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Abstract

An approach to automatic detection of syllable structure is presented. We
demonstrate a novel application of EM-based clustering to multivariate data,
exemplified by the induction of 3- and 5-dimensional probabilistic syllable
classes. The 3-dimensional models were subjected to a pseudo-disambiguation
task, the result of which shows that the onset is the most variable, or least
predictable, part of the syllable. An extensive qualitative evaluation shows
that the method yields phonologically meaningful syllable classes. We then
propose a novel approach to grapheme-to-phoneme conversion and show that

syllable structure represents valuable information for pronunciation systems.

1 Introduction

In this paper we present an approach to unsupervised learning and automatic de-
tection of syllable structure. The primary goal of the paper is to demonstrate the
application of EM-based clustering to multivariate data. The suitability of this
approach is exemplified by the induction of 3- and 5-dimensional probabilistic syl-
lable classes. A secondary goal is to outline a novel approach to the conversion of

graphemes to phonemes (g2p) which uses a context-free grammar (cfg) to generate
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all sequences of phonemes corresponding to a given orthographic input word and
then ranks the hypotheses according to the probabilistic information coded in the
syllable classes.

Our approach builds on two resources. The first resource is a cfg for g2p con-
version that was constructed manually by a linguistic expert (Miiller, 2000). The
grammar describes how words are composed of syllables and how syllables consist
of parts that are conventionally called onset, nucleus and coda, which in turn are
composed of phonemes, and corresponding graphemes. The second resource consists
of a multivariate clustering algorithm that is used to reveal syllable structure hidden
in unannotated training data. In a first step, we collect syllables by going through a
large text corpus, looking up the words and their syllabifications in a pronunciation
dictionary and counting the occurrence frequencies of the syllable types. Probabilis-
tic syllable classes are then computed by applying maximum likelihood estimation
from incomplete data via the EM algorithm. Two-dimensional EM-based clustering
has been applied to tasks in syntax (Rooth et al., 1999), but so far this approach
has not been used to derive models of higher dimensionality and, to the best of our
knowledge, this is the first time that it is being applied to speech. Accordingly, we
have trained 3- and 5-dimensional models for English and German syllable structure.

The obtained models of syllable structure were evaluated in three ways. Firstly,
the 3-dimensional models were subjected to a pseudo-disambiguation task, the result
of which shows that the onset is the most variable, or least predictable, part of the
syllable. Secondly, the resulting syllable classes were qualitatively evaluated from a
phonological and phonotactic point of view. Thirdly, a 5-dimensional syllable model
for German was tested in a g2p conversion task. The results compare well with the
best currently available data-driven approaches to g2p conversion (e.g., (Damper
et al., 1999)) and suggest that syllable structure represents valuable information

for pronunciation systems. Such systems are critical components in text-to-speech
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TTS) conversion systems, and they are also increasingly used to generate pronun-
g g

ciation variants in automatic speech recognition.

The rest of the paper is organized as follows. In Section 2 we introduce the
multivariate clustering algorithm. In Section 3 we present four experiments based
on 3- and 5-dimensional data for German and English. Section 4 is dedicated to

evaluation and in Section 5 we discuss our results.

2 Multivariate Syllable Clustering

EM-based clustering has been derived and applied to syntax (Rooth et al., 1999).
Unfortunately, this approach is not applicable to multivariate data with more than
two dimensions. However, we consider syllables to consist of at least three dimen-
sions corresponding to parts of the internal syllable structure: onset, nucleus and
coda. We have also experimented with 5-dimensional models by adding two more
dimensions: position of the syllable in the word and stress status. In our multi-
variate clustering approach, classes corresponding to syllables are viewed as hidden
data in the context of maximum likelihood estimation from incomplete data via the
EM algorithm. The two main tasks of EM-based clustering are (i) the induction of
a smooth probability model on the data, and (ii) the automatic discovery of class
structure in the data. Both aspects are considered in our application. We aim to de-
rive a probability distribution p(y) on syllables y from a large sample. The key idea is
to view y as conditioned on an unobserved class ¢ € C, where the classes are given no
prior interpretation. The probability of a syllable y = (y1, .., y4) € 1 X.. X V4, d > 3,

is defined as:
d

ply) = D pley) =Y p@pylc) = p) [[pwile)

ceC ceC ceC i=1

195



Note that conditioning of y; on each other is solely made through the classes ¢
via the independence assumption p(y|c) = []%, p(vi|c). This assumption makes
clustering feasible in the first place; later on (in Section 4.1) we will experimentally
determine the number |C/| of classes such that the assumption is optimally met. The
EM algorithm (Dempster, Laird, and Rubin, 1977) is directed at maximizing the
incomplete data log-likelihood L = Zy p(y) Inp(y) as a function of the probability
distribution p for a given empirical probability distribution p. Our application is
an instance of the EM-algorithm for context-free models (Baum et al., 1970), from
which simple re-estimation formulae can be derived. Let f(y) the frequency of
syllable y, and [f| =} .y, f(y) the total frequency of the sample (i.e. p(y) = %),
and f.(y) = f(y)p(cly) the estimated frequency of y annotated with ¢. Parameter
updates p(c), p(y;|c) can thus be computed by (c € C,y; € V;,i =1, ..,d):

Y yev fe()

, and
|f]

ple) =

Zye% XX Vi1 x{ys} xVip1 x..xVq fc(y)

Pluile) = >y 1.0)

As shown by Baum et al. (1970), every such maximization step increases the log-

A

likelihood function L, and a sequence of re-estimates eventually converges to a (local)

maximum.

3 Experiments

A sample of syllables serves as input to the multivariate clustering algorithm. The
German data were extracted from the Stuttgarter Zeitung (STZ), a newspaper cor-
pus of about 31 million words. The English data came from the British National
Corpus (BNC), a collection of samples of written and spoken language from a wide

range of sources containing about 100 million words. For both languages, syllables
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example || English | modified || example || English | modified
Celex to Celex to
bacon [N,] [@n] not [n] [nOt]
idealism [m,)] [z@m)] on [n] [On]
burden [n,] [@n] to [t] [tu:]
dangle L] [g@]] us [s] [Vs]
father [r*] [@Qr] would [d] [wUd]
the D] | D] | do gl [du]
them [@m] | [D@m] | had [d] [h&d]
and IN] | [&nd] || shal S| sl
have v | [h&v] | has 7 | &
've [v] [h&v] || ma’am [m] | [m&][Qm]

Figure 1: Modifications of the English pronunciation lexicon.

were collected by going through the corpus, looking up the words and their syllab-
ifications in a pronunciation dictionary (Baayen, Piepenbrock, and van Rijn, 1993)
and counting the occurrence frequencies of the syllable types. We slightly modi-
fied the English pronunciation lexicon to obtain non-empty nuclei, e.g. /idealism/
[al][dIQ][lIzm,| was modified to [al][dIQ][lI][z@m]| (SAMPA transcription). Figure 1

shows some modifications to prevent empty nuclei.

German Celex collapses the fricatives [C] and [x] into [x]|, the motivation being
that the respective allophone is entirely predictable from the preceding vowel: [C]
would appear after front vowels and [x] after back vowels. Moreover, the vocalized
/r/ (Celex [6]) is coded as [@R], which yields syllable classes with [R] in the coda.

We did not alter these conventions for our experiments.

Figures 2 and Figure 3 show the phonetic character sets of English and German,
respectively. The columns show the phonemes together with an example word. The

relevant graphemes are underlined.
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p pat T  thin I pit u: boon
b  bad D then E pet burn
t  tack S sap &  pat el bay
d dad Z zap V  putt al buy
k cad S sheep O pot OI  boy
g game || Z meagure || U  put QU no
N  bang || j yank @ another | aU brow
m mad X loch i: bean I@ peer
n nad h  had A: barn EQ pair
1 lad w  why O: born U@ poor
r rat tS  cheap

f fat dZ jeep

v vat

Figure 2: English phonetic character set.

p Pakt S Glas i Lied E Bett

b  Bad Z Suppe a: klar 9  Gotter

t Tag X Bach, ich || u: Hut a hat

d dann S Schiff y: fiir O Glocke

k  kalt h Hand E: Kase U Pult

g Gast Z  Genie e: Mehl @ Beginn

N Klang | j Jacke 2: Moabel

m Mass ts  Zahl o: Boot

n Naht pf Pferd al weit

1 Last tS  Matsch aU Haut

R Ratte || dZ Gin QY freut

f  falsch I Mitte

v Welt Y Pfiitze

Figure 3: German phonetic character set.
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NOP[I]  0.282 NOP[I]  0.460

t 0.107 n 0.121
1 0.074 N 0.096
d 0.071 z 0.079
b 0.065 d 0.049
s 0.060 t 0.042
r 0.040 m 0.017
class 0
m 0.040 I 0.999 k 0.015
0.212
n 0.033 ts 0.013
S 0.018 f 0.012
f 0.017 s 0.011
w 0.017 v 0.009
v 0.016 1 0.009
st 0.015 ks 0.007
z 0.014 dz 0.006

Figure 4: Class #0 of a 3-dimensional English model with 12 classes

In two experiments, we induced 3-dimensional models based on syllable onset,
nucleus, and coda. We collected 9327 distinct German syllables and 13,598 dis-
tinct English syllables. The number of syllable classes was systematically varied in

iterated training runs and ranged from 1 to 200.

Figure 4 shows a segment of class #0 from a 3-dimensional English model with
12 classes!. The first column displays the class index 0 and the class probability
p(0). The most probable onsets and their probabilities are listed in descending order
in the second column, as are nucleus and coda in the third and fourth columns,
respectively. Empty onsets and codas are labeled “NOP[nucleus]”. The nucleus is
considered obligatory and may therefore not be empty.

In two further experiments we induced 5-dimensional models, augmented by the
additional parameters of position of the syllable in the word and stress status. We
collected 16,595 distinct German syllables and 24,365 distinct English syllables. The

number of syllable classes ranged from 1 to 200. Figure 5 illustrates (part of) class

!The unabridged syllable classes obtained from the 3- (12 classes) and 5-dimensional models
(50 classes) for English and German are available on the World Wide Web at http://www.ims.uni-
stuttgart.de/phonetik/g2p/
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nt 0.602
t 0.128
n 0.092
1 0.053
NOP[E]  0.630 m 0.037
ts 0.256 Rn 0.02
0.074 N 0.013
E 0.990 INI 0.627
class 46 k 0.024 s 0.012 STR 0.596
e: 0.004 FIN 0.331
0.007 m 0.007 pt 0.010 USTR 0.403
i 0.003 MED 0.040
t 0.002 Rnst 0.005
kv 0.001 ks 0.004
n 0.001 Rns 0.003
nts 0.003
Rt 0.002
Rts 0.001
Rp 0.001

Figure 5: Class #46 of a 5-dimensional German model with 50 classes

#46 from a 5-dimensional German model with 50 classes. Syllable position and
stress are displayed in the last two columns.

Two further experiments were performed on 3- and 5-dimensional German syl-
lable types by setting the occurrence frequencies of distinct syllables to an artificial
value of 1 (i.e. define f(y) = 1 for each syllable y (Section 2)). In these experiments,
we used the previously collected 9,327 3-dimensional and 16,595 5-dimensional Ger-
man distinct syllables. The number of syllable classes again ranged from 1 to 200.
Our intention was to show that frequency counts represent valuable information for

our clustering task. For the results of these experiments we refer to Section 4.4.

4 Evaluation

In the following sections, (i) the 3-dimensional models are subjected to a pseudo-
disambiguation task (Section 4.1); (ii) the syllable classes are qualitatively evaluated
(4.2); (iii) the 5-dimensional syllable model for German is tested in a g2p task (4.3);
and (iv) the German syllable models are compared to models trained on syllable

types (4.4).
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Figure 6: Evaluation on pseudo-disambiguation task for English (left) and German
(right): accuracy for onset, nucleus and coda (y-axis) as a function of number of

clusters (x-axis).

4.1 Pseudo-Disambiguation

We evaluated our 3-dimensional clustering models on a pseudo-disambiguation task
similar to the one described by Rooth et al. (1999), but specified to onset, nucleus,
and coda ambiguity. The first task is to judge which of two onsets on and on’ is
more likely to appear in the context of a given nucleus n and a given coda cod.
For this purpose, we constructed an evaluation corpus of 3000 syllables (on, n, cod)
selected from the original data. Then, randomly chosen onsets on’ were attached
to all syllables in the evaluation corpus, with the resulting syllables (on’,n, cod)
appearing neither in the training nor in the evaluation corpus. Furthermore, the

elements on, n, cod, and on' were required to be part of the training corpus.

Clustering models were parameterized in (up to 10) starting values of EM-
training and in the number of classes of the model (varying between 1 and 200),
resulting in a sequence of 10 X 20 models. Accuracy was calculated as the number
of times the model decided p(on,n, cod) > p(on',n, cod) for all choices made. Two

similar tasks were designed for nucleus and coda.
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Results for the best starting values are shown in Figure 6. Models of 12 classes
show the highest accuracy rates. For German we reached accuracy rates of 88-90%
(nucleus and coda) and 77% (onset). For English we achieved accuracy rates of 92%
(coda), 84% (nucleus), and 76% (onset).

One interpretation of these findings is that the coda is quite predictable for
are given onset-nucleus combination. Slightly less predictable is the identity of the
nucleus if onset and coda a given. The least restricted syllable part is the onset,
which is hard to predict for a given nucleus-coda combination.

The results of the pseudo-disambiguation agree with intuition: in English and
German, the onset is the most variable part of the syllable in terms of which phones
may occur there for a given nucleus and coda; in other words, it is easy to find
minimal pairs that vary in the onset; and it is easier to predict the nucleus and
especially the coda for a given onset, as their choices are more restricted.

The pseudo-disambiguation results and linguistic intuition are further corrobo-
rated by observations in the context of automatic speech recognition that onsets
appear to be more important for word discriminability than nuclei and codas are—
and being less predictable, onset consonants are therefore also acoustically less vari-
able and pronounced canonically more often than other phones in both read and

spontaneous speech (Fosler-Lussier, Greenberg, and Morgan, 1999).

4.2 Qualitative Evaluation

In this section the syllable classes obtained from training 3- and 5-dimensional mod-
els for English and German are evaluated from a phonological point of view. Before
discussing the results, we first review the basic properties of German and English

syllable structure.
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4.2.1 Syllable Structure

The phonotactics of English and German allow complex consonant clusters in the
onset and coda of syllables. The maximum number of consonants in the onset is 3
in both languages. In German codas, clusters of up to 5 (or 6, if contractions such
as du schrumpfst’s [du: SrUmpfsts| “you shrink it” are considered too) consonants
are observed, whereas English allows up to 4 coda consonants. Thus, the maximum
number of consecutive consonants across syllable boundaries is 9 in German and 7
in English.

Certain restrictions exist as to which (classes of) consonants may occur in which
position within the onset or coda of a syllable. For instance, in both languages
there are only a few possible onset clusters with three consonants, and no phones
other than obstruents may occur before an obstruent in the onset. In codas, only
combinations and alternations of voiceless dental stops and fricatives are possible
in positions 2 through 4 in English, and 3 through 5 (or 6) in German; after the
first obstruent no phones other than obstruents may occur in the coda. Examples
of the longest consonant clusters in English and German onsets and codas are given
in Figures 7 and 8, respectively.

Sonorants (nasals, liquids, and glides) can only occur adjacent to the syllable
nucleus. This pattern is sometimes referred to as the sonority principle, which ranks
phone classes according to their natural acoustic sonority, which in turn is a correlate
of the degree of constriction of the vocal tract. We have argued elsewhere (Mgbius,
1998) that this ranking is not entirely consistent with actual acoustic measurements

and is certainly not a valid descriptor of syllable structure across languages?.

ZSee also the discussion of definitions (and measurements) of sonority in (Dogil and Luschiitzky,
1990). The authors reinterpret sonority as being derivable from a hierarchical segmental feature
structure. This configurationally defined universal sonority scale can be extended to stating pref-

erence laws for syllabification.
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Onsets

Class | Clusters Examples

SPL | sp + l/r/] split sprite spurious
st + 1/] street studious

sk + 1/r/j/w | sclerosis script skewer squid

Codas
Class | Clusters Examples
LPPS | Ipts lkts sculpts mulcts
LPSP | ltst waltzed
LSSS | IfTs twelfths

NPPS | mpts Nkts prompts adjuncts

NPSP | mpst Nkst glimpsed jinzed
PSPS | ksts texts
PSSS | ksTs sixths

Figure 7: English allows up to 3 consonants in the onset and up to 4 consonants
in the coda of a syllable. The longest consonant clusters are restricted to a small
number of distinct types. Phone class symbols: P = voiceless stop, S = voiceless

fricative, L = liquid, N = nasal.
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Onsets

Class Clusters | Examples

SPL Sp + 1/r | Splitter Spritze
St +r Streit
sk + 1/r | Sklerose Skrupel

Codas

Class Clusters | Examples

NPSSPS | mpfsts schrumpfst’s
NPSSP | mpfst schrumpfst

ntSst plantschst

NPPSP | mptst promptst
NSPSP | nftst Zsanftst

Figure 8: Similar to English, German allows up to 3 consonants in the onset of
a syllable, but up to 6 consonants may occur in the coda. The longest consonant
clusters are represented by only a small number of distinct types. Phone class

symbols: P = voiceless stop, S = voiceless fricative, L. = liquid, N = nasal.
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The complexity of syllable onset and coda structures poses problems for a syllab-
ification algorithm because, despite of the above-mentioned restrictions, ambiguous
and multiple alternative syllable boundary locations are usually observed in poly-
syllabic words.

Determining the syllable boundary is important because the pronunciation of
most phonemes is a function of their position in the syllable. This is most evident in
the case of phonologically voiced obstruents in German: the voicing opposition for
stops and fricatives is neutralized in the syllable coda. For instance, the phonological
minimal pair Bund “union” — bunt “colorful” is in fact homophonic: [bUnt]. In
English, voiceless stops are aspirated when they constitute the onset of a stressed
syllable (e.g., [t] in top). They are not aspirated, however, if they are preceded in
the onset by [s] (e.g., [t| in stop), followed in the onset by [1] or [r] (e.g., [t] in stress),
or if they occur in the coda (e.g., [t] in pot).

4.2.2 Three-dimensional models

The 3-dimensional models are based on the three syllable positions, viz. onset,
nucleus, and coda. The number of syllable classes (clusters) was systematically
varied in iterated training runs and ranged from 1 to 200. The following discussion
focusses on the results obtained for 12 classes. Terminating the clustering process
at 12 classes yielded the cumulative maximum accuracy for onsets, nuclei and codas
in the pseudo-disambiguation task (see Section 4.1).

Note that the accuracy peaks for the three syllable parts do not necessarily
co-occur at the same number of classes, and that more than one local cumulative
maximum may be observed. In such cases we selected the local cumulative maxi-
mum that coincides with the maximum accuracy for nuclei. As we have shown in
Section 4.1, the absolute number of clusters does not appear to be crucial. Infor-

mal inspection of the syllable classes obtained for different but adjacent numbers of
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clusters revealed that the pertinent results are qualitatively similar to each other.
This observation holds for 3-dimensional and 5-dimensional models of both German
and English.

English and German. The 3-dimensional English and German models do not
split the classes as clearly as the 5-dimensional models do. For instance, class #0
in Figure 4 contains the highly frequent function words in, is, it, its as well as the
suffixes -ing ,-ting, -ling. Notice that these functions words and suffixes appear to be
separated in the 5-dimensional model (classes #1 and #3 in Figure 9). Evidently,
the position and stress features sharpen the distinction between different types of
syllable structure and reveal structural information that otherwise remains hidden

in the raw data.

4.2.3 Five-dimensional models

Our main observation was that the quality of the output dramatically increased
when more dimensions were added. The following discussion is restricted to models
with 50 classes, which yielded meaningful and interpretable syllable classes.

The 5-dimensional models used as factors the three syllable positions, augmented
by the position of the syllable in the word and by stress status. The factor syllable
position has four levels, viz. monosyllabic (ONE), initial (INI), medial (MED), and
final (FIN). Stress is a binary factor with the levels stressed (STR) and unstressed
(USTR), as annotated in the pronunciation dictionary.

We can look at the results from different angles. For instance, we can verify
if any of the classes are mainly representatives of a syllable class pertinent to a
particular nucleus. Another interesting aspect is whether there are syllable classes
that represent parts of lexical content words, as opposed to high-frequency function
words. Finally, some syllable classes may correspond to productive affixes.

English. In 24 out of the 50 syllable classes obtained for English one dominant
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D 0.745
NOP[@] 0.877
NOP[@]  0.166
class 0 m 0.0792
fr 0.046 Q ONE 0.999 STR 1
0.071 r* 0.04
s 0.0353
n 0.002
j 0.006
n 0.387
NOP[I]  0.914 ONE  0.916
z 0.360
class 1 h 0.071 INI 0.069
I t 0.180 STR 1
0.049 b 0.010 FIN 0.013
f 0.042
sk 0.001 MED 0.001
ts 0.02
0.466
t 0.206
d 0.167
s 0.106
z 0.152
d 0.104
t 0.034
NOP[I]  0.101
s 0.032
k 0.059
v 0.029
n 0.052
st 0.019
r 0.052
k 0.014
v 0.036
Nz 0.012
st 0.035
1 0.011
z 0.033
ts 0.01
class 3 1 0.028 I 0.993 FIN 0.997
m 0.007 USTR 0.999
0.040 T 0.026 QU 0.005 MED 0.002
ks 0.006
dz 0.02
S 0.005
m 0.019
sts 0.003
P 0.017
dz 0.003
S 0.014
P 0.002
tS 0.013
vz 0.002
f 0.009
mz 0.002
w 0.009
n 0.002
tr 0.008
1z 0.002
Z 0.007
nz 0.002
dr 0.006
dz 0.001
t 0.211
* 0.597
v 0.115
z 0.115
D 0.102
d 0.057
d 0.095
1 0.054
NOP[@] 0.072
n 0.045
b 0.052
ns 0.023
st 0.045
NOP[@]  0.022
tS 0.043
m 0.012
1 0.032
@] 0.978 t 0.012
s 0.026
O: 0.009 1z 0.010
class 4 P 0.023 FIN 0.996
EQ@ 0.006 nt 0.009 USTR 0.999
0.037 f 0.022 MED 0.003
U@ 0.002 1d 0.008
n 0.021
1@ 0.002 dz 0.007
g 0.021
nd 0.004
k 0.019
s 0.003
dz 0.017
md 0.003
z 0.012
kt 0.002
m 0.012
kts 0.002
w 0.011
nts 0.002
z 0.007
nz 0.001
T 0.007
mz 0.001
r 0.004

Figure 9: Classes #0, #1, #3, #4, of the 5-dimensional English model
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S 0.257
n 0.388
m 0.227
nt 0.191
d 0.063
nz 0.088
t 0.059
1 0.066
r 0.059
nts 0.049
z 0.039
ns 0.048
1 0.038 Q@ 0.926
s 0.031
v 0.037 1 0.031
r* 0.027
0.036 1@ 0.015
nd 0.018
s 0.029 i 0.006
P 0.016
dz 0.02 E 0.005
class 10 z 0.013
dr 0.016 va 0.003 FIN 0.999 USTR 0.999
0.028 m 0.011
n 0.016 U 0.002
st 0.011
tS 0.016 (0] 0.002
1z 0.011
1j 0.015 & 0.002
pt 0.003
st 0.013 alU 0.002
ndz 0.003
k 0.008 al 0.001
nz 0.002
NOP[@]  0.007
mz 0.002
P 0.006
. nst 0.002
nj 0.004
ps 0.001
kw 0.004
k 0.001
gr 0.001
t 0.001
w 0.001
t 0.162
m 0.116
s 0.131
P 0.108
n 0.088
k 0.090
d 0.079
g  0.088
k 0.079
t 0.080
nd 0.052
pl  0.052
el 0.426 ts 0.037
st 0.051 ONE 0.696
A: 0.165 st 0.037
class 14 1 0.050 FIN 0.276 STR 0.984
E 0.140 nt 0.029
0.026 r 0.034 MED 0.015 USTR 0.015
O: 0.110 dz 0.028
tS 0.031 INI 0.011
& 0.043 ks 0.026
j 0.028
z 0.021
fr 0.025
nst 0.020
gr 0.024
m 0.019
f 0.022
nz 0.019
br 0.019
nz 0.016
tr 0.017
dz 0.015
NOP[@] 0.973 NOP[@] 0.325
p 0.017 r* 0.317
ONE 0.944
class 17 b 0.002 t 0.188
Q@ 1 INI 0.050 STR 1
0.023 n 0.002 n 0.117
FIN 0.005
t 0.001 1 0.027
] 0.001 d 0.023
] 0.247 kt 0.191
t 0.125 s 0.116
dZ 0.072 nt 0.107
f 0.064 1f 0.08 STR 0.713
class 39 E 0.721
sp 0.052 1 0.067 FIN 0.982
0.009 & 0.120
z 0.047 st 0.062 USTR 0.286
gr 0.046 kts 0.054
NOP[E]  0.045 ns  0.036
v 0.036 pt 0.033
Figure 10: Classes #10, #14, #17, #39 of the 5-dimensional English model
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nucleus per syllable class is observed. In all of these cases the probability of the
nucleus is larger than 99% and in 7 classes the nucleus probability is 100%. Besides
several diphthongs only the relatively infrequent vowels /V/, /A:/ and /3:/ do not
dominate any class. Figures 9 and 10 show the classes that are described as follows.

High-frequency function words are represented by 10 syllable classes. For exam-
ple, classes #0 and #17 are dominated by the determiners the and a, respectively,
and class #1 contains function words that involve the short vowel /I/, such as in,
18, it, his, if, its.

Productive word-forming suffixes are found in class #3 (-ing), and common
inflectional suffixes in class #4 (-er, -es, -ed). Class #10 is particularly interesting
in that it represents a comparably large number of common suffixes, such as -tion,
-ment, -al, -ant, -ent, -ence and others. Similarly, class #39 contains stressed
suffixes involving the vowel /E/; such as |[Ekt| and |Es|, as in to protect or to progress.

The majority of syllable classes, viz. 31 out of 50, contains syllables that are
likely to be found in initial, medial and final positions in the open word classes of
the lexicon. For example, class #14 represents mostly stressed syllables involving
the vowels /el, A:, e:, O:/ and others, in a variety of syllable positions in nouns,
adjectives or verbs.

German. The majority of syllable classes obtained for German is dominated
by one particular nucleus per syllable class. In 24 out of 50 classes the probability
of the dominant nucleus is greater than 99%, and in 9 cases it is indeed 100%. The
only syllable nuclei that do not dominate any class are the front rounded vowels /y:,
Y, 2:, 9/, the front vowel /E:/ and the diphthong /OY/, all of which are among the
least frequently occurring nuclei in the lexicon of German. Figure 11 depicts the
classes that will be discussed now.

Almost one third (28%) of the 50 classes are representatives of high-frequency

function words. For example, class #7 is dominated by the function words in, ich,
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t 0.115
d 0.111
R 0.107
g 0.107 n 0.65
x 0.076 NOP[@]  0.239
NOP[@]  0.067 R 0.069
class 0 S 0.061 s 0.016 FIN 0.977
Q 0.997 USTR 1
0.088 s 0.056 nt 0.009 MED 0.022
n 0.054 Rn 0.005
1 0.052 ns 0.003
b 0.032 Rt 0.001
f 0.021
st 0.02
z 0.017
NOP[aI]  0.624
z 0.163 NOPJal] 0.689
class 4 k 0.043 n 0.303 INI 0.755
al 1 STR 0.999
0.032 v 0.029 nst 0.002 ONE 0.226
fR 0.021 ns 0.001
m 0.016
n 0.533
X 0.204
class 7 NOP[I] 0.730 . ) st 0.150 ONE 0.867 STR 0.915
0.029 z 0.259 nt 0.067 INI 0.128 USTR 0.084
ns 0.007
m 0.003
NOP[i;]  0.163
v 0.105
1 0.089
f 0.073
NOP[i:]  0.915
m 0.07
R 0.040 INI 0.613
class 24 d 0.065 STR 0.69
i: 1 1 0.013 MED 0.286
0.019 t 0.046 USTR 0.309
t 0.005 FIN 0.1
n 0.044
f 0.003
z 0.034
g 0.034
b 0.024
S 0.019
f 0.573
E 0.987
class 26 NOPI[E] 0.351 INI 0.906
o: 0.007 R 0.983 USTR 0.994
0.017 ts 0.009 MED 0.093
(o] 0.001
h 0.006
1 0.408 X 0.690
class 34 FIN 0.936
t 0.175 I 0.905 xt 0.108 USTR 0.999
0.011 MED 0.063
d 0.133 k 0.047
b 0.144 NOP[al] 0.706
R 0.128 n 0.103
class 40 t 0.119 . 0.999 x 0.077 MED 0.876 USTR 0.596
a .
0.009 v 0.095 ts 0.057 FIN 0.119 STR 0.403
ts 0.090 s 0.016
gl 0.022 1 0.015

Figure 11: Classes #0 #4, #7, # 24, #26, #34, #40 of the 5-dimensional German

model
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ist, im, sind, sich, all of which contain the short vowel /I/. Class #24, on the other
hand, includes function words containing the long vowel /i:/, such as wie, die, wir,
mir, dir, thr, sie.

Another 32% of the 50 classes represent syllables that are most likely to occur in
initial, medial and final positions in the open word classes of the lexicon, i.e. nouns,
adjectives, and verbs. Class #4 covers several lexical entries involving the diphthong
/al/, mostly in stressed word-initial syllables. Class #40 provides complimentary
information, as it also includes syllables containing /al/, but here mostly in word-
medial position.

We also observe syllable classes that represent productive prefixes (e.g., ver-,
er-, zer-, vor-, her- in class #26) and suffixes (e.g., -lich, -ig in class #34). Finally,
there are two syllable classes (e.g. class #0) that cover the most common inflectional
suffixes involving the vowel /@Q/ (schwa).

Class numbers are informative insofar as the classes are ranked by decreasing
probability. Lower-ranked classes tend (i) not to be dominated by one nucleus; (ii)
to contain vowels with relatively low frequency of occurrence; and (iii) to yield less
clear patterns in terms of word class or stress or position. For illustration, class
#46 (Figure 5) represents the syllable ent [Ent], both as a prefix (INI) and as a
suffix (FIN), the former being unstressed (as in Entwurf [Ent’vURf] “design”) and
the latter stressed (as in Dirigent [di:Ri:’gEnt| “conductor”).

4.3 Evaluation by g2p Conversion

In this section, we present a novel method of g2p conversion, (i) using a cfg to
produce all possible phonemic correspondences of a given grapheme string, (ii) ap-
plying a probabilistic syllable model to rank the pronunciation hypotheses, and (iii)

predicting pronunciation by choosing the most probable analysis.
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Syl Syl /SK Syl

cate LVTwel N‘Tal LiTﬂd LVTwel PlTiv Affricate SVTWE] N:Tal

Liquid LVTwel Affr

phon=1 phon=2: phon=ts phon=i: phon=n phon=1 phon=2: phon=t phon=ts phon=I phon=n

grph=L grpl\:ii gm@zz grpL:i gm&:n grph=L grpl\:fi grpL:t grPL:z srPL:i grp@ﬂl

Figure 12: An incorrect (left) and a correct (right) cfg analysis of Létzinn.

We used a cfg for generating transcriptions, because grammars are expressive and
writing grammar rules is easy and intuitive. Our grammar describes how words are
composed of syllables and syllables branch into onset, nucleus and coda. These syl-
lable parts are rewritten by the grammar as sequences of natural phone classes, e.g.
stops, fricatives, nasals, liquids, as well as long and short vowels, and diphthongs.
The phone classes are then reinterpreted as the individual phonemes that they are
made up of. Finally, for each phoneme all possible graphemic correspondences are

listed.

Figure 12 illustrates two analyses (out of 100) of the German word Ldtzinn (tin
solder). The phoneme strings (represented by non-terminals named “phon=...") and
the syllable boundaries (represented by the non-terminal “Syl”) can be extracted
from these analyses. Figure 12 depicts both an incorrect analysis [12:ts||i:n] and its
correct counterpart [12:t][tsIn]|.

The next step is to rank these transcriptions by assigning probabilities to them.
The key idea is to take the product of the syllable probabilities. Using the 5-
dimensional® German syllable model yields a probability of 7.5-1077-3.1-10"7 =
2.3-10~ '3 for the incorrect analysis and a probability of 1.5-1077-6.5-107% = 9.8-10713

3Position can be derived from the cfg analyses, stress placement is controlled by the most likely

distribution.
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g2p system 3-dim baseline | 3-dim classes | 5-dim baseline | 5-dim classes

word accuracy 66.8 % 67.4 % 72.5 % 75.3 %

Figure 13: Evaluation of g2p systems using probabilistic syllable models

for the correct one. Thus we achieve the desired result of assigning the higher
probability to the correct transcription.

We evaluated our g2p system on a test set of 1835 unseen words. The ambiguity
expressed as the average number of analyses per word was 289. The test set was
constructed by collecting 295,102 words from the German Celex dictionary that were
not seen in the STZ corpus. From this set we manually eliminated (i) foreign words,
(i) acronyms, (iii) proper names, (iv) verbs, and (v) words with more than three
syllables. The resulting test set is available on the World Wide Web*.

Figure 13 shows the performance of four g2p systems. The second and fourth
columns show the accuracy of two baseline systems: g2p conversion using the 3- and
5-dimensional empirical distributions (Section 2), respectively. The third and fifth
columns show the word accuracy of two g2p systems using 3- and 5-dimensional
syllable models, respectively.

The g2p system using 5-dimensional syllable models achieved the highest per-
formance (75.3%), which is a gain of 3% over the performance of the 5-dimensional

baseline system and a gain of 8% over the performance of the 3-dimensional models’.

thttp://www.ims.uni-stuttgart.de/phonetik /g2p/
545 resp. 95 words could not be disambiguated by the 3- resp. 5-dimensional empirical distri-

butions. The reported relatively small gains can be explained by the fact that our syllable models

were applied only to this small number of ambiguous words.
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Figure 14: Evaluation on pseudo-disambiguation task for German models trained
on 3-dimensional syllable types: accuracy for onset, nucleus and coda (y-axis) as a

function of number of clusters (x-axis).

4.4 Type/Token Evaluation

This section is dedicated to the question whether frequency counts represent valuable
information for our clustering task. We try to answer this question by comparing
our previous evaluation results for German syllable models with results of so-called
“normalized models”, i.e. models trained on 3- and 5-dimensional syllable types.
Pseudo-Disambiguation. We evaluated the 3-dimensional normalized cluster-
ing models (trained on German syllable types) on the pseudo-disambiguation task
described in Section 4.1. Clustering models were parameterized in up to 10 starting
values of EM-training, and in the number of classes of the model (up to 200), re-
sulting in a sequence of 200 models. Results for the best starting values are shown
in Figure 14. Models with 25 classes show the highest accuracy rates of about 80%
(coda) and 75% (onset and nucleus). These results are less impressive than the re-

sults obtained by models trained on syllable tokens: firstly, these accuracy rates are
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g2p system || 5-dim baseline | 5-dim classes

types 52.8 % 66.0 %
tokens 72.5 % 75.3 %

Figure 15: Evaluation of g2p systems using syllable models trained on types/tokens

about 10% lower, and secondly, the accuracy rates of onset and nucleus are highly
correlated and thus do not agree with intuition that the onset is the most variable
part of the syllable. The results of the pseudo-disambiguation task clearly show that

frequency counts represent valuable information for our clustering task.

Evaluation by g2p Conversion. The 5-dimensional normalized clustering
models trained on German syllable types were evaluated on the g2p conversion task
described in Section 4.3. Figure 15 shows the performance of four g2p systems. The
second column shows the accuracy rates of two baseline systems: g2p conversion
using the 5-dimensional empirical distribution®. The third column shows the ac-
curacy rates of two g2p systems using the 5-dimensional models trained on types
and tokens. The g2p system using a 5-dimensional syllable model trained on tokens
achieved the highest performance (75.3%), which is a gain of about 10% over the g2p
system using a syllable model trained on types. Furthermore, the g2p baseline sys-
tem using frequency counts of syllables clearly outperforms the g2p baseline system

using the uniform distribution on syllable types. The results of the g2p conversion

task impressively show that frequency counts are a valuable information source.

6Note that the empirical distribution on a typenized training corpus is equal to the uniform
distribution, i.e. the g2p system using this distribution completely disambiguates by random
choice. Thus, the relatively high accuracy rate of 52.8% achieved by this system can be attributed
to the quality of our hand-crafted cfg.
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5 Discussion

We have presented an approach to unsupervised learning and automatic detection
of syllable structure, using EM-based multivariate clustering. The method yields
phonologically meaningful syllable classes. These classes are shown to represent

valuable input information in a g2p conversion task.

In contrast to the application of two-dimensional EM-based clustering to syn-
tax (Rooth et al., 1999), where semantic relations were revealed between verbs and
objects, the syllable models cannot a priori be expected to yield similarly mean-
ingful properties. This is because the syllable constituents (or phones) represent
an inventory with a small number of units which can be combined to form mean-
ingful larger units, viz. morphemes and words, but which do not themselves carry
meaning. Thus, from a phonological point of view it is not to be expected that a
particular instantiation of a given syllable structure occurs significantly more often
than others; for example, the syllable /mad/ is not a priori expected to be more
frequent than /mag/, both being representatives of the structure CVC. Yet, some
syllable types do occur more often than others simply because certain morphemes

and words have a higher frequency count than others in a given text corpus.

As discussed in Section 4.2, however, we do find some interesting properties of
syllable classes, some of which apparently represent high-frequency function words
and productive affixes, while others are typically found in lexical content words.
Subjected to a pseudo-disambiguation task (Section 4.1), the 3-dimensional models

confirm the intuition that the onset is the least predictable part of the syllable.

In a feasibility study we applied the 5-dimensional syllable model obtained for
German to a g2p conversion task. Automatic conversion of a string of characters, i.e.
a word, into a string of phonemes, i.e. its pronunciation, is essential for applications

such as speech synthesis from unrestricted text input, which can be expected to
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contain words that are not in the system’s pronunciation dictionary.

In the g2p experiment, orthographic words were processed by a parser that uses
a context-free grammar to produce all possible phonemic correspondences of the
grapheme string. The pronunciation hypotheses are then ranked by applying a
probabilistic syllable model. The model was trained on a text corpus whose words
were looked up in a pronunciation dictionary. The trained trees include information
on syllable boundaries and parts of syllables (onset, nucleus, coda). Syllabic stress
is not coded explicitly; it is hypothesized as part of the probabilistic tree. Pronun-
ciation is finally predicted by taking the most probable analysis, computed from the
combined probabilities of the onset, nucleus, coda, syllable part, stress, and syllable
class.

The main purpose of the feasibility study was to demonstrate the relevance of
the phonological information on syllable structure for g2p conversion. Therefore,
information and probabilities derived from an alignment of grapheme and phoneme
strings, i.e. the lowest two levels in the trees displayed in Figure 12, was deliberately
ignored.

Data-driven pronunciation systems usually rely on training data that include an
alignment of graphemes and phonemes. Damper et al. (1999) have shown that the
use of unaligned training data significantly reduces the performance of g2p systems.
In our experiment, with training on unannotated text corpora and without an align-
ment of graphemes and phonemes, we obtained a word accuracy rate of 75.3% for
the 5-dimensional German syllable model.

Comparison of this performance with that other systems is difficult: (i) hardly
any quantitative g2p performance data are available for German; (ii) comparisons
across languages are hard to interpret; (iii) comparisons across different approaches
require cautious interpretations.

The most direct point of comparison is the method presented by Miiller (2000).
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In one of her experiments, the standard probability model was applied to the hand-
crafted cfg presented in this paper, yielding 42% word accuracy as evaluated on our
test set. Running the test set through the pronunciation rule system of the IMS
German Festival TTS system (Mohler, 1999) resulted in 55% word accuracy. The
Bell Labs German TTS system (M&bius, 1999) performed at better than 95% word
accuracy on our test set. This TTS system relies on an annotation of morpholog-
ical structure for the words in its lexicon and it performs a morphological analysis
of unknown words (Mébius, 1998); the pronunciation rules draw on this structural
information.

These comparative results emphasize the value of phonotactic knowledge and
information on syllable structure and morphological structure for g2p conversion.

In a comparison across languages, a word accuracy rate of 75.3% for our 5-
dimensional German syllable model is slightly higher than the best data-driven
method for English with 72% (Damper et al., 1999). The data-driven systems for
English that were evaluated by Damper et al. produced g2p translation results of
72% word accuracy for Pronunciation by Analogy (Damper et al., 1999), 65% for
IB1-IG (Daelemans, van den Bosch, and Weijters, 1997; van den Bosch, 1997), and
50% for NETspeak (McCulloch, Bedworth, and Bridle, 1987); a rule-based system
(Elovitz et al., 1976) achieved less than 26% correct word pronunciations.

Recently, Bouma (2000) has reported a word accuracy of 92.6% for Dutch, using
a ‘lazy’ training strategy on data aligned with the correct phoneme string, and a
hand-crafted system that relied on a large set of rule templates and a many-to-one
mapping of characters to graphemes preceding the actual g2p conversion.

We are confident that a judicious combination of phonological information of
the type employed in our feasibility study with standard techniques such as g2p
alignment of training data will produce a pronunciation system with a word accuracy

that matches the one reported by Bouma (2000).
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We believe, however, that for an optimally performing system as it is desired for
TTS, an even more complex design will have to be adopted. In many languages,
including English, German and Dutch, access to morphological and phonological
information is required to reliably predict the pronunciation of words; this view
is further evidenced by the performance of the Bell Labs system, which relies on
precisely this type of information. We agree with Sproat (1998, p. 77) that it is
unrealistic to expect optimal results from a system that has no access to this type

of information or is trained on data that are insufficient for the task.
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