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Abstract
This paper describesthree aspectsof the unit selectionsynthesis
used in the SmartWeb dialog system. The synthesismodule has
been implementedin the IMS German Festival speech synthesis
system. First, we compare a unit selectionstrategy developed in
the course of the project to a strategy developed earlier. Second,
we discuss our experiences with F0 smoothing and amplitude
modeling, which were both devised to reduce audible discon-
tinuities. However, the results are inconclusive so far. Finally,
we sketch a simple mechanism that addresses the problem of
language disambiguationfor proper names.

1. Introduction
SmartWeb is a research project funded by the German govern-
ment [1]. The goal of the project is to implement a mobile
intuitive user interface to the Semantic Web which allows re-
quests involving natural speech and gestures. Answers are also
rendered by speech, which is synthesized by the unit selection
synthesis module described in this paper.

The synthesis module used in SmartWeb is based on the
synthesis module developed in the predecessor project [2] and
is implementedin the IMS German Festival framework [3].

In the course of the SmartWeb project, we have built two
databases,one for a male speaker, and one for a female speaker.
We have added a new unit selection strategy as an alternative to
the existing strategy. Thus, there are two different unit selection
algorithms available using the same database, text preprocess-
ing and symbolic synthesis components. Both variants render
very natural and intelligiblespeech. We compared the two vari-
ants in a first perceptionexperiment to verify the validity of the
new approach. The two variants and the perception experiment
are described in some detail in section 2.

Although the synthesis results are very good altogether,
there are some occasional glitches that seem to be caused by
discontinuities in amplitude and pitch. We therefore experi-
mented with amplitude modeling and different F0 discontinu-
ity penalties. However, the results are inconclusive so far. The
experimentsand their results are discussed in section 3.

One key application of SmartWeb is the access to infor-
mation on the soccer World Championships 2006. In this sce-
nario, we faced the problem that proper names, particularlyfirst
names, are often ambiguous between several languages. We
briefly sketch a simple mechanism to deal with this problem in
section 4.

2. Comparing the two unit selection
approaches

Both approachescombine aspects of two existing unit selection
approaches, viz. phonological structure matching (PSM, [4])

and acoustic unit clustering (AC, [5]). We will call the first
approach PSM/AC in the following because it combines PSM
and AC in a straightforward way. The alternative approach will
be called PSM/MC because in contrast to the original AC, the
clustering is carried out manually.

2.1. PSM versus AC

The PSM algorithm[4] employs a top-down strategy for select-
ing the units from a speech database in which all sentences are
representedas phonologicaltree structures. For each target sen-
tence to be synthesized, the corresponding target tree structure
is calculated. The PSM algorithm starts on the sentence level
by comparing the available sentence tree structures to the target
tree structure and possibly descends in the target tree structure
until matching candidates are found. Generally, on any level
a candidate matches if the trees below the target node match.
If no adequate candidate is found on one level, the algorithm
descends to the next lower level by assigning the daughters of
the current node as new targets. This approach ensures that the
longest available unit from the database is selected, minimizing
concatenationpoints.

By contrast, the AC algorithm [5] only searches for can-
didates on the segment level. Longer continuous stretches of
speech are only favored indirectly because they cause no con-
catenation costs later on. As the number of candidates is usu-
ally very high on the segment level, the candidatesare clustered
in an offline process. This is done automatically by creating a
decision tree for each phoneme type with its leaves represent-
ing clusters of similar items. The features that are used for
the questions at the nodes of the decision tree are linguistic-
phonological features. The trees are built in a way that the
acoustic similarity within the cluster is maximized, selecting
only features that are significant in partitioning the tree. Thus,
in building the tree, those features are determined that have the
greatest impact on the acoustic realization.

The clusters can be pruned in order to obtain smaller clus-
ters, by excluding segments that are farthest from the center of
the cluster. This is intended to remove potentially poorly artic-
ulated or incorrectly labeled units. A second type of pruning
is aimed at reducing units that are very common by removing
units that are very similar to other existing units.

During the synthesis process, for each target segment the
relevant cluster is determined by selecting the cluster which
matches the desired linguistic-phonologicalcontext. The units
belonging to that cluster are then taken as candidates.

The disadvantage of the AC algorithm is that in some cases
the selection of continuous segments from the database is pro-
hibited because they have either been assigned to a cluster
which is not taken into consideration in the actual context, or
because they have been removed during the pruning process.
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Also during the construction of the decision trees no explicit
linguistic and phonetic knowlegde is applied. For instance, it
is impossible to give a higher priority to certain features, such
as the manner and place of articulationof the context segments,
which is expected to determine the strength and type of coartic-
ulation effects.

The PSM algorithm on the other hand is problematic in
open-domain scenarios because it does not restrict the number
of candidates for each target unit. Particularly in open-domain
scenarios, it will often be necessary to concatenate segment-
level candidates because the database can not be tailored to
cover all possible utterances by higher-level units. Since there
will be very many segment candidates at least for the more fre-
quent phonemes, the candidate network grows very large, re-
ducing the efficiency of the algorithm.1

2.2. The PSM/AC approach

In the predecessorproject to SmartWeb, we implementeda unit
selectionstrategy combiningPSM and AC by incorporatingthe
strengths of both algorithms while avoiding their drawbacks in
open-domain scenarios discussed above [2]. We call this ap-
proach the PSM/AC approach. The combinationwas motivated
by the claim that PSM would prefer longer units in a more di-
rect way than the AC approach, while clustering is appropriate
to reduce candidate sets in cases where no long units are avail-
able.

Accordingly, PSM is used for phrase, word and syllable-
sized units. If no appropriate candidates are available on the
phrase, word, or syllable levels, AC is used on the segment level
to reduce the segment candidate sets. This procedure ensures
that at least longer units can be selected in their entirety; we do
not run the risk that single segments within these units are not
accessible because they have been assigned to another cluster
or because they have been pruned during the clusteringprocess.

2.3. The PSM/MC approach

The alternatively developed approach also employs the PSM
strategy for candidate selection, but uses manual clustering
(MC) to reduce the candidate sets on all levels, hence the name
PSM/MC. The clustering is achieved by manually constructed
decision trees. The use of decision trees on all unit levels allows
for the consistentadministrationof all units and an efficient ac-
cess via indexing.

The structure of the decision trees is given manually by
ranking the features according to their linguistic-phonological
relevance. The order of the ranking determines the questions at
the nodes at each level of the decision trees. Each level of the
tree representsa specific feature (e.g. place of articulationof the
preceding or the next segment, or syllable stress, syllable posi-
tion, etc.). The place of articulationof the segmental context is
ranked very high in the decision tree as it is very important to
model coarticulationeffects.

The MC approach is highly flexible in that the decision tree
can be easily reconstructed if a specific feature order turns out
to be suboptimal. If no or only few candidates are found on a
specific level, it is possible to collect all subordinatecandidates
on a higher level. Also the basic unit type can be selected freely

1For instance, on the segment level, our database contains 107,000
tokens representing84 different German and foreign phonemes, which
correspondsto an average of approx. 1,300 tokens per type, whereas on
the syllable level, 41,000 tokens represent 3,350 syllable types, corre-
sponding to an average of only 12 tokens per type.

Figure 1: Syllable level decision tree with exemplary feature
ranking (left column). For each syllable type, this tree splits
the candidatesaccording to the place of articulationof the pre-
ceding and following segments (features “previous class” and
“next class”, respectively). Candidates are classified further
according to the stress level of the syllable (feature “stress”)
and the position of the syllable in the phrase (feature “syl. po-
sition”).

(i.e. phone, diphone or demi-phone) with no further modifi-
cation to the algorithm. This facilitates the comparison of the
different basic unit types.

The PSM/MC algorithm offers some advantages over
PSM/AC. Firstly, its flexibility allows for comparing not only
different basic unit types but also which phonetic features are
most important for perception. The latter can be achieved by
specifying different feature rankings for the phonetic features
in question and rebuilding the decision trees with the respective
order. This step requires no further manual interaction beyond
the specificationof the ranking and can easily be executed sev-
eral times to test different rankings.

Secondly, PSM/MC usually does not run the risk of exclud-
ing or involuntarily ignoring potentially good candidates even
before the selection process. Depending on the number of can-
didates, the selection process can be terminated on any level in
the tree, selecting all candidates in the sub-trees beneath.

Thirdly, the clustering is adapted to the specific unit type
and its requirements. This way phonetic knowledge can be di-
rectly applied in creating the decision trees. For instance, the
place of articulationof the precedingsegment is the primary se-
lection criterion for all unit types. This is intended to model
coarticulationeffects, such as the influence of preceding labial
consonants on the spectral properties of a vowel for instance,
which would be expected to be different enough from the in-
fluence of, say, a preceding velar consonant to warrant the as-
signment of segments in these contexts to different clusters. On
the syllable level, stress and the syllable’s position in the cor-
responding phrase are important features. The high ranking of
syllabic stress is motivated by the fact that it has been claimed
to affect the spectralbalance of the correspondingvowels [6, 7].
The position of the syllable in the phrase is expected to have an
impact on the duration of the syllable and its segments as well
as on their pitch level. Also, phrase-finalsegments and syllables
are often laryngealizedin German.

The disadvantage of PSM/MC lies in the statisticallyunbal-
anced distribution of the feature vectors in the corpus due to the
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LNRE characteristics of natural language [8], resulting in un-
balanced decision trees. Since a few candidatesare represented
above average in the database, the trees exhibit large differences
in the number of candidatesat the leaf level, as units with iden-
tical feature vectors can not be differentiated and thus end up
in identical clusters. Possible acoustic differences are not taken
into accountbecauseMC only operateson the symboliclevel, in
contrast to AC, where the classificationis driven by the signal.

2.4. Evaluation of PSM/AC versus PSM/MC

We compared both selection strategies in a first unsupervised
perception experiment. We used the diphone-based version of
PSM/MC because it was expected to model coarticulation ef-
fects better than the segment-basedversion. In this experiment,
26 subjects listened to 30 pairs of stimuli. The stimuli were 15
moderately long sentences (4 to 11 words) randomly selected
from different text genres, synthesized using the two different
algorithmsand presentedpairwise in different orders. Each pair
could be played several times, but always in the same order.
Listenershad to judge which stimulus sounded better, or if both
stimuli sounded equally good, and they could take as long as
they wanted to make their decision. In 22 cases, the stimuli in
a pair were different (AB or BA order), and in 8 cases, they
were identical. Participants were instructed that some stimuli
would be identical. The identical pairs were included to assess
the listeners’ reliability.

Listeners favored PSM/AC over PSM/MC (49.8% vs.
40.7%, 9.4% undecided). The differences were statisticallysig-
nificant (χ2(2,N=572)=154.03, p!0.05). The difference was
not due to personal preferences, since only 3 participants con-
sistently favored PSM/AC over PSM/MC (p<0.002)2. Instead,
the differences were dependent on the stimulus pair: for 10 out
of 22 pairs PSM/AC was rated significantlybetter, and for 6 of
these pairs PSM/MC was rated significantlybetter (p<0.002)3.
This means that for the majority of stimulus pairs, participants
agreed in their judgment – they usually favored the same vari-
ant. The reason for this is that in some cases, the units selected
from the database were not ideal realizationsof the target unit,
and that sometimes, the concatenation was suboptimal. These
problems, which are typical for any unit selection algorithm,
in some cases occurred in the PSM/AC stimulus, and in some
cases in the PSM/MC stimulus, but the PSM/MC variant was
affected slightly more often.

Altogetherwe consider the results of the evaluationencour-
aging enough to pursue the PSM/MC algorithm further, even
more so because there are at least two aspects in which we are
confident to improve the algorithm in the future.

First of all, an informal assessment of the specific prob-
lems in the PSM/MC stimuli suggests that the concatenationof
diphones containing plosives was problematic in some cases,
in that the corresponding stop releases could not be perceived
properly. This is becauseour variantof the originaloptimalcou-
pling algorithm[9] has been adaptedto concatenatediphonesby
starting the search for a good concatenationpoint at the middle
of the phoneme. The middle of the phoneme in case of stops is
often close to the burst, and thus it happensoccasionallythat the
burst is completelyomitted when concatenatingstops. One way
to remedy this problem is to label the bursts in the database and
to take the place of the burst into consideration when search-

2The significancelevel was adapted to p = 0.05/26! 0.002 because
of the 26 repeated χ2 tests

3The significancelevel was adapted to p = 0.05/22! 0.002 because
of the 22 repeated χ2 tests

ing for the optimal concatenation point. Another way may be
to modify the optimal coupling algorithm to detect the silence
part of stops automatically. Compared to the first solution, this
would eliminate the necessity to prepare the database before-
hand.

Some additional improvement of the PSM/MC algorithm
could be achieved by re-assessing the manually defined fea-
ture order in the selection trees. Although the current order
was partly determined on the basis of phonetic knowledge, in
some cases the ranking was not obvious and only preliminar-
ily established by ad hoc decisions. These decisions might be
reconsideredwith the help of further perceptualevaluation pro-
cedures.

3. Prosodic modifications
In order to improve synthesis quality even further we investi-
gated several possibilities for prosodic modifications. The mo-
tivation was that audible discontinuities seemed to be mostly
caused by concatenation of prosodically too different can-
didates. Concerning pitch we experimented with different
weights for the concatenation costs caused by pitch disconti-
nuities. As for amplitude, we built a loudness model for each
phoneme and adjusted actually selected segment candidates to
fit those models.

3.1. Pitch Continuity

A smooth pitch contour is most important for intonation. Dis-
continuities of the pitch contour at unit boundaries cause au-
dible glitches. In a first step, we investigated the influence of
different weights for F0 differences in determining the concate-
nation costs.

The difference in F0 between consecutive units is already
taken into account when calculatingconcatenationcosts in Fes-
tival [9]. An additional weight factor has been added [10] to
bring the costs caused by F0 differences into the same order of
magnitude as the costs for spectral discontinuities.This weight
factor has been predeterminedfor both the male and the female
voice by synthesizing a large number of sentences and com-
paring the means for the spectral costs to the means for the F0
costs. The weight factor was chosen in a way that the same
means are obtained for spectral costs and F0 costs. A second
factor was defined in a configuration file which is intended to
allow experimenting with different weight factors to give more
or less priority to F0 continuity [10].

The effectiveness and usefulness of the newly introduced
F0 weights were tested with three objective evaluationmethods,
varying the configurableweight factor to be 0, 1, 2, 3, or 5.

The first method was to compare the resulting F0 values
with the idealistic F0 curve as predicted by the PaIntE model
[11] by calculatingthe size of the area between the two curves:

curveRMSE =

vuuut
length(wave)P

i=0
(f0(i)− f0PaIntE(i))2

length(wave)
(1)

The smaller the area the better the F0 curve approximates the
“optimum”. However, the significance of this calculation de-
pends on the quality of the referencecurve and does not directly
measure the smoothnessof the F0 curve.

The second method was to determinean F0 curve “smooth-
ness” correlate. The smoothnesscorrelatewas obtained by sim-
ply adding the absolute differences of consecutive F0 values in
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the synthesizedsignal:

n−1X

i=0

|xi+1 − xi| (2)

(where n is the number of frames and x the F0 value). If the
smoothnessincreaseswith larger F0 weights, this is a good sign
for fewer discontinuities in the F0 curve. However, this ap-
proach did not seem to be a good benchmark for the F0 cost
function,since both increasingand decreasingsmoothnesswere
found for larger F0 weights, depending on the sentence synthe-
sized.

The third method was to verify that different F0 weights
did indeed have an effect in that they resulted in different can-
didates being selected, and to quantify the change by determin-
ing in how many cases different candidates were selected. The
results confirmed that with increasing F0 weights, the number
of different candidates increases as well. This was not gener-
ally the case; for some sentences, effects occurred only for F0
weight 3 or 5, while for others, there were changes even for
an F0 weight of 1. This shows that the introduction of the ad-
ditional weight factor successfully brings the F0 weights in an
order of magnitude that is comparable to the weights applied to
spectraldifferences. However, this does not answer the question
whether the changes are positive or negative.

We concludethat a perceptualexperimentsimilar to the one
describedin section 2.4 would be better suited to verify the use-
fulness of manipulatingthe F0 weight in the concatenationcost
function.

3.2. Amplitude Modeling

Even for very carefully recorded speech databases, different
realizations of one phoneme will have different sound levels,
since they were produced in different contexts. Since loudness
is no explicit selection criterion and only is taken into account
when calculating the concatenation costs, it is possible that a
unit is selected which fits perfectly except for the volume. To
remedy this problem, we tried to apply, as the final step in syn-
thesis, amplitude modification based on models we built be-
fore. The models were created by inspecting every occurrence
of each phoneme in our database, measuring the RMSE values
at 10, 25, 50, 75 and 90% of the phoneme durationand calculat-
ing the means [10]. In applying these models to the synthesized
signal in the final step, each sample is multiplied by the fac-
tor determinedby these models. Values between the calculation
points are linearly interpolated.The procedurewas based on the
one used in the Bell Labs speech synthesis system [12, p. 222].

Pauses and plosives are not modified; the former since they
have no energy, and the latter since they are hard to normalize
due to their different phases (pause, burst and friction).

Figure 2 shows an example comparing the amplitude pro-
file of the unmodifiedsignal (blue dashed line) and the profile of
the amplitude normalized signal (red solid line) for the phrase
einer der zentralen Plätze (“one of the central squares”). The
speech signal looks more natural after the modification. For
instance, the [a:] is louder than the schwa [@] after the modi-
fication, which seems more natural than the other way round,
which it was before the modification.

However, a perception experiment with 35 subjects us-
ing the same experimental procedure as described in section
2.4 showed that the unmodified signal was very clearly pre-
ferred over the amplitude normalized signal. The original sig-
nal was rated better for 52.2% of the stimulus pairs, while the

normalized variant was preferred for only 12.0% of the pairs,
and both variants were rated equally good for the remaining
35.8% of the pairs. The differenceswere statisticallysignificant
(χ2(2,N=1040)=261.56,p!0.05). The accordancein listeners’
judgements was overwhelming. Not a single listener consis-
tently preferred the normalized variant. On the contrary, every
listener rated the original variant better more often than the nor-
malized variant, and this preference was significant for 15 out
of 35 listeners (15 out of 35 listener-specific χ2 tests yield val-
ues of p < 0.05/35# 0.001, and only 3 tests yield p > 0.05).
Also, for no pair of stimuli, the normalized variant was rated
better by more listeners than the original variant. The prefer-
ence again was significant for most stimulus pairs (15 out of 23
stimuli-specificχ2 tests yield values of p < 0.05/23# 0.002).

Given the negative outcome of the perception experiment,
we analyzed the stimuli once again. On first visual inspection,
the amplitude normalized variants seemed to be superior to the
original variants. The amplitude profiles looked smoother and
more natural, and usually, the normalizationdid not “stick out”
perceptually. However, in few cases, the normalizationcaused
problems for some segments. This occurred mostly for seg-
ments which exhibitedlower amplitudesthan expected. In these
cases, the normalizationresulted in boosting the respective seg-
ment too much, revealing phenomena that would otherwise not
have been heard so clearly. In one example, a very low [l] seg-
ment contained an almost inaudible burst caused by the articu-
latory movement from a preceding [S]. After normalizing the
[l] segment to the average amplitude of /l/ phonemes, the burst
is perceived as an irritating noise. In another example, a prob-
lematic concatenation in a very low [@] segment caused a dis-
continuity that became much more obvious after the normaliza-
tion. Some phonemeswere generallyproblematic. For instance,
syllable-initial vowels are often glottalized to some degree in
German, there may even be the releaseof a glottal stop at the be-
ginning of the vowel. These glottalized realizationshave lower
amplitudes than the non-glottalizedmodal-voiced realizations,
and in these cases, raising the amplitude results in unnaturally
loud glottal stops or glottalized vowel phases. Also, initial /h/
was generally boosted too much, making it sound almost like
/x/. Thus, although the normalizationfor most segments did not
compromise the quality of the speech signal, there was often at
least one of the few problematicsegments in the test sentences,
and listeners seldom failed to detect them. A possible solution
to this problem may be to limit the degree to which very low
segments are manipulated, e.g. by assuming an upper limit for
the normalization factor, but this will have to be investigated in
the future.

4. Language disambiguationfor proper
names

In the course of the project, we added a simple language dis-
ambiguation component for proper names. Apart from the fact
that proper names pose problems because of their often irregu-
lar pronunciation,particularly first names are often ambiguous
between several languages. For instance, the first name David
is pronounceddifferently depending on whether it is a German,
English, French or Spanish name. However, the context often
helps to disambiguate, e.g. in the above example, if the name
Beckham follows, the English variant is obviously correct.

We have added a mechanismthat facilitatesdisambiguation
in such cases. This mechanism presupposes that there is a lex-
icon that not only contains transcriptions of the proper names
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Figure 2: Amplitude normalization.Note that the [a:] (1.8s) is louder than the [@] after the modification.

but also that their origin is coded into the part of speech tag.
In the example cited above, the lexicon would have to contain
several entries for David, marked as a proper name of German,
English, French, or Spanish origin, respectively, and one entry
for Beckham, marked as English. This information could re-
sult from extractingproper names from foreign lexicons. In our
experience, it is sufficient to differentiate between several lan-
guages or groups of languages. For instance, given the degree
to which we adapted foreign pronunciationsto our phoneme in-
ventory, it was adequate to differentiate between English, Ger-
man, and French, but the Spanish languages and Portuguese
could be grouped together, and there was no further distinction
necessary between different Slavic languages, or between dif-
ferent Asian languages.

The mechanism automatically collects all different tran-
scriptions of orthographicallyidentical proper names including
their tags into a table that lists all possible origins for all am-
biguous proper names. During synthesis, upon encounteringan
ambiguousname, the pronunciationis left underspecifiedby as-
signing the set of all possible origins to each name. Then, they
are disambiguated by unifying the sets of possible origins of
consecutive proper names.

Althoughwe have only a moderatenumber of proper names
that are marked for their origin (approximately 2,000 names),
the mechanism has greatly improved the subjective synthesis
quality because some of the most frequent cases of ambiguous
names occurred very frequentlyin a SmartWeb key application,
viz. the access of information on the soccer World Champi-
onships 2006.

5. Conclusions
We have described three aspects of the unit selection synthe-
sis used in the SmartWeb system. First, we have described
and compared two unit selection strategies. With respect to the
PSM/MC strategy, the optimal feature rankings and the most
adequate basic unit type should be investigated further. Particu-
larly the optimal feature ranking will give interestinginsights in

the perceptual relevance of the respective features from a theo-
reticalperspective. Anotheropen issue is the treatmentof bursts
in concatenation,which should be addressed in the future. With
these improvements, we expect the PSM/MC approach to sur-
pass the PSM/AC approach in the future. For the time being,
the PSM/AC approach is preferred over the PSM/MC approach
in the SmartWeb project.

Second, we have discussed our experiences with different
weights to enforce pitch continuity and with amplitude model-
ing. In the case of pitch continuity, we introducedan additional
F0 weight factor that successfully brings the F0 weights in an
order of magnitude comparable to the weights applied to spec-
tral differences. However, a perceptual experiment to confirm
the usefulnessof manipulatingthe F0 weights has yet to be con-
ducted. With regard to amplitude modeling, we found that it is
clearly not useful, at least not in the way it has been applied
here. Assuming an upper limit for the normalizationfactor may
be expedient, but this has not been verified yet.

Finally, we have sketched a simple mechanismfor language
disambiguation of proper names that improved the subjective
synthesis quality particularlyfor a SmartWeb key application.
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ligence, S. Biundo, T. Frühwirth, and G. Palm, Eds.
Berlin/Heidelberg: Springer, 2004, pp. 50 – 51.

[2] A. Schweitzer, N. Braunschweiler, G. Dogil, T. Klankert,
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and M. Thomae, “Multimodal speech synthesis,” in
SmartKom: Foundations of Multimodal Dialogue Sys-
tems, W. Wahlster, Ed. Springer, 2004, pp. 411–435.

[3] “IMS German Festival home page,” [http://www.ims.uni-
stuttgart.de/phonetik/synthesis/],2007.

[4] P. Taylor and A. W. Black, “Speech synthesis by phono-
logical structure matching,” in Proceedings of the 6th Eu-
ropean Conference on Speech Communication and Tech-
nology (Budapest,Hungary), vol. 2, 1999, pp. 623–626.

[5] A. W. Black and P. Taylor, “Automatically clustering
similar units for unit selection in speech synthesis,” in
Proceedings of the 5th European Conference on Speech
Communicationand Technology (Rhodos, Greece), vol. 2,
1997, pp. 601–604.

[6] K. Claßen, G. Dogil, M. Jessen, K. Marasek, and
W. Wokurek, “Stimmqualiẗat und Wortbetonung im
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