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Abstract
This paper validates a parametric approach to intonation ac-
quisition research [1] using child-directed speech data. An
advantage of this approach is that it can be used for study-
ing child speech as well as adult speech. Within the field
of prosody acquisition it reconciles independent approaches to
child prosody with ToBI-based approaches. In this paper we
substantiate this claim by showing that clusters of parameter-
ized contours obtained from German child-directed speech cor-
relate with GToBI(S) categories, and by elaborating how, alter-
natively, the parameters can be mapped to properties that are
relevant in independent approaches.

Index Terms: intonation, F0 parameterization, clustering,
child-directed speech

1. Introduction
In the field of prosody acquisition two different approaches are
common to describe the development of intonation [2]: the in-
dependent and the relational approach. In an independent anal-
ysis of intonation [3, 4] the child’s productions are not com-
pared to mature models. Intonation contours are described with
reference to properties such as direction (i.e., falling or rising),
accent range (i.e., amplitude of pitch change), and complex-
ity (e.g., changes in direction measured in semitones). For in-
stance [5] report a description of the developing patterns based
on these measurements. In contrast, in a relational analysis, the
child’s productions are compared to a mature model (i.e., the
adult model). A common model for describing mature into-
nation is the ToBI framework [6, 7, 8]. ToBI approaches ana-
lyze intonation contours as sequences of (possibly categorical)
intonation events, where each event can be decomposed into
high and low pitch targets which are aligned with the syllable
structure. Beyond the identification of pitch targets and their
coarse alignment with the syllable structure, finer aspects of the
phonetic realization of these events, such as amplitude of the
pitch movements, or exact peak alignment within syllables, are
not analyzed in the ToBI framework. However, the categories
posited by ToBI or by its language-specific variants are devel-
oped for adult speakers. The problem in applying adult cate-
gories to child speech is the assumption that children with the
beginning of meaningful speech are already capable of consis-
tently using the categories posited by intonational theory.

Against this background we have suggested [1] an auto-
matic method for analyzing F0 contours which is compatible
with both approaches. We proposed to parameterize F0 con-
tours in the vicinity of accented syllables by PaIntE approxima-
tion [9] (see section 2.2). This yields several parameters which
describe the shape of the F0 contour around the accented sylla-

ble. We then identified groups of similar contours by K-means
clustering, reasoning that different clusters may be interpreted
as different intonational categories. First results on data from
one child showed that more clusters could be characterized as
rises or rise-falls than as falling accents until the age of 1;1 [1].
After that the proportion of clusters interpreted as falling ac-
cents increased but the number of different clusters attributed to
falling accents showed that these were still produced with high
variability mainly due to different peak alignment.

This methodology can be used for studying the devel-
opment of intonation in both babbling and meaningful child
speech. Furthermore, our method is compatible with the in-
dependent approach: properties such as accent range, direction,
or complexity, can be derived from the PaIntE parameters. For
comparison of the clusters with the ToBI approach, the clusters
can be mapped to ToBI categories. In this paper, we validate the
idea of mapping clusters to ToBI categories on German child-
directed speech data. The quality of the mapping from clusters
to GToBI(S) [10] categories is evaluated in terms of classifica-
tion accuracy to assess comparability objectively.

2. Method
2.1. Participants and data collection

For this study we examined German child-directed speech of
two female adult speakers, AD and AL. The data amounts to
2635 accented syllables (AD 1613, AL 1022). The recordings
are part of the Stuttgart Child Language Corpus [11] and took
place at the women’s homes in familiar play situations with
their children aged between 3;4 and 4;6 while looking at picture
books or playing with toys. Thus the data represent spontaneous
child-directed productions. The recordings were made with a
wireless microphone AKG CK 97-L and a Marantz PMD670
Flash Recorder with a 2 GB CF-Card at a sampling rate of 48
kHz. All recordings were transferred to a computer worksta-
tion, downsampled to 16 kHz and manually annotated on the
segment, syllable and word level, and manually prosodically la-
beled according to GToBI(S) [10].

GToBI(S) is an adaptation of ToBI to German and provides
5 basic types of pitch accents with different discourse interpre-
tations: L*H, H*L, L*HL, HH*L, and H*M. These contours
can also be described as rise, fall, rise-fall, early peak, and styl-
ized contour, respectively. For L*H and H*L, allotonic variants
exist, for instance, monotonal L* for L*H, or monotonal H* for
H*L. The main differences to GToBI[12] are (i) that with re-
gard to their function in discourse, H* and L* are claimed to be
equivalent to H*L and L*H, respectively; and (ii) that GToBI(S)
does not distinguish between L+H* and L*+H accents—the for-
mer would correspond to just an H* or to a sequence of an allo-
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Figure 1: Schematic of the PaIntE approximation function, re-
produced from [9]. The approximation window represents three
syllables, where the accented syllable is indicated by the aster-
isk (σ*). Peak height is determined by parameter d, amplitudes
of rise and fall correspond to parameters c1 and c2, respectively,
and peak alignment depends on the b parameter.

tonic variant of a preceding H*L followed by an H* accent, the
latter would correspond to an L*H accent in GToBI(S).

Inter-observer reliability was assessed on 10% of the an-
notated data. Inter-observer agreement on the segmental and
syllable levels was 94.5%, 88.3% on the word level, and 77.8%
on the prosodic level.

2.2. PaIntE parameterization

PaIntE stands for “Parameterized Intonation Events” [9] and
was originally developed for F0 modeling in speech synthesis.
PaIntE approximates stretches of F0 by a phonetically moti-
vated function which is the sum of a rising and a falling sigmoid
with a fixed time delay. The parameterization uses six parame-
ters, viz. the height of the F0 peak (parameter d), the temporal
position of the peak in the syllable (b), and the amplitudes (c1,
c2) and the steepness (a1, a2) of the rising and falling sigmoids.
A schematic of the function is given in Figure 1. The time axis
is normalized to the lengths of the syllables, e.g., the peak is at
the beginning of the accented syllable if b=0, and at its end if
b=1.

In contrast to other F0 parameterization or stylization ap-
proaches, PaIntE attempts to directly model properties of F0
contours that have been claimed to be linguistically meaning-
ful. For instance, parameters c1 and c2 are intended to capture
the amplitude of the pitch movement. Parameter b quantifies
the alignment of the peak with the syllable structure.

2.3. Cluster analysis

K-means clustering is a hard clustering method which partitions
the data into k clusters. The number of clusters k has to be spec-
ified beforehand. Each cluster is defined by its centroid: each
observation belongs to the cluster with the nearest centroid.

For the experiments presented here, we used R’s [13]
kmeans function, which by default implements the Hartigan-
Wong method [14]. We used kmeans to cluster AD’s data,
varying k from 2 to 9, with 30 random starts. In this setting

kmeans clusters the data 30 times for each k, using different
initial cluster centers, and picks the clustering for which the sum
of squares from points to the assigned clusters is minimal. We
used all six PaIntE parameters as attributes; however, we con-
verted parameters c1 and c2, which specify the amplitude of
the F0 movement, from Hertz to semitones in order to model
human perception more closely [15], and to achieve a more di-
rect correspondence to the independent approach, which defines
maturity of accent range in terms of semitones [5]. All param-
eters were then z-scored to eliminate speaker-specific effects of
pitch range and key and to match them with respect to scaling,
which ensures that all parameters have approximately equal im-
portance in clustering.

3. Results
3.1. Comparing PaIntE to independent approaches

For an independent analysis comparable to [5] we can derive
properties such as range, direction, and complexity from the
cluster centers. High maturity according to [5] in falling ac-
cents is indicated if the accent range is greater than 4 semitones,
in rising accents if the accent range is greater than 3 semitones.
These properties can be directly derived from parameters c1 and
c2, using d as a reference. Second, accent direction can be com-
pared to that in mature productions by comparing parameters
c1 and c2, i.e., by the relation between rise and fall amplitudes.
An overall fall is given for c2>c1 and an overall rise for c1>c2.
Parameters c1 and c2 can also capture complexity to some ex-
tent. A simple heuristic could be that if both c1 and c2 exceed
a certain threshold, say, 1 semitone, the contour can be charac-
terized as rise-fall, indicating greater complexity than rise-only
or fall-only contours.

Please note that for an independent analysis, the cluster
analysis is not immediately necessary. Clustering groups simi-
lar realizations together. In each such group of similar realiza-
tions, the centroid can be interpreted as the “prototypical” real-
ization. Thus, range, accent direction or complexity can either
be regarded separately for each instance or they can be regarded
for the centroids only, with each centroid representing a cluster
of similar realizations.

3.2. Comparing PaIntE to ToBI approaches

[16] has shown on a prosodically annotated corpus of a male
German speaker that the PaIntE parameter distributions of the
GToBI(S) accents indeed capture the defining properties of Ger-
man pitch accents. For instance, H*L accents usually have their
peak in the middle of the accented syllable, which is consistent
with a high pitch target associated with this syllable, as claimed
by GToBI(S). In contrast, in non-final L*H accents, the peak
can occur in the middle of the post-accented syllable, again in
line with GToBI(S) expectations. Also, falling (H*L) accents
usually have greater c2 than c1 values (i.e., the amplitude of the
falling sigmoid is greater than that of the rising sigmoid); vice
versa for rising (L*H) accents.

These observations motivate the idea that there is a corre-
spondence between GToBI(S) events and PaIntE parameters.
Since the clustering identifies groups of similar contours, it
stands to reason that the clusters might represent typical in-
stances of specific GToBI(S) events.1

Thus, there are two ways to investigate the relationship be-

1This idea was investigated in detail by [16], however, with slightly
different aims and different attributes.
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Figure 2: Classification accuracies for 2 to 9 clusters on the
clustering data (solid line) and on AL’s data (dashed line). The
baselines are the relative frequencies of the most frequent ac-
cents in AD’s (dot-dashed line) and AL’s (dotted line) data.

tween PaIntE parameters and GToBI(S) events. One is to detect
a direct mapping from the parameters to the GToBI(S) events.
The other way is to investigate the mapping from clusters to
GToBI(S) events, i.e. the cluster analysis is an intermediate step
in mapping from parameters to GToBI(S) categories.

We claim that the clustering approach is the more inter-
esting one for analyzing prosody acquisition because it allows
to find prototypical realizations in the child’s productions in-
dependent of the established adult GToBI(S) categories, i.e.,
it allows to identify “categories” at each developmental stage,
and to compare these “categories” to mature categories in a sec-
ond step. Alternatively, without the intermediate clustering, one
would directly compare each production of the child to mature
GToBI(S) categories.

We will pursue both approaches here; the former because
we consider it the more appropriate way in child prosody; the
latter in order to evaluate if the intermediate clustering step ob-
scures the correlation between parameters and categories.

3.2.1. Mapping clusters to categories

If the clustering serves to identify “categories” in intonation
contours, then we would expect that for the adult data in-
troduced above, these categories correspond well to the adult
GToBI(S) categories. To assess the correspondence between
clusters and GToBI(S) categories, we assigned categories to
the clusters obtained on AD’s data, in line with our claim that
the clusters represent different categories. Each cluster was as-
signed the GToBI(S) accent which occurred most frequently in
the cluster. We then evaluated for how many accents their man-
ually annotated “true” category did indeed correspond to the
category which had been assigned to their cluster. This pro-
cedure was also employed in [16]. The score obtained in this
evaluation can be interpreted as classification accuracy: if the
clusters were used to classify GToBI(S) accents based on the

observed PaIntE parameters, this score indicates the percentage
of correct decisions.

Please note that this procedure is not strictly unsuper-
vised, as the decision of which category corresponds to a
cluster is based on the clustering data and requires the cate-
gories to be known beforehand. Of course, we hope that the
cluster-to-category assignment captures general properties of
the GToBI(S) categories and not only properties specific to the
clustering data, so it should hold for other data as well. To as-
sess whether the cluster-to-category assignment is indeed valid
for other data, we applied the clustering obtained on AD’s data
to AL’s data by assigning each datapoint of the AL data to the
nearest cluster center obtained on AD’s data. We then evalu-
ated, analogously to the evaluation of AD’s data, in how many
cases the category assigned to the cluster based on AD’s data
matched the manually annotated “true” GToBI(S) category.

Both classification accuracies, the one obtained directly on
AD’s clustering data, and the one obtained on AL’s data us-
ing AD’s clusters and cluster-to-category assignment, are de-
picted in Figure 2, as a function of number of clusters. The
solid line indicates the classification accuracy obtained on AD’s
original clustering data. As can be seen, accuracies of between
approx. 60 and 64% are reached. Interestingly, the accuracies
on AL’s data (dashed line) are even higher and can reach 70%.
For comparison, the baseline accuracies, i.e., the accuracy that
can be reached if one simply classifies all accents as belong-
ing to the most frequent GToBI(S) category, are indicated by
the dot-dashed (AD) and dotted (AL) lines. They are at 44.0%
and 49.2%, respectively. The results thus indicate a much bet-
ter than chance correspondence between clusters and GToBI(S)
categories.

3.2.2. Mapping parameters to categories

In order to get an impression of the classification accuracy one
could obtain by directly mapping from PaIntE parameters to
categories, we used WEKA [17] to train classifiers to predict
GToBI(S) accents based on the same attributes as we have used
for clustering. We tried all 69 learning schemes available in
WEKA 3.7.1 which were applicable to the present problem, us-
ing the default settings except for IBk (instance-based learning),
where the default setting with k=1 would have yielded the IB1
scheme. Here, we used k=20. The classifiers were trained and
evaluated on AD’s data using 10-fold cross validation. Figure 3
presents an overview. Classifiers are listed in the order of their
performance. We show only every other scheme to save space;
the remaining schemes still give an impression of the classifi-
cation accuracies. The names are the original scheme names in
WEKA. The vertical solid line is at 63%, which was approx. the
classification accuracy that could be reached in the clustering
experiments.

It can be seen that not all learning schemes are equally suit-
able to the present problem. However, various schemes yield
accuracies of greater than 60%, and many of them yield rates
that slightly exceed the accuracies obtained in the clustering ex-
periments. Thus the results show that the clustering approach
serves to identify groups of similar instances that correspond
well to the GToBI(S) categories: classification accuracy is only
slightly lower than the accuracy that can be obtained when di-
rectly training classifiers to predict the categories. Beyond pro-
viding a reference for evaluating the correspondence between
clusters and categories, these results indicate the strength of the
correspondence between PaIntE parameters and GToBI(s) cate-
gories in general, without the intermediate clustering step.
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Figure 3: Estimated classification accuracies (in percent) for
classifiers trained on AD’s data, evaluated by 10-fold cross-
validation using WEKA. See text for further details.

4. Conclusion
This study intended to verify that our methodology, viz. the pa-
rameterization of F0 contours in combination with a clustering
technique, is suitable for identifying intonational “categories”.
The main motivation for introducing this methodology lies in
the fact that it combines advantages of existing frameworks for
analyzing child prosody. We can derive range, direction and
complexity of the contour either from the cluster results or di-
rectly from the PaIntE parameterization, which permits a com-
parison of our results to findings obtained in the independent ap-
proach. Alternatively, we can identify the GToBI(S) accent cor-
responding to each cluster for compatibility with the relational
approach. Using the PaIntE parameterization, we can capture
fine phonetic detail such as peak alignment within syllables and
rise and fall amplitudes in realizations of accent contours. In
our opinion, an interesting advantage of the clustering method
is that it attempts to detect “categories” in children’s produc-
tions, and that the development of these categories can be in-
vestigated. These categories can be similar to the adult target
form or vary depending on the children’s limitations in produc-
tion. This method can be applied to infant and child speech
as well as to adult speech. It is thus suitable for longitudinal

studies formally describing the acquisition of intonation in dif-
ferent developmental stages, from pre-linguistic utterances to
multi-word utterances. Because the method is also language-
independent, it facilitates cross-language intonation studies too.
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