A Data-Driven Approach to Deep Machine Translation

Michael Jellinghaus
Saarland University
micha@coli.uni-sb.de
Overview

- Motivation
 - Characterisation of statistical and transfer-based MT
 - Hybrid system idea
- Automatic acquisition of transfer rules
 - Workflow
 - Example
 - Some details
- Evaluation
- Outlook
Statistical Machine Translation

- Quick to develop
 - Translation model learned from parallel corpora
 - Target language model learned from monolingual corpora

- High coverage
 - Covers all technical terms etc. if seen in training data
 - e.g. Steueroase / paradis fiscal \rightarrow tax haven
 - Robust: always delivers some output

but...
Problems with syntactically or semantically more complex input
(examples from Google Translate):

Der von Browne gejagte Hund bellte.
(R: The dog chased by Browne barked.)
→ The Hunted Browne dog barked. (March 2008)
→ The Browne gejagte dog barked. (May 2008)

Der von der Katze gejagte Hund bellte.
(R: The dog chased by the cat barked.)
→ The cat Hunted by the dog barked. (March 2008)
→ The cat gejagte the dog barked. (May 2008)
Problems with syntactically or semantically more complex input
(examples from Google Translate):

* Abrams versprach Browne zu bellen.
 (R: Abrams promised Browne to bark.)
 → Abrams Browne promised to bark. (March 2008)
 → Abrams promised Browne to bark. (May 2008)

* Michael versprach Georg zu bellen.
 (R: Michael promised Georg to bark.)
 → George Michael promised to bark. (May 2008)
Deep Transfer-Based Machine Translation

- LOGON project

HPSG/LFG analysis

transfer at semantic level

HPSG generation

source text

target text
Minimal Recursion Semantics example

Der Hund jagt die Katze. (The dog chases the cat.)

[LTOP: h1
 INDEX: e2 [e MOOD: INDICATIVE TENSE: PRESENT]
 RELS: <
 ["_def_q_rel"
 LBL: h3
 ARG0: x5 [x PERS: 3 NUM: SG]
 RSTR: h4
 BODY: h6]
 ["_def_q_rel"
 LBL: h10
 ARG0: x9
 RSTR: h11
 BODY: h12]
 ["_jagen_v_rel"
 LBL: h8
 ARG0: e2
 ARG1: x5
 ARG2: x9 [x PERS: 3 NUM: SG]
 prop-or-ques_m_rel
 LBL: h1
 ARG0: e2
 MARG: h14
 TPC: x5] >

 HCONS: < h14 qeq h8 h4 qeq h7 h11 qeq h13 >]
Deep Transfer-Based Machine Translation

- **Advantages**
 - Preserves meaning
 - Grammatical output

- **Disadvantages**
 - High development cost due to manual rule production
 - Weak on idiomaticity, e.g. *paradis fiscal* → *fiscal paradise*
 - Low coverage, e.g. *Steueroase* probably not in lexicon
Complementary Approaches to MT

- **Idea:** Combine advantages by learning transfer rules from parallel corpora

<table>
<thead>
<tr>
<th>Feature</th>
<th>SMT</th>
<th>DTBMT</th>
<th>Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>development speed</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>grammaticality</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>lexical semantics</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>structural semantics</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>coverage</td>
<td>+</td>
<td>-</td>
<td>-(?)</td>
</tr>
</tbody>
</table>
Overview

- Motivation
 - Project context
 - Characterisation of statistical and transfer-based MT
 - Hybrid system idea
- Automatic acquisition of transfer rules
 - Workflow
 - Example
 - Some details
- Evaluation
- Outlook
Transfer Rule Acquisition Workflow

sentence-aligned parallel corpus

parse

parallel MRS corpus

align etc.

word alignment information etc.

semantic alignment & rule extraction

set of transfer rules
Minimal Recursion Semantics example

Der Hund jagt die Katze. (The dog chases the cat.)

[LTOP: h1
 INDEX: e2 [e MOOD: INDICATIVE TENSE: PRESENT]
 RELS: <
 ["_def_q_rel"
 LBL: h3
 ARG0: x5 [x PERS: 3 NUM: SG]
 RSTR: h4
 BODY: h6]
 ["_jagen_v_rel"
 LBL: h8
 ARG0: e2
 ARG1: x5
 ARG2: x9 [x PERS: 3 NUM: SG]
 MARG: h14
 TPC: x5] >
 HCONS: < h14 qeq h8 h4 qeq h7 h11 qeq h13 >]
Transfer Rule Acquisition Example

dog_rule_0 := monotonic_omtr &
[INPUT [RELS < [PRED "_dog_n_1_rel", LBL #1, ARG0 #2 & [PERS #3, NUM #4]] >],
OUTPUT [RELS < [PRED "_hund_n_rel", LBL #1, ARG0 #2 & [PERS #3, NUM #4]] >]].
Transfer Rule Acquisition Example

\[
\text{the_rule_0 := monotonic_omtr} \& \[
\begin{array}{c}
\text{INPUT [RELS < [PRED _the_q_rel, LBL \#1, RSTR \#2, ARG0 \#3 \& [PERS \#4, NUM \#5],}
\end{array}
\]
\begin{array}{c}
\text{BODY \#6] >],}
\end{array}
\]
\begin{array}{c}
\text{OUTPUT [RELS < [PRED \"_def_q_rel\", LBL \#1, RSTR \#2, ARG0 \#3 \& [PERS \#4, NUM \#5],}
\end{array}
\]
\begin{array}{c}
\text{BODY \#6] >]].}
\end{array}
\]
Transfer Rule Acquisition Example

the_rule_1 := monotonic_omtr &
[INPUT [RELS < [PRED "_dog_n_1_rel", LBL #1, ARG0 #2 & [PERS #3, NUM #4]],
 [PRED _the_q_rel, LBL #5, RSTR #6, ARG0 #2, BODY #7] >, HCONS < [qeq & HARG #6, LARG #1] >],
OUTPUT [RELS < [PRED "_def_q_rel", LBL #5, RSTR #6, ARG0 #2 & [PERS #3, NUM #4], BODY #7],
 [PRED "_hund_n_rel", LBL #1, ARG0 #2] >, HCONS < [qeq & HARG #6, LARG #1] >]].
Transfer Rule Acquisition Example

prop-or-ques_m_rel

“jagen_v_rel”

“_def_q_rel”

“_hund_n_rel”

“katze_n_rel”

prop-or-ques_m_rel

“chase_v_1_rel”

_the_q_rel

“dog_n_1_rel”

“cat_n_1_rel”

X

X

cat_rule_0 := monotonic_omtr &
[INPUT [RELS < [PRED "_cat_n_1_rel", LBL #1, ARG0 #2 & [PERS #3, NUM #4]] >]],
OUTPUT [RELS < [PRED "_katze_n_rel", LBL #1, ARG0 #2 & [PERS #3, NUM #4]] >]].
Transfer Rule Acquisition Example

chase_rule_0 := monotonic_omtr &
[INPUT [RELS < [PRED "_chase_v_1_rel", LBL #1, ARG0 #2 & [MOOD #3, TENSE #4], ARG2 #5, ARG1 #6] >],
OUTPUT [RELS < [PRED "_jagen_v_rel", LBL #1, ARG0 #2 & [TENSE #4, MOOD #3], ARG2 #5, ARG1 #6] >]].

Diagram:

```
prop-or-ques_m_rel
  "_jagen_v_rel"
  "_def_q_rel"
  "_hund_n_rel"
  "_katze_n_rel"

prop-or-ques_m_rel
  "_chase_v_1_rel"
  _the_q_rel
  "_dog_n_1_rel"
  "_cat_n_1_rel"
```
chase_rule_1 := monotonic_omtr &
[INPUT [RELS < [PRED "_dog_n_1_rel", LBL #1, ARG0 #2 & [PERS #3, NUM #4]],
 [PRED _the_q_rel, LBL #5, RSTR #6, ARG0 #2, BODY #7],
 [PRED "_chase_v_1_rel", LBL #8, ARG0 #9 & [MOOD #10, TENSE #11], ARG2 #8, ARG1 #2] >,
 HCONS < [qeq & HARG #6, LARG #1] >],
OUTPUT [RELS < [PRED "_jagen_v_rel", LBL #8, ARG0 #9 & [TENSE #11, MOOD #10],
 ARG2 #8, ARG1 #2 & [PERS #3, NUM #4]],
 [PRED "_def_q_rel", LBL #5, RSTR #6, ARG0 #2, BODY #7],
 [PRED "_hund_n_rel", LBL #1, ARG0 #2] >,
 HCONS < [qeq & HARG #6, LARG #1] >]].
Transfer Rule Acquisition Example

```
chase_rule_2 := monotonic_omtr &
[ INPUT [ RELS < [ PRED _the_q_rel, LBL #1, RSTR #2, ARG0 #3 & [PERS #4, NUM #5], BODY #6 ],
    [ PRED "_chase_v_1_rel", LBL #7, ARG0 #8 & [MOOD #9, TENSE #10], ARG2 #3, ARG1 #11 ],
    [ PRED "_cat_n_1_rel", LBL #12, ARG0 #3 ] >,
    HCONS < [qeq & HARG #2, LARG #12] > ],
OUTPUT [ RELS < [ PRED "_jagen_v_rel", LBL #7, ARG0 #8 & [TENSE #10, MOOD #9],
    ARG2 #3 & [PERS #4, NUM #5], ARG1 #11 ],
    [ PRED "_def_q_rel", LBL #1, RSTR #2, ARG0 #3, BODY #6 ],
    [ PRED "_katze_n_rel", LBL #12, ARG0 #3 ] >,
    HCONS < [qeq & HARG #2, LARG #12] > ] ]
```
Kinds of Transfer Rules

- Simple “lexical” rules
- Rules with multiple EPs on input and/or output side
 - Multi-word expressions / compounds
 - Phrasal translations
 - e.g., *the book I like most* vs. *my favourite book*
 - EPs together with one or more of their argument “subtrees”, e.g.,
 - *the cat eats* ... → *die Katze frisst* ... (not *isst*)
 - *... sitzt auf der Bank* → *... sits on the bench* (not *bank*)
 - But neither complete sentences nor less interesting collocations such as verb-adjective combinations etc.
Transfer Rule Acquisition Pipeline

- **Preprocessing**
 - Tokenization
 - Part-of-speech tagging
 - Named entity recognition

- **Parsing**

- **Treebanking**
 - Parse selection (done manually in experiments)
 - *Example for ambiguity: Das Kind jagt die Katze*

- **Semantic alignment and rule extraction**
 - Algorithm is language-independent

- **Construction of transfer rule set**
Construction of Transfer Rule Set

- **Quality control**
 - Learned rules are rejected unless complete alignment achieved

- **Internal order of rule set:**
 - Sort rules by number of input EPs (“specific rules first” strategy for increased idiomaticity)
 - Then sort by rules’ extraction frequency (in order to eliminate noise)

- Examples of noise:
 - *Wer... → what group...* (loose translation)
 - *Das Kind jagt die Katze* (ambiguity)
 - Other errors at the various levels (parsing, alignment, ...)

Examples of noise:

- *Wer... → what group...* (loose translation)
- *Das Kind jagt die Katze* (ambiguity)
- Other errors at the various levels (parsing, alignment, ...)

- Quality control
 - Learned rules are rejected unless complete alignment achieved

- Internal order of rule set:
 - Sort rules by number of input EPs (“specific rules first” strategy for increased idiomaticity)
 - Then sort by rules’ extraction frequency (in order to eliminate noise)

- Examples of noise:
 - *Wer... → what group...* (loose translation)
 - *Das Kind jagt die Katze* (ambiguity)
 - Other errors at the various levels (parsing, alignment, ...)

Overview

- Motivation
 - Project context
 - Characterisation of statistical and transfer-based MT
 - Hybrid system idea
- Automatic acquisition of transfer rules
 - Workflow
 - Example
 - Some details
- Evaluation
- Outlook
Evaluation

- Closed evaluation on MRS Test Suite (107 sentences)
 - All sentences contributing to rule set were translated correctly (plus additional results due to ambiguity or syntactic variation from the generator)

- Evaluation on unseen data (but lexical items and constructions had been seen; 79 sentences)
 - As above, except for 2 sentences that were translated incorrectly (could be tracked to treebanking error)

- Evaluation on CLEF corpus (QA data; about 1600 sentences)
 - No clean results yet :(
Overview

- Motivation
 - Project context
 - Characterisation of statistical and transfer-based MT
 - Hybrid system idea
- Automatic acquisition of transfer rules
 - Workflow
 - Example
 - Some details
- Evaluation
- Outlook
Evaluation on larger corpora and other languages
- Quantitative
 - Coverage, BLEU score etc.
- Qualitative
 - Which phenomena are difficult/easy?
 - Compare with SMT ("division of labour")

Automatic parse selection
- Goal: eliminate manual treebanking step

Build hybrid systems
- Back-off to SMT when out of coverage
- Provide high-confidence phrase pairs to SMT phrase table
Rule set experiments
- Maximum size?
- What are interesting collocations?
- Generalise rules
 - HPSG types
 - Semantic classes (information from ontologies)
- Stochastification(?)

Learn more rules:
- Extract at least phrase translation rules if sentences cannot be aligned completely
- Acquire rules from dictionaries etc.

Use in application-based evaluation
Input:
Danke, dass ihr meinem Talk so aufmerksam gefolgt seid ohne einzuschlafen
Zuletzt nehme ich noch gerne eure Fragen und Anmerkungen entgegen

Output:
Thank you, that you talk to my attention are followed without einzuschlafen
Recently, I still like your questions and comments contrary to