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Abstract In this paper, we develop a new conceptual framework for an important
problem in language acquisition, the correspondence problem: the fact that a given
utterance has different manifestations in the speech and articulation of different speak-
ers and that the correspondence of these manifestations is difficult to learn. We put
forward the Correspondence-by-Segmentation Hypothesis, which states that corre-
spondence is primarily learned by first segmenting speech in an unsupervised manner
and then mapping the acoustics of different speakers onto each other. We show that
a rudimentary segmentation of speech can be learned in an unsupervised fashion. We
then demonstrate that, using the previously learned segmentation, different instances
of a word can be mapped onto each other with high accuracy when trained on utter-
ance-label pairs for a small set of words.

Keywords Language acquisition · Speech · Perception · Production ·
Correspondence learning · Segmentation

1 The Correspondence Problem

A fundamental component of linguistic competence is to recognize different percepts
as corresponding to the same underlying phone. For example, when I produce the
English phone [D], (i) I observe myself directing the tongue to move towards the teeth
(motoric), (ii) I hear a particular type of frication (auditory), and (iii) I feel my tongue
touching the teeth (haptic). When my interlocutor produces [D], (iv) I hear a particular
type of frication (auditory input that can be quite different from the input I receive
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134 D. Duran et al.

Fig. 1 Possible combinations of input sources from the child (I = infant), caregiver 1 (A1 = adult 1), and
caregiver 2 (A2 = adult 2). In each case, both acoustics (AC) and articulation (AR) are considered. The links
are to be interpreted from the perspective of the child. For example, articulation in I/AR is stored as motoric
and sensory percepts; articulation is stored as visual percepts in A1/AR and A2/AR

when I produce [D] myself), and (v) I see movements of some of my interlocutor’s
articulators (lips and tongue). Mature speakers of a language have learned correspon-
dences between all of these different manifestations of a phone. They know which
motor commands to use to produce it; they correct motor commands if they “feel”
that the articulators did not go where they were supposed to go; they correct speech if
based on auditory feedback from their own production they realize that they did not
pronounce something correctly; they understand their interlocutors based on hearing
them; and they can (to a limited extent) lip read (Rosenblum 2008).

Figure 1 shows the major correspondences that have to be learned in language
acquisition, focusing on acoustics and articulation. We use I, A1, A2, AC, and AR
to refer to infant, adult 1, adult 2, acoustics and articulation, respectively. Each link
in the figure represents a type of correspondence the child has to learn. For example,
I/AC-A1/AC is the correspondence between the acoustic signal produced by the child
for a particular phone and the acoustic signal produced by the adult for that same
phone.

Three of these links, I/AC-I/AR, A1/AC-A1/AR and A2/AC-A2/AR (dotted in the
figure), are synchronous: The child perceives the acoustics and articulation of a phone
she produces at (almost) exactly the same time. The same holds for the adult equiv-
alents A1/AC-A1/AR and A2/AC-A2/AR. Learning that opening the lips while there
is air pressure in the mouth causes a particular type of sound to occur ([b] or [p]) is
similar to many other basic facts about the world the child has to learn. For example,
the child needs to learn that, when moving the left hand a certain way, it will suddenly
appear in front of her eyes. This is one of many nontrivial tasks the child must learn
in addition to the other correspondences in Fig. 1.

The other links (those except for I/AC-I/AR, A1/AC-A1/AR, and A2/AC-A2/AR)
are harder because they are asynchronous. Consider the case A1/AC-A2/AC. The child
is unlikely to hear a production of [D] of adult 1 and a production of [D] of adult 2
at the same time—and if she does it is likely to prove confusing rather than helpful
in learning the correspondence. Instead, the two instances usually occur separated in
time.

A further, and even more difficult case, is the link I/AC-A1/AC. There are significant
differences between what the child perceives (i) while producing a sequence of sounds
(e.g., “bababa”) and (ii) while listening to an adult producing the same sequence of
sounds. This is due to the fact that the child’s articulatory apparatus is different from
the adult’s and due to the fact that the child’s articulations have not reached adult
competence yet. Perhaps most important is the difference caused by resonances and
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sound waves within the child’s body versus the different acoustic forces acting upon
a sound wave that travels from the adult to the child through the air.

Because of these significant differences a simple correlation analysis operating
directly on the speech signal is unlikely to be the basis for learning correspondence;
and we know of no work that has attempted to show that this is possible. However,
it seems plausible that a simple correlation mechanism operating on a higher level of
representation and a small number of perceptual categories (such as phones) would
be able to learn the correspondence between child and adult language.

Consider two productions of “bababa”, one production i by the infant with length
580 ms and one production a by the adult with length 610 ms. A low-level signal
representation of i and a into, say, 100 acoustic events would yield hundreds if not
thousands of possible alignments. (There would be far fewer than 10,000 (100 · 100)
because the alignment has to be monotonic: for acoustic events a1 < a2 and i1 < i2,
where < indicates temporal precedence, the crossing alignment (a1, i2), (a2, i1) is not
admissible.)

In contrast, if the child is able to analyze i as [silencei − plosioni − voweli −
silencei − plosioni − voweli − silencei − plosioni − voweli ] and a as [ silencea−
plosiona− vowela− silencea− plosiona− vowela− silencea− plosiona− vowela],

then the number of alignments (which depends on the exact formalization of mono-
tonicity) is much smaller. Of course, the labels are misleading—even if the infant is
able to do this analysis, she will initially not be able to recognize voweli and vowela
as instances of the same phone as infant vowels and adult vowels are acoustically
different.

Nevertheless, there is only one possible solution if the additional constraint is
imposed that infant category i ′ and adult category a′ have to be consistently aligned.
In this example, this would mean that the two silence categories, the two plosion cat-
egories and the two vowel categories are aligned. Crucially, this would be possible
without any assumption that the infant can recognize its own vowels and adult vowels
as instances of the same category.

It is unclear how correspondence could be established without some form of seg-
mentation of the kind we have just described; and no alternative realistic computational
model of correspondence learning currently exists that would explain how infants learn
correspondence between phones. We will show below that segmentation into high-level
acoustic events is possible in an unsupervised fashion. Thus, all the information neces-
sary for performing this analysis is, in principle, available to the infant. Our fundamen-
tal assumption in this paper is that children can learn segmentation in an unsupervised
fashion and that this segmentation is the basis for correspondence learning:

Correspondence-by-Segmentation Hypothesis (CSH)

The infant learns correspondence by (i) segmenting the speech of person 1
(infant, adult 1, or adult 2) into a sequence of high-level acoustic categories;
(ii) segmenting the speech of a different person (infant, adult 1, or adult 2) into a
sequence of (different) high-level acoustic categories; and (iii) aligning these two
segmentations for productions that are recognized as being the same or similar.
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This hypothesis is in keeping with much research in phonetics and child language
acquisition, e.g., Kuhl (1987, p.364) writes:

We know, then, that infants’ representation of these syllables [/ma/, /mi/ and
/mu/] allows them to break the syllables down into some kind of ‘parts’-ones
that allow them to detect similarity at the beginnings of the syllables in spite of
differences at the ends of syllables. At the very least, then, this ability must rely
on a representation of units that allows portions of syllables to be isolated and
compared across syllables.

We do not address the question of how the child recognizes certain pairs of sound
sequences as referring to the same object. One simple case is that the adult repeats
what the child was saying (e.g., the adult saying a1 = “bababa” in response to the
child saying i1 = “bababa”) and that the child then assumes that a1 is a repetition
of i1. Another simple case is that adult 1 and adult 2 take turns referring to the same
object repeatedly.

The CSH as stated above hypothesizes that acoustics are the primary means of learn-
ing correspondence. Modified versions for links involving articulation would assume
an alignment of high-level acoustic events with articulatory events (I/AR-A1/AC) or
visual events (I/AC-A1/AR).

The link I/AR-A1/AR does not involve acoustics, but we know of no claims in the
literature that it plays an important role in correspondence learning. Although there
is evidence that neonates “can imitate both facial and manual gestures” (Meltzoff and
Moore 1977), it seems hard to imagine how speech segmentation could be achieved
based primarily, or, exclusively, on this correspondence link. The general importance
of visual information in speech perception (A1/AR) is, however, investigated in the
context of speech as a multimodal or amodal phenomenon (Kuhl and Meltzoff 1982;
Massaro 2004; Fowler 2004; Rosenblum 2008).

Thus, the links I/AR-A1/AC and I/AC-A1/AR require part of the acoustic seg-
mentation posited by the CSH. So even if our hypothesis that the links I/AC-A1/AC
and A1/AC-A2/AC are the primary drivers of correspondence learning is not correct,
acoustic segmentation might still be required for learning correspondence.

The computational model we will present below is not intended to model the details
of the actual computational mechanisms that a child would be able to employ. For
example, the model is a batch processing model whereas human computing is online
and highly parallel. Our goal is to show that segmentation and correspondence can in
principle be learned based on the information that is available to the child. We will not
address the details of how the human cognitive system avails itself of this information.

In summary, correspondence, the ability to recognize percepts from different modal-
ities as instances of the same phone, is one of the fundamental components of language
competence. There is currently no computational model of how correspondence could
be learned on realistic speech data. In this paper, we present such a model, based on
the Correspondence-by-Segmentation Hypothesis, which states that correspondence
is learned by performing parallel segmentations of the speech of two different persons
(e.g., adult 1 and adult 2) and then aligning the segments. Given that particular terms,
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such as segment, can mean different things to different people, we next specify our
terminology before proceeding with the remainder of the article.

Segments and Phones

The term segment can refer to units on various levels of linguistic abstraction: phones,
phonemes, syllables, words, and utterances. Generally, we will refer to intervals as
segments if they were learned by our computational model. In phonetics, segment also
has a more specific meaning: “any discrete unit that can be identified, either physically
or auditorily, in the stream of speech” (Crystal 2003). We will avoid this more specific
meaning of segment and use the term phone instead.

We define phone acquisition as the problem of unsupervised learning of phones
from the speech signal. The phones learned in this fashion are referred to as induced
phones, and linguistically defined and annotated phones as labeled phones.

Supervised, Semi-supervised and Unsupervised Learning

A classification problem is supervised if labeled training examples are provided to the
learning algorithm. For example, learning of segmentation is supervised if a training
set with gold standard segmentation boundaries is used.

For the purposes of this paper, we define a learning problem as unsupervised if the
learning algorithms does not have access to any labels, that is, no access to any clas-
sification decisions made by annotators on training data. We treat phone acquisition
as an unsupervised learning problem. The learning algorithm operates without any
human-generated labels.

We define a learning problem as semi-supervised if the learning algorithm has
access to human labels, but the task of the classifier to be learned is different from
the human labeling task. We treat the correspondence problem as a semi-supervised
learning problem in this paper. The learning algorithm has access to human labels,
but labels of utterance-length intervals of speech, not labels of pairs of corresponding
phones. For example, we assume that the child is able to recognize that two different
intervals of speech both refer to an elephant; in this case, “elephant” is the human
label assigned to these two intervals and these labels are then the input to the learning
algorithm.

The difference between semi-supervised and supervised learning is subtle in that
the same experiment can be viewed as either semi-supervised or supervised, depend-
ing on which aspect of the experiment is in focus. Our evaluation of the success of
correspondence learning is indirect: we do not provide direct measures of the quality
of the acquired correspondences. This is difficult to do because the induced phones
whose correspondence is at issue are not traditional linguistic categories. Thus, it is
difficult to inspect and understand them and even more difficult to say with any cer-
tainty how well two of them correspond to each other. For this reason, we evaluate the
success of correspondence learning on a word recognition task. This word recognition
task is clearly a supervised learning task: manually labeled training examples of the
exact task to be learned are provided to the learning algorithm. Thus, if viewed as a
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word recognition task, the experiment in Sect. 8 is supervised learning; if viewed as a
phone correspondence learning task, then it is semi-supervised.

It is important to stress that even a completely unsupervised learning algorithm is
not a discovery procedure that magically discovers structure in data without the human
subjectivity that is inherent in labels. For example, we represent the acoustic signal
as cepstral coefficients because we believe that this representation is a good model
of the output of the human auditory apparatus. This is an informed, but ultimately
subjective decision that might not be appropriate for other scientific investigations,
e.g., the processing of sounds by birds or bats. This point is discussed in more detail
in Sect. 9.

In what follows we first discuss related work in Sect. 2 and describe our experimen-
tal setup in Sect. 3. We then demonstrate the difficulty of segmentation by showing
that a whole-sequence method that computes similarity between sequences works rea-
sonably well for artificial data, but does not succeed in learning to segment natural
speech (Sect. 4). In Sect. 5, we define several baseline segmentation algorithms that
operate on the level of a single frame. In Sect. 6, we present the extended context
model that succeeds in learning a rudimentary form of segmentation by incrementally
extending the context that is used to categorize an interval of speech. Baseline methods
and the extended context model are evaluated in Sect. 7. The segmentation computed
by the extended context model is the basis for a successful correspondence simula-
tion in Sect. 8. Section 9 analyzes and discusses the results and Sect. 10 presents our
conclusions.

2 Related Work

2.1 Approaches to Segmentation Based on Representations
of the Acoustic Signal as a Symbolic Sequence

Most work on segmentation of speech in cognitive science has assumed a coarse-
grained representation of the input signal as a sequence of either syllables, phones
or letters (Brent 1999). We call this approach the symbolic sequence approach. In
this approach, the unsegmented representation of “five black dogs” might look like
[faIvblækdOgz] or fiveblackdogs.

A variant of symbolic sequences represents speech as a sequence of phonetic feature
vectors using features such as voiced and nasal. For our purposes, this type of feature
representation is equivalent to symbolic sequences because the features are usually
derived from phones (not from the speech signal) and there is a simple correspondence
between phones and feature vectors. For example, a bilabial nasal corresponds to [m].

Segmentation methods in this line of work address the problem of segmenting the
input sequence into syllables or words, e.g., [faIv.blæk.dOgz] orfive.black.dogs.
When the problem is couched this way, the difficulty of the problem lies in finding the
segment boundaries; the classification of the segments directly follows from the seg-
mentation boundaries. The assumption is that all instances of the five letter sequence
black belong to the same class of syllables or words; and that all other sequences
of letters do not belong to this class. The challenge of learning the phones/letters
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themselves is not addressed in this approach. This is the challenge we focus on in this
paper.

Following Brent (1999), we distinguish the following types of strategies in symbolic
sequence segmentation: the utterance-boundary strategy, the predictability strategy,
the word-recognition strategy, and the boundary-cue strategy.

Utterance-boundary strategy models hypothesize boundaries based on sequences
of lower-level segments (e.g., phones) that are characteristic for the endings of the
segments to be identified. For example, Xanthos (2003) presents an incremental
method for speech segmentation that finds word boundaries, using a symbolic sequence
approach based on sub-word segments (phonemes).1

We believe that the utterance-boundary strategy is not appropriate for phone acqui-
sition in the context of correspondence learning because there is little information
about utterance boundaries available in the initial stages of phone acquisition. On
the level of frames (2–10 milliseconds long), the number of utterance-final events is
extremely small, making it difficult to generalize on the acoustic level. 2

The predictability strategy is based on predicting boundaries at places in the signal
where prediction of the next segment based on the current context is hard. The assump-
tion is that the possible sequences of segments within words are more restricted than
the possible sequences across word or syllable boundaries. In our experiments below
we will evaluate two versions of the predictability strategy, transition probability and
entropy.

The word-recognition strategy attempts to learn an inventory of words and pos-
its a segmentation boundary wherever one word ends and another one begins. Some
models implementing this strategy are based on the assumption that all, or at least
a sufficient number of the units to be recognized (i.e., the words) are first heard in
isolation (Christophe et al. 1994); and that remaining segments of the speech stream
between recognized words are also words. A segmentation method for continuous
speech is presented by de Marcken (1996) within the broader context of unsupervised
language acquisition. The algorithm learns a lexicon from unsegmented input which is
then used for segmentation. The learning procedure operates on a symbolic sequence
of transcribed speech, which is automatically obtained from audio input by a separate
system, external to the actual learning module. More recently, unsupervised methods,
in particular, Bayesian methods like Dirichlet processes (Goldwater et al. 2009), have
been investigated that learn to segment by way of learning an inventory of words.
Frank et al. (2007) provide a review and a comparison of some related segmentation
models with experimental results from an artificial language learning task with adults.

The main problem of the word-recognition strategy is that its basic assumption,
namely that there is a stable higher-level unit like the word, is not correct for phone
acquisition. For example, in our corpus (Schweitzer et al. 2004) fewer than 20% of the

1 Related work by Xanthos (Goldsmith and Xanthos 2009) explores a range of methods for establishing
whether it is possible to automatically infer whether segments in a data sample are vowels or consonants
(in addition to examining vowel harmony and phonotactic induction). Segmentation, however, is not the
focus. Similarly for related work by Vallabha et al. (2007), who propose an unsupervised algorithm “for
learning the categories from a sequence of vowel tokens” from infant-directed speech.
2 Preliminary experiments with an utterance boundary strategy confirmed this. The utterance boundary
strategy performed worse than all the methods evaluated in Table 3.

123



140 D. Duran et al.

instances of [t] have sequences of mel-frequency cepstral coefficient (MFCC) frames
that are identical to another instance of [t] (see Sect. 3). Thus, while all instances of
a word in a letter representation are identical, this is not true for the instances of a
labeled phone in a representation derived from speech. A related problem is that the
number of possible words in language is not bounded. In contrast, there is a com-
paratively small inventory of phones although different granularities of the inventory
might be appropriate in different contexts.3 Work in the Bayesian framework assumes
an infinite vocabulary (Goldwater et al. 2009). For these reasons, we will not consider
word recognition as a possible approach to phone acquisition.

The boundary cue strategy attempts to segment the speech stream based on reliable
acoustic cues found, for instance, in stressed syllables or at phonetic junctures, which
infants are hypothesized to have a disposition to search for and locate in continu-
ous speech (Cairns et al. 1997; Christophe et al. 1994; Jusczyk 1999). For example,
Christophe et al. (1994, p. 1570) write:

[...] as early as 1939, Trubetzkoy described a number of potential cues that
could demarcate words: He mentioned allophonic variation [...], lexical stress
[...], vowel harmony, tone phenomena, among others. [...] allophonic cues were
shown to influence English subjects’ parsing of pairs of words such as “gray
tie” versus “great eye” [...] The generic hypothesis is that something perceivable
signals word boundaries [...]

Many authors agree that there must be such cues and that a rough partitioning of
speech based on these cues is performed by infants during language acquisition. How-
ever, there is no agreement what exactly these cues are (although the ones listed by
Trubetzkoy are all plausible candidates) and how they would be used computationally
(cf. Jusczyk 1999).

In a sense, our contribution in this paper can be viewed as defining a segmentation
algorithm based on boundary cues and thereby confirming the underlying hypothesis
of these models: learning a rough segmentation of the speech signal into a sequence
is possible.

2.2 Approaches to Segmentation Based on Direct Representations
of the Acoustic Signal

2.2.1 Semi-Supervised Approaches

A number of approaches to the speech segmentation problem have been investigated
that use a representation that is directly derived from the speech signal; most of this
work has been done in the fields of automatic speech recognition (ASR) and concat-
enative speech synthesis. Phone acquisition, however, has received little attention in
this area, where the standard approach is to train recognizers on a pairing of an audio

3 For example, one may want to distinguish different subcategories for the phone [k] (syllable-initial vs.
syllable-final, before front vs. back vowel etc), but different instances of [k] in syllable-initial position
before front vowels should be assigned to the same phone. See the notes on terminology in the introduction.
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signal and a transcription (Huang et al. 2001). Thus, the term speech segmentation in
ASR and speech synthesis often refers to the process of aligning a given transcription
with the speech signal; this is a semi-supervised setup in the sense defined above:
human labels are available, but not for the task to be solved. In these approaches,
the transcription into labeled phones, syllables or words assumes a prior definition of
these categories—even if the “semi-supervision” is only used to initialize a model that
is then refined in an unsupervised fashion (cf. Ljolje et al. 1997; Toledano et al. 2003;
Varadarajan et al. 2008).

Other work on speech segmentation in ASR does not evaluate the quality of seg-
ments learned in an unsupervised fashion even though their benefit in an application
is shown (Stouten et al. 2008; van Segbroeck and Van hamme 2009).

A number of approaches to language acquisition in the phonetic realm frame the
problem as recognizing entire words in longer utterances before phones are acquired
(ten Bosch et al. 2008; Roy and Pentland 2002; Werker and Curtin 2005). Presumably,
phones would then be derived in a subsequent step from the recognized words—
although some authors raise the possibility that phones and segmentation into phones
do not play any important role in language acquisition and that all learning happens on
the level of words and utterances. We discuss these approaches in this section on semi-
supervised work because no segmentation labels are provided to the learner (thus, the
approach is not supervised), but instead semantic labels are available that identify
different utterances as referring to the same object. Here, we focus on ACORNS (ten
Bosch et al. 2008), a project that has done the most significant work so far on realistic
computational modeling of child language acquisition taking the “whole-utterance”
approach.

Methods developed in ACORNS can recognize words in longer utterances with
high accuracy (ten Bosch et al. 2008). The feature representation of utterances is
constructed in an unsupervised fashion, followed by supervised training of a word
recognizer on utterance-label pairs. In a number of different experiments the speech
data consisted of between 10 and 20 distinct words, e.g. 11 words in (Altosaar et al.
2010) and 13 words in (ten Bosch et al. 2008). While learning of phones may not be
necessary if the inventory of words is as small as 20, it is unclear whether the methods
developed in ACORNS can be used for larger vocabulary sizes or in environments
where a non-noisy mapping of utterances to semantic labels is not available.

Both our approach and ACORNS start with a representation directly derived from
speech and at some point in the learning process use utterance-label pairs. The main
conceptual difference is that we learn a segmentation first, in an unsupervised fash-
ion, and then represent utterances as sequences of segments. In contrast, ACORNS
uses an HAC (histogram of acoustic cooccurrences) representation: utterances are first
represented as vectors of vector quantization label cooccurrences and then reduced in
dimensionality (Driesen et al. 2009). In this additive representation, for a given cooc-
currence of two labels, the information whether it occurred at the beginning or end of
the word is not retained. Thus, the representation used in ACORNS is non-segmented
and non-sequential. The ability of the ACORNS model to recognize new instances
is then interpreted as evidence that segmentation is perhaps not needed. It remains
to be shown that this approach will scale from fewer than 20 words to a more real-
istic vocabulary size. We believe that the relatively impoverished representation of
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utterances used by ACORNS, a representation that does not retain temporal infor-
mation at multiple scales, would require more utterance-label training data than is
available in the child’s input during language acquisition. The training sets used in
ACORNS (e.g., 3000 utterances in (Driesen et al. 2009)) are larger by about a magni-
tude than what is used in the approach to correspondence learning described in Sect. 8.
Consequently, even though ten Bosch et al. (2008) use a somewhat richer experimen-
tal set-up than we do (e.g., a multi-speaker corpus and multiple-word utterances, as
opposed to our single-speaker single-word corpus) we believe that their underlying
assumption might not be correct and that our segmentation approach should scale well
to larger vocabularies.

Also relevant in the context of semi-supervised learning are proposed learning sys-
tems which incorporate articulatory or visual information (e.g. Blackburn and Young
1996; Roy and Pentland 2002; Coen 2006). However, these systems are not primarily
concerned with segmentation and correspondence learning.

2.2.2 Unsupervised Approaches

The methods discussed so far are supervised or semi-supervised. There is a fundamen-
tal problem with such models. In the words of Cairns et al. (1997, p. 144): “explicit
training is not normally a part of human development, so we need to explain how
the model can come to be part of the human language processor”; we would include
approaches here that predefine the inventory of phones, even if it is not in the context
of explicit supervised learning. It is true that models of adult speech segmentation
should incorporate top-down mechanisms of information flow, e.g., by generating
expectations based on the previous context or the lexicon (cf. McQueen 1998; Wade
et al. 2010); but the initial unsupervised structuring of the acoustic signal in a phone
acquisition model has to rely on bottom-up mechanisms without recourse to extensive
knowledge about the language. Most relevant to segmentation and phone acquisition
are therefore approaches that are unsupervised. To date, however, these approaches
have had only limited success and in many cases the evaluation has not been, in our
opinion, sufficiently rigorous. We now review a number of studies in this vein.

Lin (2004, 2005) describes an approach for learning phones directly from the speech
signal, in which phonetic features are automatically learned, but with mixed results;
e.g., half of all [b]’s are labeled as nasal. Segmentation is not addressed. Sharma and
Mammone (1996) present an unsupervised segmentation algorithm that tries to find
the “optimal number of sub-word segments”. However, they test it on only a single
word. Gold and Scassellati (2006) compute MFCC representations for a set of thirty
utterances. They derive acoustic features from the speech signal, but do not detect
phone boundaries. Scharenborg et al. (2007) demonstrate the difficulty of attempt-
ing to learn segmentation in an unsupervised fashion based on MFCC vectors. They
focus on the challenges faced by the infant in learning segmentation as opposed to an
evaluation that sheds light on the difficult precision-recall trade-off inherent in seg-
mentation - positing few boundaries results in many false negatives, positing many
boundaries results in many false positives. In a 2010 follow-up study, they conclude
that segment duration, inherent segment dynamics or the adjacency of similar seg-
ments are fundamental problems which unsupervised segmentation algorithms have
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to solve. To address these, they propose the incorporation of “automatically derived
top-down information”—e.g. automatically derived broad classes based on cluster-
ing—in addition to the usual unsupervised “bottom-up” segmentation (Scharenborg
et al. 2010). This is in line with our approach using clustering (see Sect. 3). Miller et al.
(2009) carry out segmentation experiments based on automatically tokenized speech
spectrogram data. They do not evaluate how well their method recognizes boundaries
between phones.

While these cases have provided useful insights, evaluation has tended to be lim-
ited. Our evaluation, however, is more comprehensive as it compares our segmentation
approach to multiple baseline models and evaluates it in the context of the actual prob-
lem that needs to be solved by the child, the correspondence problem.

2.3 Correspondence and Segmentation in Language Acquisition

There are numerous studies that investigate at what age infants have established cor-
respondence, but there are to our knowledge no computational models that show that
a specific algorithm, working on real speech data, can successfully establish corre-
spondence for phones. Furthermore, there is no evidence that correspondence, e.g.,
the mapping between articulatory muscle movements and particular sounds, is innate.

Many authors have addressed the problem of how representations of linguistic units
like phones and words emerge and how they are extracted from the continuous speech
stream—see, for example, the empirical studies by Saffran et al. (1996) and Christophe
et al. (1994). Jusczyk (1999) reviews the phonetics and cognitive science literature on
the topic and identifies a number of issues that are not addressed by currently existing
limited models of word extraction.

It is important to point out that (i) mature adult speech segmentation and (ii) the
initial acquisition of a basic segmentation capability by the child may be very differ-
ent. For example, mature speakers will obviously make use of top-down constraints
to guide segmentation: knowledge of words, grammaticality, and plausibility. Infants
cannot do this in the first stages of language acquisition. Thus, there may be little
commonality between the mechanisms used in adult speech segmentation and the
mechanisms for learning segmentation based only on information sources available
to the infant (Cairns et al. 1997).

Our main motivation for modeling segmentation computationally is its hypothe-
sized importance for correspondence. With regard to children’s ability to segment
speech, there is considerable evidence that children learn to do this at an early age.
At 4 months of age, infants already possess some knowledge about the correspon-
dence between auditory and visual speech information (Kuhl 1988; Kuhl and Rivera-
Gaxiola 2008), making it likely that a rudimentary form of segmentation has been
learned. Around the age of 7 months, infants begin to segment words from the con-
tinuous speech stream (Jusczyk 1999). By the age of 9 months, infants seem to have
developed a sensitivity to the phonotactics and lexical stress patterns of their native
language (Mattys et al. 1999). Usually, this sensitivity is assumed to rely on atomic
units of speech perception, which again would imply that these atomic units have
already been learned by this age.
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Research has shown that there is a lag between the early development of abilities in
speech perception and the later development of the corresponding articulatory abilities
(cf. Kuhl 1987). This indicates that articulation is perhaps a contributor to segmen-
tation, but that segmentation should not be entirely driven by articulation. Arguably,
articulation does play an important role in learning segmentation during later phases
of language acquisition when articulatory gestures are helpful in determining bound-
aries between phones (the link I/AC-I/AR in Fig. 1). However, exploration of the use
of articulatory information is beyond the scope of this article, and in the experiments
that follow we focus purely on acoustic information.

3 Experimental Setup

Formally, we pose the speech segmentation problem for correspondence learning as
follows:

• Let the probe x = [ts, te] be a (short) interval of speech that is to be segmented.
• Let y be a (large) memory that stores speech experienced in the past.
• A segmentation of the probe x based on y is a sequence of segmentation boundaries

t1 < t2 < · · · < tn, n ≥ 1, ts < t1, tn < te that segments x into n + 1 segments
that can be successfully used in correspondence learning as defined in Sect. 1. The
segmentation boundaries are selected based on a computational analysis of the
distribution of acoustic sounds in y.

This definition of the problem is fundamentally different from most segmentation
problems in psycholinguistic computational modeling in that there is no obvious base
alphabet in which the input can be represented. The memory y also is fundamentally
different from memory-based approaches like Exemplar Theory (e.g. Johnson 1997;
Goldinger 1997, 1998; Pierrehumbert 2001) or k-nearest neighbor classification: It is
not a memory of items, but instead one long sequence (cf. Wade et al. 2010). Rep-
resenting memory as a set of segmented items would assume a solution to the very
problem we are trying to solve.

In the experiments described below, we use three types of corpora: Constant-shift
corpora, variable-shift corpora and a corpus of German speech.

3.1 Constant-Shift Corpora

These corpora were constructed to make the segmentation task as easy as possible
while providing some insight into properties of different segmentation methods. We
first randomly generated a 12 dimensional target segment that has length l p, the tar-
get length. We also chose a second parameter l�, the shift, that specifies the distance
between two successive occurrences of the target segment. A constant-shift corpus for
the parameters l p and l� was then generated by copying the target segment, generating
l� − l p random frames (or vectors, intended to model MFCC vectors) and repeating
this process up to 1,000,000 frames, the desired length of the corpus. The vectors were
then length-normalized.
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Each constant-shift corpus thus generated was then a memory y for a particular
experiment. The probe x for that experiment was the target segment padded with
additional random frames to a maximum length of 100. Since there is ample evidence
in y that at the end of the target segment possible continuations diverge, it should be
easy to segment x into the target segment and its second randomly generated part.

3.2 Variable-Shift Corpora

Variable-shift corpora were generated in the same way as constant-shift corpora except
that l� was not constant, but a random variable whose value was randomly selected
from the interval [l p + 1, α · l p]. This interval was chosen to prevent target overlap,
immediate repetition and unrealistically long segments. We experimented with various
parameter combinations, and report results for a maximum shift factor α = 17 in the
following section. Variable-shift corpora are slightly more realistic than constant-shift
corpora since target segments in real speech do not occur with intervening intervals
of fixed length. But the task of finding the target segment in the probe is still easy
compared to speech.

3.3 IMS Unit Selection Corpus

We also use the IMS unit selection corpus (Schweitzer et al. 2004), a corpus of
German speech, recorded by a professional male and a professional female speaker,
and sampled at 16,000 Hz. 13-dimensional MFCCs were computed for the 2776 origi-
nal speech files of the male speaker-part by means of the MATLAB Auditory Toolbox
(Slaney 1998). MFCCs are considered to be a suitable approximation of human speech
perception (Morgan et al. 2004) and have been successfully applied in a number of
experiments involving auditory models and speech representations as well as in tech-
nological applications like ASR. We set the parameter frameRate of the mfcc
function of the Auditory Toolbox to 500, corresponding to a 2 ms window shift. The
remaining parameters were not changed from their default values. Only the last 12
components of the MFCC vectors were used. The vectors were length-normalized.
Silence was excluded from the experiments except for a 20 ms interval before and
after each speech interval. This is based on the assumption that a separate module is
available to the learner that distinguishes speech from non-speech.

We computed a vector quantization (Gersho and Gray 1991) of the MFCC vec-
tors. The vector quantization was performed using bisecting k-means (Steinbach et al.
2000) and Euclidean distance. 1,000 clusters were generated and reflect dense regions
of MFCC space.

The evaluation is based on the phonetic transcription of the IMS corpus, which
consists of a total of 107,209 labeled phones that are between 1 and 276 frames long.
These labels are only used for evaluation in phone acquisition, not for learning. The
labels are also used in correspondence learning as described in Sect. 8.

As a result, the IMS corpus is represented as a sequence of 4,310,124 frames, each
consisting of an MFCC vector, a cluster identifier and a linguistic label. Except for the
whole-sequence experiments in Sect. 4, the corpus is split into a training set (frames
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1–3,000,000) and a test set (frames 3,000,001–4,310,124). All unsupervised learning
is performed on the training set. For example, the probabilities needed in some of
the segmentation methods described below are estimated on the training set. In the
evaluation (Sect. 7), the 1.3 million frames of the test set are treated as new unseen
data that are segmented using the parameters learned from the training set.

3.4 Evaluation Measures for Segmentation

Traditionally, segmentation has been evaluated with respect to a gold standard of cor-
rect segmentation boundaries, e.g., by measuring precision and recall for the task of
finding the correct boundaries (cf. Aversano et al. 2001; Qiao et al. 2008; Goldwater
et al. 2009; Scharenborg et al. 2010). Such traditional segmentation measures cannot
be used for evaluating phone acquisition because they either do not assign segments
to phones (each segment being equally unrelated to all other segments); or because
they classify segments in a trivial way: two segments are assumed to be in the same
class if their sequences are identical and vice versa. Phone acquisition is an integrated
segmentation and classification task: both segment boundaries and categories of the
segments have to be learned. As mentioned above, we use an MFCC representation
which is directly derived from an audio recording of speech. Real speech data are
highly variable. For this reason, almost every segment of 20 frames or more in the
speech stream is unique. Thus, the simple criterion of identity that is used in the sym-
bolic sequence approach is not applicable when trying to group segments into classes
in phone acquisition.

To address this problem, we cluster segments and interpret the clusters as induced
phones where the number k of clusters is a parameter of the evaluation. This cluster-
based evaluation is a more direct evaluation of what knowledge about phones means:
it involves being able to determine where one phone ends and the next one begins; but
of equal importance is the ability to determine whether two segments belong to the
same phone or not.

The clustering of segments was performed using bisecting k-means (Steinbach
et al. 2000). In two separate evaluation runs, two different representations of segments
are used. First, segments were represented as normalized 1000-dimensional vectors,
where dimension i represents the count of frames of MFCC cluster i in the segment.
For example, if a segment consists of 20 frames, with the first 5 frames assigned to
MFCC cluster 16 and the last 15 frames assigned to MFCC cluster 226, then the vector
�v of the segment has v16 = .25, v226 = .75 and a value of 0 for the other 998 dimen-
sions. This evaluation is a true evaluation of the joint segmentation and classification
task that better reflects the phone acquisition task faced by children as no gold standard
information is available.

We also compute evaluation numbers for a second clustering in which each segment
is represented as a vector of gold standard labels. For example, if a segment consists
of 20 frames, with the first 5 frames assigned to [S] and the last 15 frames assigned
to [æ], then the vector �v of the segment has v[s] = .25, v[æ] = .75 and a value of 0
for the other 61 dimensions. (The total size of the inventory of labeled phones in the
corpus is 63.) This evaluation sheds light on how well segmentation boundaries are
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learned, but is not a good model of actual learning by the child since the unrealistic
assumption is made that each frame has been classified correctly as belonging to one
of 63 linguistic phones.

As with the vector quantization described in Sect. 3, the evaluation clustering is
performed on the training set. Test set segments are assigned to the clusters found in
a subsequent step.

The labeling of the IMS corpus is not ideal for evaluating our task because many
instances of labeled phones consist of several distinct segments when looking at acous-
tic measures. For example, an interval that is labeled as being an instance of the stop
[t] may correspond to three subintervals: silence, plosion and frication. Similarly, the
German diphthong [aI] often consists of three subintervals, resembling [a], [I] and a
transition between the two sounds in between. Conversely, intervals bearing the same
phonetic label (e.g., [k] in [ki] vs. [ku]) can be acoustically quite different.

Thus, given a language and a signal, there is no one true inventory of phones of the
language and no one true labeling of the signal based on these phones. Instead, there
are different labelings of different granularity. A fine-grained labeling may distinguish
the three phases of [t] and [aI]. In a coarse-grained labeling, these two sounds may
each be segmented and classified as single phones. Ultimately, the granularity of the
labeling should be decided based on the application of the labeling, the learning of
correspondence in this paper.

The granularity of the labeling corresponds to the notion of boundariness—we view
boundaries between phones as graded. A weak boundary (corresponding to a small
value of boundariness) will only be chosen as a boundary for a fine-grained labeling.
A strong boundary (corresponding to a high value of boundariness, e.g., a plosion)
will be chosen by both fine-grained and coarse-grained labelings.

We incorporate these considerations into our evaluation by introducing a parameter
a whose value governs the degree of granularity. The value of a is roughly the aver-
age size of a segment. More precisely, we compute the segmentation of the corpus C
based on a by choosing the largest segmentation threshold θ that creates more than
|C |/a segments where |C | is the number of frames in C . To ensure a fair compari-
son between segmentation methods, ties between boundaries are broken randomly to
get exactly �|C |/a� boundaries. This procedure guarantees that the average length of
a segment is approximately a. The segmentation function σ determines for point t
whether a segmentation boundary occurs before t (σ(t) = 1) or not (σ(t) = 0). For
the segmentations we investigate in this paper, we always define σ in terms of b and
θ as follows:

σb,θ (t) = 1 iff b(t) ≥ θ

where b is a boundariness function that computes for each t the boundariness just
before t . As a final step, we eliminate overly short or long segments. As will be dis-
cussed in Sect. 7, average segment lengths a are in the interval [30 frames, 100 frames]
or [60 ms, 200 ms]. We eliminate segments that have less than half the length of the
lower bound of the interval (i.e., segments with length l < 15) and segments that
have more than twice the length of the upper bound of the interval (i.e., segments with
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length l > 200). We view this as an implementation of our prior knowledge of what
the desired range of durations of phones is.

We use two clustering measures to evaluate the quality of the induced phones: purity
(P) and Adjusted Rand Index (ARI).

To compute purity (Strehl 2002), each induced phone ωl is assigned to the labeled
phone ci whose frames are most frequent in ωl , and then the accuracy of this assign-
ment is measured by counting the number of correctly assigned frames and dividing
by the total number of frames N :

purity (�, C) = 1

N

∑

l

max
i
|ωl ∩ ci | (1)

where � = {ω1, ω2, . . . , ωK } is the set of induced phones and C = {c1, c2, . . . , cJ }
is the set of labeled phones. We interpret ωk as the set of frames assigned to ωk and
c j as the set of frames labeled with label c j in Eq. (1).

Bad clusterings have purity values close to 0, and a perfect clustering has a purity
of 1. Purity is an intuitive measure of cluster quality, but high purity is easy to achieve
when the number of clusters is large—in particular, purity is 1 if each frame gets its
own cluster. For this reason, we also use ARI because it assesses the quality of the
trade-off between the purity of the clustering and the number of clusters.

Adjusted rand index (Hubert and Arabie 1985) views clustering as a series of deci-
sions, one for each of the N 2 ordered pairs of frames in the corpus. Let i f (ig) be
the induced phone of frame f (g) and l f (lg) its labeled phone. A pair of hypothesis
frames ( f, g) is considered a true positive (TP) if i f = ig ∧ l f = lg , a true negative
(TN) if i f 	= ig ∧ l f 	= lg , a false positive (FP) if i f = ig ∧ l f 	= lg , and a false
negative (FN) if i f 	= ig ∧ l f = lg . Adjusted rand index is then defined as follows:

ARI = 2(TP · TN− FP · FN)

(TP+ FP)(FP+ TN)+ (TP+ FN)(FN+ TN)

where TP, TN, FP, and FN are the number of true positives, true negatives, false
positives and false negatives, respectively. Adjusted rand index is zero for a random
clustering and 1.0 (the maximum value) for a perfect clustering.

The boundariness functions in this paper are deterministic, but the clustering of
segments into induced phones is not. We therefore report averages of 10 trials and
adopt a hypothesis testing framework.

4 Whole-Sequence Model

In this section, we show that a simple baseline model that directly compares entire
sequences to each other—without any analysis of individual frames—does not learn
speech segmentation in an unsupervised fashion. We first show that this model has
some success on artificial, non-noisy data. We then show that it does not work on more
noisy natural speech.
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4.1 Whole-Sequence Segmentation Criteria

We went through a number of iterations in devising an unsupervised segmentation
algorithm. Our initial intuition was that a segmentation point ti in x = [ts, te] is a
point with the following two properties:

• There are many sequences in y with high similarity to [ts, ti ].
• Extending the interval by ε to [ts, ti + ε] does not increase the overall similarity

of the sequence with the memory.

To formalize this segmentation method, we first define correlation and cumulation. As
described in Sect. 3, probe x and memory y are represented as sequences of MFCC
vectors.

The raw correlation score r between a prefix of x and a subsequence of y is defined
as follows:

r(x, y, m, n) =
12∑

l=1

n∑

i=m

xl,i−m+1 yl,i (2)

where xlk (resp. yl j ) is the lth component of the MFCC vector with index k in x (resp.
j in y). r(x, y, m, n) is a measure of how well the first n −m + 1 frames of x match
the subpart of y from index m to index n. m, n, x must satisfy n − m + 1 ≤ |x |.

The normalized correlation score ρ between a prefix of x and a subsequence of y
is defined as follows.

ρ(x, y, m, n) =
12∑

l=1

∑n
i=m xl,i−m+1 yl,i√∑n

i=m x2
l,i−m+1

√∑n
i=m y2

l,i

(3)

The cumulation function computes a score that is accumulated along the length of
x , either for f = r or for f = ρ:

C(x, y, f, k) =
|y|−|x |+1∑

i=1

f (x, y, i, i + k − 1) (4)

The derivative of the cumulation function indicates how much additional similarity
can be found when extending the prefix of x gradually, step by step:

C ′(x, y, f, k) = C(x, y, f, k)− C(x, y, f, k − 1) (k ≥ 1) (5)

As an extreme example, suppose that x is [bali:li:] and that y is a concatenation of
1,000 [ba] syllables. Let k be the length in frames of the first two phones in [bali:li:].
Then C ′(x, y, r, k) will be high because as we extend the prefix of x from the begin-
ning of the first [b] to the end of the first [a], each of the 1,000 instances of [ba] in
y will contribute more and more similarity to C . Thus, the value of the derivative
will be high. However, C ′(x, y, r, k + 1) will be close to zero or negative. Once we

123



150 D. Duran et al.

have passed the end of the first [a], none of the 1,000 instances of [ba] in y (and no
other subsequences in y) will contribute additional similarity to C . In fact, negative
correlation may decrease overall similarity. Thus, the value of the derivative will be
small or negative.

Our initial hypothesis was that minima of C ′ could serve as segmentation bound-
aries. We quickly found in experiments on natural speech data that this is not the case.
The reason is that when working with real speech data, the overwhelming majority
of subsequences of y have almost no or negative similarity with the prefix of x . In
the above example, [ba] would be compared with all diphones in y, but most of these
(e.g., [aU], [at], [lt]) are not relevant for making segmentation decisions within x .

To ensure that a segmentation decision is based only on sequences with a minimum
similarity, we introduce a threshold value θ . Any sequence in y with similarity below θ

is not considered in segmentation decisions. To formally define this modified method,
we first define mean and standard deviation of a set of values. We use the symbols μ

and σ for their estimates:

μ(S) =
∑

v∈S v

|S| (6)

σ(S) =
√∑

v∈S(v − μ(S))2

|S| − 1
(7)

The set A of all “above-threshold” values is then defined as a subset of the set V
of all values as follows:

V (x, y, f, k) = { f (x, y, i, i + k − 1)|1 ≤ i ≤ |y| − |x | + 1} (8)

A(x, y, f, k) = {v ∈ V (x, y, f, k)|v ≥ μ(V (x, y, f, k))+ λσ(V (x, y, f, k))} (9)

That is, A(x, y, f, k) is a set of values, each of which corresponds to the similarity
(computed by f ) between a prefix of x and a highly similar subsequence of y. We set
λ = 1.

We can now define the boundariness function m′ we use:

m(x, y, f, k) = μ(A(x, y, f, k)) (10)

m′(x, y, f, k) = m(x, y, f, k)− m(x, y, f, k − 1) (k ≥ 1) (11)

Negative values of the derivative m′ indicate that the average similarity of the most
similar subsequences in y is dropping off. We would expect this to be the case at
segmentation boundaries because up to a segmentation boundary the similarity with a
large number of highly similar subsequences of y is growing; after the segmentation
boundary these subsequences are continued in different ways (e.g., [ba] might be fol-
lowed by [ga], [ti:] or [lu:]) and therefore the growth in average similarity will drop or
become negative.

In addition, we also evaluated σ(A(x, y, f, k)) as a segmentation function. The
motivation was that a prefix of x that occurs many times in y will have consis-
tent similarity scores in a small range with its most similar nearest neighbors in y.
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This translates into small standard deviation. In contrast, at a point within x that can be
continued in a number of different ways (at the end of the [a] in [ba], we can continue
the sequence with [ga], [ti:], [lu:] etc.), high variability of the scores of the highest
similarity subsequences in y will occur.

4.2 Experimental Results

Results for constant-shift corpora are shown in Fig. 2.
We show a number of representative values for target length l p and shift l�.

Although the results illustrated in Fig. 2 on artificial data are positive, the results
of this section on real speech are essentially negative (see Fig. 5), therefore we do
not perform an extensive evaluation for all possible values. The graphs are based on
computations using a mixed MATLAB/C implementation.

The horizontal axes show the length of the probe prefix in frames. Recall that the
length of a frame is 2 ms. The dotted vertical lines are true segmentation boundaries,
aligned to the beginning of the target segment in the corpus and the probe. Each X in
the upper part of the graphs marks a target segment in the corpus y. The label “…”
refers to non-target material, i.e., the random parts of the sequence. For the target
segment, its true length l p is marked by the first dotted vertical line in each graph, and
the remaining frames up to the maximum probe length 100 correspond to the padded
random frames in the probe x .

Minima of the derivative m′(x, y, f, k) correctly indicate segmentation boundaries.
A steep drop of m(x, y, f, k) and σ(A(x, y, f, k)) from a maximum correctly predicts
the segmentation boundaries. This is a sample representative of a larger number of
experiments we ran: minima of m′ and a step-down of σ are reliable indicators of
segmentation boundaries.

Results for variable-shift corpora are shown in Fig. 3. Minima of m′ again indicate
segmentation boundaries reliably, as do the maxima of m and σ preceding the step-
down. However, all the values have a somewhat lower magnitude in comparison to
the results of the constant-shift corpora. Considering these results, all three functions
could be seen as possible candidates for speech segmentation.

Figure 4 shows the results of two experiments for a nontarget probe, i.e., a probe
that did not contain a prefix that corresponds to the target segment. With such a random
probe, the results always look similar to the ones shown here, independent of the actual
parameter settings: There seems to be no correlation between the function values and
the segmentation boundaries. This means that false positive boundaries can be avoided
for the constant-shift and variable-shift cases.

Figure 5 shows results for speech data. We computed m, m′ and σ for a number
of probes for λ = 2 and f = ρ (no parameter combination we tried produced bet-
ter results). Probes were chosen to begin at a phone boundary following a stretch of
silence (i.e., at word- or utterance-initial phones). For example, the top graphs in the
figure are for the first 100 frames of a sequence of two phones, [li:].

Results for m, m′ and σ are disappointing. Even though they have some promise
for segmenting non-noisy artificially generated data, they do not seem to be able to
find segmentation boundaries reliably for speech.

123



152 D. Duran et al.

(a)

(b)

(c)

(d)

Fig. 2 Results for constant-shift corpora. x-axis: length of probe prefix in frames. y-axis: m(x, y, ρ, k)

(the four left panels), m′(x, y, ρ, k) (the four middle panels), and σ(A(x, y, ρ, k)) (the four right panels).
Dotted vertical lines are true segmentation boundaries

4.3 Summary

We have had some success in developing a segmentation criterion for non-noisy arti-
ficial data. However, this criterion did not perform well for speech. The memory y of
the artificial data was constructed to contain the probe many times. It is perhaps not
surprising that for speech data, where the probe also occurs many times in the memory,
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(a)

(b)

(c)

(d)

Fig. 3 Results for variable-shift corpora. x-axis: length of probe prefix in frames. y-axis: m(x, y, ρ, k)

(the four left panels), m′(x, y, ρ, k) (the four middle panels), and σ(A(x, y, ρ, k)) (the four right panels).
Dotted vertical lines are true segmentation boundaries

but in extremely variable form, the simple criteria we designed and evaluated did not
succeed.

Based on these experiments we hypothesize that segmentation is only possible if
intervals of speech are considered in context. What is characteristic for the methods
in this section is that the prefix of the probe and the subsequence of the memory
were compared without considering the context of individual frames. Given the high
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(a)

(b)

Fig. 4 Results for a constant-shift corpus (above) and a variable-shift corpus (below) with a random probe.
x-axis: length of probe prefix in frames. y-axis: m(x, y, ρ, k) (the two left panels), m′(x, y, ρ, k) (the two
middle panels), and σ(A(x, y, ρ, k)) (the two right panels). Dotted vertical lines are true segmentation
boundaries

variability of speech, very similar acoustic patterns can have very different meaning,
and very dissimilar acoustic patterns can have the same meaning (cf. Peterson and
Barney 1952). For example, in German single frames in the vowel [E] and in the
medial part of the diphthong [aI] are acoustically similar. Yet they correspond to dif-
ferent phones. A segmentation procedure that does not recognize this basic fact will
posit a spurious [E] in [aI].

In the next two sections, we will develop methods that incorporate the context of
individual frames.

5 Single-Frame Baselines

5.1 Distance of MFCC Vectors

One baseline is to define a boundariness function bd that assigns to each frame its
distance from the previous frame:

bd(t) = ||�v(t)− �v(t − 1)||2
where �v(t) is the MFCC vector of the frame at time t and || . . . ||2 is Euclidean distance.

Table 1 shows results for this baseline in one experiment: two of the best (lines 1–2)
and worst (lines 5–6) phones that were induced and two of intermediate quality (lines
3–4). Each induced phone is automatically labeled based on the most frequent labels
that occur in it. For example, the label ç/28-m/25-œ/18-i:/05-4 indicates that
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(a)

(b)

(c)

(d)

Fig. 5 Results for speech data. x-axis: length of probe prefix in frames. y-axis: m(x, y, ρ, k) (the four left
panels), m′(x, y, ρ, k) (the four middle panels), and σ(A(x, y, ρ, k)) (the four right panels). Dotted vertical
lines are true segmentation boundaries

28% of frames in the cluster had the phonetic label [ç], 25% [m], 18% [œ], and 5%
[i:]. Less frequent labels are omitted. The size of the cluster (number of frames) is
order of magnitude 104 (last digit of label).

The best clusters closely correspond to labeled phones: [t], [x]. Generally, plosives
and fricatives can be most easily acquired in an unsupervised fashion using bd . Most
clusters however are mixed as the examples on lines 3–6 show. Overall purity is less
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Table 1 Examples of induced
phones from one experiment
(bd , k = 100, a = 30)

Line Cluster

1 t/97-../01-x/00-a/00-5
2 x/90-t/02-a/02-g/01-4
3 S/45-@/25-g/05-n/05-4
4 aI/37-n/18-m/09-@/06-5
5 ç/28-m/25-œ/18-i:/05-4
6 o:/25-a/21-m/19-5/17-5

than 40%, indicating that less than 40% of a typical cluster corresponds to a labeled
phone and the other 60% do not. These negative results are not unexpected, but they
confirm that phone acquisition is hard.

5.2 Minimum Pair Distance

A variant of bd is bm , which—instead of the distance between two consecutive
frames—computes the minimum pair distance (MPD), the minimum distance of any
pair of two frames, one of which occurs up to c = 10 frames before t and one of which
occurs up to c frames after t :

bm(t) = min
1≤i, j≤c

||�v(t − i)− �v(t + j − 1)||2 (12)

We call the MPD boundariness function bm .
The intuition is that boundaries correspond to points t in time where what is left of

t is different from what is right of t . Due to the high variability of speech, we do not
want to rely on individual pairs of different vectors �v. Possible aggregate measures
that are robust against producing false positive boundaries are the average distance,
the median distance or the minimum. In this paper, we use the minimum as shown in
Eq. (12). bm predicts no boundary in cases where at least one vector �v to the left is
similar to at least one vector �v to the right.

5.3 Transition Probability

We also evaluate two baseline methods that correspond to the predictability strategy
(Sect. 2.1): transition probability and entropy. The boundariness function based on
transition probability is defined as follows:

bt (t) = −P(c(t)|c(t − 1))

where c(t) is the MFCC cluster identifier (one of MFCC1, . . . , MFCC1000) of the
frame at time t . We take the negative of the probability because low probabilities
indicate high boundariness: we will usually posit a boundary where a very unlikely
transition from one MFCC cluster to another one occurs. The transition probabilities
are estimated by maximum likelihood from the corpus.
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5.4 Entropy

We define boundariness based on entropy as follows:

bh(t) = H(P(c|c(t − 2)c(t − 1)))

where c(t − 2)c(t − 1) is the sequence of two MFCC clusters immediately pre-
ceding t, P(c|c(t − 2)c(t − 1)) is the probability distribution of what occurs after
c(t−2)c(t−1) in the corpus (estimated using maximum likelihood), and H is entropy:

H(p) = −
∑

i

pi log pi

Entropy measures predictability. If the underlying probability distribution P could
be estimated without error, then for bh(t) = 0, it would be certain which MFCC clus-
ter will follow. For large values of bh(t), there is high uncertainty and many different
MFCC clusters can follow. As with bt , the expectation is that low predictability (in
the case of bh corresponding to high entropy) occurs at boundaries.

The four single-frame boundariness functions bd , bm, bt , bh are comprehensively
evaluated in Sect. 7, together with the extended context method described next.

6 Extended Context Method

When trying to do context-dependent segmentation of speech, we are faced with
a chicken-and-egg problem. Consider the context-dependent decision as to whether
there is a segment boundary at point t in the signal. The context here consists of
the two context intervals il = (−∞, t) and ir = (t,∞) preceding and following t .
Working with these potentially long intervals as units is unlikely to be helpful since,
presumably, information close to t is highly relevant and information distant from
t (e.g., by more than 5 s) is not relevant for the segmentation decision. This means
that we need a segmentation of il and ir into meaningful units, so that we can restrict
the information we consider for a potential boundary at t to the rightmost segment
of il and the leftmost segment of ir . Unfortunately, this approach to segmentation is
circular. To segment at t we must know the segmentations of il and ir . The definitions
of il and ir in turn depend on the segmentation decision for t . The extended context
method introduced in this section gets around this impasse by defining context frames
in an adaptive manner.

As a motivating example for the extended context method consider the distinction
between the vowel [E] and the medial part of the diphthong [aI], which are (under cer-
tain conditions of stress and coarticulation) acoustically similar in German. The model
needs to distinguish them to perform segmentation or it would create an artificial [E]
segment within [aI].

Context is necessary to detect the difference between these two acoustically similar
sounds. The context of the medial part of [aI] is consistent: there is always an [a] on
the left and an [I] on the right. If we include this context in the representation of a
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frame, effectively creating a frame-plus-context, then we can distinguish [E] and the
medial part of [aI].

Observe that the immediate neighbors of the frame do not constitute effective con-
text. The immediate neighbors of a frame in the medial part of [aI] are almost identical
to the frame itself and will most likely have the same cluster identifier—so they cannot
be used to distinguish [aI] from [E]. Using context at a fixed distance (of, say, c = 10
frames) is also suboptimal because we will skip important events, e.g., the frame at
distance c = 10 may be “on the other side” of a plosion.

To provide consistent helpful local context for frame f , we use a threshold ρ and
find the left (resp. right) context frame. The left (resp. right) context frame is defined
as the first frame f ′ to the left (resp. right) with ||�v( f ) − �v( f ′)||2 > ρ. This search
will skip over a long interval of a steady state; on the other hand, it will pick the
immediate left (or right) neighbor if significant acoustic change occurs between f
and this neighbor.4 We choose the value of ρ for which the median distance between
a frame and its left/right context vector is c = 10 frames. This value is ρ = 0.673.

Our assumption here is that we need to be sensitive to acoustic changes; in par-
ticular, to skip over intervals of no change and pay attention to points of significant
change.

The corpus can now be represented as a sequence of four million 36-dimensional
extended context vectors �w(t), where the first 12 components correspond to the MFCC
vector of the left context frame, the second 12 components correspond to the MFCC
vector of the frame itself, and the third 12 components correspond to the MFCC vector
of the right context frame.

The boundariness measure we define on these vectors is be (e= extended context):

be(t) = min
1≤i, j≤c

|| �w(t − i)− �w(t + j − 1)||2 (13)

where, again, c = 10. Boundariness is computed as minimum pair distance as moti-
vated above for bm in Eq. (12). To speed up the computation of this boundariness
measure, we use the extended context centroid vectors of each frame; this makes it
possible to cache distances and speeds up computation by an order of magnitude.

7 Evaluation

Evaluation results for the methods defined in Sects. 5 and 6 are shown in Table 2 and
Table 3. The two tables evaluate the five methods previously introduced: bt , bh, bd , bm

and be. The two measures described in Sect. 3, adjusted rand index (ARI) and purity
(P), are computed for two values of the number of induced phones k, k ∈ {100, 1000};
and for three values of the average segment length a, a ∈ {30, 50, 100}. Adjusted rand

4 The sequence of left and right context frames computed this way can be nonmonotonic. For example,
the left context frames of frame i and i + 1 might be i − 10 and i − 12, respectively, that is, left con-
text is skipping back. To prevent this, we impose the monotonicity constraints l ′(i) ← max j≤i l( j) and
r ′(i)← min j≥i r( j), where l and r are the base functions that return the indices of left and right context
vectors. In what follows, we use l ′ and r ′.
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Table 2 Evaluation of the joint problem of segmentation and classification

a 30 50 100

k 100 1,000 100 1,000 100 1,000

ARI bt 0.089∗ 0.023∗ 0.089∗ 0.023∗ 0.087∗ 0.023∗
bh 0.085∗ 0.022∗ 0.074∗ 0.020∗ 0.067∗ 0.017∗
bd 0.100∗ 0.024∗ 0.092∗ 0.023∗ 0.097∗ 0.025∗
bm 0.115∗ 0.026∗ 0.121∗ 0.030∗ 0.116∗ 0.027∗
be 0.163 0.036∗ 0.140∗ 0.036∗ 0.114∗ 0.026∗

P bt 0.352∗ 0.438 0.343∗ 0.427 0.314∗ 0.381∗
bh 0.361∗ 0.449 0.341∗ 0.424 0.300∗ 0.364∗
bd 0.373∗ 0.460 0.360∗ 0.442 0.320∗ 0.387∗
bm 0.392 0.479 0.392 0.478 0.332∗ 0.403
be 0.393 0.474 0.372∗ 0.456 0.329∗ 0.393

ARI and purity for different methods and parameters. Values are averages of 10 trials; runs that are signif-
icantly worse than be, a = 30, k = 100 (in bold) are marked with ∗

Table 3 Evaluation of segmentation only

a 30 50 100

k 100 1,000 100 1,000 100 1,000

ARI bt 0.346∗ 0.059∗ 0.290∗ 0.052∗ 0.182∗ 0.035∗
bh 0.331∗ 0.057∗ 0.253∗ 0.047∗ 0.148∗ 0.030∗
bd 0.361∗ 0.061∗ 0.297∗ 0.052∗ 0.179∗ 0.036∗
bm 0.407 0.067∗ 0.351∗ 0.061∗ 0.211∗ 0.038∗
be 0.425 0.073∗ 0.348∗ 0.064∗ 0.198∗ 0.037∗

P bt 0.674∗ 0.697∗ 0.621∗ 0.645∗ 0.492∗ 0.520∗
bh 0.677∗ 0.698∗ 0.609∗ 0.633∗ 0.467∗ 0.491∗
bd 0.694∗ 0.719∗ 0.634∗ 0.657∗ 0.494∗ 0.514∗
bm 0.721 0.748 0.682∗ 0.699∗ 0.510∗ 0.533∗
be 0.726 0.743 0.661∗ 0.678∗ 0.506∗ 0.525∗

ARI and purity for different methods and parameters. Values are averages of 10 trials; runs that are signif-
icantly worse than be, a = 30, k = 100 (in bold) are marked with ∗

index and P values close to 0 indicate an essentially random clustering, i.e., phone
acquisition failed. Values significantly different from 0 indicate a partially success-
ful clustering. Using ARI, we can fairly compare clusterings of different sizes; for
example, we can see in Table 2 that for a = 30, 100 clusters (ARI between 0.089
and 0.163) perform much better than 1,000 clusters (ARI between 0.023 and 0.036).
Purity tends to increase with more clusters and does so in this case: for a = 30 purity
values are consistently higher for k = 1, 000 than for k = 100. Even though purity
gives an unfair advantage to more clusters, it is easy to interpret: it is the percentage
of frames that are correctly assigned to a cluster if the label of that cluster is taken to
be its majority label (see definition in Sect. 3). Thus, about 35 to 40% of frames are
correctly assigned for a = 30, k = 100. This is not a very good performance, but as
we will see in Sect. 8 it is good enough to support successful correspondence learning.

On ARI, results for k = 1, 000 clusters are consistently worse than for k = 100
clusters; this is clearly related to the fact that the true size of the phone inventory is
63 and 100 is closer to 63. However, sometimes high-cardinality clusterings capture
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the structure of the data better, so the number of human-defined categories cannot be
adopted without experimental verification.

The differences between the values of a are not as large, but a = 30 is better for most
methods than a = 50 and a = 100. This indicates that it is hard to find intervals of no
or little change when average interval size is 100 ms (= 2 ·50) or 200 ms (= 2 ·100). be

is generally the best segmentation method for given a and k, but there are a few cases
where bm is slightly better (e.g., ARI, k = 100, a = 100 and P, k = 100, a = 50).
The very best result on ARI, 0.163, is achieved by be for k = 100 and a = 30. Note
that 60 ms (= 2 · 30) is the typical length of a short labeled phone. This is better by
about 16% than 0.140, the best result of the next-best method: bm for a = 50 and
k = 100. We will therefore use be as the basis for correspondence learning in Sect. 8.

In Table 2, induced phones are formed from segments represented in the space of
1,000 MFCC clusters; in Table 3, induced phones (i.e., clusters) are formed from seg-
ments represented in the space of 63 labeled phones to evaluate segmentation without
classification (see Sect. 3). Only the evaluation presented in Table 2 is a true evalua-
tion of the performance of the joint segmentation and classification task that we have
defined phone acquisition to be.

The evaluation in Table 3 is intended to show that the variability of the speech
signal is the key problem in phone acquisition. We interpret the 63-dimensional space
as a version of our corpus that is constructed to be non-variable: All frames that are
parts of [s] are recognized as identical. In contrast, in the 1000-dimensional space
some [s]-frames are represented as identical to frames of other labeled phones, e.g.,
[S] or [t]. As is apparent from the comparison of the two tables, phone acquisition on
the realistic variable representation fares much worse than phone acquisition on the
non-variable version of the corpus. For example, the best method, the extended context
method be, achieves a high ARI of 0.425 for the non-variable corpus, but only 0.163
for the real corpus (for a = 30, k = 100; bold numbers). We view these experimental
results as evidence that, in purely acoustic terms, different instances of one and the
same labeled phone can be quite different and that this is the main difficulty that has
to be overcome in phone acquisition.

On the fairer ARI measure, be is better than all other methods for a = 30, k = 100 in
Table 2—each result that is statistically different and less than the be, a = 30, k = 100
run is marked with ∗ (two-sample t-test, samples of equal size 10, equal variance,
t > 2.262, p < .05). be also fares well on the purity measure, but results are less clear
here because of the biases inherent in purity that were discussed above.

In general, the baseline methods commonly used in the symbolic sequence
approach, in particular bt and bh , fare poorly, indicating that the problem of learning
phones is different from segmentation in the symbolic sequence approach. The proba-
bility transition method bt does best, but even in that case performance is significantly
below that of the extended context method.

8 Establishing Correspondence

As described in the introduction we assume that correspondence learning is triggered
when the child recognizes that two utterances refer to the same object. Each pair
of such utterances can serve as a training instance for correspondence learning. The
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Correspondence-by-Segmentation Hypothesis states that, based on the segmentation
learned in the experiments in Sect. 6, we can learn to recognize correspondences based
on a training set of correspondence pairs. The segmentation used in this section is be

with parameters k = 100 and a = 30.
As a formal model of correspondence learning, we adopt a simple Bayesian frame-

work. Let a1 . . . an be a word that is currently observed by the child, represented as
a sequence of induced phone labels ai , one for each frame. For example, if a1 . . . an

consists of two induced phones, labeled i ′ and i ′′, the first one occupying the first 8
frames, the second one the next 3 (i.e., n = 11), then a1 . . . an = i ′i ′i ′i ′i ′i ′i ′i ′i ′′i ′′i ′′.

Let bk1 . . . bkmk represent a previously observed word wk , represented again as a
sequence of induced phone labels, one for each frame. Then we determine the previ-
ously observed word wk that is the most likely match for a1 . . . an as follows:

argmaxk P(bk1 . . . bkmk |a1 . . . an) (14)

= argmaxk
P(a1 . . . an|bk1 . . . bkmk )P(bk1 . . . bkmk )

P(a1 . . . an)
(15)

= argmaxk P(a1 . . . an|bk1 . . . bkmk )P(bk1 . . . bkmk ) (16)

= argmaxk

n∏

i=1

[P(ai |bk f (i,mk ))P(bk f (i,mk ))] (17)

where f (i, m) = argmin1≤ j≤m | j − i
n m| is the index in bk1 . . . bkm that is proportion-

ally closest to the index i in a1 . . . an ; that is, we assume a simple linear alignment of
the two sequences.

The denominator in Eq. (15) is omitted since it is the same for all previously
observed words wk . We then assume independence of the induced phones within a
sequence from each other and conditional independence of induced phones given a
sequence of previously observed phones in Eq. (17). This assumption is a simplifica-
tion, but it is a much better approximation for phones induced by using segmentation
method be than for acoustic classes at a more fine-grained level (e.g., for MFCC
vectors).

To summarize, Eq. (17) states that we will interpret a1 . . . an as the same word as
that previously stored word wk for which the product of the conditional generation
probabilities P(ai |bk f (i,mk )) of the generated induced phones and the prior probabil-
ities P(bk f (i,mk )) of the generating induced phones is largest. This model is applied
by first estimating the parameters P(ai |bk f (i,mk )) on a training set of pairs of words;
and then applying it to a test set of new instances. The training set is taken from the
training set of the corpus (the first 3,000,000 frames); the test instances are taken from
the test set (remaining 1,300,000 frames). Correspondences of two induced phones i f

and ig that occur in only two word pairs or fewer are discarded as noise and not used
in the estimation of P(ai |bk f (i,mk )).

8.1 Evaluation

Following ACORNS (ten Bosch et al. 2008), we selected a set of 13 words for the
experiments. We chose those words that were nouns and occurred at least 7 times in the
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training corpus of 3,000,000 frames and selected a random subset of 7 tokens from the
corpus for those words with more than 7 tokens. For each word, the correspondence
model was trained on all pairs of tokens of this word. Thus, the final correspondence
model has been trained on 13 words, each having 7 tokens in the training corpus. We
estimated the conditional probabilities using add-one smoothing:

P(ai |b j ) = C(ai b j )+ 1

C(b j )+ 100

where C(ai b j ) is the number of times that the induced phone ai occurs in the observed
word and the induced phone b j occurs in corresponding position of the stored word
and C(b j ) is the total number of occurrences of the induced phone b j . k = 100 is the
number of induced phones. The prior P(b j ) was estimated by maximum likelihood.

The model was tested by randomly selecting for each of the 13 words, one token
from the test set, and comparing it as a probe against the tokens in the training set,
using Eq. (17). The target with the highest conditional probability was then selected.
If probe and target corresponded to the same word, then this was counted as a success,
otherwise as a failure.

In 12 out of 13 cases the correct target was selected. In one case an incorrect target
was selected: The training set token picked by the model for the probe “Bayern” was
“Ball”. Presumably, children will make some such errors in the early stages of language
acquisition. We interpret a rate of 92% correct decisions as a successful demonstra-
tion that correspondence can be established based on an unsupervised segmentation
method like be and a training set of correspondences for a small set of words.

9 Analysis and Discussion

9.1 Phone Acquisition

We performed a detailed qualitative analysis of the 100 clusters of one experiment with
segmentation method be, a = 30, and k = 100. Although the results were clearly bet-
ter than for the baselines, there was a mix of good and bad induced phones. The best
cluster in terms of purity was OY/92-n/01-t/01-h/01-4. This induced phone
corresponds well to the labeled phone [OY] in terms of precision (92% as indicated
by the label) and recall (there was no other induced phone in which [OY] frames were
among the top four most frequent). Similarly, some induced phones correspond with
high precision to subclasses of [aU], [a:], [n] and [s]; however, in these cases recall
is low: in each case there are several other induced phones that also contain many
instances of these four labeled phones.

We identified several reasons for the differences between induced phones and
labeled phones. In some cases, induced phones do not reflect phonetic conven-
tions. For example, t/47-@/30-x/03-I/03-5 consists of instances of the tran-
sition between [t] and [@] with weak voicing cues, which are labeled in the gold
standard as either [t] or [@]. Since there is no hard and fast criterion for setting the
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boundary in this case, this induced phone does not necessarily constitute a failure of
learning.

Drift

The basic assumption underlying the definition of be is that boundaries between phones
correspond to above-average acoustic changes. But transitions between phones can be
very gradual. As a result, the acoustics of what happens at time t and time t + 50 ms
might be very different, but each point in the interval is a point of only slight change.
An example is the induced phone aU/63-s/25-S/03-z/02-4. The transition from
the fricatives [s], [z], [S] to the diphthong [aU] is gradual. As a consequence, combi-
nations of [aU] with these fricatives were assigned to one cluster. One possible way
to treat this, at least for certain cases, would be to augment be such that the threshold
is sensitive to cumulative change in a constant direction, possibly weighted by the
number of consecutive frames of increment/decrement.

Infrequent Phones

All native German labeled phones were dominant in at least one induced phone with
three exceptions: [Y], [œ], [ø:]. These happen to be the three German labeled phones
that are least frequent in the corpus—fewer than 12,000 frames correspond to each.
Clustering must give preference to frequent events and apparently the contexts of the
three sounds were not consistent and distinctive enough to give rise to a cluster. A
data-driven method will probably always commit a few such errors.

Fine Acoustic Distinctions

In many cases, a labeled phone was split across a number of induced phones based on
acoustic distinctions. For example, two induced phones of the labeled phone [t] were
t1: t/81-5/03-I/02-o:/02-5 and t2: t/73-../15-l/03-k/02-4. t1 occurs in
most cases in the middle of a segment that is labeled as [t], indicating that it corre-
sponds to the region of plosion. In contrast, t2 occurs either as the first induced phone
in such a sequence (indicating that it corresponds to the silent occlusion phase) or at
the end of the utterance when the release tapers off into silence. The latter case is also
responsible for the 15% silent frames in the cluster. To make a distinction between
these different manifestations of [t] could be valid for some applications like phonetic
analysis, speech synthesis and speech recognition.

9.2 Correspondence Learning

There is a debate in language acquisition as to how prevalent utterance-label pairs
are in the infant’s input and to what extent they are crucial for language acquisition.
It is true that almost any utterance can be interpreted as referring to the situation in
which it is uttered and thus constitutes a potential utterance-label pair. However, all
the difficulties of learning the semantics of words and utterances apply in this case.
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Does the utterance “Look what Fred has found!” refer to the shape, motion, texture or
color of the object that Fred is holding in his hands (cf. Quine 1960)? In this case, none
of these hypotheses is correct: no words referring to shape, motion, texture or color of
the object occur in the utterance. How does the child not fall into the trap of interpret-
ing the next utterance, “It’s red!”, as having the same content and, consequently, into
the trap of assuming that “red” and “Fred” are slightly different manifestations of the
same underlying form?

Since it is difficult to assess quantitatively how many non-noisy utterance-label
pairs the child has available during learning, we believe that a theory that can explain
learning with a small sample of such pairs is superior to one that requires a large
number. Our hypothesis is that segmentation-based correspondence learning is more
robust than learning methods that try to recognize utterances as instances of words in
a less structured way.

The Correspondence-by-Segmentation Hypothesis (CSH) as we stated it earlier
refers to the mapping of instances of a given word from two different speakers (infant,
adult 1 or adult 2) onto each other. But our experiment was conducted for a single
speaker. Nevertheless, given the variability of speech, even for a single speaker, we
regard the experiments we reported as strong evidence that it is possible to establish
correspondence in the way hypothesized in the introduction. Still, it is necessary to
show in future work that the same results can be obtained for two different speakers.

9.3 Role of Articulation

Of the correspondences in Fig. 1 the one that is most discussed and investigated in
phonetics is I/AC-I/AR. This emphasis on I/AC-I/AR is due to the fact that in this case
correspondence is established between very dissimilar events, e.g., for the phone [D],
(i) the directing of the tongue to move towards the teeth (a direction to a muscle) and
(ii) the perception of a particular type of frication (a particular type of signal generated
by the hair cells of the cochlear coil). The disparity between these two events makes
it all the more surprising that every competent speaker of English has mastered this
type of correspondence of production and perception.

As we discussed in Sect. 2, articulation is almost certainly an important source of
information for segmentation. While there may be no purely acoustic cues that would
group a sequence of three events—silence, plosion, release—into one phone, the fact
that all three are caused by one continuous movement of an articulator (the tongue
in case of [D]) will bias any learning algorithm to view them as a single phone. We
have not addressed the question of how and when articulation would interact with
acoustics-driven segmentation in this paper even though it certainly is an important
constraint on which acoustic sequences are assigned to the same category and which
are ultimately viewed as different.

9.4 Innateness

It is important to stress that we call the learning procedures we developed in this
paper unsupervised and semi-supervised because they do not presume that the phone
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inventory is innate or that the child has access to data that would correspond to the
labeled speech corpora that are used to train systems in ASR.

To the extent that we have shown that an unsupervised approach can successfully
learn induced phones, the claim that phones must be innate is weakened. However, this
in no way implies that innate knowledge and innate constraints do not play a crucial
role in phone acquisition and correspondence learning. In general, any type of learn-
ing is impossible in the absence of some bias (such as a model or another predefined
structure, (Mitchell 1980; Wolpert and Macready 1997)) or prior knowledge, which
can take the form of knowing beforehand which values of a parameter are more likely
than others.

To emphasize this point, we list here some of the constraints and capabilities that
we have assumed and that we believe can all plausibly be argued to be innate in our
account of how phone acquisition and correspondence learning unfold computation-
ally. Ultimately, one might posit that these constraints arose as part of human evolution.
All segmentation methods rely on constraints (1), (2), and (3). The extended context
method in addition uses (4) and (5). The correspondence learner (Sect. 6) learns based
on utterance-label pairs (6).

1. Infants can distinguish speech from non-speech.
2. MFCCs are an adequate model of what the infant perceives.
3. The infant can distinguish between smaller and greater similarity of two acoustic

signals. This is the basis of clustering or vector quantization of MFCC vectors.
4. Infants can distinguish between intervals of little acoustic change and intervals of

great acoustic change.
5. Infants are able to focus on the right time frame for context of a single frame. We

set c = 10 or 20 ms. We believe that neither a time frame an order of magnitude
smaller (c = 1) nor a time frame an order of magnitude larger (c = 100) would
have produced usable segments or correct word correspondences.

6. In spite of the uncertainty and noisiness of the learning situation of the child
there are a sufficient number of correct utterance-label pairs in the child’s input to
establish correspondence as outlined in Sect. 8.

Thus, the model of acquisition we propose is far from endorsing tabula rasa learn-
ing or reliance on behaviorist stimulus-response patterns. Instead, it assumes that the
infant is guided by rich and complex innate knowledge. However, our claim is that
this innate knowledge does not include an inventory of phones.

10 Conclusion

From the outset we stated that our fundamental assumption regarding segmentation
was that it could be learned by children in an unsupervised manner and that it formed
the basis for correspondence learning, a crucial component of language competence.
This assumption underpins the following contributions we have attempted to make in
this article: (i) we have developed a new conceptual framework for an important prob-
lem in language acquisition, the correspondence problem, (ii) we have put forward
the Correspondence-by-Segmentation Hypothesis (CSH), which states that correspon-
dence is primarily learned by first segmenting speech in an unsupervised manner and
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then mapping the acoustics of two different speakers onto each other (iii) we have
shown that a rudimentary segmentation of speech can be learned in an unsupervised
fashion by employing our novel extended context method, and (iv) we were able to
demonstrate that, using the previously learned segmentation, different instances of
a word can be mapped onto each other with high accuracy based on a small train-
ing set of utterance-label pairs, which we feel provides corroborative evidence for
our hypothesis. We also believe our demonstration of the difficulties involved when
transitioning from a whole-sequence similarity method on artificial speech to natural
speech illustrates the problematic nature of the task.

Although the experiments described above have, in our view, been supportive in jus-
tifying our underpinning assumption, there are nevertheless a number of areas where
we feel improvements could be made. Firstly, our experiments used a unit selec-
tion speech synthesis corpus, however a child-directed (or at least “child-witnessed”)
speech corpus would be more appropriate. Secondly, it would be more realistic to
use utterance-label pairs, in which, in addition to the targeted word, other phonetic
material occurs (as is the case in ACORNS). Thirdly, correspondence learning was
demonstrated on different instances of a word from the same speaker. In the future,
the experiment should be repeated for different speakers. Indeed, investigations using
different languages could also prove informative. Fourthly, the computational model is
unrealistic in that it is batch-oriented. A cognitively more adequate incremental archi-
tecture should be pursued. Finally, human learning is typically iterative, i.e., what was
learned in the previous iteration is immediately used in the next one. This aspect has
not yet been incorporated into the model.

To conclude, while a number of opportunities for improvement remain, we hope
nevertheless to have made a contribution to precise formal specification and compu-
tational modeling of acquisition algorithms based on real speech data. In our opinion,
this approach has not been used widely enough and should, in the future, produce
useful insights into how children learn language.
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