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Abstract: Speakers adapt their speech to increase clarity in the presence of back-
ground noise (Lombard speech) [1, 2]. However, they also modify their speech to
be efficient by shortening word duration in more predictable contexts [3]. To meet
these two communicative functions, speakers will attempt to resolve any conflicting
communicative demands. The present study focuses on how this can be resolved
in the acoustic domain. A total of 1520 target CV syllables were annotated and
analysed from 38 German speakers in 2 white-noise (no noise vs. -10 dB SNR)
and 2 surprisal (H vs. L) contexts. Median fundamental frequency (F0), intensity
range, and syllable duration were extracted. Our results revealed effects of both
noise and surprisal on syllable duration and intensity range, but only an effect of
noise on F0. This might suggest redundant (multi-dimensional) acoustic coding in
Lombard speech modification, but not so in surprisal modification.

1 Introduction

It is known that exposure to background noise will trigger speech adaptation, also known as
‘Lombard speech’ [2]. Its goal is to enhance communication in challenging and degraded in-
teractive situations. Such speech adaptation often takes the form of increased loudness, higher
pitch, expanded vowel space, hyper-articulation, and lengthening [4, 5, 6], with perceptual con-
sequences of improved intelligibility [7, 8].

At the same time, speakers are reported to reserve effort and adopt an efficient communi-
cation strategy. Therefore, they tend to produce more reduced forms or shorter durations for
predictable/probable messages. This predictability effect reflects a tendency towards commu-
nicative efficiency, when the sender and receiver can achieve successful communication with
minimal effort on average in a reliable channel. There is a growing body of research suggesting
the pervasiveness of predictability in language, as manifested in phonetic reduction of words
that have higher n-gram probabilities [3, 9, 10], or choices of linguistic/syntactic units [11].
This entails that speaker’s choices and listener’s preferences are affected by the probability and
frequency of occurrence of such units. There are several measures to quantify the amount of in-
formation conveyed in a message [12]. One of them is surprisal. Surprisal captures the intuition
that linguistic expressions that are highly predictable in a given context convey less information
than those that are unexpected. surprisal is defined as the contextual predictability of a unit and
can be used as a measure of the amount of information that is conveyed by that unit in terms of
bits, using Equation (1) where S stands for surprisal and P for probability:

S(uniti) =−log2P(uniti|Context) (1)

However, if the channel is unreliable, for instance in a noisy environment, the speaker will
need to reconsider the advantages and disadvantages of efficiency in the context of predictability
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[13]. In an unreliable channel, an efficient coding of a message might potentially increase
the likelihood of being mis-heard and mis-understood. The primary goal of this study is to
investigate the effects of background noise and contextual predictability (defined as surprisal)
on three features extracted on the syllable level: duration, intensity, and fundamental frequency
(F0). We tested whether an unreliable noisy channel will trigger additive or interactive effects
on speech enhancement arising from surprisal. We expected that Lombard speech and surprisal
would interactively affect our acoustic variables, because speakers will enhance high surprisal
units more than low surprisal units in noise condition. This strategy will allow speakers to be
both informative and efficient.

2 Methods

2.1 Participants

Thirty-eight native German speakers were recruited (12 M, 26 F in the range of 19-60 years),
with no known hearing and speaking impairments. We adopted the relatively wide age range
to include more participants, on the basis of the observation that young adults and older adults
with age-typical mild high-frequency hearing loss do not differ in how they adjust their speech
when speaking in the Lombard condition [14].
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Figure 1 – Conditions and structure of experimental stimuli, constraining the selection of 60 sentences
from DeWaC.



2.2 Material / stimuli

A set of 60 sentences was selected from a version of the DeWaC corpus [15, 16] based on high
vs. low surprisal bins (HS vs. LS). The information-theoretic factor surprisal was estimated by
means of a trigram syllable-level language model trained on DeWaC. The selected sentences
were shortened so that they could be displayed on two lines on the screen while preserving the
target syllable’s surprisal value. Each target CV syllable was part of a polysyllabic word in a
sentence, where C beginning with a /p, b, d, k/ plosive was combined with 5 vowels (/a:, e:, i:,
o:, u:/). The target syllables occurred in three white-noise conditions (baseline= no noise, 0 dB
and -10 dB SNR). The combination of 5 vowels in 2 surprisal contexts in 3 noise conditions
with 2 repetitions resulted in a total of 60 stimuli, randomized for presentation (Figure 1).

2.3 Experimental procedures

The data were recorded in a soundproof booth. Speakers wore a DPA 4067-F Omni headset
microphone to record the speech signal and AKG K271 MKII over-ear headphones to hear the
white noise signal during the recording session. The stimuli were visually presented on screen
as a slide (black font, white background) one at a time. A research assistant remotely controlled
the advancement of the stimuli outside the recording booth. A practice session was provided
for speakers before testing. During practice, speakers were instructed to read a different set of
German sentences and the research assistant calibrated the equipment. The test phase consisted
of 3 blocks. Speakers were informed about the presence of background noise in the first and
last blocks. They stood upright and read the stimuli using their habitual reading pace. The order
of the noise conditions (0 dB vs. 10 dB) was counterbalanced, retaining the middle block for
the no-noise condition (baseline). This design was chosen to reduce the tendency of speakers
to linearly adjust to noise. Productions were recorded and stored as a mono .wav file with a
sampling rate of 48 kHz and 24 bits per sample.

2.4 Data annotation

The target words/syllables/segments were manually annotated by two student assistants (a na-
tive speaker of Vietnamese and a native speaker of German) using Praat [17], while the non-
target words/syllables/segments in each sentence were automatically annotated using Web-
MAUS [18] (Figure 2).

Figure 2 – Annotation example: automatic (tiers 1–5) and manual (tiers 6–9) annotation.



2.5 Data analysis

Three acoustic features were extracted from the target syllable (the focus of this paper) using
in-house Python and Praat scripts: fundamental frequency (median), intensity, and total syllable
duration. These features were chosen for the following reasons: Duration and F0 have previ-
ously been shown to be sensitive to predictability, and intensity to the presence of background
noise (Lombard speech). The current analysis focused only on two conditions (baseline and -
10 dB SNR), because these two conditions lie at the two ends of the noise continuum and should
provide the clearest effect, if there is any. Linear mixed-effects modelling was used to evalu-
ate the hypothesized effect(s) and interaction of noise and surprisal using R lmer package [19].
Backwards model selection procedure was applied to arrive at a final model as reported below.
According to such procedure, a maximal random structure was first formulated to identify the
model that best fit our data [20]. We included random intercepts and random slopes for all fixed
effects. Our fixed effects are noise condition, surprisal group and vowel, while the random ef-
fects are speakers, gender, syllable, and stimulus. Our three dependent variables were z-scored
by speaker, which minimized any pitch, intensity and duration differences between speakers.
In case of convergence errors we reduced the maximal random structure step-wise. First, we
removed random slopes, and then, if necessary, random intercepts. Significance of fixed effects
was evaluated by performing maximum likelihood t-tests using Satterthwaite approximations to
degrees of freedom.

3 Results

Syllable duration: The final model structure was as follows: lmer(Dur-Syl-z ~ NoiseLevel +
Surprisal-Group + Vowel + (1 |Stimulus) + (1 |Syllable)).

As expected, there were main effects of noise (Estimate=.10491, t=2.994, p=.00281**)
and surprisal (Estimate=.33927,t=2.138, p=.03821 *) on syllable duration. No other effects or
interactions reached statistical significance.

Intensity range: The final fixed and random effect estimates for intensity range were as
follows: lmer(RangeInt-Syl-z ~ NoiseLevel + Surprisal-Group + Vowel + (1 | Stimulus) +
(1 | Syllable)). Similar to the results on syllable duration, there were main effects of noise
(Estimate=1.712e-01, t=4.272, p=2.09e-05 ***) and surprisal (Estimate=3.717e-01, t=2.290,
p=.0267 *) on intensity range. No other effects or interactions reached statistical significance
(Figure 3).

Fundamental frequency: The final F0 model was as follows: lmer(F0MedianSyl-z ~ Noise-
Level + Surprisal-Group + Vowel + (1 | Stimulus) + (1 | Syllable)). Like syllable duration and
intensity range, there was a main effect of noise (Estimate=.27661, t=6.962, p=5.5e-12 ***) on
F0. However, no effect of surprisal was found (Estimate= 0.25139, t= 1.540, p= 0.12959), even
though there was a trend for F0 to be higher in the -10 dB noise condition than in the baseline
condition. No other effects or interactions reached statistical significance.

4 Discussion and conclusion

In the information-theoretic framework, predictability effects can manifest by reducing signal
redundancy (i.e., source coding) to communicate efficiently: predictable words tend to be re-
duced and short in duration. On the other hand, noise effects can manifest by preserving redun-
dancy (i.e., channel coding) to minimize errors: in noise conditions, loudness and fundamental
frequency increase. Our question was how channel-coding modification, arising from Lombard
speech, affects source-coding changes, arising from contextual predictability.
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Figure 3 – Acoustic measures (A/C: syllable duration, B/D: intensity range) as a function of surprisal
(low vs. high) and noise (red: baseline, blue: -10 dB)

Our results indicated no interaction between noise and surprisal conditions for any of the
three acoustic features under study, counter to our prediction. This suggests that speech is en-
hanced additively as a function of noise and surprisal in intensity range and duration, but not
in F0. Since we did not code the accent type on the target word, it remains unclear whether
surprisal affects F0 at all. Interestingly, noise condition affected all three acoustic variables
measured in this study, but surprisal condition didn’t affect F0. From an information-theoretic
perspective, the strategy of enhancing more than one acoustic variable in noise condition sug-
gests that speakers opt for coding redundant acoustic signals to minimize errors in an unreliable
channel.

Our findings are broadly consistent with many previous studies on the effects of background
noise on the acoustic variables under study here. The results showed that syllable duration and
intensity increased in noisy conditions for both high-surprisal and low-surprisal syllables, but
there was no overall increase in fundamental frequency in noisy conditions. Contrary to our
hypothesis, Lombard speech exaggerates the surprisal category by increasing syllable duration
and intensity range, suggesting that channel coding is expanded without compromising source
coding.
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