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Abstract
This study investigated the influence of prosodic structure

and information density (ID), defined as contextual predictabil-
ity, on vowel-inherent spectral change (VISC). We extracted
formant measurements from the onset and offset of the vow-
els of a large German corpus of newspaper read speech. Vector
length (VL), the Euclidean distance between F1 and F2 trajec-
tory, and F1 and F2 slope, formant deltas of onset and offset rel-
ative to vowel duration, were calculated as measures of formant
change. ID factors were word frequency and phoneme-based
surprisal measures, while the prosodic factors contained global
and local articulation rate, primary lexical stress, and prosodic
boundary. We expected that vowels increased in spectral change
when they were difficult to predict from the context, or stood
in low-frequency words while controlling for known effects of
prosodic structure. The ID effects were assumed to be modu-
lated by prosodic factors to a certain extent. We confirmed our
hypotheses for VL, and found expected independent effects of
prosody and ID on F1 slope and F2 slope.
Index Terms: information density, prosodic modeling, vowel-
inherent spectral change

1. Introduction
In recent years, there has been a number of studies investigating
the relationship between information density (ID) and prosody,
and both of their contributions to explaining phonetic variabil-
ity. Here, information density is defined as the predictability
of a linguistic unit in context. Studies have shown that vow-
els were longer and showed more spectral distinctiveness when
they were difficult to predict from the context [1, 2].

ID has been interpreted as being mediated by prosodic
structure in its effect on phonetic structure [3]. This strong ver-
sion of the Smooth Signal Redundancy Hypothesis (SSRH) has
been refuted by studies showing that phonetic reduction cannot
be attributed entirely to prosodic features [4]. Others proposed
that prosodic structure, such as pitch contour, were directly in-
fluenced by the predictability of the underlying linguistic struc-
ture [5]. In addition, studies have investigated the interaction of
prosody and ID on local phonetic structures [6].

Vowel-inherent spectral change (VISC) measures spectral
change based on the initial and final portion of the vowel [7,
8]. Taking two samples within the vowel functions as a way of
time-normalization and enables comparisons between vowels of
different duration. Among the proposed measures are F1 and
F2 slope. For formant slope, the difference between initial and
final formant frequency is set into relation to the duration of the
vowel. It is calculated as

Fn Slope =
∆Fn

V owelDur
. (1)

There are several other measures of dynamic formant trajec-
tories expressing the relationship between equidistant, time-

normalized formant measurements of vowels. In the F1/F2
plane, vector length (VL) can be interpreted as an indicator of
the amount of formant change. This measure is expressed as
the Euclidean distance between the onset and offset of F1 and
F2 values. The longer the distance between these values the
greater is the magnitude of change within the vowel. VL is cal-
culated as

V L =
√

((F1i − F1f )2 + (F2i − F2f )2). (2)

Vowel dynamics can also be expressed by curve-fitting param-
eterizations, such as orthogonal polynomial, or discrete cosine
transformation. Both methods describe the spectral curve by us-
ing a small set of coefficients for spectral mean, slope, and cur-
vature of the formant trajectory. Simple VISC measures were
performing equally well in distinguishing vowel categories as
more complex curve-fitting spectral parameters [9].

VISC and local variation in pitch interact with one another.
Regional varieties with greater VISC showed a more ”exagger-
ated” F0 contour with earlier F0 rise and a steeper F0 fall within
the vocalic nuclei carrying the pich accent in comparison to va-
rieties with low VISC [10]. Systematic differences in VISC
and F0 dynamics have been observed to help differentiate vowel
identities in languages with large vowel inventories, e. g. Sater-
land Frisian [11] or Welsh [12].

At increased speech rate vowel targets are more centralized
due to articulatory target undershoot. Identification ratings of
vowels at fast speech rate were poorer than at normal speech
rate [13]. In a more recent study, [14] found that listeners did
not have difficulties identifying vowels at increased speech rate.
Patterns of formant change were similar across fast and normal
speech rate. Consonantal context was identified as the main
predictor of different VISC patterns.

In languages with tense and lax vowels, such as German,
acoustic analyses have identified distinct patterns for formant
movement. Lax vowel production is characterized by a short
target and slower release into the following consonant. Tense
vowels usually involve longer duration with increased hold in
target position, as well as rapid transitions moving into follow-
ing consonants [15]. For German, [16] found distinct dynamic
F1 formant trajectories that listeners can use to disambiguate
tense and lax vowels.

This study investigated the impact of prosodic structure and
information density on VISC measurements VL, F1 and F2
slope. We hypothesized that vowels displayed increased spec-
tral change when they were difficult to predict from the context,
or in low-frequency words. We also expected higher spectral
change in vowels in primary lexical stress position than in un-
stressed position. VISC was expected to correlate negatively
with speech rate acceleration, and positively with vowel dura-
tion and the occurrence of a prosodic boundary.
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2. Methodology
2.1. Material

2.1.1. Speech corpus

We used the Siemens Synthesis Corpus (SI1000P) that contains
1000 newspaper sentences from the SI1000 newspaper corpus
read by two professional male German native speakers [17].
The studio quality recordings were filtered and down-sampled
from 48 kHz to 16 kHz. Forced-aligned segmentations using
WebMAUS for German [18] were manually verified by pho-
netic experts.

2.1.2. Language modeling corpus

As a basis for the language models used in this study we pro-
cessed the corpus SDeWaC which is a subset of the DeWaC cor-
pus [19]. It contains 846,159,403 word tokens and 1,094,902
word types from .de web domains. Duplicates and passages
which were deemed unsuitable for parsing were cleaned from
the original DeWaC to create the subset. The grapheme-to-
phoneme component of German Festival [20] was used to tran-
scribe the corpus.

2.2. Data analysis

2.2.1. Formant measurements

Formant measurements were taken using the Praat [21] com-
mand ”To Formant (burg)” with the default values of time step
0, a maximum of five formants, the maximum formant value
set at 5000 Hz for male speakers, an analysis window of 25 ms,
and pre-emphasis from 50 Hz. Formant values from sampling
points at initial and final position (20 % and 80 % of the vowel
duration) were used to calculate the VISC measures.

A cleaning procedure was performed on the entire data set
including vowels in function and content words. Data cleaning
involved plotting the F1 and F2 values of the vowel phonemes
per speaker with their respective ellipse at 95 % confidence in-
terval to identify spurious values, as described in [22]. These
data points were manually checked and excluded from the data
depending on whether they were tracking errors. From origi-
nally 86,706 vowels only 0.73 % were excluded in the process.
Formant values were normalized per speaker using Lobanov
normalization which has outperformed other normalization pro-
cedures in comparative studies [23].

2.2.2. Language modeling

80 % of the SDeWaC corpus was used to create a training cor-
pus for language modeling. The data was fed into SRILM [24]
to calculate phoneme language models including word and sen-
tence boundaries. The predictability output for biphone and tri-
phone of the following and preceding context was then trans-
ferred into surprisal (Equation 3). We chose small n-phone
sizes because we found they showed the strongest relationship
to phonetic variability. We also extracted word frequency and
phoneme probability from the SDeWaC training corpus. All ID
measures were log-transformed because of positive skewness.

S(uniti) = −log2P (uniti|context). (3)

2.2.3. Prosodic factors

We estimated global articulation rate on the sentence level and
local articulation rate on the word level (phones per second).
Both rate measures were mean-centered, separately for each

Figure 1: Spectral change indicated by arrows from onset to
offset in monophthongs and diphthongs (SAMPA). Diphthongs
are displayed in blue, monophthongs in green.

speaker. In addition, we included primary lexical stress (lev-
els: stressed, unstressed), and prosodic boundary information
(levels: none, word, and phrase) as prosodic control factors.

3. Results
Because word class and word frequency are known to correlate
strongly we decided to exclude vowels in function words from
the analysis [25]. Diphthongs inherently displayed more VISC
than monophthongs (Figure 1). In order to have a more uniform
data set we ran linear mixed-effects models (LMMs) only on
monophthongs. In total, there were 57,728 monophthongs in
content words in the corpus.

3.1. Linear mixed-effects models

Statistical analysis was performed using LMMs [26]. LMM
structure was held constant across VISC measures to ensure
comparisons between the models. Since we only found very
low positive correlations for biphone surprisal of the preceding
context (logBiSur) and VL, absolute F1 slope (absF1Slope) and
F2 slope (absF2Slope), as well as for triphone surprisal of the
preceding context (logTriSur) and VL, only LMMs for the pre-
ceding context were tested (Figure 2 for Pearson’s r). Surprisal
values based on following context for biphone (logBiFolSur)
or triphone (logBiFolSur) did not correlate positively with for-
mant change measures. If surprisal had a significant effect on
VISC, interaction models were calculated investigating poten-
tial interaction effects between surprisal and prosodic factors.
The three prosodic factors used here, articulation rate, primary
lexical stress and boundary, were entered separately as interac-
tion terms in the models.

In order to avoid collinearity in the LMMs we performed
a correlation analysis between the fixed effects prior to model
training. There were low to moderate negative correlations
between phoneme probability (PhProb) and surprisal values,
which excluded phoneme probability from further modeling. In
addition, there was a low positive correlation between global
and local articulation rate (r = 0.19). Average vowel duration
and local (r = −0.34) and global articulation rate (r = −0.13)
correlated negatively. The factor primary lexical stress showed
low positive correlations with word frequency (r = 0.18) and
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Figure 2: Correlation matrix (Pearson’s r) for VISC measures
(VL, absolute formant slopes) and ID measures (surprisal, word
frequency, and phoneme probability). Insignificant correlations
at significance level 0.05 are crossed out. Positive correlations
are displayed in blue shades and negative ones in red shades.

Figure 3: Absolute F1 slope per vowel identity (SAMPA). Lax
vowels are displayed in blue and tense vowels in green.

vowel duration (r = 0.28).
ID factors, such as SURPRISAL, and WORD FREQUENCY,

as well as prosodic factors, i. e. STRESS, ARTICULATION RATE,
and BOUNDARY were used as fixed effects. We included vocalic
phonemic STATUS (tense or lax) and average vowel DURATION
as additional control factors, which was calculated per vowel
identity and log-transformed. Random factors were SPEAKER,
WORD, PRECEDING CONTEXT and FOLLOWING CONTEXT.
Here, context was defined as place of articulation. For con-
sonants we used the levels coronal, dorsal, and labial. If context
consisted of pause or vocalic context, this was also marked. All
categorical variables were treatment-coded before they were en-
tered into the model. Backward model selection procedure with
maximal random structure was used to identify the largest con-
verging model. During model selection random slopes were
excluded from the LMM because of correlations with random
intercepts or convergence errors.

For both F1 slope and VL, we found the same effects for
the ID variables, global ARTICULATION RATE, and PHONEMIC
STATUS. Easily predictable, high-frequency vowels showed less

Figure 4: Absolute F2 slope per vowel identity (SAMPA). Lax
vowels are displayed in blue and tense vowels in green.

formant change than low-frequency words that were difficult to
predict. For F2 slope, on the other hand, we found the same ef-
fect of WORD FREQUENCY, but not for SURPRISAL. Somewhat
unexpectedly, there was a significant negative effect of biphone
surprisal of the preceding context on F2 slope, although the rela-
tionship was positive in simple Pearson’s r correlation analysis
(r = 0.02).

As global tempo increased, the overall formant change in
VL and F1 slope decreased. There was no effect of ARTICULA-
TION RATE on F2 slope. Local ARTICULATION RATE was not
significant in any of the models for VISC measures. Primary
lexical STRESS had a significant positive effect on VL and F2
slope, but did not have an effect on F1 slope. While BOUNDARY
had no effect on VL or F1 slope, we found that vowels showed
more formant change in F2 when preceding a word boundary.

On average, lax vowels showed more formant change in VL
and F1 slope than tense vowels. For F2 slope, this effect was
opposite with tense vowels showing more spectral change. In
the VL model, formant change was positively related to vowel
DURATION: Longer vowels had longer formant vectors than
shorter vowels. However, for F1 and F2 slope we found the
opposite effect: DURATION was negatively related to absolute
formant slopes.

The LMM with the largest effect size according to condi-
tional pseudoR2 was the F1 slope model with a total of 18.43 %
explained variance. 11 % of that variance was explained by the
fixed effects. Average vowel DURATION was the strongest pre-
dictor for F1 slope (V ar = 7.98 %). SURPRISAL added 0.59 %
and WORD FREQUENCY 0.11 % to the explained data variance
in that model. Phonemic STATUS of the vowel had a similar ef-
fect size as WORD FREQUENCY (V ar = 0.10 %), while global
ARTICULATION RATE contributed only marginally to the model
(V ar = 0.01 %).

The LMMs for F2 slope and VL had a strong random struc-
ture, while the fixed effects only explained a small amount
of variance in the data. Conditional pseudo R2 added up to
12.59 % explained variance for VL and 17.48 % for F2 slope.
Only 1.33 % of the data variance was accounted for by fixed
effects in the F2 slope model, and even less in the VL model
(V ar = 0.41 %). For F2 slope, DURATION was the strongest
predictor, followed by SURPRISAL (V ar = 0.08 %), and
WORD FREQUENCY (V ar = 0.03 %). The prosodic factors
primary lexical STRESS (V ar = 0.02 %) and BOUNDARY were
less effective (V ar = 0.004 %). Phonemic STATUS did not add
much to the model either (V ar = 0.002 %), in contrast to the
LMM for VL. Here, phonemic STATUS was the strongest fac-
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Table 1: Regression coefficients (Coeff.) and standard error
(SE) of VISC LMMs. Only significant effects are reported.

VISC Terms Coeff. (SE) t-value

VL Surprisal 0.03 (0.007) 4.50∗∗∗

Frequency −0.007 (0.002) −3.85∗∗∗

Stress 0.02 (0.008) 2.86∗∗

Global rate −0.01 (0.004) −2.76∗∗

Duration 0.05 (0.009) 5.76∗∗∗

Status −0.07 (0.008) −8.54∗∗∗

F1 Surprisal 0.003 (0.001) 13.55∗∗∗

Slope Frequency −0.0001 (0.0001) −2.09∗

Global rate −0.0003 (0.0001 −2.19∗

Duration −0.02 (0.0003) −61.98∗∗∗

Status −0.001 (0.0003) −3.70∗∗∗

F2 Surprisal −0.001 (0.0001) −5.42∗∗∗

Slope Frequency −0.0001 (0.0003) −4.39∗∗∗

Stress 0.001 (0.0001) 10.36∗∗∗

Boundary 0.001 (0.0002) 5.14∗∗∗

Duration −0.004 (0.0002) −21.68∗∗∗

Status 0.0006 (0.0001) 4.18∗∗∗

tor with 0.21 % explained variance. WORD FREQUENCY and
SURPRISAL both explained a total of 0.08 % variance, while the
prosodic factors STRESS and global ARTICULATION RATE only
summed up to 0.05 %. Average vowel DURATION also added to
explained variance in VL (V ar = 0.03 %)

With regard to additional LMMs testing larger n-phone
dependencies, we tested the effect of triphone surprisal of
the preceding context on VL. Surprisal was not significant in
that model but showed a tendency for the same effect found
in the model with biphone surprisal (β = 0.008, SE =
0.004, t(39960) = 1.82, p = 0.07). Neither absolute F1 nor
F2 slope correlated positively with any of the other surprisal
measures tested here. Therefore, no additional LMMs were cal-
culated.

Interaction models were run for VL and F1 slope. We en-
tered interaction terms for surprisal and global articulation rate
in both models. According to ANOVA tests using the log like-
lihood output both models did not perform better than the base-
line model without the interaction term. In the VL model, we
ran a separate analysis including an interaction term for sur-
prisal and stress. The interaction model performed better than
the baseline model (χ2(1) = 43.97, p < 0.001). For vowels
in stressed syllables, VL increased with higher surprisal values.
The interaction of surprisal and stress added 0.13 % explained
variance to the fixed effects of the VL model.

4. Discussion
This study investigated the impact of prosodic structure and
information density on dynamic formant trajectories in Ger-
man read speech. We found that word frequency was predic-
tive of formant change in F1, F2, and VL. Vowels in high-
frequency words showed less formant change than in low fre-
quency words. Biphone surprisal of the preceding context was
predictive of VL and F1 slope which was mirrored in the corre-
lation analysis. The change in sign for surprisal in the F2 slope
model despite a positive correlation (r = 0.02) may be ex-
plained by the complexity of the LMM and the weakness of the
correlation. These findings showed that vowel formant change

was significantly influenced by ID factors on phoneme and word
level. We confirmed our hypothesis that vowels showed less for-
mant change when they were easily predictable and occurred in
high-frequent words.

Regarding the prosodic factors we observed a consistent ef-
fect of global articulation rate on VL and F1 slope, and of stress
on VL and F2 slope. At accelerated speech rate there was less
vocalic formant change than at slow speech rate. At a local level
differences in speech rate did not explain variability in formant
movement which was probably due to the collinearity between
average vowel duration and local articulation rate. Vowels in
syllables carrying primary lexical stress showed more formant
change than in unstressed syllables. This was expected consid-
ering that vowels increase in duration and in their vowel disper-
sion when they stand in stressed lexical position [6]. There was
an increase in F2 movement at the word boundary. This find-
ing mirrors expansion of articulatory gestures in segments that
undergo final-lengthening before a prosodic boundary [27].

F1 and F2 slope are measures of formant change relative to
the duration of the vowel. Since the measure already includes
vowel duration we found a negative relationship between abso-
lute formant slope and average vowel duration. For instance,
keeping the amount of change constant but doubling the dura-
tion of the vowel in which the change occurs leads to the relative
amount of change being halved. VL, on the other hand, is not
measured relative to the duration of the vowel, which is why we
found a positive effect of vowel duration on VL, which in turn is
in line with previous findings on VISC and duration variability
[28].

We decided to include the phonemic status of the vowel
in the LMM rather than vowel identity because of data spar-
sity and convergence issues of the model. However, we did not
find consistent results for vowel tenseness across the VISC mea-
sures. Following [15] we expected to find more formant change
in tense vowels and could confirm this hypothesis for F2 slope,
but not for F1 slope and VL. In a more detailed post-hoc anal-
ysis of the German vowels with tense and lax pairs it became
evident that differences in VL and F1 slope between these pairs
were dependent on vowel identity (Figures 3 and 4). The binary
coding of vowel identities into tense and lax vowels did not re-
veal those fine-grained differences. Also, these dynamic cues,
which were apparently specific to vowel identity, helped listen-
ers to identify tense and lax vowels in addition to information
about inherent vowel duration [16].

5. Conclusions
Overall, formant change was equally affected by ID and
prosodic structure. We only found an improvement in model
performance when including an interaction between primary
lexical stress and surprisal in the VL model. Here, vowels in
stressed syllables showed an increase in VL when they were
difficult to predict. However, the effect size of the fixed struc-
ture was low compared to the random structure. Phonological
context, word and speaker identity were more informative in ex-
plaining variability in formant trajectories. This finding was ex-
pected considering the well-known effects of phonological con-
text on formant movements.
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