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Abstract
Several variants of deep neural networks have been successfully
employed for building parametric models that project variable-
duration spoken word segments onto fixed-size vector represen-
tations, or acoustic word embeddings (AWEs). However, it re-
mains unclear to what degree we can rely on the distance in the
emerging AWE space as an estimate of word-form similarity. In
this paper, we ask: does the distance in the acoustic embedding
space correlate with phonological dissimilarity? To answer this
question, we empirically investigate the performance of super-
vised approaches for AWEs with different neural architectures
and learning objectives. We train AWE models in controlled set-
tings for two languages (German and Czech) and evaluate the
embeddings on two tasks: word discrimination and phonologi-
cal similarity. Our experiments show that (1) the distance in the
embedding space in the best cases only moderately correlates
with phonological distance, and (2) improving the performance
on the word discrimination task does not necessarily yield mod-
els that better reflect word phonological similarity. Our findings
highlight the necessity to rethink the current intrinsic evalua-
tions for AWEs.
Index Terms: acoustic word embeddings, phonological simi-
larity, contrastive learning, deep neural networks

1. Introduction
Spoken language technologies such as spoken term discovery
[1, 2, 3] and query-by-example (QbE) search [4, 5, 6] aim to
capture, organize, and facilitate access to the linguistic content
of spoken documents while abstracting away from speaker- and
context-related sources of variability in speech. To this end, re-
searchers have developed parametric models based on deep neu-
ral networks (DNNs) that project variable-length spoken word
segments onto speaker-invariant vector representations, known
as acoustic word embeddings (AWEs), where acoustic segments
of the same word are projected nearby in space [7, 8, 9, 10, 11].
AWEs, and their underlying vector-space acoustic models, en-
able efficient indexing and retrieval of spoken content at a scale
that non-parametric template-based approaches with dynamic
programming [12, 13] have failed to deliver.

Several DNN architectures and learning objectives have
been explored in the literature to build AWEs. State-of-the-
art AWE models are trained using either contrastive objectives
[14, 15] or reconstruction objectives [16, 17]. AWEs have been
used in downstream applications including ASR [18] and QbE
search [11, 19]. However, evaluating the utility of AWEs us-
ing downstream applications is expensive and may not be al-
ways feasible. Therefore, researchers have developed an intrin-
sic evaluation for AWEs based on the acoustic word discrimi-

nation task. In this task, AWE models are evaluated based on
their ability to determine whether or not two acoustic segments
correspond to the same word type [20, 16, 9].

Furthermore, Levin et al. [7] have hypothesized that the dis-
tance in the emergent AWE space can be interpreted as a met-
ric of (perceptual) dissimilarity between linguistic units (e.g.,
phones, syllables, words). However, none of the previous stud-
ies has empirically (in)validated this hypothesis with a rigor-
ous evaluation beyond word discrimination. Although previous
studies have proposed to incorporate the pronunciation distance
in the learning objective [15, 21], the reported performance
showed no improvement on the word discrimination task, while
the distance in the AWE space has shown only a weak correla-
tion with orthographic distance [15]. These observations, how-
ever, are yet to be systematically investigated across different
architectures, objectives, and languages beyond English, which
we aim to address in our study.

Since AWE models have been recently adopted as cogni-
tive models of infant phonetic learning [22] and cross-language
spoken word processing [23], we argue that more effort should
be devoted to analyze and understand the emergent embedding
space to make sure it behaves as expected. In this paper, we take
a step in this direction and make the following contributions:

(1) We train AWE models with identical resources and hy-
perparameters and examine the effects of, and the inter-
play between, the architecture and learning objective on
model performance (§2).

(2) We analyze the correlation between the distance in the
embedding space and word-form (dis)similarity, which
we measure using a phonetically-informed extension of
Levenshtein distance (§3 and §4).

(3) We empirically show that while AWE models trained
with contrastive objectives outperform other models on
the word discrimination task, they are poor at capturing
phonological similarity (§5).

2. Acoustic Word Embedding Models
The core component of a neural AWE model is an acoustic en-
coder, which can be formally described as a parametric func-
tion Fθ : A −→ RD , where A is the (continuous) space of
acoustic sequences, D is the dimensionality of the embedding,
and θ are the parameters of the function. Given an acoustic
word segment represented as a temporal sequence of T spec-
tral vectors a = (a1,a2, ...,aT ), an embedding is computed
as x = Fθ(a) ∈ RD . We experiment with convolutional and
recurrent architectures for the encoder Fθ and investigate three
learning objectives, which we formally describe below.
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Figure 1: A visual illustration of the learning objectives for the models in our paper: (a) phone n-gram detection: a classification
objective based on a multi-class multi-label classifier, (b) word-to-phones: a sequence-to-sequence objective based on decoding the
phonological sequence from the acoustic word embedding, and (c) a contrastive siamese objective with a triplet margin loss.

2.1. Phone n-gram Detection Objective

Following previous work [24, 25], we use a classification ob-
jective as our neural baseline (Fig. 1–a). However, we diverge
from previous approaches in the classification target of our net-
work. Instead of predicting the word type, we train our model
to detect phone sequences that are present in each acoustic seg-
ment. For example, consider acoustic segments that correspond
to the word type “Kirche”. While previous approaches trained
the model to predict the word type as an atomic unit, we first
transform the phonetic sequence /k I K ç @/ into a set of phone
bigrams {‘#k’, ‘kI’, ‘IK’, ‘Kç’, ‘ç@’, ‘@#’} and trigrams {‘#kI’,
‘kIK’, ‘IKç’, ‘Kç@’, ‘ç@#’}. We then train the model to predict the
presence of each phone n-gram. Formally, given a vocabulary
of word types V where each word is associated with a phonetic
sequence ϕ1:N = (ϕ1, . . . , ϕN ), we obtain a set of all phone
n-grams in the training data as Φ =

⋃
v∈V N (ϕv1:N ), where

N is a function that converts a phone sequence into phone n-
grams. Each phone n-gram in the set Φ is a prediction tar-
get in the network where a multi-class multi-label classification
head is connected to the AWE to give the prediction output as
ŷ = σ(xW + b) ∈ [0, 1]|Φ|, where σ is a sigmoid activation
function, W is a weight matrix, and b is a bias vector. The
objective is to minimize binary cross-entropy loss as

L = −
[
y · log(ŷ) + (1− y) · log(1− ŷ)

]
(1)

where y ∈ {0, 1}|Φ| is the ground truth vector and 1 indicates
the presence of a phone n-gram in the segment and 0 indi-
cates its absence. This objective has an efficiency advantage
over type-based classification approaches since the classifica-
tion layer is smaller in size, due to the fact that |Φ| << |V|.

2.2. Word-To-Phones Objective

Our second learning objective is based on sequence-to-sequence
learning whereby the network is trained as a word-level acoustic
model (Fig. 1–b). Given an acoustic sequence a and its corre-
sponding phonetic sequence ϕ1:N , the acoustic encoder Fθ is
trained to take as input a and produce an AWE x, which is then
fed into a recurrent phonetic decoder G whose goal is to gen-
erate the corresponding sequence ϕ1:N . The intuition of this
objective is that phonologically similar word-forms would usu-
ally have overlapping phonetic segments, we thus expect similar
words to end up nearby in the embedding space. The objective
is to minimize a categorical cross-entropy loss at each timestep

in the decoder, which is equivalent to

L = −
N∑
t=1

log Pθ(ϕt|ϕ<t,x) (2)

where Pθ is the probability of the phone ϕt at timestep t, con-
ditioned on the previous phone sequence ϕ<t and the AWE x.

2.3. Contrastive Siamese Objective

The third objective we investigate in this paper is the siamese
contrastive objective [26], which has been extensively explored
in the literature with different underlying architectures [27, 14].
This objective differs from the first two objectives in two as-
pects: (1) it explicitly minimizes/maximizes relative distances
between AWEs of the same/different word types, and (2) mod-
els are trained solely on sensory input without symbolic ground-
ing since each word segment is paired with another segment of
the same word type. Given a matching pair of AWEs (xa,x+),
the objective is then to minimize a triplet margin loss

L = max
[
0, µ+ d(xa,x+)− d(xa,x−)

]
(3)

where x− is an AWE that corresponds to a different word type,
which serves as a negative sample, and d : RD × RD → [0, 1]
is the cosine distance. This objective aims to map acoustic seg-
ments of the same word type closer in the embedding space
while pushing away segments that correspond to other word
types by a distance defined by the margin hyperparameter µ.
We experiment with two different strategies for choosing the
negative sample x−: (1) we randomly sample a negative AWE
from the mini-batch, and (2) we choose the segment that min-
imizes the distance d(xa,x−), which is known as semi-hard
negative sampling [28]. In §5, we show that the negative sam-
pling strategy has a significant impact on model performance.

3. Phonological Similarity Measure
We adopt the phonologically weighted Levenshtein distance
(PWLD) as our measure of phonological distance, or similarity,
between different word-forms [29]. The PWLD metric extends
the string-based Levenshtein distance (LD) by conditioning the
cost of phone substitutions on phonetic similarity, which can be
characterized based on the number of distinctive features shared
by two phones. PWLD captures, for example, that the German
word sicher /z I ç 5/ is phonologically more similar to Becher
/b E ç 5/ than to sitzt /z I ts t/, even though the pairwise LD for

4195



Table 1: Examples of pairwise word distances with Levenshtein
distance (LD) and the phonologically weighted LD (PWLD).

WORD I WORD II LD PWLD
Orth. IPA Orth. IPA

sicher /z I ç 5/

Becher /b E ç 5/ 2 0.263
Fischer /f I S 5/ 2 0.368
Lichter /l I ç t 5/ 2 0.632

sitzt /z I ts t/ 2 0.795

both pairs is 2 (see Table 1 for more examples). However, we
make three adaptations to the original PWDL to make it suitable
for our study: (1) we represent every phone in our inventory as
a discrete, multi-valued feature vector based on the PHOIBLE
[30] feature set, (2) we compute the substitution cost between
phones as the Hamming distance between their feature vector
representations, and (3) we set the deletion and insertion cost to
0.5 which is roughly equivalent to the maximum possible sub-
stitution cost.

4. Evaluation Tasks
4.1. Acoustic Word Discrimination

The word discrimination task mainly evaluates the ability of a
model to determine whether or not two given speech segments
correspond to the same word type. We define this task as a
segment-level retrieval task [31]: given a query segment q and
a candidate set of k word segments S = {s1, ..., sk}, the goal
is to rank segments in S in such a way that those segments cor-
responding to the same word type as the query q are highly
ranked. To this end, a vector-based search index is built by
mapping each word segment in S into an embedding. Then,
the cosine similarity between the embedding of the query q and
each embedding in the search index is computed which yields
a ranked list, or an ordering Rθ , of segments based on the co-
sine similarity score. The average precision metric is used to
evaluate the quality of the ordering for a single query as

AP =
1

|Sq|

k∑
r=1

Pq(r)× Iq(r) (4)

where Sq are the segments in S that correspond to the query q,
Pq(r) is the precision at rank r, and Iq(r) is a relevance func-
tion such that Iq(r) = 1 if the segment at rank r corresponds to
the same word type as the query, or Iq(r) = 0 otherwise. The
arithmetic average over all AP values in the test set yields the
mean average precision (mAP) metric.

4.2. Word Phonological Similarity

To assess whether the emerging AWE space captures word-form
similarity, we propose the word phonological similarity task.
We argue that an evaluation based on phonological similarity
will be more insightful to understand the impact of the model
architecture and learning objective on the emergent embedding
space. This evaluation task works as follows: given a query
segment q and a search index over the candidate set S, two
ranked lists, or orderings, are produced: (1) an ordering Rθ
based on the cosine similarity between the AWEs, and (2) an
ordering Rφ based on phonological similarity with the PWLD
introduced in §3. To measure the degree of agreement between
the two orderings Rθ and Rφ, we use Kendall’s τ , which is a

Table 2: Word-level statistics of our experimental data.

#segments per split #phones
(µ± std)

duration
(µ± std)train valid test

German 45886 7452 9964 6.8 ± 2.2 .46 ± 0.2
Czech 68596 9244 11626 6.7 ± 2.5 .50 ± 0.2

measure of rank correlation between two ordinal variables [32].
For each query segment q in the test set, Kendall’s τ is com-
puted as

τ = 1− 2× δ(Rθ,Rφ)

0.5× k(k − 1)
(5)

where δ(Rθ,Rφ) is the minimum number of adjacent trans-
positions needed to bring Rθ to Rφ. Kendall’s τ coefficient
takes values between 1.0 (identical ranks) and −1.0 (reverse
ranks), while 0 indicates no association between the two or-
derings. Note that Spearman’s correlation is not an appropriate
metric for this task, as opposed to Kendall’s τ which is designed
to handle tied rankings that occur when the PWLD gives the
same phonological distance for acoustic segments correspond-
ing to the same word type.

5. Experiments
5.1. Experimental Data

The data in our study is drawn from the GlobalPhone speech
database for German and Czech [33]. We choose these two
languages due to their predictable grapheme-to-phoneme (G2P)
mapping and the availability of high quality G2P tools. We use
the Montreal Force Aligner [34] to obtain time-aligned spoken
word segments. Each acoustic word segment is parametrized
as a sequence of 39-dimensional Mel-frequency spectral coef-
ficients (MFSCs) where frames are extracted over intervals of
25ms with 10ms overlap. Table 2 shows summary statistics of
our experimental data.

5.2. Architectures and Hyperparameters

CNN Acoustic Encoder. We employ a 3-layer temporal con-
volutional network (1D-CNN) with 256, 512, and 1024 filters
and widths of 4, 8, and 16 for each layer and keep stride step
at 1. Following each convolutional operation, we apply batch
normalization, ReLU non-linearity, and dropout. We apply av-
erage pooling to downsample the representation at the end of
the convolution block, which yields a 1024-dimensional AWE.
RNN Acoustic Encoder. We employ a 2-layer bidirectional
Gated Recurrent Unit (BGRU) with a hidden state dimension of
512, which yields a 1024-dimensional AWE. We apply layer-
wise dropout with a probability tuned over {0.0, 0.2, 0.4}.
Training Details. All models in this study are trained for 100
epochs with a batch size of 256 using the ADAM optimizer [35]
and an initial learning rate (LR) of 0.001. The LR is reduced by
a factor of 0.5 if the mAP on the validation set does not improve
for 10 epochs. The epoch with the best validation performance
during training is used for evaluation on the test set.
Implementation. We build our models using PyTorch [36]
and use FAISS [37] for efficient similarity search. Our code is
publicly available on GitHub1.

1https://github.com/uds-lsv/AWEs_phon_sim
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Table 3: The results of our experiments for both tasks: word discrimination (mAP) and phonological similarity (τ ).

Encoder
Architecture

Learning
Objective

GERMAN CZECH

mAP ± std τ ± std mAP ± std τ ± std

Convolutional
(1D-CNN)

PHONEDETECT 0.552 ± 0.33 0.043 ± 0.17 0.669 ± 0.31 0.080 ± 0.14
WORD2PHONES 0.602 ± 0.33 0.127 ± 0.19 0.692 ± 0.31 0.150 ± 0.16

SIAMESE (W/ RAND NEG) 0.621 ± 0.33 0.126 ± 0.12 0.731 ± 0.30 0.176 ± 0.10
SIAMESE (W/ HARD NEG) 0.719 ± 0.32 0.074 ± 0.08 0.823 ± 0.27 0.093 ± 0.06

Recurrent
(BGRU)

PHONEDETECT 0.652 ± 0.31 0.237 ± 0.14 0.730 ± 0.31 0.203 ± 0.11
WORD2PHONES 0.692 ± 0.32 0.181 ± 0.15 0.796 ± 0.28 0.226 ± 0.13

SIAMESE (W/ RAND NEG) 0.668 ± 0.34 0.148 ± 0.08 0.748 ± 0.31 0.153 ± 0.06
SIAMESE (W/ HARD NEG) 0.757 ± 0.32 0.044 ± 0.05 0.842 ± 0.27 0.077 ± 0.04

5.3. Experimental Results

Our results are summarized in Table 3 for both evaluation tasks.
The word discrimination task is measured by the mAP metric
while the word phonological similarity task is measured by the
mean of Kendall’s τ rank correlation coefficients (τ ).
Acoustic Word Discrimination. From the mAP values re-
ported in Table 3, one can make two high-level observations:
(1) all models outperform our classifier-based PHONEDETECT
baseline, which is trained to detect phone n-grams in the acous-
tic segment, for both languages and architectures, and (2) recur-
rent models outperform their convolutional counterparts, which
is consistent with the findings reported in the literature [10].
However, we also observe that the performance of the SIAMESE
models, which are explicitly trained to minimize the cosine dis-
tance between segments of the same word type, largely de-
pends on the negative sampling strategy. For example, in the
case of recurrent SIAMESE models, we observe a relative im-
provement in the mAP score up to 13.32% for German and
12.57% for Czech when applying semi-hard negative sampling.
Note that the SIAMESE recurrent models did not outperform the
WORD2PHONES recurrent models when the contrastive nega-
tive samples were chosen randomly from the mini-batch. These
findings highlight the importance of negative sampling in train-
ing AWEs with contrastive objectives, which is a matter that has
not been previously investigated to the best of our knowledge.
We conclude that models trained with objectives that explicitly
optimize the distance in the AWE space outperform other mod-
els that lack this objective on word discrimination, especially if
the negative samples are chosen with a challenging criterion.
Word Phonological Similarity. In this evaluation, we ob-
serve a positive correlation between the distance in the embed-
ding space and phonological distance for all models as indicated
by the positive values of the τ metric. Nevertheless, the corre-
lation seems to be either weak or moderate in the best cases.
Moreover, we observe that both the learning objective and en-
coder architecture have a considerable impact on the extent to
which the embedding space captures phonological similarity.
For example, the convolutional PHONEDETECT models show
some of the lowest correlation scores (German τ = 0.043 and
Czech τ = 0.080), while their recurrent counterparts show some
of the highest correlation scores (German τ = 0.237 and Czech
τ = 0.203), despite having the same training objective. These
findings indicate that convolutional encoders may behave like
shallow pattern detectors when trained as a classifier while re-
current encoders tend to preserve the temporal structure of the
acoustic input in their representation. Another observation that
we find surprising is the poor performance of the SIAMESE

models on this task given that they outperform the other models
on word discrimination. Overall, recurrent models which are
trained with symbolic grounding (namely PHONEDETECT and
WORD2PHONES) are better at capturing word-form similarity
compared to their convolutional counterparts on the one hand,
and the recurrent SIAMESE models on the other.

6. Discussion and Conclusion
Although the vast majority of previous work has been driven by
the engineering applications of AWEs, there is a growing scien-
tific interest in using deep neural networks as cognitive models
of (human) speech processing [38, 22, 23, 39, 40]. Therefore,
we argue that this cognitively motivated direction requires us
to take a closer look at the embedding space and examine the
degree to which we can rely on the emergent distance as an es-
timate of (perceptual) dissimilarity between linguistic units. In
this paper, we take a step in this direction and conduct a set
of experiments where we keep the training conditions for each
model fixed and systematically study the impact of the architec-
ture (convolutional and recurrent) and learning objective (classi-
fication, phonological decoding, and contrastive objectives) on
the AWEs’ performance using two evaluation tasks: acoustic
word discrimination and word phonological similarity.

Our experiments demonstrate that while contrastive objec-
tives yield AWEs with strong discriminative performance, they
fail to reflect the phonological distance between word-forms,
especially compared to AWEs which are trained with symbolic
grounding (i.e., phone sequences corresponding to words). We
hypothesize that the contrastive objective emphasizes word sep-
arability in the embedding space which hinders the ability of
the emerging distance to reflect word similarity. Moreover, our
experiments show a consistent trend with recurrent models out-
performing their convolutional counterparts in both evaluation
tasks, which we attribute to the ability of recurrent DNNs to
model the temporal nature of speech. In conclusion, our exper-
imental findings highlight the necessity for more diverse evalu-
ation schemes when working with AWEs to investigate the de-
gree to which they produce human-like errors. Furthermore, our
work can be extended by analyzing the correlation between em-
bedding distances and human perceptual similarity judgments.
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