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Contextual predictability variation affects phonological and phonetic structure. Reduction

and expansion of acoustic-phonetic features is also characteristic of prosodic variability.

In this study, we assess the impact of surprisal and prosodic structure on phonetic

encoding, both independently of each other and in interaction. We model segmental

duration, vowel space size and spectral characteristics of vowels and consonants as a

function of surprisal as well as of syllable prominence, phrase boundary, and speech rate.

Correlates of phonetic encoding density are extracted from a subset of the BonnTempo

corpus for six languages: American English, Czech, Finnish, French, German, and Polish.

Surprisal is estimated from segmental n-gram language models trained on large text

corpora. Our findings are generally compatible with a weak version of Aylett and Turk’s

Smooth Signal Redundancy hypothesis, suggesting that prosodic structure mediates

between the requirements of efficient communication and the speech signal. However,

this mediation is not perfect, as we found evidence for additional, direct effects of

changes in surprisal on the phonetic structure of utterances. These effects appear to

be stable across different speech rates.

Keywords: speech rate, information density, surprisal, duration, vowel distinctiveness, spectral emphasis

1. INTRODUCTION

Language offers speakers a multitude of choices of how to encode their messages, ranging
from the temporal and spectral properties of sub-word units, to the choice of words, the
structuring of syntactic elements, and sequencing sentences in discourse. In recent years, a body
of psycholinguistic evidence has accumulated suggesting that the ease of processing of a linguistic
expression is correlated with the predictability of the expression given its context. Contextual
predictability is often quantified in terms of an information-theoretic measure known as surprisal.

On the phonetic level, effects such as shortening, deletion, lenition, a higher degree of
coarticulation and reduced vowel dispersion are understood as manifestations of increased
phonetic encoding density and are associated with higher predictability (low surprisal). Lower
predictability (high surprisal) is associated with less dense phonetic encoding manifested in
lengthening, fortition, a lower degree of coarticulation, and increased vowel dispersion.

Therefore, the phonetic encoding of a linguistic expression appears to be in a relation of
covariation with the expression’s contextually determined predictability.Words that are predictable
from context tend to be produced with less phonetic detail, shorter duration, and even reductions
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on the phonological level, such as neutralization of features or
elision of phonemes (Bell et al., 2003, 2009; Aylett and Turk, 2004,
2006).

The work reported in this paper explores the effects of
surprisal and prosodic structure, separately and in interaction,
on phonetic encoding. We study the impact of prosody and
surprisal on duration, vowel dispersion, spectral emphasis and
consonantal center of gravity. These phonetic variables are
known correlates of prosodic variability and have also been
shown to be sensitive to predictability effects. We analyze six
languages that differ in their prosodic characteristics and come
from different genetic sub-families: American English, Czech,
Finnish, French, German, and Polish. Apart from answering to
the need of more cross-linguistic studies on probabilistic effects
(Jaeger and Buz, 2016), we look at the interplay of surprisal with
prosodic structure (prominence and boundaries) and systematic
speech rate variation. We also discuss how these interactions
might be constrained by language-specific factors.

1.1. Local and Global Probability Effects
A particular direction of variation based on predictability is often
used as an explanation for a specific phonetic phenomenon. For
instance, studies on phonetic reduction concentrate on the effects
of high contextual predictability while hypotheses concerning
prosodic prominence often refer to acoustic enhancement of
unpredictable elements. Despite these differences in focus, the
nature and symmetry of probabilistic effects suggest that they
complement each other as part of the same mechanism (Jaeger
and Buz, 2016).

The mechanism is most generally defined as the mapping
of information onto speech signal variability. The ratio of
information content of a unit per amount of linguistic signal is
often called information density (Levy and Jaeger, 2007). The co-
variation has been hypothesized to be optimized by speakers in
order to achieve a uniform ratio between information and signal
encoding, i.e., a uniform information density (UID, Aylett and
Turk, 2004; Levy and Jaeger, 2006).

In psycholinguistic literature and in the present study,
information content of a unit is defined as the local, context-
dependent likelihood, or predictability, of that unit. A common
operationalization of such likelihood is surprisal. Surprisal
quantifies the amount of information (in terms of bits) as the
inverse of the units log probability given a local context:

Surprisal(uniti) = −log2P(uniti|Context) (1)

Surprisal Theory (Hale, 2001; Levy, 2008) has been quite
successful as an account of word-by-word processing difficulty.
The theory posits that the processing difficulty incurred by a word
is inversely proportional to the surprisal, or unexpectedness, of a
word, which is typically estimated using probabilistic language
models. Language models are most frequently trained on the
word level but can in principle be applied to other types of units
on different levels of the linguistic description. In this paper,
we will use language models on a sub-word level, in fact, on
the segmental level, to quantify the contextual predictability of
speech sounds.

Surprisal is a local estimate of predictability, that is, it
varies from one context to another. Another example of a local
variable is phonological neighborhood density (PND, Munson and
Solomon, 2004; Wright, 2004; Munson, 2007; Gahl et al., 2012;
Gahl, 2015; Buz and Jaeger, 2016). PND measures the number
of words in the lexicon that are phonologically similar to a
target word, indicating how many words exist in the lexicon
that are potentially confusable with the target word. Phonological
neighbors are words that differ from the target word by one
phoneme, i.e., one phoneme substitution, deletion, or addition
(Luce and Pisoni, 1998).

There are other probabilistic factors that in turn refer to the
systemic, global, or context-independent likelihood. Measures of
global effects encode the unit’s information status that comes with
the properties of a given linguistic system: the lexicon, in case of
words, or the sound system, in case of phonemes. In other words,
such measures indicate the unit’s a priori likelihood (Ernestus,
2014). A well-studied example of a global effect is the frequency
of a word’s occurrence in the lexicon based on corpus counts, i.e.,
lexical frequency.

For instance, Jurafsky et al. (2001, 2002) reported vowel
reduction and shortening, arising from frequent production
usage. However, a corpus study on English found differences
in coarticulation between high- and low-frequency syllables
embedded in nonce words but failed to find frequency effects on
duration (Croot and Rastle, 2004). Frequency effects have also
been demonstrated in studies analyzing syllable durations in large
speech corpora (Schweitzer and Möbius, 2004), corroborated by
computational simulations (Walsh et al., 2007, 2010). Moreover,
frequency of occurrence can affect the shape of the fundamental
frequency (F0) contour, and there are interactions between pitch
accent type frequency and the frequency of the information status
category of the word carrying the pitch accent (Schweitzer et al.,
2009, 2010).

Speech production has been shown to be sensitive to lexical
frequency (absolute frequency count in a corpus) and unigram
probability (probability relative to other unigrams, as estimated
from large corpora, with all probabilities summing up to unity).
For instance, the speech production model proposed by Levelt
and colleagues assumes an interaction between frequency of
occurrence and the encoding of articulatory processes (Levelt
and Wheeldon, 1994; Levelt, 1999). Frequent syllables, which
tend to occur in frequent words, are produced faster than
rare ones (Carreiras and Perea, 2004; Cholin et al., 2006),
frequent past tense verbs are produced faster than rare ones
(Losiewicz, 1992), frequent collocations (with don’t, such as
don’t know) are more reduced than infrequent ones (Bybee and
Scheibman, 1999), and words with high relative frequency—i.e.,
with high probability of occurrence given their neighbors—are
more reduced than words with low relative frequency (Jurafsky
et al., 2001). High-frequency syllables exhibit more coarticulation
than rare syllables (Whiteside and Varley, 1998; Croot and
Rastle, 2004). In experiments investigating coarticulatory effects
on laboratory and acted speech, significant differences between
frequent and infrequent syllables in words and pseudowords
were found for several parameters defining vowels in perceptual
space, including formant trajectories within the syllable, and
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formant transitions at syllable boundaries (Benner et al.,
2007).

Apart from lexical frequency, there is evidence of other
systemic effects, such as informativity (Seyfarth, 2014;
Cohen Priva, 2015). Informativity (Piantadosi et al., 2011;
Cohen Priva, 2015) is the average predictability of a segment
given its language-specific distribution in the lexicon. In other
words, informativity captures the amount of information a
segment usually provides, i.e., how informationally useful it is
across the entire language.

There are interactions between the effects of local and
global likelihood measures. Informativity appears to modulate
the impact of local predictability of a segment, given its
context. For instance, the relative frequency of occurrence of
the phoneme /N/ in English is low but it is highly predictable
when following /stændI-/, as in standing (Cohen Priva, 2015).
Cohen Priva (2015) has shown that segments that are globally
unpredictable have longer durations and are less likely to be
elided even when they are locally predictable. On the basis of
these results, Cohen Priva (2015) proposes that informativity
provides a link between the language-specific variability observed
in the duration of segments and universal mechanisms that
co-determine it.

1.2. Accounting for Probabilistic Effects
Interpretations of probabilistic effects usually take a speaker-
oriented or a listener-oriented perspective. As pointed out by
Gahl et al. (2012), both perspectives refer to the speed of retrieval:
either retrieval in production or retrieval in comprehension.
In production, increased difficulty of lexical access may be
related to less frequent and contextually less predictable units,
leading to longer or more spectrally distinctive realizations (cf.
Buz and Jaeger, 2016). However, longer and more distinctive
realizations have also been suggested to result from explicit
encodings by speakers who choose to facilitate the intelligibility
of difficult target units (Wright, 2004; Levy and Jaeger, 2007;
Gahl et al., 2012; Gahl, 2015). Speaker-oriented and listener-
oriented accounts are not mutually exclusive. Hypotheses and
interpretations found in psycholinguistic literature fall on a
continuum between the two views (Jaeger and Buz, 2016),
especially if seen as a consequence of the constraints imposed
by communication (Gambi and Pickering, 2017), i.e., the tension
between production ease and robust message transmission (Zipf,
1935; Lindblom, 1990; Levy and Jaeger, 2007; Jaeger and Buz,
2016).

Probabilistic properties of the speech communication process
have sometimes been interpreted as evidence for communicative
efficiency. Studies taking the communicative efficiency
perspective often directly refer to Shannon’s information
theory (Shannon, 1948) as a meta-theory. Information theory
is the basis of a rational perspective of language use, which
assumes that speakers are aiming at an optimal distribution of
information across the linguistic signal. This optimal distribution
avoids local peaks and troughs in information, which would
exceed or under-utilize the capacity of the communication
channel or the cognitive capacity of the interlocutor (e.g.,
Aylett and Turk, 2004; Levy and Jaeger, 2007). It has become

a methodological standard to use quantitative measures of
information derived within the mathematical paradigm of
information theory, such as density, entropy, etc., to relate to
structural properties of written language and to human language
processing.

A recent example of this line of reasoning is Pate and
Goldwater (2015) who have offered a re-interpretation of
predictability effects “through the lens of information theory,”
by regarding particular effects as either reflecting source coding
or channel coding. The expected effect of source coding is to
use shorter signals for more common messages by eliminating
redundancy. The well-known property of the lexicon to use
shorter encodings for high-probability words (Zipf, 1935;
Piantadosi et al., 2011) is an example of source coding.
Conversely, channel coding is expected to preserve or add
redundancy to signals to avoid communication errors.

In this paper, we are investigating aspects of the relation
between contextual predictability, operationalized as surprisal,
and phonetic encoding. Our underlying hypothesis is that
speakers modulate the density of phonetic encoding in the
service of maintaining a balanced distribution of information:
information and phonetic encoding are assumed to be in an
inverse relationship (Aylett and Turk, 2004, 2006; Levy and
Jaeger, 2007). We aim to analyze how phonetic encoding is
modulated by systematic changes in the phonetic structure and
some of its acoustic-phonetic features as a function of the
predictability of a linguistic expression.

1.3. Prosody as an Interface Between
Surprisal and the Signal
Several authors have proposed that the mapping of information
onto speech signal variability is mediated by prosodic structure.
For instance, the Hyper- & Hypoarticulation (H&H) theory
(Lindblom, 1990) suggests that prosody reflects predictability
effects. The theory explains variation between weak and
strong elements as a function of contextual predictability.
It posits that the speaker attempts to achieve a balance
between clarity of perception and ease of articulation. The
H&H theory thus integrates a speaker-oriented and a listener-
oriented account. However, the H&H theory stops short of
incorporating frequency-based concepts such as probability
of occurrence or information-theoretic concepts such as
surprisal.

In contrast, the Smooth Signal Redundancy (SSR) hypothesis
proposed by Aylett and Turk (2004, 2006) is in essence an
information-theoretic account of phonetic variation (cf. the
UID by Levy and Jaeger, 2007 for syntactic variation). The
SSR hypothesis emphasizes the role of prosodic structure in
the mapping between contextual predictability and the speech
signal explicitly, by positing that prosodic variation encodes
predictability. According to this account, languages have evolved
to distribute the recognition likelihood of each element of
the utterance evenly. The recognition likelihood of an element
depends on linguistic and acoustic redundancy. Linguistic
redundancy is defined as the lexical, syntactic, semantic and
pragmatic contextual “clues to identity” of the element (Turk,
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2010), or the element’s predictability profile (Turk and Shattuck-
Hufnagel, 2014). Acoustic redundancy, i.e., the set of acoustic
clues to identity, is implemented by prosodic variation (Turk,
2010) or the prosodic profile. The inverse relationship between
predictability and the prosodic profile results in a Smooth Signal
Redundancy (SSR) profile, that is, in the smooth spread of
information over the utterance, thereby globally optimizing the
recognition likelihood of the utterance.

For example, vowels in highly predictable contexts are
assumed to show less dispersion than vowels in less predictable
contexts. Aylett and Turk (2006) investigated the influence of
prosodic structure and predictability on vowel characteristics
in General American English read speech. Results of the study
showed that vowels were more centralized with increased
language redundancy (i.e., higher predictability), vowel quality
in prominent syllables was more distinct than in syllables that
were not prominent, and spectral characteristics of vowels were
also more distinct in syllables before prosodic boundaries than
in syllables at word- or at no boundary. Aylett and Turk (2006)
concluded that language redundancy and acoustic redundancy
show an inverse relationship which is mediated and implemented
through prosodic structure.

On the other hand, many authors consider prosodic factors as
important predictors of signal variability, however, independent
from predictability. For example, Bell et al. (2009), Gahl et al.
(2012), Gahl (2015) andCohen Priva (2015) also include prosodic
effects such as speech rate or lexical stress as control factors, but
crucially without attributing prosodic variation with a function
that mediates, for instance, retrieval speed.

Turk (2010) and Turk and Shattuck-Hufnagel (2014)
also suggested a link between prosodic constituency and
predictability. They proposed that signaling word boundary
strength can be exploited to complement language redundancy.
In this way, predictability explains the observation that the
probability that a boundary occurs is higher as the utterance
becomes longer. As utterance length increases, it becomes
exceedingly more difficult to parse the words, which lowers the
recognition likelihood of words in such a sequence. Breaking up
long, low-probability sequences by adding a boundary improves
parsing and thus the likelihood of success in recognizing the
words.

The SSR hypothesis in its strong form implies that
prosody acts as an interface to redundancy effects. That is,
for example, local duration variability in speech originates
from the relationship between language and acoustic
redundancy and the primary role of prosody would be
to manage the information density. Empirically, however,
Aylett and Turk (2004) showed that acoustic variance is
only partially explained by this relationship. There was a
unique contribution of prosodic factors to duration variance,
which Aylett and Turk (2004) explained by possible effects of
phonologization and conventionalization of the relationship
between redundancy and prominence. This explanation
seems to relate to the systematic encoding of information
in languages and lexicons, i.e., global probabilistic effects. It
suggests that prosodic structure encodes the a priori variation in
redundancy.

There are inter-relations between the number and strength
of boundaries and prominences in an utterance and speech
rate. From the perspective of the SSR hypothesis, the question
arises whether the modulation of acoustic redundancy by means
of prosody results in a change of speech rate as well: does
increased (decreased) acoustic redundancy correlate with faster
(slower) speech rate? There are possible inter-relations with
speaking style, too. For instance, boundaries and prominences,
i.e., structural properties of prosody, subserve communicative
goals such as the need to speak clearly. In clear speech, speech
rate is slow and the number and strength of boundaries and
prominences increases. The result is a higher degree of acoustic
redundancy: the recognition likelihood of an element from
the acoustic signal is increased. Conversely, producing fewer
pauses and therefore fewer boundaries, results in faster speech
rates (Quené, 2008) and lower acoustic redundancy. Such an
option may be desirable when the linguistic predictability of
the units spoken faster is high. A third option is also possible:
as Cohen Priva (2017) shows, speakers might limit information
content and provide less informative syntactic structures overall
in order to speak quickly.

Turk (2010) and Turk and Shattuck-Hufnagel (2014) suggest
that effects of speech rate and clarity on the frequency of
boundaries and prominences are general, non-grammatical
factors. These effects should globally constrain the relationship
of linguistic predictability with acoustic redundancy by adding
a “fixed amount” of acoustic redundancy proportionally to all
boundaries and prominences in an utterance. They suggest that
this general “magnification” of acoustic redundancy via speech
rate and discourse factors is independent of the local modulation
of prominence and boundaries.

In a similar vein, van Son and van Santen (2005) noted
that language redundancy exerting a larger direct effect on
phonetic encoding, over and above prosodic effects, can be
observed if the analysis is performed on a different level than
the syllable, which has been the reference level for studies in
the SSR paradigm (Aylett and Turk, 2004, 2006). van Son and
van Santen (2005) analyzed the center of gravity (COG) of
sentence-medial, intervocalic consonants in accented American
English words as a function of segment predictability, which was
operationalized as frequency of occurrence. They did not find
a straightforward relationship between segment frequency and
COG. However, they observed that after correcting for consonant
quality factors influencing COG (e.g., place of articulation) there
was a correlation between higher segment frequency and higher
COG and longer duration in specific word positions for specific
segment classes.

1.4. Language Specific Implementations of
the Surprisal-Prosody Interface
It appears that the way in which predictability is encoded
phonetically differs across languages. The acoustic parameters
that encode predictability in one language may not be susceptible
to such effects in another language. Moreover, the inter-
relationships between prosodic encoding and predictability
encoding in acoustic variability are language-specific as well.
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For instance, Turnbull et al. (2015) offered evidence
that the relationship between prosodic prominence and local
predictability is constrained by language-specific structure.
Turnbull et al. (2015) studied two genetically unrelated
languages, viz. American English and Tupi-Guarani, in which
they hypothesized an interdependency between focus and
predictability in their effect on acoustic exponents of prominence,
such as f0 and duration. Specifically, they expected that
unpredictable context would lead to the enhancement of
acoustic prominence under focus, relative to focus exponents
in predictable context. Pitch accent types, f0 and duration were
analyzed as a function of visual contextual predictability. In
American English, the effect of focus was found to be greater in an
unpredictable context than in a predictable context, as reflected
in the variability of f0 peaks, accent types and duration of the
target words. However, in Tipi-Guarani, contextual predictability
did not modulate the effect of focus on acoustic correlates
of prominence. Instead, an effect of focus on pitch accenting
and duration was observed, independent of the main effect of
predictability on f0 slope variability.

van Son et al. (2004) reported on a corpus study of
three typologically different languages, viz. Dutch, Finnish and
Russian. They used word frequency as a global predictability
measure, and the probability of a vowel given the preceding
word onset as a local, segment-based probability measure. They
measured the effect of these measures on correlates of vowel
reduction: duration, center of gravity, vowel dispersion and
intensity. They showed robust, if low, correlation coefficients (6%
or less of the variance explained) for all correlates in relationship
to word frequency. However, the information content of the
segment showed larger cross-linguistic differences in its effect on
acoustic reduction. van Son et al. (2004) attributed the difficulty
to attest cross-linguistically consistent effects of the more local
measure to the noisy character of the specific measure used in the
study. It is, however, conceivable that on the level of segments,
prosodic, phonotactic and morphological effects specific to the
studied languages interact with the degree of exponence of
predictability. Interestingly, van Son et al. (2004) did not find
an effect of segmental information content on vocalic reduction
in Finnish and Russian expressed in terms of vowel dispersion.
Additionally, they showed that predictability effects also depend
on discourse, in that the observed correlations were stronger in
read speech than in spontaneous speech.

Recently, Athanasopoulou et al. (2017) examined the fixed
vs. movable phonological stress parameter as a manifestation of
predictability. In languages with movable stress, such as Brazilian
Portuguese (or English), its placement is relatively inconsistent
and hence, much less predictable than in fixed-stress languages.
This contrasts with languages with fixed stress, such as Armenian,
Turkish or French studied in Athanasopoulou et al. (2017) that
canonically place lexical stress on a specified syllable. At the same
time, fixed-stress languages also allow for some non-canonical
placements that show degrees of predictability depending on the
morphological and phonological aspects of stress location in that
language. Athanasopoulou et al. (2017) analyzed f0, intensity and
vowel dispersion and found that the hypothetically redundant,
canonical positions do not decrease the distinctiveness of the

acoustic properties, relative to the non-canonical positions.
However, the overall position predictability did affect the acoustic
manifestation in all of the studied languages.

Clearly, much remains to be studied with respect to how
probabilistic effects, prosodic effects and prosodic systems relate
to, and possibly interact with, one another and influence
observable signal variability. The present study is intended as a
step toward clarifying this relationship cross-linguistically and
under different intended speech rates.

1.5. Specific Aims of This Study
The primary goal of this study is to investigate the effects of
prosody and contextual predictability (defined as surprisal) on
segmental duration, vowel dispersion, vocalic spectral emphasis
and consonantal center of gravity. These phonetic variables are
known correlates of prosodic variability and have also been
shown to be sensitive to predictability effects.

The study includes six languages from different sub-families
and with different prosodic, phonological and grammatical
characteristics: American English, Czech, Finnish, French,
German, and Polish. We expect that these languages will
primarily show differences related to the phonetic encoding
of information in those acoustic parameters that are affected
by prominence. In other words, where in a specific language
a parameter is not used for marking prominence, it will also
not be available as a correlate of predictability. For example,
contrary to English, we do not expect surprisal to greatly affect
duration in Polish because of the weak correlation of duration
with prominence in this language (Malisz and Wagner, 2012;
Malisz and Żygis, 2018).

We also aim to shed more light on the research questions
posed by Turk (2010), Turk and Shattuck-Hufnagel (2014), and
Pellegrino et al. (2011) regarding the relationship between speech
rate and surprisal. Specifically, we address the hypothesis that the
effect of surprisal does not depend on speech rate but is robustly
positive across speech rate levels in all studied languages. In other
words, we expect that the higher the surprisal of a segment, the
more phonetically distinct the segment is, regardless of speech
rate. Phonetic distinctiveness is expressed by longer duration, an
expanded vowel space, and specific spectral energy distributions.
The precise combination of the acoustic variables that convey the
degree of distinctiveness is expected to depend more on how the
language-specific prosodic structure is expressed phonetically,
rather than on speech rate.

The broader question we are asking is whether contextual
predictability affects phonetic encoding at all levels of the
linguistic structure, including prosody, or is fully moderated by
prosody, as posited by the strong version of the SSR hypothesis
(Aylett and Turk, 2004, 2006). Similarly to the original SSR
studies we analyse the proportion of observed effects that is
explained by the prosodic structure while looking further at the
effects of surprisal that are not mediated by prosody. In general,
we expect these effects to be subtle but significant.

In comparison to other studies that directly or indirectly
explored similar research questions (Aylett and Turk, 2004,
2006; van Son et al., 2004; van Son and van Santen, 2005), we
analyze a dataset that varies systematically in speech rate but is
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otherwise more consistent and less noisy than what is typically
the case in corpus studies. We use semi-automatic methods of
segmentation and annotation of the data, meaning that each
observation, unlike what is possible for large corpora, was verified
by experts using consistent annotation instructions. Additionally,
we exploited the steadily growing text corpus resources that
allowed us to build more accurate language models than, e.g.,
models based on CELEX. We also use a statistical analysis
method, viz. linear mixed models (Bates et al., 2015) that allows
for a comprehensive regression modeling of fixed and random
effects, in addition to correlation analysis (van Son et al., 2004;
van Son and van Santen, 2005) and multiple regression (Aylett
and Turk, 2004, 2006) used in previous studies.

The remainder of this paper is organized as follows. Section 2
presents the languages under investigation as well as the pertinent
text and speech corpora. It explains the methods of extracting
the acoustic-phonetic features that are considered to be affected
by changes in surprisal, the language models that serve as the
basis for quantifying surprisal, and the structure of the prosodic
model that is assumed tomodulate its effects on the speech signal.
The results of the acoustic-phonetic and statistical analysis is
presented in section 3, in terms of both correlations and linear
mixed models. The results are discussed in section 4, with a
special emphasis on the language-specific interaction between
surprisal and the prosodic structure.

2. METHODS

2.1. Languages
To examine the impact of surprisal on segmental variability
we analyzed production data from six languages: Czech (CES),
American English (ENG), Finnish (FIN), French (FRA), German
(DEU) and Polish (POL). Apart from Finnish, a Finno-Ugric
language, the other languages belong to the Indo-European
language family. All studied languages but Finnish have a
complex syllable structure. The research consensus on French is
that it does not possess lexical stress. Instead, accent is assumed to
be regular on the last syllable of a phrase with a full vowel, often
acoustically realized as lengthening (Jun and Fougeron, 1995;
Di Cristo, 1998; Michelas et al., 2000). English and German have
a bounded weight-sensitive lexical stress system, where stress
location depends on syllable weight, morphological structure,
and lexical marking. The primary accent in underived words falls
within a three-syllable window (Goedemans and van der Hulst,
2013). Word stress in Czech and Polish is fixed. In Czech, it is
assigned to the leftmost syllable of the prosodic word, in Polish it
is predominantly fixed on the penultimate syllable. All analyzed
languages but Polish have a phonological vowel length contrast.
In Finnish and Czech the vowel length contrast exists in stressed
as well as unstressed syllables. Finnish also contrasts phonological
consonant length.

2.2. Corpora
2.2.1. Text Corpora
Large text corpora were processed and language models for
the six languages were built (Table 1). First, each corpus was
cleaned by removing erroneous entries with non-alphabetic

TABLE 1 | Corpora and corpus sizes (in million tokens) for language modeling.

Language Corpus Size

CES Frequency dictionary (Zséder et al., 2012) 398

DEU Frankfurter Rundschau 41

ENG COCA 410

FIN Finnish PAROLE 180

FRA LEXIQUE 3.80 9

POL Frequency dictionary (Zséder et al., 2012) 901

characters. Then, the text was phonetically transcribed into IPA
or, if a syllabified annotation was not already provided with the
corpus, it was processed by means of an automatic syllabification
program custom-scripted in bash shell.

For French, Lexique 3.80 (New et al., 2001), which provides
phonetic transcription and syllabification, was retrieved online.
For German, the Frankfurter Rundschau corpus1 was transcribed
and syllabified using a tool for grapheme-to-phoneme conversion
(Reichel and Kisler, 2014). For American English, the same
procedure was applied to process the Corpus of Contemporary
American English2. For Finnish, the Finnish Parole Corpus was
acquired online3. The text was automatically converted into
IPA by the eSpeak speech synthesizer (Duddington, 2015) and
automatically syllabified using the custom script. For Polish,
a frequency dictionary derived from a large-scale web corpus
(Zséder et al., 2012) was converted into IPA and syllabified by
an automatic tool for transcription and syllabification (Zeldes,
2008–2014). For Czech, a frequency dictionary acquired from a
large-scale web corpus (Zséder et al., 2012) was processed using
the same methods as in the case of Finnish.

2.2.2. Audio Corpus
A subset of the BonnTempo corpus (Dellwo et al., 2004) was
analyzed with three female and three male speakers of male
speakers of CES, DEU, ENG, FIN, FRA, and POL. FIN recordings
were added to the BonnTempo corpus using the original
instructions (Dellwo et al., 2004). Informed consent forms were
signed by all participants. An ethics committee approval process
was not required per any involved institutions’ guidelines or per
national regulations in the recording of the corpus. Speakers were
given an excerpt of a novel in their native language and were
asked to familiarize themselves with the text. Next, speakers were
recorded at what they considered to be reading at their preferred,
normal pace. Then, they were asked to slow down their repeated
reading, and to slow down even more. In a third step, fast speech
rate was recorded asking speakers to speak fast, and speed up
their speech rate until they considered they could not speed up
anymore. From these acceleration steps, recordings at the normal
speech rate as well as the first increments toward slow and fast
speech tempo were used for analysis.

1European Corpus Initiative Multilingual Corpus I (ECI/MCI), http://www.elsnet.

org/eci.html
2http://corpus.byu.edu/coca/
3http://kaino.kotus.fi/sanat/taajuuslista/parole.php
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The speech data were automatically segmented using SPPAS
for FRA (Bigi, 2013), and WebMaus (Kisler et al., 2012) for
the other languages. Since there was no automatic segmentation
tool available for CES, WebMaus implementations for other
languages were tested. Hungarian WebMaus proved to be the
most effective for CES because both languages have a largely
similar consonant inventory, and vowel length is phonemic in
both CES and Hungarian. The manual verification process of
the automatic segmentation of CES data was completed by a
Slavic languages expert (the fifth author of the paper). For all the
other languages, the automatic segmentation was also manually
verified by phonetic experts using criteria such as to facilitate
a comparative analysis between the different languages in the
corpus. For example, the beginnings of vowels weremarked when
F1 was clearly visible, and ends of vowels were marked using the
end of visible F2 structure.

2.3. Phonetic Variables
The phonetic variables under investigation include segmental
duration and vowel space expansion (i.e., vowel dispersion),
both of which have previously been identified as correlates of
prosodic variability and as being sensitive to predictability effects.
Moreover, two related measures of spectral variability are also
included: spectral emphasis for vocalic segments and center of
gravity for consonantal segments. These measures identify the
frequency regions in which energy is concentrated, either in the
form of a ratio (spectral emphasis) or, somewhat simplified, the
mean (COG).

2.3.1. Duration
Segmental duration was measured in the recordings of six
speakers per language in the BonnTempo audio corpus
(frequencies: CES = 3620, DEU = 3515, ENG = 3398, FIN =

4990, FRA= 3293, POL= 3292; total number of observations=
22108).

2.3.2. Vowel Dispersion
In an F1/F2 space, the location of the vowel can be defined by
its dispersion (Bradlow et al., 1996), often operationalized as the
Euclidean distance between the average center of the vowel space
and formant values for each vowel token (Bradlow et al., 1996).
Vowels with a large vowel dispersion are more distinct from
vowels produced with a neutral vertical and horizontal tongue
position. Furthermore, increased vowel dispersion is associated
with increased intelligibility (Bradlow et al., 1996).

Recently, the interpretation of vowel dispersion has been
broadened with respect to vowel specific movement within the
vowel space with regard to competitor vowels. Wedel et al. (2018)
argued that vowels are under competition from neighboring
vowels depending on their position in the vowel space. Peripheral
vowels, such as /i, e/, for instance, are under competition from
interior vowels, i.e., /I, E/. Wedel et al. (2018) showed that in cases
of lexical competition peripheral vowels move further away from
the vowel space center to the periphery, while interior vowels
move closer to the center. In the light of these findings, one
could argue that vowel dispersion is not an ideal measure of
vowel space expansion. However, only ENG and DEU from the

language investigated in our corpus, and CES to some extent,
have contrastive interior vowels in their phonemic systems. In
addition, Wedel et al. (2018) limited their study to vowels in
stressed position. Surely, in unstressed position DEU interior
vowels, and /I/ in ENG, face competition from mid central
vowels. Admittedly, the F1/F2 Euclidean distance from the vowel
space center cannot possibly capture all vowel movements within
the vowel space, and vowels might behave differently with regard
to the amount of dispersion from the center. We have included
vowel identity as a control factor to account for these differences.

F1 and F2 formant analysis was conducted at the temporal
midpoint of vocalic nuclei with the Burg algorithm implemented
in Boersma and Weenink (2015). Default settings of the software
were used, i.e., maximum of five formants, window size of 0.025 s,
pre-emphasis from 50Hz. The maximum formant threshold was
changed as advised by Boersma and Weenink (2015) depending
on the speaker’s sex, 5000Hz for male speakers and 5500Hz for
female speakers. The total number of analyzed tokens was 5198.
Table 2 shows the token frequency and vowel qualities in this
analysis. The number of analyzed items varied across languages.
If available in the data, tense and lax vowels in closed front, closed
back, low and front mid position were used for the analysis to
allow for comparability of the vowel spaces across languages.
The different lax and tense vowel phonemes in Table 2 were
summarized under four umbrella vowel identities /i/ for closed
front vowels, /e/ for mid front vowels, /a/ for open mid/back
vowels, and /u/ for closed back vowels. Vowel identity was
included in the statistical models to inspect the vowel specific
effect on the vowel space expansion measure.

Formant values were cleaned and manually checked when
they were 200Hz above or below average values for each
language, if the range of dispersion in the data was not provided
in the literature (Wiik, 1965; Majewski and Hollien, 1967;
Hillenbrand et al., 1995; Liénard and Di Benedetto, 1999),
and below or above attested measures of variability otherwise

TABLE 2 | Vowel and consonant qualities and token frequencies per language for

vowel dispersion (Vowels) and consonantal center of gravity analyses

(Consonants).

Language Frequency Quality

VOWELS

CES 1156 /i:, I, E:, E, a:, a, u/

DEU 825 /i:, I, e:, E:, E, a:, a, u:, U/

ENG 560 /i, I, A, O, U/

FIN 1178 /i, i:, e:, e, æ, æ:, A:, A, u:, u/

FRA 689 /i, e, a, u/

POL 790 /i, E, a, u/

CONSONANTS

CES 1149 /S, f, j, l, m, n, s, v, z/

DEU 1204 /ç, S, f, l, m, n, s, v, z/

ENG 1169 /m, n, N, f, v, T, D, s, z, w, l/

FIN 1565 /j, l, m, n, s, s:, v/

FRA 995 /S, Z, f, v, l, m, n, s, z/

POL 1044 /S, Z, f, j, l, m, n, s, C, v, w, z/
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(Sendlmeier and Seebode, 2006; Skarnitzl and Volin, 2012).
Then, speaker-dependent standard normalization was applied to
control for differences in formant values due to speaker identity
and sex (Lobanov, 1971). As a measure for vowel distinctiveness,
the Euclidean distance between the midpoint of the vowel space
and formant values for each vowel token were calculated for
each speaker (Bradlow et al., 1996), to facilitate comparisons with
previous studies on vowel dispersion (Munson and Solomon,
2004; Wright, 2004; Gahl, 2015; Buz and Jaeger, 2016). This
measure of vowel dispersion is independent of differences in
vowel inventory between the languages because it is a relative
measure of vowel space expansion within the individual vowel
space of each speaker.

2.3.3. Vocalic Spectral Emphasis and Consonantal

COG
Spectral emphasis and COG approximate loudness and, possibly,
articulatory effort—factors involved in the perception and
production of prominence. Both lower spectral emphasis and
lower COG indicate less high-frequency power (van Son and van
Santen, 2005). Higher values indicate a wider frequency range
contributing to the clarity and loudness of the sound. Compared
to Euclidean distances in the F1/F2 dimension, these variables
provide more information about segment distinctiveness in the
auditory domain.

Spectral emphasis expresses the contribution of higher
frequency bands to the overall intensity, relative to the lower
frequency bands. It was measured by subtracting the sum of
energy in the higher frequencies (1200–5000Hz) from the sum
of energy in the lower frequencies (70–1000Hz) over the whole
vowel interval. Vowel spectral emphasis analysis involved all
available vocalic segments in the BonnTempo corpus (n= 9422).

Center of gravity was analyzed in nasal stops and the majority
of continuant consonants, viz. approximants and fricatives, with
the exception of glottal fricatives (van Son and Pols, 1999; van
Son and van Santen, 2005). The frequencies and qualities of the
analyzed consonantal segments for each language are presented
in Table 2. Some consonants from this set did not occur in the
corpus data, e.g., /S, Z, j/ in the English text, so we deal with
partially crossed factors. The total number of consonant tokens
in the COG analysis was 7126.

COG was measured using a 25ms Hamming window in the
initial, medial and final phase of the sound and then averaged
over these phases. In order to equalize the variances between
fricative continuants and the other sounds in the subset, we
express the mean COG in semitones, following van Son and van
Santen (2005).

2.4. The Prosodic Model
Following Aylett and Turk (2006), the prosodic model used in the
current study comprises prominence and boundary. Prominence
was defined as a binary factor using primary lexical stress
(stressed vs. unstressed) based on the BonnTempo corpus. In
French, accent was marked on the last syllable of a phrase with a
full vowel (Jun and Fougeron, 1995; Féry, 2014). If monosyllabic,
function words were counted as unstressed, whereas content
words were identified as stressed. We did not include secondary

stress as a factor since some of the languages tested do not
have secondary stress i.e. Czech (Dogil et al., 1999) and French
(Di Cristo, 1998). Besides, the number of polysyllabic words in
the text that would bear secondary stress is too low. We note,
however, that the automatic transcription (e.g.,: using e-speak)
we used for calculating tri-phone probabilities is allophonic and
dependent on lexical stress. The factor Boundary involved two
levels: none and a high likelihood of a prosodic boundary. A high
likelihood of a prosodic boundary was marked when a pause of
at least 100ms followed the syllable that included the segments
under analysis (Aylett and Turk, 2006).

A three level categorical factor was coded according to the
acceleration or deceleration condition in which the speaker was
reading the text material. This is equivalent to the Intended
Speech Rate variable studied by Dellwo et al. (2004) in
BonnTempo. We will henceforth refer to this factor as speech
tempo. We selected the preferred rate coded as “normal,” the first
acceleration step coded as “fast” and the first deceleration step
coded as “slow.” Figure 1 shows the mean differences measured
in syllables per second (cf. Laboratory Speech Rate, Dellwo et al.,
2004) across these intended speech tempo conditions for each of
the six languages in the BonnTempo subset.

2.5. Surprisal Models
To study the relationship between surprisal and phonetic
structure, we trained language models (LMs) on the phone level.
Models were computed on the basis of large text corpora in
the six languages under study (cf. section 2.2.1). The surprisal
variable derived from each model was used as a predictor of
the phonetic variables. Overall, we estimated surprisal values
from tri-phone and bi-phone models (2)–(4). The bi-phone-
based surprisal models were further differentiated depending on

FIGURE 1 | Speech rate in syllables per second for the analyzed subset of the

BonnTempo corpus, differentiated by tempo condition and language.
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whether the right or the left context of the target segment was
taken into account.

Tri-phone based surprisal model centered on the target
segment:

Surprisal(Phonei) = −log2P(Phonei|Phonei−1, Phonei+1) (2)

Bi-phone model, preceding context:

Surprisal(Phonei) = −log2P(Phonei|Phonei−1) (3)

Bi-phone model, following context:

Surprisal(Phonei) = −log2P(Phonei|Phonei+1) (4)

Bi-phone and tri-phone LMs were tested for relationships with
segmental duration and the vocalic and consonantal spectral
variables. Due to the restricted number of vowel data points in
the BonnTempo corpus, only bi-phone LMs were used in vowel
space analyses.

3. RESULTS

3.1. Correlation Patterns Across
Languages
We use exploratory correlation analyses to inspect the cross-
linguistic aspects of surprisal effects on the acoustic variables
in the BonnTempo corpus. Moreover, correlational data was
reported previously in studies involving some of the languages we
analyze (e.g., Finnish, Russian van Son et al., 2004); we include
correlations for comparative purposes. We build statistical
models in section 3.2 to analyze general tendencies across
languages.

We calculate Pearson’s r to identify the surprisal model that
has the strongest and most consistent relationship with the
target phonetic variable. We refer to Table 3 for details on the
correlation coefficients regarding all used surprisal models.

We found that the tri-phone based surprisal model had the
strongest and most consistent relationship with duration. We
show the correlation between segment duration and the surprisal
values for these segments based on the tri-phone language model
in Figure 2, differentiated by language and tempo condition. The
correlation between these two variables shows their dependence
relative to language. The coefficients are statistically significant
in each language and the coefficient for all six languages equals
r = 0.16 [t(22108) = 24.0, p < 0.001]. The strongest correlation
is found for American English [r = 0.28, t(3398) = 18.18, p <

0.001]. The correlation is slightly negative and weakest for Polish
[r = −0.04, t(3292) = −2.19, p < 0.01].

For vowel dispersion, surprisal values were estimated from
bi-phone LMs for each language taking the previous context
into account. Figure 3 presents the correlation of the Euclidean
distance values for the vocalic segments with surprisal values,
differentiated by language and tempo condition. Averaged over
all languages, there is a significant positive correlation between
vowel dispersion and bi-phone surprisal relative to the preceding

TABLE 3 | Pearson’s correlation coefficients and tests (α = 0.05) between

phonetic encoding variables (duration, vocalic spectral emphasis and consonantal

center of gravity) and surprisal values estimated from bi-phone models taking the

following or preceding context into account and from a tri-phone model.

Bi-phone following Bi-phone preceding Tri-phone

DURATION

CES 0.05** 0.20*** 0.11***

DEU 0.04* 0.21*** 0.13***

ENG 0.28*** 0.18*** 0.28***

FIN 0.08*** 0.19*** 0.23***

FRA 0.13*** n.s. 0.10***

POL −0.08*** −0.05* −0.04*

VOWEL DISPERSION

CES 0.06* 0.24*** n.s.

DEU −0.09** 0.30*** 0.14***

ENG 0.10* 0.26*** 0.16***

FIN 0.12*** n.s. n.s.

FRA 0.25*** 0.18*** 0.26***

POL 0.20*** 0.12*** n.s.

VOC. SPECTRAL EMPHASIS

CES n.s. 0.30*** 0.20***

DEU 0.26*** 0.22*** 0.21***

ENG 0.13*** 0.26*** 0.17***

FIN n.s. −0.26*** −0.17***

FRA 0.28*** n.s. n.s.

POL 0.18*** −0.11*** n.s.

CONS. CENTER OF GRAVITY

CES n.s. n.s. n.s.

DEU 0.40*** 0.13*** 0.30***

ENG n.s. 0.19*** n.s.

FIN n.s. −0.15*** −0.09***

FRA 0.21*** n.s. n.s.

POL n.s. −0.23*** −0.11***

*p < 0.05; **p < 0.01; ***p < 0.001.

context [r = 0.16, t(5196) = 11.75, p < 0.01]. When analyzed
separately, this general observation also holds for German,
American English, French, Czech and Polish. For Finnish,
however, there is no significant relationship between vowel
dispersion and surprisal. The correlation between both variables
is the least strong in Polish [r = 0.12, t(788) = 3.37, p <

0.01], and the strongest for German vowels [r = 0.30, t(823) =

9.05, p < 0.01]. The positive relationship and coefficient values
appear not to change with tempo class for the duration and vowel
distinctiveness variables. We further test the effect of tempo in
section 3.2.

Vocalic spectral emphasis and consonantal COG were
correlated with both bi-phone models (modeling preceding
or following context) and the tri-phone model (modeling
both contexts). All coefficients are listed in Table 3. The
results indicate that only German and American English
show a consistent positive relationship between vocalic spectral
emphasis and surprisal derived from all three language models.
Regarding consonantal COG, the pattern is the same for German,
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FIGURE 2 | Correlations (Pearson’s r) between segment duration in milliseconds and log-transformed surprisal values of segments based on tri-phone language

models in the BonnTempo corpus, differentiated by tempo condition.

FIGURE 3 | Correlations (Pearson’s r) between Lobanov-normalized Euclidean distance as a measure of vowel dispersion and log-transformed surprisal values of

segments based on bi-phone language models in the BonnTempo corpus, differentiated by tempo condition.
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whereas English shows a positive relationship only for the
preceding context model.

Looking at the other, less straightforward correlation patterns
in the other languages, we see that Czech shows evidence
of significant relations between vocalic spectral emphasis and
surprisal variation. This is the case when surprisal is influenced
by preceding segmental context, and both contexts at the same
time, but not by the following context. On the other hand,
the center of gravity of the analyzed Czech consonants does
not appear to depend on surprisal. Finnish shows a significant
inverse relationship for both spectral measures if preceding
context or both contexts influence the value of surprisal. The
following context bi-phone model does not produce a significant
dependence.

French contrasts with most languages discussed so far with
regard to spectral measures and displays only significant, positive
correlations between surprisal derived from the following context
language model. This applies to the variation of spectral energy
in both vowels and consonants. Polish, the only clear outlier in
this sample of languages regarding correlations with duration,
shows a positive dependency between the following context
model and spectral emphasis as well as a weak inverse correlation
for the preceding context model. Not surprisingly, tri-phone
based surprisal does not produce a significant correlation here.
Regarding COG, Polish somewhat follows the Finnish pattern
in that we see a very weak, to weak, inverse relationship for the
preceding and bi-directional context.

3.2. Modeling
In this section we analyze several dependent variables using linear
mixed models4. We study the following correlates of prosodic
variability: duration, vocalic dispersion, spectral emphasis as well
as consonantal center of gravity, and the impact of the prosodic
model and the surprisal model on these variables.

In each model reported below we used backwards model
selection by first formulating a maximum model (including
interaction terms, if so stated). The maximum model also
included a maximal random structure involving random slopes
and intercepts for all fixed factors (and their interactions, if so
stated). Random variables included Language, Speaker, Word
and Segment, Preceding and Following segment as hierarchical
(nested) factors. We coded Language as a random effect in
our models to test the hypothesis, motivated by the study by
Pellegrino et al. (2011), that information encoding strategies are
apparent across all speech rates and languages. In case there were
convergence errors, these led to simplifications of the random
structure: we removed higher terms in the random structure first,
then simple random slopes, one by one. The same procedure
applied when correlations of 1 or 0 were found for the random
slopes. The final random structure is stated in the descriptions of
the final models arrived at for each dependent variable.

Significance of fixed effects was evaluated by performing
maximum likelihood t-tests using Satterthwaite approximations

4The model was formulated and evaluated using the lme4 package (1.1-12) (Bates

et al., 2015) and lmerTest package (2.0-33) (Kuznetsova et al., 2016) in R (3.3.3) (R

Core Team, 2017), a software environment for statistical computing.

to degrees of freedom (using the lme4 Bates et al., 2015 and
lmerTest packages Kuznetsova et al., 2016).

3.2.1. Duration
The continuous variable Surprisal was log-transformed due to
positive skewness. All categorical factors were treatment-coded.

We first tested for the baseline condition that Surprisal is
a significant predictor of duration in an additive model. We
entered prosodic fixed factors: Tempo, Stress, Boundary plus
the information theoretic factor Surprisal as predictors and
included the control variable speaker Gender. The maximal
random structure and the model backward selection principles
are described in section 3.2. Table 4 shows the estimates and
coefficients of model comparisons via maximum likelihood t-
tests. As expected, duration is significantly and positively affected
by stress, the presence of a boundary and slowing tempo. Our
contextual predictability measure, the tri-phone surprisal, also
significantly lengthens the segments.

Once we established that both the prosodic and the surprisal
factors are significant predictors of duration, we aimed to verify
whether the impact of Surprisal on duration is contingent on the
effect of Tempo. If such a relationship between these predictors
exists, we should see a significant interaction between these
variables in a duration model.

We formulated the maximum interaction model and selected
the final model using the procedure described in 3.2. For
duration, we included interaction terms for each prosodic fixed
factor: Tempo, Stress, Boundary with Surprisal and included the
control variable speaker Gender. The full model also included
a maximal random structure involving random slopes and
intercepts for all the interactions. The final random structure
for the duration model included (a) random intercepts for
Segment, Preceding, Following segment, Word and Language,
as well as (b) random slopes for Stress, Boundary, Tempo and
log(Surprisal) per Speaker as well as Stress and Boundary per
Word.

According to the tests, the interaction of Tempowith Surprisal
is not significant for the duration variable. For the fixed factors,
we report the regression coefficients, the standard errors, the t-
test values as well as the corresponding p-values associated with
the maximum likelihood tests in Table 5.

The marginal pseudo-R2, indicating how much variance is
explained by the fixed factors, showed that the baseline prosodic
model explains 33% of the duration variance alone. The explained
variance increases by 3% when Surprisal is included in the

TABLE 4 | Additive model of segmental duration: the impact of surprisal against

prosodic effects.

Terms Coeff. St.Error t-value p-value

Stress 0.09 0.02 4.37 <0.001

Boundary 0.23 0.03 7.3 <0.001

Tempo (normal) 0.11 0.01 8.2 <0.001

Tempo (slow) 0.27 0.02 11.7 <0.001

Surprisal-prec/foll 0.08 0.03 2.6 <0.05
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additive model and by further 1% when Surprisal interacts with
Stress and Boundary. The conditional pseudo-R2 for the variance
explained by both fixed and random effects equaled 77% in the
final interaction model.

3.2.2. Vowel Dispersion
Formant values F1 and F2 were normalized using speaker-
dependent standard normalization (Lobanov, 1971). Surprisal
values were log-transformed due to positive skewness (γ =

0.63). The predictor variables Surprisal and Stress were slightly
collinear (r = 0.24). The categorical variables Stress, Tempo
and Boundary were treatment coded, while sum coding (effect
coding) was used for the factor Vowel identity.

For the baseline vowel dispersion model, the fixed effects
Surprisal of the preceding bi-phone, Vowel identity, Stress,
Speech Rate, Boundary, and Gender were entered. The maximal
random structure included random intercepts for Following and
Preceding segment, Speaker, Language and Word, as well as
random slopes for all fixed effects. Because of convergence errors
the model was simplified in a backward selection procedure
following the procedure explained in section 3.2. First, the
random structure was reduced removing random slopes. The
random intercept for Speaker did not explain any variance
in the data. Stepwise simplification resulted in a final model
with random intercepts for Preceding and Following Segment,
Language and Word and random slopes for Surprisal per Word.

In the baseline surprisal–prosody analysis, all fixed effects
but Boundary, Stress, and Gender reached significance level in
explaining variability in vowel dispersion. Table 6 shows the
estimates of the model obtained by lme4 and lmerTest. As
expected, vowel dispersion was positively affected by tempo:
as the speech rate gets slower, the vowel dispersion measure
increases.We found a tendency for an effect for vowels in stressed
syllables to be more dispersed than vowels in unstressed syllables.
Regarding the contextual predictability measure, vowels with
high bi-phone surprisal values were significantly more dispersed
than vowels with lower surprisal values. Vowel dispersion also
differed with the vowel that was investigated. On average, /i/ was
significantly more dispersed than the grand mean, while vowels
/a/ and /e/ were less dispersed than the grand mean. Post-hoc
analysis revealed that there were significant differences between
vowel dispersion at normal, fast, and slow speech rate. Vowels
at slow speech rate were more dispersed than vowels at fast and
normal speech rate, and vowels produced at normal intended
speech rate were significantly more dispersed than fast vowels
(Table 7).

TABLE 5 | Interaction model of segmental duration: interaction of surprisal with

prosodic factors.

Terms Coeff. St. Error t-value p-value

Boundary*Surprisal 0.3 0.05 6.63 <0.001

Stress*Surprisal 0.09 0.03 2.8 <0.01

Tempo (normal)*Surprisal 0.02 0.02 1.0 =0.33

Tempo (slow)*Surprisal 0.02 0.02 1.1 =0.27

In a second step, interactions were entered into the baseline
surprisal–prosody analysis of vowel dispersion. Similar to the
segmental duration analysis, interactions between all prosodic
factors and Surprisal were tested comparing the interaction
model to the baseline model. None of the interactions in the
model reached statistical significance (Table 8).

The marginal pseudo-R2 indicating how much variance
is explained by the fixed factors showed that the baseline
prosodic factors explain 0.6% of the vowel dispersion variance.
The explained variance increases by 2.5% when Surprisal was
included in the additive model. A large amount of variance was
explained when Vowel identity was added to the model (16.48%
increase). The conditional pseudo-R2 for the variance explained
by both fixed and random effects equaled 87% in the final
model.

3.2.3. Vowel Spectral Emphasis
In the linear mixed model analyzing effects on spectral emphasis
of vowels listed in Table 2, the maximal random structure was
reduced stepwise and the models were selected following the
procedure explained in section 3.2. The simplified structure
resulted in random intercepts for Preceding and Following

TABLE 6 | Additive model of vowel dispersion: the impact of surprisal against

prosodic effects.

Terms Coeff. St. Error t-value p-value

Stress (y-n) 0.04 0.03 1.28 =0.20

Boundary (y-n) −0.04 0.04 −1.08 =0.28

Tempo (normal-fast) 0.04 0.01 3.20 =0.001

Tempo (slow-fast) 0.12 0.01 10.06 <0.001

Surprisal-preceding 0.70 0.27 2.65 =0.009

Vowel identity (/a/-Mean) −0.11 0.03 −3.43 =0.001

Vowel identity (/e/-Mean) −0.60 0.03 −17.18 <0.001

Vowel identity (/i/-Mean) 0.35 0.04 8.49 <0.001

TABLE 7 | Additive model of vowel dispersion: post-hoc analysis for speech

Tempo (Tukey Contrasts).

Comparison Coeff. z-value p-value

Normal-fast 0.04 3.17 <0.01

Slow-fast 0.12 10.05 <0.001

Slow-normal 0.08 6.95 <0.001

TABLE 8 | Interaction model of vowel dispersion: interaction of surprisal with

prosodic factors.

Terms Coeff. St. Error t-value p-value

Boundary*Surprisal 0.07 0.14 0.47 =0.64

Stress*Surprisal 0.21 0.24 0.89 =0.37

Tempo (normal)*Surprisal 0.08 0.06 1.24 =0.21

Tempo (slow)*Surprisal 0.01 0.06 0.20 =0.84
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Segment, Vowel and Language, as well as random intercepts and
slopes for Boundary, Stress, Tempo and Surprisal both per Word
and per Speaker.

Table 9 presents the results of the prosodic model for the
variable. We see a weak but statistically significant positive effect
of Stress on vocalic spectral emphasis, indicating that energy in
stressed vowels is amplified in the higher frequencies. The Tempo
condition and the Boundary factor have no effect on this variable.

Regarding the effect of Surprisal, we tested all three measures
of Surprisal as predictors of vocalic spectral emphasis added one
by one to the baseline prosodic model. The threemodels included
Surprisal measures stemming from (a) a bi-phone preceding
context language model, (b) a bi-phone following context model
and (c) a tri-phone model. The interaction term between Stress
and Surprisal was not tested, since the main effect of Surprisal
as tested in additive models (a), (b), or (c) was not significant.
Table 10 presents the statistically non-significant estimates for
the surprisal factors found in the three models. We conclude that
we were not able to show evidence for an effect of Surprisal on
this correlate of prosodic structure, at least not with the amount
of data at our disposal (n= 9422 vocalic intervals).

3.2.4. Consonant Center of Gravity
In the following model we analyzed the center of gravity of
consonants listed in Table 2. The maximal random structure was
reduced stepwise following the procedure explained in section
3.2. The simplified structure resulted in random intercepts for
Preceding and Following Segment, Vowel, Word and Language,
as well as random intercepts and slopes for Boundary, Stress,
Tempo per Speaker and per Word. Surprisal also remained as
a random slope per Speaker. The Surprisal measure was based
on the bi-phone language model taking the following segment as
context into account.

The main effects of Stress and Tempo on COG were not
significant. The factor Boundary had a significant positive effect.
Surprisal, however, had a significant negative effect, namely,
there was less energy concentrated in the higher frequencies
of the studied consonants when they were surprising given the

TABLE 9 | Additive model of vocalic spectral emphasis: prosodic effects.

Terms Coeff. St. Error t-value p-value

Stress 0.7 0.34 2.0 <0.05

Boundary 0.2 0.5 0.4 =0.7

Tempo (normal) 0.3 0.3 0.1 =0.9

Tempo (slow) −0.1 0.3 −0.35 =0.7

TABLE 10 | Vocalic spectral emphasis: effects of three surprisal measures as

estimated in separate models.

Terms Coeff. St. Error t-value p-value

Surprisal-following −0.6 0.6 −0.9 =0.36

Surprisal-preceding 1.9 1.1 1.7 =0.1

Surprisal-prec/foll 0.95 0.8 1.2 =0.23

following segmental context. Table 11 presents the estimates and
results of the maximum likelihood t-tests. As an additional check,
we formulated a model with solely Surprisal as the predictor of
COG in order to see whether its effect is positive but only changes
sign in the presence of other variables entered in the maximum
model. Such a model still provided a negative estimate of the
simple effect of Surprisal on COG (Coeff.= −5.4, St. Err= 0.86,
t =−6.3, p < 0.001).

The interaction model was selected as described in section 3.2.
In order to test for the consonant identity effects indicated in
van Son and van Santen (2005), we entered the sum-coded factor
Place (coronal, labial, palatal) and let it interact with prosodic
factors and Surprisal. The analysis showed that Surprisal was
a significant positive predictor of consonantal center of gravity
when its effect was moderated by Stress. The effect of Surprisal
was also different depending on the level of the factor Place
(Table 12). The value of COG (in semitones) was higher when
the target consonant was a coronal and higher in surprisal, given
the following context. This result agrees with van Son and van
Santen (2005), who found a linear relationship between coronals
and information content.

4. DISCUSSION

One of the goals of the present study was to analyze the potential
influence of tempo changes on contextual predictability effects.
Our working hypothesis was that consistent encoding strategies
should be observed in all speech rates, based on the evidence that
languages show a systematic relationship between information
transmission and speech rate as part of phonetic encoding
(Pellegrino et al., 2011). In other words, the relationship
between linguistic redundancy and acoustic redundancy
should remain apparent across speech rates as well as across
languages.

TABLE 11 | Additive model of consonantal COG: surprisal and prosodic effects.

Terms Coeff. St. Error t-value p-value

Surprisal-following −5.4 1.5 −3.6 <0.001

Boundary 2.55 1.0 2.4 <0.01

Stress −0.23 0.75 −0.3 = 0.75

Tempo (normal) −0.02 0.35 −0.07 = 0.9

Tempo (slow) 0.5 0.3 1.6 = 0.1

TABLE 12 | Interaction model of consonantal COG: interaction of surprisal with

prosodic and place of articulation factors.

Terms Coeff. St. Error t-value p-value

Boundary*Surprisal −5.9 2.3 −2.5 <0.05

Stress*Surprisal 7.6 1.7 4.4 <0.001

Place (Coronal-Mean)*Surprisal 5.8 1.8 3.2 <0.001

Tempo (normal)*Surprisal 1.0 0.8 1.2 = 0.21

Tempo (slow)*Surprisal −0.3 0.8 −0.42 = 0.67
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Our findings show that in accordance with Pellegrino et al.
(2011), tempo does not appear to interact with local segmental
modulations of duration that encode information. These results
might also speak in favor of Turk’s suggestion (Turk, 2010) that
tempo encodes acoustic redundancy globally, without interfering
with local modulations or with the surprisal effects on, for
instance, duration. Our data contains tempo conditions in which
the speakers were reading the same text in three intended
speech rates, normal, slow and fast. Due to the nature of the
task, the speech rate, within a given tempo condition, remains
relatively stable. There are, however, clear differences between
tempo conditions in terms of measured speech rate (cf. Figure 1).
The models also show that tempo changes have the expected
effects on duration in our self-controlled tempo task, i.e., the
segments are longer in the decelerated condition and shorter in
the accelerated condition. But as we do not have a quantification
of speech rate that would dynamically measure the influence
of tempo segment by segment, it is difficult to definitively
answer if and how predictability might interact with the speed
of articulation. We can only conclude that tempo does not
appear to, for example, invert the positive relationship between
segmental contextual predictability and the acoustic parameters
we studied. Such an effect would not be consistent with the
general hypotheses we considered. We also aimed to shed further
light onto how language-specific factors might relate to the
effects of contextual predictability. Most studies so far have
been conducted on Germanic data or on typologically closely
related languages (Jaeger and Buz, 2016), with the exception of
studies we discussed in section 1.4. Our data includes examples of
three major subfamilies of Indo-European (Germanic, Slavic, and
Romance) and a Finno-Ugric language, Finnish. Importantly,
these languages exhibit several differences in the way in which
they encode prosodic information and other related structural
properties phonetically. We assumed that these properties will
influence the relationships between contextual predictability
measures and acoustic measures of phonetic encoding. We did
not search the space of all possible acoustic parameters that might
play a role in information encoding but we restricted ourselves to
those that have been implicated in prosodic structuring.

Given Aylett and Turk’s hypothesis (Aylett and Turk, 2004,
2006) that probabilistic effects have been phonologized over time
in prosodic structure, we expected that those acoustic parameters
that are known to be reliable exponents of prosodic structure in a
given language will correlate most strongly with surprisal. These
parameters were duration, vowel dispersion, spectral emphasis
(Sluijter and van Heuven, 1995; Sluijter and Van Heuven, 1996;
Heldner, 2003) and consonantal center of gravity (van Son and
van Santen, 2005).

It is known that duration is strongly related to the expression
of prominence in English but not in Polish (Malisz and Wagner,
2012). In line with this, we find stronger dependence of surprisal
on duration in the former language than in the latter. Moreover,
since Finnish does not have significant vowel reduction in
unstressed positions, we do not find a positive correlation
between surprisal and F1/F2 Euclidean distance measure of
vowel dispersion, similar to van Son et al. (2004) (who studied
stressed word-initial Finnish vowels). With the exception of

robust correlations in Czech, in general those languages in our
set that espouse weak acoustic expression of prominence, i.e.,
French and Polish, show the weakest relationships evidenced in
our correlation analysis of duration and vowel dispersion.

A complex picture emerges from correlations of spectral
features with predictability measures. This is in a sense expected,
if the relationship between prosody and surprisal is considered,
since parameters such as spectral balance are not the most robust
correlates of prosodic prominence for example. We separated the
broadly conceived spectral balance characteristics into spectral
emphasis for vowels and center of gravity for consonants. Note,
the majority of the six languages showed a positive correlation
between duration and vowel dispersion and surprisal, which was
not always the case in the spectral analyses (Figures 2, 3, and
Table 3).

The Germanic languages in our study, English and German,
showed robust effects here too (with the exception of English
COG–surprisal correlations). French, however, showed a positive
effect only in the case of a bi-phone surprisal model taking the
following context into account, while Czech for example, did not
present a significant relationship between surprisal and COG at
all. Finnish and Polish, languages with outlying tendencies in
the vowel dispersion and duration analyses, also exhibited either
non-significant correlations or significant negative dependencies
between different models of surprisal (bi- and tri-phone) and
vocalic spectral emphasis and consonantal COG, respectively.

One possible explanation for the moderately strong inverse
dependencies between, e.g., surprisal and COG in Polish, as
well as the lack of any relationship in Czech, is the interaction
of place of articulation with the effect of surprisal. In their
study of prosodic and predictability effects on consonantal COG,
van Son and van Santen (2005) showed that the effect of
stress on COG (and duration) strongly depends on the primary
consonantal articulator and the phone’s position in the word.
Specifically, they found a positive effect of stress on COG only
for word-medial coronals. A significant correlation between their
systemic predictability measure, i.e., frequency, and COG and
duration was also evidenced. Specifically, coronals, as consonants
produced with the tongue, which is the more agile articulator,
were strongly reduced when they were systemically predictable.

Similar to van Son and van Santen (2005), the result of
our modeling is that the variability of COG under prosodic
and predictability variation is complex. The spectral bandwidth
expressed by COG in our data is lower as a function of segmental
surprisal and does not vary under stress, but it is higher
when stressed segments are more surprising given the following
segmental context. Coronals, in particular, are more susceptible
to the effect of surprisal, as it was also the case for the high-front
vowels in the vowel dispersion study.

We also tested for local probabilistic effects on vocalic spectral
emphasis.We are not aware of a cross-linguistic study that looked
at vocalic spectral emphasis in the context of predictability—our
analysis points to a null effect of surprisal on this measure. van
Son et al. (2004) suggested via a correlation analysis of a read
speech corpus that a local measure of segmental predictability
was positively related to root mean square intensity and COG in
Finnish and Russian and only COG in Dutch. All three measures,
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COG, spectral emphasis and root mean square intensity are
measures of the variation in loudness differentiated on the
basis of spectral characteristics of different basic speech sounds.
However, we found surprisal effects on a measure relevant for
consonants (COG) but not for vowels (spectral emphasis).

Motivated by the work by Aylett and Turk (2004, 2006) on
English and van Son and van Santen (2005) on Russian, Dutch,
Finnish we also asked how far contextual predictability effects can
be responsible for phonetic variation, independently of prosody.
Our findings are generally in line with a weak version of the
Smooth Signal Redundancy hypothesis (Aylett and Turk, 2004,
2006), and they highlight multiple and complex interactions
between segmental and suprasegmental factors and information-
theoretic factors related to predictability in context.

The contributions of surprisal and prosodic predictors to
the overall duration variance are in accordance with the results
in Aylett and Turk (2004), who analyzed the impact of a
different local measure on syllabic duration in corpora, namely
the probability of a syllable given the previous two syllables.
We find similar effects in that regard using a tri-phone model
centered on the target segment and analyzing the relationship
between surprisal and duration using linear mixed models rather
than multiple regression.

Our model explained 77% of variance in the semi-
controlled material. A contextual segment-based surprisal
measure explained 3% of the variance in addition to the variance
accounted for by the prosodic model. Aylett and Turk’s (2004)
results also showed a relatively small contribution of redundancy
factors at 6%. Furthermore, in our analysis, the best fitting model
for duration included a significant dependency of surprisal upon
stress, which further strengthens the hypothesis that its variability
is contingent upon prosodic structure.

The ratio of variance explained by prosodic factors vs.
surprisal is considered informative in Aylett and Turk (2004,
2006) and in our study, as relatively more focus is put on the
hypothesis that the linguistic function of prosody and surprisal is
similar, possibly shared. Namely, prosody is seen as a modulator
of information density. Other studies on duration variability and
the influence of information theoretic factors, e.g., Jaeger (2010);
Seyfarth (2014) andCohen Priva (2015) included prosodic factors
as important control variables with the assumption that the
effects of both factors are largely independent.

We found a significant positive effect of surprisal on
vowel dispersion. Vowels in high-surprisal contexts were more
dispersed in their spectral characteristics than in low-surprisal
contexts, as expected (Jurafsky et al., 2001, 2002; Aylett and Turk,
2006; Benner et al., 2007). Based on marginal pseudo-R2 values,
surprisal explained a larger quantity of the vowel dispersion
variance than the prosodic factors used here. This result was
contrary to findings in Aylett and Turk (2006), who reported an
overall smaller effect of language redundancy on vowel formants
F1 and F2 than for the prosodic model.

The current study replicates results regarding differences
between vowel dispersion as a function of speech rate. Vowel
dispersion increases with decreasing speech rate (Turner et al.,
1995; Weiß, 2007; Weirich and Simpson, 2014). Vowel formants
move to a more central position in the F1/F2 vowel space under

fast speech rate when investigated in intended tempo deviations
(Turner et al., 1995) and in naturally occurring differences in
speech rate (Weiß, 2007).

In contrast to Schulz et al. (2016) and Aylett and Turk (2006),
we found a positive but non-significant effect of stress on vowel
dispersion. This difference might be due to the weak positive
correlation between surprisal and stress (r = 0.23). Effects for
both variables cannot be fully separated in a statistical model.
In addition, Schulz et al. (2016) analyzed only five languages of
the BonnTempo corpus, DEU, CES, POL, FIN, and FRA. The
present study also includes (American) English, a language which
shows a relatively strong correlation between surprisal and vowel
dispersion [r = 0.26, t(558) = 6.39, p < 0.001]. The factor
Boundary in the prosodic model was not significant in the LMM,
in contrast to previous studies which showed that word and
phrase boundaries complement effects of language redundancy
(Turk, 2010), and that vowels tend to be more distinct in syllables
preceding a phrase boundary (Aylett and Turk, 2006).

Aylett and Turk (2006) emphasized the large degree of
variability of unique or shared contributions of their redundancy
and prosodic model in explaining variance in F1 and F2 of ENG
vowels among different vowel phonemes. The current study also
showed that the impact of surprisal and prosody largely depended
on the investigated vowel identity, although a different measure
of vowel dispersion was used than in Aylett and Turk (2006). The
factor Vowel identity explained 17.5% of variance in the vowel
dispersion measurements. In addition, vowel identities differed
in the magnitude of their dispersion compared to the mean. The
phoneme /i/ was significantly more dispersed than the grand
mean, while vowels /a/ and /e/ were less dispersed than the grand
mean.

Finally, we consider empirical aspects that usually constitute
caveats and limitations of studies similar to the present one:
the estimation quality of prosodic and information theoretic
variables. Regarding the latter, since we used a domain denser
than that of words, namely, phones, it could be of benefit to use
larger n sizes in the language models. This question is particularly
relevant given our results that indicate tri-phone models to show
more robust results than bi-phone models. Despite the fact that
phones are small units and there are only about 40 types per
language, we nevertheless run into data sparsity problems when
n is increased for n-gram model training, especially given the
limited size of available corpora for spoken language. Moreover,
hierarchical structural information such as syllable and word
boundaries, which affect the properties of units on the lower level
(i.e., phones), is captured by contexts of sequences on the same
level (i.e., phone sequences) only if we have models for very long
sequences and extremely large annotated corpora; in practice,
neither is available.We also believe that smaller contexts facilitate
the comparison across languages that have quite diverse syllable
structures. In addition, the relationship between information
density and phonetic structures is assumed to be better reflected
by phoneme language models (Oh et al., 2015).

It would be worth to investigate methods for combining
language models trained on specific levels of linguistic
representation with models for other levels. This approach
is motivated by the insight that, for instance, the phonetic
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encoding of a target phone depends not only on the sequence of
phones preceding and following it (cf. Van Son and Pols, 2003)
but also on the surprisal of the syllable to which it belongs and on
that of the word, etc. This is a major research effort and beyond
the scope of this paper.

There is one crucial limitation of the present study that
concerns read speech. In the BonnTempo task, the speakers read
the material in different tempos several times. Our motivation to
use this type of data was the controlled variation of speech tempo
that would be difficult to elicit in spontaneous speech. At the
same time, the repetition of the same textual material probably
has the most attenuating impact on predictability effects due to
possible familiarization and memorization effects. Whether read
speech is a sub-optimal register to evidence local predictability
effects is not clear.

In a study on final /t/ reduction in Dutch, Hanique and
Ernestus (2011) found that effects of predictability on phonetic
structure were more pronounced in spontaneous speech than
in other speech registers including read speech. Such findings
suggest at the same time that the patterns found by us in read
speech may also have an effect in more spontaneous registers.
On the other hand, van Son et al. (2004) report on correlational
data where they found stronger effects of information content
in read speech than in spontaneous speech. Another correlation
analysis in Van Son and Pols (2003) did not show differences
in speech registers that were repeated (retold stories and
repeated sentences) compared to ad hoc speech. Clearly the

interdependence of speech register, prosody and predictability
harbors unexplored complexities.

To conclude, our findings are generally compatible with a
weak version of Aylett and Turk’s Smooth Signal Redundancy
hypothesis (Aylett and Turk, 2004, 2006), suggesting that the
prosodic structure mediates between requirements of efficient
communication and the speech signal. However, this mediation is
not perfect, as we found evidence for additional, direct effects of
changes in predictability on the phonetic structure of utterances.
These effects appear to be stable across different speech rates in
models fit to data derived from six different European languages.
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