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�

, Joseph Olive

Bell Labs, Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
�

IMS, University of Stuttgart, Azenbergstrasse 12, D-70174 Stuttgart, Germany

ABSTRACT
A new formant tracking algorithm using phoneme depen-
dent nominal formant values is tested. The algorithm con-
sists of three phases: (1) analysis, (2) segmentation, and
(3) formant tracking. In the analysis phase, formant can-
didates are obtained by solving for the roots of the lin-
ear prediction polynomial. In the segmentation phase,
the input text is converted into a sequence of phonemic
symbols. Then the sequence is time aligned with the
speech utterance. Finally, a set of formant candidates that
are close to the nominal formant estimates while satisfy-
ing the continuity constraints are chosen. The new algo-
rithm significantly reduces the formant tracking error rate
(3.62%) over a formant tracking algorithm using only con-
tinuity constraints (13.04%). We will also discuss how to
further reduce the tracking error rate.

INTRODUCTION

In the Bell Labs' Text-To-Speech (TTS) system [1], a lim-
ited number of acoustic units is stored in the inventory ta-
ble. Therefore, it is important to be able to choose the
best candidate for each synthesis unit (diphone, triphone,
etc). Formants values can be used for selecting the best
units as well as for testing unit compatibility to determine
whether any two synthesis units are connectable in term of
spectral discrepancy [1]. Thus, reliable formant tracking
can be one of the crucial components in TTS system con-
struction, where a huge amount of speech data has to be
processed. Due to the size of the speech corpus, it would
be prohibitive to rely on human intervention for formant
tracking error correction.

For decades, researchers have put efforts into improv-
ing the performance of speech formant tracking algo-
rithms. Nevertheless, state-of-the-art formant tracking al-
gorithms are not reliable enough for unsupervised, au-
tomatic usage. Even though the errors are obvious to
the human eye when displayed in a longer time frame,
a human might not do much better than the automatic
formant trackers given only local information. This ob-
servation has led to methods that impose continuity con-
straints on the formant selection process [2],[3]. However,
they still tend to generate errors by enforcing the conti-
nuity constraints too strongly or too weakly. Especially
in highly transient phone boundaries such as consonant-
vowel transitions, continuityconstraints often cause track-
ing errors [4],[5],[6] .

Fortunately, in the TTS system construction process, tran-
scriptions of the speech utterances are available. During
speech corpus recording, a speaker is asked to read a set of
texts that are carefully selected. From the text, the phone-
mic transcription can be generated automatically. Then,
the transcription can be time aligned with the acoustic
speech signal using signal processing techniques. Using
this forced time alignment, the exact time stamp for each
phonemic event can be obtained.

In this paper, we test a new algorithm for tracking speech
formant trajectories using segmental phonemic informa-
tion. Given a speech interval, it is assumed that the phone-
mic identity and nominal formant values for the phoneme
are available. This assumption holds always in TTS
applications. The implementation is based on previous
work [7] in which only continuity constraints were used.
We will show how much improvement can be achieved by
using phonemic information for formant tracking.

ALGORITHM

The formant tracking algorithm consists of three phases:
(1) analysis, (2) segmentation/alignment, and (3) formant
track selection. In the analysis phase, formant candidates
are obtained by LPC analysis on pre-emphasized speech.
Formant candidates are obtained by solving for the roots
of the linear prediction polynomial. In the segmentation
phase, the input text is converted into a sequence of phone-
mic symbols, and the phonemic symbols are time aligned
with the speech utterance. Finally, in the formant track-
ing phase, the best combination of formant frequencies
is selected from the candidates based on minimum cost
criteria. For each analysis frame, we choose a set of for-
mant candidates that are closest to the nominal formant
estimates while satisfying the continuity constraints.

Speech Analysis
Autocorrelation LPC analysis is performed on the pre-
emphasized speech. An LPC order of 12 is used for
speech data collected at a sampling rate of 11.025 kHz.
Thus, ten complex poles (five conjugate pairs) will be used
to model five formants and the extra two poles for the
spectral tilt that might have not been compensated for by
the pre-emphasis process. Pitch-asynchronous LPC coef-
ficients are calculated every 5 ms. A Hamming window
of 25ms is applied to each analysis frame. Formant fre-
quency candidates are calculated by solving the prediction



polynomial using Bairstow's method [8]. Only complex
poles are considered as formant candidates.

Text to Phonetic Transcript
Given the input text, a sequence of graphemes is con-
verted into a sequence of phonemic symbols. We have
used the text analysis front-end of the Bell Labs TTS
system [1]. The front-end includes components such
as sentence-boundary detection, abbreviation expansion,
number expansion, etc. Then, morphological analysis is
performed for lemmatization of inflected words using a fi-
nite state machine. Finally, the words are converted into
phoneme sequences using dictionary lookup and letter-to-
sound rules. A probabilistic system that is not part of the
TTS system is used to generate alternative pronunciations
for a given phoneme sequence produced by TTS's front-
end. This is required because of possible mismatches be-
tween the TTS phoneme sequence and actual speech.

Automatic Speech Segmentation
The next step is to align the phoneme sequence
with the acoustic signal. Reliable automatic align-
ment/segmentation is also very critical for TTS design,
i.e., manual segmentation is too labor-intensive to per-
form for hours of recording. We have used an automatic
segmentation algorithm that adopts filter bank approach
combined with wavelet convolution [9]. Preliminary eval-
uations indicate accuracy levels that, for most types of
boundaries, are close to those of human segmentors. We
also observe that even if the segmentor makes segmenta-
tion errors, most of the errors do not critically affect the
performance of the proposed formant tracking algorithm.

Nominal (target) formant values [10] and voicing proba-
bility (1:voiced, 0:unvoiced and 0.3:mixed) are assigned
to each temporal center of a phoneme segment. Formants
and voicing probabilities for the frames between these
center points are linearly interpolated.

Formant Tracking
The next step is to choose the best set of formant trajec-
tories for

�
formants over � analysis frames. At each

frame, � , there are ��� ways to map (assign) the candidate
frequencies to formants. The � � mappings can be identi-
fied as ����� 	�
�� � 
��� 
�� ��� � � ��� (1)

where



is the number of formant candidates obtained in
the previous analysis phase and

�
is desired number of

formants.

The formants are chosen from the candidates based on
minimal total cost, which is calculated from several cost
functions: local cost, frequency change cost, and transi-
tion cost. The local cost ����� , of the �� �� � mapping at the� ��� frame is based on the assigned bandwidths, !"��� # , and
the deviation from nominal formant frequencies for the

phoneme, $ 
 # ,
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where 0 # determines the cost of bandwidth broadening
for the


 �=� formant, 5 # is the voicing probability and 8 #
determines the cost of deviations from the nominal fre-
quency of the


 ��� formant.

The frequency change cost, >?��� @A# , between the �B��� map-
ping at frame � and the C?�=� mapping at frame � �ED

for the
 ��� formant is defined as

> ��� @A# � . $ �&� # � $ �7F-,G@H#$ �&� # 3I$ �7F-,G@H#J<JKML (3)

The quadratic cost function is to penalize any abrupt for-
mant frequency change across analysis frames. Using
Equation 3, a transition cost, N ��� @ , can be defined as a
weighted sum of the frequency change cost of individual
formant:

N �&� @ �PO �P')# *-,9Q # > �&� @H# � (4)

where Q # determines the relative cost of inter-frame fre-
quency changes in the


 �=� formant. The term, O � is de-
signed to modulate the weight of the formant continuity
constraints based on the acoustic/phonetic context of the
frames. For example, formant trajectories are often dis-
continuous across silence-vowel, vowel-consonant, and
consonant-vowel boundaries. One should avoid putting
continuity constraints across those boundaries. The O��
can be any kind of similarity measures or inverse of dis-
tance measures such as inter-frame spectral distance mea-
sures in the LPC or cepstral domain. We use a simple
stationarity measure based on the signal energy (rms), by
which the weight of the continuity constraint can be re-
duced near the transient region. It is defined as the relative
signal rms at the current frame:O � � RTSVU �WYX&Z\[=]B^ RTS�U [ � (5)

with RTSVU � being the speech signal rms in the � ��� analysis
frame. Obviously, this stationarity measure is too sim-
ple to detect all possible phone boundaries. The proposed
idea of utilizing phone identity and its nominal formant
frequencies (Equation 2) is to prevent the forced restric-
tion across the phone boundary.

Finally, the minimum total cost of choosing candidate for-
mant frequencies over � analysis frames with ��� map-
pings at each frame can be defined as:_ � ^)�?*-, WV̀Ba� ]cb/dEe �&� L (6)
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Figure 1: The mapping cost
�����

is the sum of local cost� ���
and the minimum connection cost

��� �
. The

�� � �
is

calculated using the frequency change cost � ��� � and the
mapping cost

� �������
of the previous frame.

As shown in Figure 1 the mapping cost,
� ���

, for the
� �� �

mapping at the � ��� frame is obtained from:

� ����� � ��� � !#"�$��%�&('*),+ ��� �.-
(7)

where
� ���

is given in Equation 2 and
��� �

, the connection
cost from the

� �/� mapping at frame �1032 to the
����

map-
ping in frame � , is defined by the recursion:

��� � � � ��� � � �4�����5�,6
(8)

In the present implementation, the constants 7�8 -�9 8 - and: 8 are independent of ; . The values of 7�8 and
9 8 are

determined empirically [7], while the value of : 8 is varied
to find the optimal weight for the cost of deviation from
the nominal formant frequencies.

RESULTS
The algorithm has been tested on 276 sentences spoken by
a male speaker of American English. The speech corpus
was originally created for the purpose of constructing an
acoustic inventory for a concatenative TTS system. Each
utterance has a carrier phrase and one or two target units
(diphone or triphone) in the middle of the phrase. Formant
tracking errors were visually inspected by overlaying the
formant tracks on the corresponding spectrogram. Only
the formant tracks near the vowel region of the target units
were considered in calculating the tracking error rate. The
evaluation was performed to determine the accuracy with
which the best set of formant candidates is chosen. Thus,
the absolute formant frequency accuracy was not of inter-
est to us.

The performance of the new algorithm was compared with
a formant tracker using only the continuity constraints.
Formant tracking errors were labeled based on the follow-
ing rules. If a tracker missed the first formant and, there-
fore, assigns the second to the first formant and the third
to the second formant, the algorithm is considered to have

Method Errors (%) < � errs <>= errs < errs : 8
CC 36 (13.04) 10 21 36
P1 11 (3.99) 1 3 10 10
P2 10 (3.62) 1 9 10 7
P3 10 (3.62) 0 10 10 4

Table 1: Summary of formant tracking error for vowel-
like sounds. Total errors are the number of utterances that
have formant errors out of 276 test utterances (any formant
error regardless of < � , < = or < ). The next three columns,
< � through < errors, show how each formant error was
distributed over formant number. Since a formant error
can happen at both < � and < = , the first three formant errors
do not add up to the Total Errors.

made errors in all three formants. As such, if it detects the
first formant but misses the second formant, hence assign-
ing the third to the second formant, the second and third
formant are counted as errors. Accordingly, the number of
errors tends to increase with the higher formant number.
If the first and third formants are correctly identified while
the second formant is placed at the wrong frequency, only
the second formant is labeled as an error.

Table 1 lists the number of formant tracking errors. The
first row, denoted as CC, shows the results for the formant
tracker using the continuity constraints only. The next
three rows P1, P2, and P3 are for the newly suggested al-
gorithm with different weightings : 8 on the cost function
(Equation 2). Smaller : 8 means less cost for deviation
from the nominal formant values, resulting in relatively
stronger continuity constraints. The best performance was
obtained when : is 7 or 4, though the difference is not very
big.

As it would be expected, the new proposed algorithm
gives much better results (less than 4% error rate) than
the formant tracker CC (13.04% error rate). Notice that
for the CC method a large portion of the errors are at < �
(10/36=27.78%) and < = (21/36=58.33%), which is seri-
ous because these formants are more heavily weighted
in the acoustic unit selection process than < . On the
other hand, over 90% (10/11=90.9%, 9/10=90%, and
10/10=100% for three tests, respectively) of errors made
by the new proposed algorithm occurred in the <>= or <
track. The mismatch in the third formant is less penalized
in the acoustic unit selection process.

Figure 2-4 shows an example of formant tracking results
using both methods. The CC method (Figure 3) clearly
missed the second formant track near the diphthong / ?A@ /
segment (indicated by an arrow). It is probably because
the continuity constraints forced the tracking algorithm to
make the second formant in the / ?A@ / segment continuous
to the second formant of the previous voiceless fricative
/h/ near 2400 Hz. This is a typical example of failure,
where the continuity constraints put too much emphasis
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Figure 2: Speech waveform in “I saw hoyting guys”.
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Figure 3: Spectrogram and formant tracks - CC.
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Figure 4: Spectrogram and formant tracks - proposed
method.

on connecting the formant tracts of the vowel segment to
the preceding fricative segment. Figure 4 shows the cor-
rect tracking results by using the proposed method, where
the new algorithm found the second formant near the nom-
inal formant values at about 1250 Hz of the / ��� /.

In summary, although the current test data is spoken by
only one male speaker, the above results indicate that once
a nominal formant table for a given speaker is available,
formant tracking performance can be much improved. For
tests with a greater variety of speakers, separating nominal
formant tables for different gender and age groups will be
more effective.

DISCUSSION AND FUTURE WORK
We presented the implementation of new formant track-
ing algorithm using the knowledge of phonemic identity
of the analysis frame. The new algorithm significantly
reduced the error rate (3.62%) over the formant tracking

algorithm using continuity constraints only(13.04%).

In general the new formant tracking algorithm is quite ro-
bust to small segmentation errors. However, errors tend
to occur when there is severe coarticulation. For example,
when a vowel /a/ is followed by a retroflex sound /r/ as in
a diphone /a-r/, the formant tracks in the early part of /a/
often show the second formant around 1200 Hz, which is
the second formant of /r/. Both methods often made errors
in detecting the low second formant introduced by the fol-
lowing /r/ sound. This problem can be somewhat resolved
by reducing the weighting factor � in the Equation 2 such
that the procedure becomes less sensitive to the phoneme
boundary . A more systematic solution to this problem is
to incorporate context dependent nominal formant values.
This can be extended to allow alternate nominal formant
values depending on the segmental context.
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