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Abstract

Oneof the mostseriouschallengesfor speechsynthesisis the
systematictreatmentof eventsin languageandspeechthatare
known to have low frequenciesof occurrence.The problems
thatextremelyunbalancedfrequency distributionsposefor rule-
basedor data-driven modelsareoften underestimatedor even
unrecognized.This paperdiscussestheseproblemsin thecon-
texts of morphology, syllabification, segmentalduration and
unit selection,andalsosuggestspossiblesolutions.Thedesign
of databasesfor restrictedapplicationdomains,wherethe dis-
tributionsof linguistic andphoneticfactorsareknown, is also
critically reviewed.

1. Intr oduction
In this paperwe intendto point out two commonconceptsin
speechsynthesisthatweconsiderdelicate,if notmisguidedand
wrong.Thefirst of theseconceptsis theoftennonchalanttreat-
mentof phenomenain languageandspeechthatareknown or
assumedto have low frequenciesof occurrence.

In thecontext of text-to-speechsynthesis(TTS), suchlow-
frequency eventsplay an importantrole in linguistic text anal-
ysis, in the form of extremely uneven word frequency distri-
butions,causedto a largeextentby productive word formation
processes(section2.1),aswell asin thecontext of syllabifica-
tion (section2.2). Heavily skewed frequency distributionsare
alsoobservedin segmentaldurationmodeling,wherethemajor-
ity of relevantfeaturevectorsis sparselyor notatall represented
in trainingdatabases(section2.3). Thefourthareain TTS con-
versionthat is affectedby imbalancedfrequency distributions
is thedesignof acousticunit inventoriesfor data-drivenspeech
synthesis(section2.4).

Thesecondconceptthatweconsiderquestionableis theno-
tion of a“restricted”applicationdomain(section3). Wesuggest
thatwordor syllableconcatenationschemesareonly feasiblein
strictly closeddomains,i.e. thosedomainsthathaveafixedand
unchangingvocabulary.

2. Rareevents
Several phenomenain languageandspeechcanbe character-
izedasbelongingto theLNRE classof distributions.LNRE is
theacronym for Large Numberof Rare Events. LNRE classes
have thepropertyof extremelyuneven frequency distributions:
while somemembersof theclasshave a high frequency of oc-
currence,i.e. they aretypeswith a large token count,thevast
majority of the classmembersis extremelyrare. In our work
on Germanand multilingual speechsynthesis[1, 2] we have
encounteredLNRE distributionsin threecontexts: in linguistic

text analysis,in segmentaldurationmodeling,andin acoustic
inventorydesign.

Many TTS systemsrely on a full-form pronunciationdic-
tionaryin conjunctionwith genericpronunciationrules.Words
in theinputtext arelookedupin thepronunciationdictionaryor,
if not listedthere,transcribedby rule. Themainproblemwith
this approachis the productivityof word formationprocesses,
both derivational and compositional,in particular in German
but moregenerallyin almostany naturallanguage.

The work of Harald Baayen[3] reveals that monomor-
phemiccontentwords, viz. nouns,adjectives and verbs,are
outsidethe LNRE zone,but that word frequenciesof affixes,
for instance,whicharethemainmeansof derivation,have pro-
totypical LNRE distributions. The LNRE zone,accordingto
Baayen,is the rangeof samplesizeswhereonekeepsfinding
previously unseenwords,no matterhow large the samplesize
is. For word frequency estimations,evenlargecorpora(tensof
millions of words)aregenerallywithin the LNRE zone. This
meansthat in open-domainTTS, the probability of encoun-
tering previously unseenwords in the input text is very high.
A TTS systemthereforeneedsto be capableof analyzingun-
known words(section2.1).

Syllable type frequency distributions in languageswith
complex syllable structure, suchas English or German,also
display typical LNRE characteristics. A few hundredsylla-
ble typesaccountfor the majority of realizedsyllable tokens
in speechproduction, whereasthe vast majority of syllable
typesare very rarely used. Preferredapproachesto syllabifi-
cationarethereforethosethatcanassignprobabilitiesto under-
representedor evenunseensyllabletypes(section2.2).

Similarly unpleasantfrequency distributionsare observed
in segmentalduration modeling(section2.3). The factorsand
featuresthat have an effect on the durationof speechsounds
jointly definealargefeaturespace;for EnglishandGermantens
of thousandsof distinct featurevectorsexist [4, 5]. Durational
featurevectorsbelongto the LNRE classof distributions: the
majority of observed featurevectorshasa very low frequency
of occurrence.

LNRE distributions also poseproblemsfor the designof
acoustic unit inventories for concatenative speechsynthesis
(section2.4). This observation holds especiallyfor corpus-
basedsynthesissystemsthat perform an online unit selection
from alargeannotatedspeechdatabase.But diphone-basedsys-
temsusinga pre-definedunit setmaybeaffectedaswell.

2.1. Mor phological productivity

Text input to a general-purposeTTS systemis likely to con-
tain words that arenot listed in the TTS lexicon. All natural
languageshave productive word formationprocesses,and the



communityof speakersof a languagecreatesnovel words(and
names)asneedarises.

It has beensuggestedthat productivity be distinguished
from creativity [6]. Productivity is a notion basedon linguis-
tic rules.Wordsformedby meansof productive morphological
processesareusuallynot noticedby the listenerasnew words
and not formed by the speaker by any conscious,intentional
effort. Creativity, in contrast,is not restrictedto morphology
but rathera generalcognitive ability. Words formed by cre-
ativeprocessesarecarefullyandintentionallyproducedandof-
tenperceivedasnew words.

Productive word formationpatternsareunlimited. In Ger-
man and a numberof other languages,derivation and com-
poundingare the most important meansof productive word
formation,andthey cangeneratean unlimited numberof new
words.Theconstructionof afinite, exhaustive lexiconthatcon-
tainsall thewordsin thelanguageis thereforeimpossible.

In a languagelike German,wherederiving thepronuncia-
tion of awordfrom its spellingis difficult andwherepronuncia-
tion andsyllabicstressrulesrequireaccessto themorphological
structureof theword,aTTSsystemneedsacomponentthatlin-
guisticallyanalyzeswordsthatareunknown to thesystem.This
is wherethe distinctionbetweenproductivity andcreativity is
relevant. Productive processesaremorphosyntacticallyandse-
manticallyregular: thisis whynew wordsformedby productive
processesarenotconsciouslycoinedandnotrecognizedasnew
words.It is thereforeusefulto know whichwordformationpat-
ternscanbemodeledby rulesandwhichoneshave to belisted,
andquantitative studiescanprovide thisknowledge.

A simplestatisticalestimateof productivity hasbeensug-
gested,andapplied,by Baayen[7]. Baayen’s approachexploits
theobservation thattheproportionof hapaxlegomenain a text
databaseis muchhigherfor intuitively productive affixesthan
for unproductive ones. Hapaxlegomenaareheredefinedrel-
ative to a text corpus. Given a particularmorpheme,all word
typesin thecorpusthatareformedby this morphemearelisted
and their frequenciesarecounted;a hapaxlegomenonis a—
morphologicallycomplex—word type with a token count of
1. Undercertainsimplifying assumptionsthe productivity in-
dex (

�
) of a morphemecan be expressedas the ratio of ha-

paxlegomena( ��� ) to thetotalnumberof tokenscontainingthat
morphemein thedatabase( � ):

��� �����	� .
An analysiscomponentfor morphologicallycomplex un-

known words(andnames)thatincorporatesBaayen’s approach
hasbeenintegratedinto the linguistic text analysisof the Bell
LabsGermanTTS system[1]. This componentis basedon a
modelof themorphologicalstructureof wordsandthephono-
logicalstructureof syllables,building onaquantitativestudyof
theproductivity of wordformingaffixes[8]. Thus,theTTSsys-
temhasthecapabilityto morphologicallydecomposeunknown
wordsandto providefor thesewordsanannotationwhosegran-
ularity approachesthatof theannotationof wordslisted in the
TTS lexicon.

Theproductivity index (
�

) correspondsto theslopeof the
vocabulary growth curve pertainingto a given morphological
process.Thevocabulary is definedasthenumberof types(or
lemmata)thattheprocesscangenerate.A truly productive pat-
ternmaybecharacterizedby aninfinite vocabulary, whereasan
unproductive patternmaybeexpectedto haveafinite, andoften
quite small, vocabulary [9]. Basedon a given text corpus,we
obtainthevocabulary growth curve of a morphologicalprocess
by plottingthenumberof distincttypesobservedasweincrease
thenumberof tokensformedby theprocess(Figure1). Thevo-
cabulary growth curve of an unproductive processwill flatten
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Figure 1: Typical shapes of vocabulary growth curves
(



= types, � = tokens): the curve pertainingto an unproduc-
tive patternwill flattenout (left panel),whereasthevocabulary
of a productive patternwill continueto grow indefinitely(right
panel).Adaptedfrom [9].

outandconvergeto aconstantvalueafterenoughdatahasbeen
sampled.Thevocabulary of a productive patternwill continue
to grow indefinitely.

More recently, Baayenhasdevelopedmuch more elabo-
ratestatisticalmethodsfor estimatingword frequency distribu-
tions andmorphologicalproductivity [3] and,moregenerally,
for coping with the extremely uneven LNRE distributions of
word frequencies.Oneimportantconclusionfrom this work is
that the vocabulary growth curve, and thereforealso the pro-
ductivity index (

�
), is a function of the samplesize; in other

words, it is hard,if not impossible,to comparethe productiv-
ity of two morphologicalprocesseswith substantiallydiffering
samplesizes.Anotherrelevant implication is that the text cor-
porausedin theearlierstudies[10, 8] weretoosmallfor reliable
estimates—toosmallbyseveralordersof magnitude.As it turns
out,evenlargecorpora(tensof millions of words)aregenerally
still within theLNRE zone;thatis, asthesamplesizeincreases,
onekeepsfinding previously unseenword types,andit is hard
to predictthefuturegrowth rate.

In a researchproject on derivational and compositional
morphologyof German(DeKo, [11]) a numberof problems
pertainingto the applicationof the productivity measureswas
encountered.For instance,it wasdemonstratedthatcorpusdata
have to bethoroughlypreprocessedbeforethey canbeusedin
thestatisticalmodelsappliedto thequantitativeanalysisof mor-
phologicalproductivity [12, 9]. It wasfurthershown thatonly
manualclean-upandcorrectionwill yield reliableinput to the
models.Unfortunately, manualpreprocessingis not feasiblefor
corporaof the requiredsize,andautomaticprocedures,while
yielding someimprovementover the uncorrecteddata,arenot
sufficiently reliable[12, 9].

Figure2 displaysraw andmanuallycorrectedvocabulary
growth curves for the Germanadjective-formingsuffixes -bar
and-sam. Only thecorrectedcurvesreflecttheexpectedchar-
acteristics:-bar is intuitively productive, whereas-samis intu-
itively unproductive. Theraw curvessuggestthatthetwo mor-
phologicalpatternshave verysimilarproductivity rates.

Tomakemattersworse,automaticpreprocessingis noteven
reliableasa basisfor furthermanualcorrectionbecauseit has
beenshown to producemisleadingresultsin many cases[9].
Weconcludethatsufficiently reliablecorrectionresultscanonly
be achieved by a morphologysystemthat, besidesderivation
and compoundinganalysis(and generation)capabilities,also
computesthehierarchicalstructureof complex words,building
on a modelof theorderin which word formationprocessesop-
erateona simplex form.
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Figure2: Vocabularygrowth curvesof theGermanadjective-formingsuffixes-bar and-sam. Theraw curves(continuouslines)suggest
thatthetwo morphologicalpatternshaveverysimilarproductivity rates.Only aftermanualcorrection(dottedlines)dothecurvesreflect
theexpectedcharacteristics:-bar is intuitively productive,whereas-samis intuitively unproductive. Adaptedfrom [9].

2.2. Syllabification

Syllabificationis an importantcomponentof speechsynthesis
systems.In many languagesthepronunciationof phonemesis
afunctionof their locationin thesyllablerelativeto thesyllable
boundaries.Locationin thesyllablealsohasa strongeffect on
thedurationof thephoneandon thetemporalalignmentof the
fundamentalfrequency contourwith the segmentalchain [13,
14], andis thereforeacrucialpieceof informationfor segmental
durationandintonationmodels.

The phonotacticsof English and Germanallow complex
consonantclustersin both theonsetandthe codaof syllables.
The maximumnumberof consonantsin the onsetis 3 in both
languages.In Germancodas,clustersof up to 5 consonantscan
beobserved,whereasEnglishallows up to 4 codaconsonants.
Thus,the maximumnumberof consecutive consonantsacross
syllableboundariesis 9 in German,and7 in English.

Thecomplexity of syllableonsetandcodastructureposes
serious problems for a syllabification algorithm because—
despiterestrictionsasto which consonants,or classesof con-
sonants,may occur in any given position within the onsetor
codaof asyllable—ambiguousandmultiplealternativesyllable
boundarylocationsareusuallyobservedin polysyllabicwords,
notablyin compounds.

Syllablestructurein EnglishandGermandisplaystypical
LNRE characteristics. It has beenobserved that out of the
morethan12,000distinctsyllabletypesin eitherlanguage,only
about500typesaresystematicallyandregularlyusedin speech
production. According to the conceptof a mental syllabary
[15, 16], thesehigh-frequency syllablesarestoredascomplete
gesturalprogramswhich are executedduring speechproduc-
tion, whereasthevastmajority of low-frequency andvery rare
syllablesis assembledonlineby usingthesegmentalandmetri-
cal informationprovidedby thephonologicalencoder.

Typicalstate-of-the-artsyllabificationmethodscanbechar-
acterizedeitherassupervisedlearningof syllablestructurefrom
annotatedtrainingdataor asunsupervisedlearningfrom unan-
notatedtraining data. For instance,the finite-statesyllabifica-
tion methodusedin someversionsof theBell LabsTTSsystem
[1, 17] wasconstructedby obtainingsyllablesaswell astheir
internal structuresand their frequenciesof occurrencefrom a
lexical database.Weightson the transitionsbetweenstatesof

thetransducerwerederiveddirectly from thefrequenciesof on-
set,nucleusandcodatypesin thedatabase.Theweightsreflect
theplausibilityof onset,nucleusandcodatypes.

This approachrelieson the coverageof syllable typesby
the training data. A post-hochand-tuningprocedurehasbeen
provided to copewith syllabletypeswhosenumbersof obser-
vationsareextremelylow or which do not occurin thetraining
dataat all.

An unsupervisedtraining method on unannotateddata
which inducesprobabilisticsyllableclassesby meansof multi-
variateclusteringhasalsorecentlybeenproposed[18]. Thisap-
proachappliesmultidimensionalEM-basedclusteringto sylla-
blestructure,modelingeitherthreedimensions(onset,nucleus,
coda)or fivedimensions(stressandposition,additionally).The
advantageof this probabilisticmethodis thattheinducedmod-
els assignprobabilitieseven to syllabletypesthatarenot cov-
eredby thetrainingdatabase,thusofferingareasonablesolution
to theLNRE problemin thedomainof syllabification.

2.3. Duration modeling

Thetaskof thedurationcomponentin aTTSsystemis topredict
thetemporalstructureof syntheticspeechfrom symbolicinput.
Among the most importantfactorsin many languagesare the
positionof theword in thephraseor utterance,theaccentstatus
of the word, syllabic stress,andthe segmentalcontext. These
factorsandtheir valuesdefinea largefeaturespace.

The prevalent type of durationmodel is a sequentialrule
systemsuchasthe oneproposedby Klatt [19]. Startingfrom
someintrinsic value,the durationof a segmentis modifiedby
successively appliedrules,whichareintendedto reflectcontex-
tual, positionalandprosodicfactorsthathave a lengtheningor
shorteningeffect.

Whenlargespeechdatabasesandthecomputationalmeans
for analyzingthesecorporabecameavailable,new approaches
were proposedbasedon, for example,Classificationand Re-
gressionTrees(CART [20]) [21, 22] andneuralnetworks [23].
It hasbeenshown, however, thatevenhugeamountsof training
datacannotexhaustively cover all possiblefeaturevectors[24].

Manualdatabaseconstruction,on the other hand,is only
feasibleif the factorial spaceis not too large. Unfortunately,
at least17,500distinct featurevectorshave beenobserved in



AmericanEnglish[25].
Themajorityof observedfeaturevectorshasavery low fre-

quency of occurrence.Durationalfeaturevectorsthusbelongto
theLNRE classof distributions. It would be misguided,how-
ever, to acceptpoor modelingof the rarevectorsor to ignore
themaltogether. The reasonis that the cumulative frequency
of rarevectorsall but guaranteestheoccurrenceof at leastone
unseenvectorin any givensentence.In ananalysisfor English,
vanSanten[4] computeda probabilityof morethan95%thata
randomlyselected50-phonemesentencecontainsa vectorthat
occursatmostoncein a million segments.

Therefore,thedurationmodelhasto becapableof predict-
ing, by someform of extrapolationfrom observed featurevec-
tors,durationsfor vectorsthatareinsufficiently representedin
the trainingmaterial.CART-basedmethodsandothergeneral-
purposepredictionsystemsareknown for copingpoorly with
sparsetraining dataand,mostseriously, with missingfeature
vectortypesbecausethey lackthisextrapolationcapability. Ex-
trapolationis further complicatedby interactionsbetweenthe
factors.

Factorinteractionsalsoprevent simpleadditive regression
models[26], which have good extrapolationproperties,from
being an efficient solution. This assertionholdseven though
theinteractionsareoftenregularin thesensethattheeffectsof
onefactordonot reversetheeffect of anotherfactor.

The sums-of-productsmethod proposedby van Santen
[27, 24] has beenshown to be superior to CART-basedap-
proaches,for several reasons[28]. First, it needsfar fewer
training data to reachasymptoticperformance. Second,this
asymptoticperformanceis betterthanthatof CART. Third, the
differencein performancegrows with thediscrepancy between
training andtestdata. Fourth,addingmoretraining datadoes
not improve theperformanceof CART-basedapproaches.

Building a sums-of-productsdurationmodelrequireslarge
annotatedspeechcorpora,sophisticatedstatistical tools, and
the type of linguistic andphoneticknowledgethat is incorpo-
ratedin traditionalrule systems.The approachusesstatistical
techniquesthatcancopewith theproblemof confoundingfac-
torsandfactorlevelsand,mostimportantly, with datasparsity
causedby theLNRE frequency distributionsof durationalfea-
turevectors.

VanSanten’s methodhasbeenappliedto a numberof lan-
guagesincludingAmericanEnglish[25,24],MandarinChinese
[29], Japanese[30], andGerman[5].

2.4. Concatenative speechsynthesis

Evidently, LNRE distributionsalsoplay a crucial role in data-
driven concatenative speechsynthesis.BeutnagelandConkie
[31] reportthatmorethan300diphonesoutof acompletesetof
approximately2,000diphones,which serve asthecoreacous-
tic unit inventoryin the demiphone-basedAT&T TTS system,
occuronly oncein a two-hourdatabaserecordedfor unit selec-
tion.

Theserarediphoneswereactuallyincludedin thedatabase
only by way of embeddingthemin carefully constructedsen-
tences;they werenotexpectedto occurnaturallyin therecorded
speechat all. Theauthorsobserve that theunit selectionalgo-
rithm preferstheserarediphonesfor targetsentences,insteadof
concatenatingthemfrom the smallerdemiphoneunits, which
meansthat they alsogeneratesuperiorsynthesisquality com-
paredto thedemiphonesolution.

For theconstructionof thedatabasefor anew Japanesesyn-
thesissystem[32] 50,000multi-form unitswerecollectedthat

coverapproximately75%of Japanesetext. Multi-form unitsare
designedto cover all Japanesesyllablesandall possiblevowel
sequences,realizedin a variety of prosodiccontexts. In con-
junctionwith anothersetof 10,000diphoneunits this database
accountsfor 6.3 hoursof speech.Given the relatively simple
syllablestructureof Japanese,theemphasisshouldbe on only
75%coverage.

Increasingthe unit inventory to 80,000doesnot result in
a significantlyhighercoverage,andthe growth curve appears
to converge to about80% [32, Fig. 2]. The authorsstatethat
for unrestrictedtext the actually requirednumberof units ap-
proachesinfinity, and that the majority of the units is rarely
used—acharacteristicof LNRE distributions. Thequestionof
how to getto near100%coverageremainsunanswered,in fact
evenunasked.

3. Closeddomains
It hasoftenbeensuggestedthatfor restricteddomainsaversion
of the unit selectionsynthesisstrategy might be feasiblethat
exploits units larger thandemiphones,phones,or diphones.In
the mostrecentversionof the synthesiscomponentdeveloped
in the Verbmobilproject [33], a word concatenationapproach
hasbeenimplemented[34].

The Verbmobil domain comprisesa fixed vocabulary of
about10,000words from the travel planning domain. Each
word in the domain’s lexicon was recordedin a variety of
prosodicand positionalcontexts. The only signal processing
stepappliedwasa simpleamplitudesmoothingon all adjacent
wordsthatdo notco-occurin thedatabase.

Unfortunately, theVerbmobildomainis notentirelyclosed.
Its lexiconhasaloopholethatallowspropernamesto sneakinto
thedomain.To synthesizethesenames,andnovel wordsin gen-
eral,thesystemresortsto diphonesynthesis.Thisstrategy isnot
altogethersatisfactorybecausethe quality differencebetween
phrasesgeneratedby word concatenationandthehigh-entropy
novel wordssynthesizedfrom diphonesis too striking. A fea-
sible alternative might be to generatesyllablesfrom phoneme
realizationsandwordsfrom syllables[34].

A systembasedonwordandsyllableconcatenationhasalso
beenpresentedfor the limited domainof weatherforecasting
[35]. Thesystemhasaninventoryof 2,000recordedmonosyl-
labicandpolysyllabicwords.

Therearenumerousproblemswith this approach.For in-
stance,monosyllablesareembeddedin a fixed-context carrier
phraseduring recordings,making them almostautomatically
inappropriatefor recombination.Also, someof therecombina-
tion rulesappearto beof anad-hocnature,suchasto cut three
periodsfrom thestartor endof syllableswhoseonsetsor codas
areperiodic. The authorsadmit that suchruleswill probably
have to bemodifiedfor othervoicesor recordingrates.

Theseproblemsnotwithstanding,theauthorsareconfident
that their synthesisstrategy can be extendedto much larger
databasesandto unrestrictedTTS scenarios.In thelight of the
depressingresultsof van Santen’s [36] studyon the coverage
index of trainingdatabasesfor unit selectionsynthesis,we are
led to believe thattheir optimismis unwarranted.

4. Conclusion
TheLNRE characteristicsof languageandspeechareoftenun-
recognizedandthepertinentproblemsunderestimated.For ex-
ample,it is a commonattitudeto acceptpoormodelingof less
frequentlyseenor unseencontexts because“they arelessfre-



quently usedin synthesis”[37, page228]. The perversena-
tureof LNRE distributionsis thefollowing: thenumberof rare
eventsis so large that the probability of encounteringat least
oneof theseeventsin a particularsample,suchasin a sentence
to besynthesized,approachescertainty.

In this paperwe have discussedchallengesby LNRE prop-
ertiesto four componentsof aTTSsystem:morphologicalanal-
ysis,syllabification,segmentaldurationmodeling,andacoustic
inventorydesign. In the context of lexical andmorphological
analysiswe have arguedthata TTS systemshouldbeequipped
with a componentthat performsan adequateanalysisof un-
known words,yielding an annotationof the internalstructure
of suchwords that is sufficient to drive general-purposepro-
nunciationrules. The unknown word analysiscomponentim-
plementedin the Bell LabsGermanTTS system[1] relieson
a grammarof thestructureof morphologicallycomplex words
and incorporatesresultsfrom a study on the productivity of
word formationprocesses.Furtherimprovementsmay be ex-
pectedfrom a morphologysystemthat,besidesderivation and
compoundinganalysis(andgeneration)capabilities,alsocom-
putesthehierarchicalstructureof complex words,building ona
modelof theorderin which word formationprocessesoperate
on a simplex form. Sucha systemwould apply sophisticated
statisticalmodelsthatarecapableof dealingwith LNRE prop-
erties,to thequantitativeanalysisof morphologicalproductivity
[12, 9].

A probabilistic approachto syllabification has beendis-
cussedthat offers a reasonablesolution to the LNRE proper-
ties of syllabletype frequency distributions. Theadvantageof
this multidimensionalEM-basedclusteringmethodis that the
inducedmodelsassignprobabilitieseven to syllabletypesthat
arenotcoveredby thetrainingdatabase[18].

In the context of modeling segmentaldurationswe con-
cludedthat rarefeaturevectorscannotbe ignored,becausethe
cumulative frequency of rarevectorsall but guaranteestheoc-
currenceof at leastone unseenvector in any given sentence.
Thedurationmodelthereforehasto beableto predictdurations
for vectorsthat are insufficiently, or not at all, representedin
the training material. The suggestedsolution to this problem
was the applicationof a classof arithmeticmodelsknown as
sums-of-productsmodels[27]. Thesemodelshave beenshown
to copewith theproblemof confoundingfactorsandwith data
sparsitycausedby the LNRE frequency distributionsof dura-
tional featurevectors.

No concretesolution has beenoffered for the coverage
problemsencounteredin the context of corpus-basedspeech
synthesis.The uneven performancethat characterizesunit se-
lection basedspeechsynthesissystemscan be partially at-
tributed to complexity and combinatoricsof languageand
speechin general,and to LNRE propertiesin particular. Yet,
we suggestthat the most promisingavenueof researchis to
increasethe coverageof speechdatabasesby carefully defin-
ing the linguistic andphoneticcriteriathat thedatabaseshould
meet.

Thedesignof databasesfor restrictedapplicationdomains,
where the distributions of linguistic and phoneticfactorsare
known, might bea feasiblestepin this direction. Two caveats
werediscussedin this context. First,we have tried to point out
the differencebetween,on the onehand,a strictly closeddo-
mainwith a fixedvocabulary and,on theotherhand,a merely
restricteddomainwith loopholesthatmayrequireamix of syn-
thesisstrategies,possiblyresultingin very uneven speechout-
putquality.
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[8] BerndMöbius, “Word andsyllablemodelsfor German
text-to-speechsynthesis,” in Proceedingsof the Third
International Workshop on Speech Synthesis(Jenolan
Caves,Australia), 1998,pp.59–64.
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