllable classes in Müller et al.
(2000) is an example of such an external linguistic eval-
uation. For instance, certain syllable types with high
probabilities were found that systematically occur in
high-frequency function words. High-frequency sylla-
ble types are candidates for entries in the syllabary, i.e.
in the set of highly overlearned articulatory programs
executed during speech production.

2.3. Duration Modeling

Among the most important factors that have an effect
on the duration of speech sounds are, in many lan-
guages, the identity of the speech sound; its immediate
segmental context; its position in the syllable, word and
phrase; and prosodic factors such as syllabic stress and
the accent status of the word. Some of these factors
have only two values; for instance, the factor “syllabic
stress” may be either “stressed” or “unstressed”. Other
factors can assume a much larger number of values; for
example, the immediate segmental context has as many
values as there are phones that can occur adjacent to
the speech sound in question. The cross-product of all
factor values gives the total number of combinatorially
possible constellations in a given language.

The task of the duration component in a TTS sys-
tem is to predict the temporal structure of synthetic
speech from symbolic input. This is usually achieved
by assigning a duration to each speech sound in the
utterance at synthesis runtime, based on the particu-
lar factorial constellation in which the speech sound
occurs. The symbolic descriptor of the factorial con-
stellation, i.e. the current values of all factors, is often
called a feature vector. The number of combinatorially
possible feature vectors is usually in the tens of thou-
sands, as has been shown for English and German (van
Santen, 1995; Möbius and van Santen, 1996), and at
least 17,500 distinct feature vectors have been actually
observed in American English (van Santen, 1993b).

Duration models differ in terms of how they use the
information expressed in the feature vector to assign
the segmental duration. A widely used type of duration



P1: GNM

INTERNATIONAL JOURNAL OF SPEECH TECHNOLOGY KL1538-07 September 27, 2002 16:16

64 Möbius

model is a sequential rule system such as the one pro-
posed by Klatt (1973). Starting from some intrinsic
value, the duration of a segment is modified by suc-
cessively applied rules, which are intended to reflect
contextual, positional and prosodic factors that have a
lengthening or shortening effect. When large speech
databases and the computational means for analyzing
these data became available, new approaches were pro-
posed based on, for example, Classification and Re-
gression Trees (CART) (Pitrelli and Zue, 1989; Riley,
1992) and neural networks (Campbell, 1992). It has
been shown, however, that even huge amounts of train-
ing data cannot exhaustively cover all possible factorial
constellations or feature vectors (van Santen, 1994).
Manual database construction, on the other hand, is
not practical because of the size of the factorial space.

Most observed feature vectors have a very low fre-
quency of occurrence. Durational feature vectors thus
belong to the LNRE class of distributions. It would be
misguided, however, to accept poor modeling of the
rare vectors or to ignore them altogether. The reason
is that the cumulative frequency of rare vectors all but
guarantees the occurrence of at least one unseen vector
in any given sentence. In an analysis for English, van
Santen (1995) computed a probability of more than
95% that a randomly selected 50-phoneme sentence
contains a vector that occurs at most once in a million
segments.

Therefore, the duration model has to be capable of
predicting, by some form of extrapolation from ob-
served feature vectors, durations for vectors that are in-
sufficiently represented in the training material. CART-
based methods and other general-purpose prediction
systems are known for coping poorly with sparse train-
ing data and, most seriously, with missing feature vec-
tor types because they lack this extrapolation capabil-
ity. Extrapolation is further complicated by interactions
between the factors.

Factor interactions also prevent simple additive re-
gression models (Kaiki et al., 1990), which have good
extrapolation properties, from being an efficient solu-
tion. This assertion holds even though the interactions
are often regular in the sense that the effects of one
factor do not reverse the effect of another factor.

The sums-of-products method (van Santen, 1993a,
1994) has been shown to be superior to CART-based
approaches, for several reasons (Maghbouleh, 1996).
First, it needs far fewer training data to reach asymp-
totic performance. Second, this asymptotic perfor-
mance is better than that of CART. Third, the difference

in performance grows with the discrepancy between
training and test data. Fourth, adding more training
data does not improve the performance of CART-based
approaches.

Building a sums-of-products duration model re-
quires large annotated speech corpora, sophisticated
statistical tools, and the type of linguistic and phonetic
knowledge that is incorporated in traditional rule sys-
tems. The approach uses statistical techniques that can
cope with the problem of confounding factors and, most
importantly, with data sparsity caused by the LNRE
frequency distributions of durational feature vectors.

van Santen’s method has been applied to a number
of languages including American English (van Santen,
1993b, 1994), German (Möbius and van Santen, 1996),
Mandarin Chinese (Shih and Ao, 1997), and Japanese
(Venditti and van Santen, 1998).

2.4. Concatenative Speech Synthesis

Corpus-based approaches to speech synthesis have
been advocated to overcome the limitations of concate-
native synthesis from a fixed acoustic unit inventory.
The frequency of unit concatenations in diphone syn-
thesis, viz. one concatenation point per phone, has been
argued to contribute to the perceived lack of natural-
ness of synthetic speech. The key idea of corpus-based
synthesis is to use an entire speech corpus as the acous-
tic inventory and to select at run-time from this corpus
the longest available strings of phonetic segments that
match a sequence of target speech sounds in the utter-
ance to be synthesized, thereby minimizing the num-
ber of concatenations and reducing the need for signal
processing.

In an ideal world, the target utterance would be found
in its entirety in the speech database and simply played
back by the system without any concatenations and
without any signal processing applied, effectively ren-
dering natural speech. Given the complexity and com-
binatorics of language and speech, this ideal case is
extremely unlikely to occur in unrestricted application
domains. However, given a speech database of several
hours worth of recordings, chances are that a target ut-
terance may be produced by a small number of units
each of which is considerably longer than a classical
diphone.

Defining the optimal speech database for unit selec-
tion has become one of the most important research
issues in speech synthesis. A well-designed speech
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corpus has a huge impact on the quality of the synthe-
sized speech, no matter what the basic unit is defined
to be, a phone, a demiphone, a diphone, or even a tri-
phone. It is now generally accepted that to be able to
benefit from long acoustic units, a meticulous design
of the text materials to be recorded is required. The
database should be designed or constructed such as to
include all relevant acoustic realizations of phonemes,
a point made already by Iwahashi and Sagisaka
(1995).

There are hardly any systematic studies of cover-
age in the area of speech synthesis, with the exception
of van Santen (1997), and the results from this study
are quite discouraging. For example, van Santen con-
structed a contextual feature vector for diphone units
that included key prosodic factors such as word accent
status and position in the utterance. He then computed
the coverage index of training sets, which is defined
as the probability that all diphone-vector combinations
occurring in a randomly selected test sentence are also
represented in the training set. It turned out that a train-
ing set of 25,000 combinations had a coverage index
of 0.03, which means that the probability is 0.03 that
the training set covers all combinations occurring in
the test sentence. To reach a coverage index of 0.75 a
training set of more than 150,000 combinations is re-
quired. Given that the factors used for the feature vector
were coarse and few, unit selection approaches based
on diphone units would require absurdly large speech
databases to achieve reasonable coverage. These find-
ings shed an unfavorable light on corpus-based speech
synthesis approaches that attempt to cover an unre-
stricted domain—typically, the whole language—by
simply re-sequencing recorded speech.

If it is practically impossible to construct an optimal
speech database, what are the requirements of a cor-
pus if approximate coverage is the goal? The answer,
again, is tentative, and pessimistic. Evidently, LNRE
distributions also play a crucial role in data-driven con-
catenative speech synthesis. To illustrate this point, let
us consider two case studies.

Case 1. Beutnagel and Conkie (1999) report that
more than 300 diphones out of a complete set of ap-
proximately 2,000 diphones, which serve as the core
acoustic unit inventory in the demiphone-based AT&T
TTS system, occur only once in a two-hour database
recorded for unit selection. These rare diphones were
actually included in the database only by way of em-
bedding them in carefully constructed sentences; evi-
dently, they were not expected to occur naturally in the

recorded speech at all. The authors observe that the unit
selection algorithm prefers these rare diphones for tar-
get sentences, instead of concatenating them from the
smaller demiphone units. The interpretation offered by
the authors is that the preferred selection of these di-
phones by the selection algorithm will likely generate
superior synthesis quality compared to the demiphone
solution (Beutnagel and Conkie, 1999).

Case 2. For the construction of the database for a
new Japanese synthesis system (Tanaka et al., 1999)
“multi-form units” were collected that were intended
to cover all Japanese consonant-vowel (CV) syllables
and all possible CVk chains. CVk chains are defined
by the authors as sequences consisting of a consonant
followed by any number (k) of vowels, semivowels
and (tauto-)syllabic nasals. The units were realized by
the speaker in a variety of prosodic contexts. About 41
million multi-form units were collected this way, yield-
ing 100,000 distinct CVk units. Experiments showed
that the 50,000 most frequent multi-form units cover
approximately 75% of Japanese text. Given the rela-
tively simple syllable structure of Japanese, the em-
phasis should probably be on only 75% coverage. On
the other hand, Japanese allows very long sequences of
vocalic speech sounds, which makes a complete cover-
age of such sequences virtually impossible. Note that in
conjunction with another set of 10,000 diphone units,
the multi-form unit database accounts for as much as
6.3 hours of speech. Increasing the unit inventory to
80,000 does not result in a significantly higher cover-
age, and the growth curve appears to converge to about
80% (Tanaka et al., 1999, Fig. 2). The authors state
that for unrestricted text the actually required number
of units approaches infinity, and that most units are
rarely used—a characteristic of LNRE distributions.
The question of how to get to near 100% coverage re-
mains unanswered, in fact even unasked.

In the Laureate system (Breen and Jackson, 1998)
an attempt is made to optimize the speech database
based on linguistic criteria. The result is a database
that contains at least one instance of each diphone in
the language. This baseline inventory is augmented by
embedding the diphones not in carrier phrases but in
phonetically rich text passages. This self-restrained op-
timization attempt is a consequence of the fact that an-
notation and quality control are considered to be too
unreliable for larger databases. The authors argue that
it is also difficult to ensure a consistent speaking style
in a large set of recordings and that speech segments
from very different styles will result in a patchwork of
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concatenated speech. Speaking style itself is currently
not considered to be a useful selection criterion.

Established techniques from speech recognition
have been applied to cope with the LNRE problem. For
instance, in the now classical unit selection algorithm
presented in Hunt and Black (1996), each unit in the
database is represented by a state in a state transition
network, where the state occupancy costs are given by
the measure of unit distortion and the state transition
costs are given by the measure of continuity distortion.
This design is somewhat reminiscent of hidden Markov
model (HMM) based speech recognition systems. The
key difference is in the use of cost functions in the
unit selection framework as opposed to the probabilis-
tic models used in speech recognition. Using a similar
framework, Holzapfel and Campbell (1999) attempt to
enhance generalization to unseen cases in runtime unit
selection. They train a set of triphone HMM’s on the
speech database to assess the similarity of segmental
contexts. All contexts of each phone are first pooled;
the pools are then iteratively split according to phonet-
ically motivated criteria, with a maximum likelihood
criterion ensuring optimal improvement of the models
with every split of a cluster. By classifying the contexts
according to the criteria learned by the clustering tree,
triphone contexts that do not occur in the database and
were unseen during training can be reconstructed and
mapped appropriately, a standard procedure in speech
recognition (Jelinek and Mercer, 1980; Young, 1992).
A similar approach was implemented in Microsoft’s
TTS system (Huang et al., 1996; Hon et al., 1998).

The key idea of the context clustering method
in speech synthesis (Nakajima and Hamada, 1988;
Nakajima, 1994) is to cluster into equivalence classes
all realizations of phonemes that are found in a single-
speaker database. Equivalence classes are defined by
segmental phonetic context. Clustering is performed by
decision trees that are constructed automatically such
that they maximize the acoustic similarity within each
equivalence class. Each leaf in the tree is represented by
a segment (“allophone”) and its features, as extracted
from the database. One advantage of this method is that
it automatically determines the relative importance of
different contextual and coarticulatory effects. Through
interpolation even context specifications that were not
seen during training can be met. A modified version of
the clustering method has been implemented in the En-
glish speech synthesizer developed at Cambridge Uni-
versity (Donovan and Woodland, 1999) and in the IBM
speech synthesizer (Donovan and Eide, 1998).

Some unit selection systems apply a threshold to ei-
ther continuity or target costs or both, the reasoning
being that units exceeding the thresholds either are not
good representatives of the unit target or will not con-
catenate smoothly with adjacent units. In some cases
there will be no unit candidates below the cost thresh-
old. In the case of continuity distortions, a backing-
off strategy is sometimes applied (Donovan and Eide,
1998): if there is no unit in the current cluster that
concatenates smoothly with any unit in the subsequent
cluster, then a new continuity cost is computed for all
units available at the parent nodes of the two clusters
in the decision tree. This process is applied iteratively
until a pair of units is found that concatenates suffi-
ciently smoothly. It is still possible that no appropriate
pair of units is found that connects smoothly with the
rest of the unit sequence; in this case, a discontinuity
is unavoidable.

Note that in this and related work (Donovan and
Woodland, 1999), the basic synthesis units are of a
size that corresponds to an HMM state, i.e. they are
subphone units, whereas in most other unit selection
systems the basic units are phone-sized (or sometimes
demiphones). HMM-based clustering has the advan-
tage, inherited from speech recognition, that the most
appropriate clustered state can be reached in any new
context encountered at synthesis time, even in con-
texts that were not seen during training. Still, as the
authors concede, less frequently seen contexts will be
modeled less well, and if the discrepancy between con-
texts required during synthesis and anything seen in the
training database is too large, serious continuity prob-
lems will occur (and have indeed been observed). The
authors conclude that some degree of database con-
struction is required to ensure a reasonable coverage of
possible contexts.

3. Closed Domains

The coverage problem encountered in the context of
corpus-based speech synthesis for unrestricted appli-
cation domains is evidently due to the complexity and
combinatorics of language and speech. In contrast,
the distributions of linguistic and phonetic factors in
restricted domains are known in advance. It has of-
ten been suggested therefore that in such a scenario a
version of the unit selection synthesis strategy might
be feasible that exploits basic units larger than demi-
phones, phones, or diphones.
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For instance, in the most recent version of the syn-
thesis component developed in the Verbmobil project
(Wahlster, 2000), a word concatenation approach has
been implemented (Stöber et al., 1999). The Verbmobil
domain comprises a fixed vocabulary of about 10,000
words from the travel planning domain. Each word
in the domain’s lexicon was recorded in a variety of
prosodic and positional contexts. The only signal pro-
cessing step applied was a simple amplitude smooth-
ing on all adjacent words that do not co-occur in the
database.

Unfortunately, the Verbmobil domain is not entirely
closed. Its lexicon has a loophole that allows proper
names to sneak into the domain. To synthesize these
names, and novel words in general, the system resorts to
diphone synthesis. This strategy is not altogether satis-
factory because the quality difference between phrases
generated by word concatenation and the high-entropy
novel words synthesized from diphones is too striking.
To extend and generalize their approach to unrestricted
domains, the authors propose to develop rules that en-
able the system to compose missing syllabic units from
phoneme realizations and whole words from syllables
(Stöber et al., 1999). For this approach to be feasi-
ble, however, phonemes and syllables will need to be
available whose contexts are not restricted by a fixed
domain-specific lexicon. Thus, we are back at square
one: the need to design a speech database with optimal
coverage for open-domain synthesis.

A system based on word and syllable concatena-
tion has also been presented for the limited domain
of weather forecasting (Lewis and Tatham, 1999). The
system has an inventory of 2,000 recorded monosyl-
labic and polysyllabic words. There are numerous prob-
lems with this approach. For instance, monosyllables
are embedded in a fixed-context carrier phrase during
recordings, making them almost automatically inap-
propriate for recombination. Also, some of the recom-
bination rules appear to be of an ad hoc nature, such
as to cut three periods from the start or end of sylla-
bles whose onsets or codas are periodic. The authors
admit that such rules will probably have to be mod-
ified for other voices or recording rates. These prob-
lems notwithstanding, the authors are confident that
their synthesis strategy can be extended to much larger
databases and to unrestricted TTS scenarios. In the light
of the depressing results of van Santen’s (1997) study
on the coverage index of training databases for unit se-
lection synthesis, I am led to believe that their optimism
is unwarranted.

In an attempt to narrow the discrepancy between the
speech database and the sentences to be synthesized,
Black and Lenzo (2000) opted for designing corpora
specifically for each target application domain. Con-
sidering that such applications often involve a dialog
system that generates the spoken language output, the
authors emphasize the need for a set of prompt-style
sentences that occur frequently and cover the domain
adequately. A backup method, which is basically a
phone-based standard unit selection, is provided for
the less frequent out-of-domain cases. When evalu-
ated in the context of the CMU DARPA Communicator
flight information system, only 2.5% of all synthesized
phrases turned out to contain out-of-domain words,
comprising only 75 distinct out-of-vocabulary words,
all of them in fact place names. Even though the authors
do not recommend this system for general-purpose
synthesis, they have demonstrated that reliable high-
quality synthetic voices can be built for limited appli-
cation domains.

In an extension of this work the question was asked
how to find the optimal set of utterances to be recorded
to cover both a relatively restricted domain and com-
pletely open domains (Black and Lenzo, 2001). In a
first step, an acoustic distance measure that is both
database-specific and speaker-specific was established
to optimize unit clustering. Each resulting cluster rep-
resents an acoustically distinct unit. This information
was then exploited to establish unit type frequency
and contexts in a large database and thus the cov-
erage of units by the database. In a computationally
very expensive, iterative, greedy-like procedure a min-
imal set of sentences was extracted from a text cor-
pus such that it has the same coverage as the entire
corpus. Starting from a corpus of 1.2 million words,
this method yielded a list of 241 sentences, which
were pruned to 221 by removing some unacceptably
weird sentences. These sentences were then recorded;
in informal listening tests the synthetic voice built
from these recordings received the best scores for test
sentences taken from the original training set. Some-
what lower scores were obtained for test sentences
from different domains, which underlines the impor-
tance of the adequacy of a database for the target
domain.

Two important decisions were made in these experi-
ments: (1) finding an acoustic distance measure that
helps decide which acoustic distinctions need to be
made and which ones can be ignored; (2) the use of
frequency information to prune rare cases.
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The first of these decisions is very valuable, al-
beit somewhat ambiguous with respect to an inter-
pretation of its consequences. The distance measure
is speaker and domain dependent. This means that
even within a given domain, the ranking or weight-
ing of the criteria that define the distance measure
will have to be re-estimated for every new synthetic
voice. Thus, while this approach optimizes the set of
recordings for a given speaker, it also significantly im-
pedes the process of building voices because different
textual materials will have to be constructed for each
speaker.

Moreover, establishing the relationship between
computed (“objective”) distances and perceptual dif-
ferences is a difficult task, and the body of research on
this topic is quite small and mainly focused on speech
coding (Quackenbush et al., 1988). In early unit se-
lection experiments (Black and Campbell, 1995) the
mean Euclidean cepstral distance between the feature
vectors of the target unit and those of the candidate
units in the database was used as a score for the set
of weights. However, the cepstral distance measure ap-
peared to give higher priority to unit distortion, often
at the expense of continuity distortion, whereas human
listeners seem to prefer smoother transitions at the con-
catenation points.

Some insight into the usability of objective distance
measures as predictors of perceptual differences in unit
selection was provided by Wouters and Macon (1998)
and Macon et al. (1998). They attempted to find mea-
sures that best predict phonetic variations in the re-
alizations of phonemes. These measures are intended
to reflect specific phonetic changes instead of over-
all quality of distorted (coded) speech and to quantify
the distance between two candidate units. Some of the
best-known measures such as mel-based cepstral dis-
tance and the Itakura-Saito distance were found to be
quite useful, yielding a moderate correlation (r = 0.66)
with perceptual distances. The authors feel, however,
that this strength of correlation is still not sufficient for
objective distance measures to be reliable predictors of
perceptual differences.

The second decision in the Black and Lenzo (2001)
study, viz. the pruning of units occurring in rare con-
stellations, may be promising to some extent in limited
domains whose coverage and distributional properties
are well-known; but it is much less likely to work in
open-domain synthesis for the very reasons that are dis-
cussed throughout the present paper: in short, the large
number of rare events.

4. Conclusion

The LNRE characteristics of language and speech are
often unrecognized and the pertinent problems under-
estimated. For example, it is a common attitude to ac-
cept poor modeling of less frequently seen or unseen
contexts because “they are less frequently used in syn-
thesis” (Donovan and Woodland, 1999, p. 228). The
perverse nature of LNRE distributions is the following:
the number of rare events is so large that the probability
of encountering at least one of these events in a partic-
ular sample approaches certainty. It is the rare vectors
and combinations that are poorly modeled, and one or
the other of these rare events will show up when utter-
ances are synthesized, just as predicted by the LNRE
distribution models.

In this paper I have discussed challenges by LNRE
properties to four components of a TTS system: mor-
phological analysis, syllabification, segmental duration
modeling, and acoustic inventory design. In the context
of lexical and morphological analysis I have argued that
a TTS system should be equipped with a component
that performs an adequate analysis of unknown words,
yielding an annotation of the internal structure of such
words that is sufficient to drive general-purpose pro-
nunciation rules. The unknown word analysis compo-
nent implemented in the Bell Labs German TTS system
(Möbius, 1999) relies on a grammar of the structure of
morphologically complex words and incorporates re-
sults from a study on the productivity of word forma-
tion processes. Further improvements may be expected
from a morphology system that, besides derivation and
compounding analysis (and generation) capabilities,
also computes the hierarchical structure of complex
words. Such a system would apply sophisticated sta-
tistical models, capable of dealing with LNRE proper-
ties, to the quantitative analysis of morphological pro-
ductivity (Lüdeling et al., 2000; Evert and Lüdeling,
2001).

A probabilistic approach to syllabification (Müller
et al., 2000) has been discussed that offers a reason-
able solution to the LNRE properties of syllable type
frequency distributions. The advantage of this multidi-
mensional EM-based clustering method is that the in-
duced models assign probabilities even to syllable types
that are not covered by the training database. Moreover,
ranking the obtained syllable types by their frequen-
cies may even provide a quantitative basis for deciding
which syllables can be considered as potential entries
in the mental syllabary, a concept discussed in current
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work on speech production (Levelt and Wheeldon,
1994; Levelt, 1999).

In the context of modeling segmental durations I
concluded, following van Santen (1995), that rare fea-
ture vectors cannot be ignored, because the cumu-
lative frequency of rare vectors all but guarantees
the occurrence of at least one unseen vector in any
given sentence. The duration model therefore has to
be able to predict durations for vectors that are in-
sufficiently, or not at all, represented in the training
material. The well-established solution to this prob-
lem is the application of a class of arithmetic mod-
els known as sums-of-products models (van Santen,
1993a). These models have been shown by van Santen
and his colleagues to cope well with the problem of
confounding factors and with data sparsity caused by
the LNRE frequency distributions of durational feature
vectors.

No concrete solution has been offered for the cov-
erage problems encountered in the context of corpus-
based speech synthesis. The uneven performance that
characterizes unit selection based speech synthesis sys-
tems can be attributed, to a large extent, to the com-
plexity and combinatorics of language and speech in
general, and to LNRE properties in particular. Meth-
ods well-known from speech recognition, such as con-
text clustering for covered units and context reconstruc-
tion for missing ones, have been adopted to cope with
the LNRE problem in concatenative speech synthesis,
but the problem itself is not removed. I believe that
the most promising avenue of research is to increase the
coverage of speech databases by carefully defining
the linguistic and phonetic criteria that the database
should meet, and to complement this line of research
by further systematic studies of the correlations be-
tween objective distance measures and perceived dif-
ferences.

The design of databases for restricted application
domains, where the distributions of linguistic and pho-
netic factors are known, is a reasonable step in this
direction. The relative success of Black and Lenzo’s
(2001) approach, which yields appropriate coverage
for limited domains and fair quality for open-domain
synthesis, seems to support this conclusion. But there
is a caveat: I have tried to point out the difference be-
tween, on the one hand, a strictly closed domain with
a fixed vocabulary and, on the other hand, a merely
restricted domain with loopholes that may require a
mix of synthesis strategies, possibly resulting in very
uneven speech output quality.
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