#### **Navigation and Landmark Use**

Aleksandra Piwowarek

Universität des Saarlandes: Gaze as a Function of Instructions Seminar Maria Staudte



- Introduction
- Eye tracking, strategies and sex differences in virtual navigation
- Anderson, Dahmani, Konishi, Bohbot (2012)
  Landmarks' use in speech map navigation tasks

Roger, Bonnardel, Le Bigot (2011)

Outlook

#### Introduction

#### Wayfinding

- Using landmarks
  - Recognisable features
- Euclidian navigation
  - Distance
  - Angles
  - Cardinal directions

#### **Questions of Interest**

- How are these strategies used?
- What navigational strategy do people prefer?
- Does performance vary by strategy?

# Eye tracking, strategies and sex differences in virtual navigation

Anderson, Dahmani, Konishi, Bohbot (2012)

#### Background

- Past research differences in navigational ability between men and women
  - Different methods  $\rightarrow$  different findings
  - Women landmarks
  - Men euclidian

## Hypothesis

 If the ability to remember previously visited places depends on the type of information used in the environment, this should be reflected in the distrubution of gaze.

#### **Predictions**

- If men use euclidian measures, they should look at landmarks less frequently and for a shorter duration than women.
- Conversely, if women rely primarily on landmarks, they should look to landmarks more frequently and for longer than men.
  - They should exhibit inhibited performance in absence of landmarks.



- Participants
  - 4 men, 3 women between 21 and 37, mean age of 28.17
- Virtual environment with eye-tracking

# **The Virtual Environment**

- Central platform branching into 8 paths
- 5 distinct virtual environments containing 0, 2, 4, 6, or 8 landmarks
- Presented in the same semi-random order to all participants





- 3 trials in each environment → 15 total per participant
- 2 parts to each trial
  - (1) 4 of 8 open pathways containing an object
  - (2) 8 of 8 open pathways
    - 4 new ones contain an object
    - 4 visited no longer contain an object



- Eye movements tracked with ASL 504 Remote Mounted Camera
  - Uses retinal retroreflection and corneal reflectivity to plot eye angle relative to a stimulus
- 64 cm from navigation screen
- screen at eye level
- 30 frames per second for 125 minutes → 225 000 frames



#### • Per frame:

- Did gaze fall on a landmark?
- Fixation criteria:
  - Within zone equal to 50% of landmark's size
  - For 3+ consecutive frames (100+ ms)
- Per trial
  - Examine gaze per landmark
    - 100% / number of landmarks (2, 4, 6)
    - 40% (8)
    - Landmark utilised if at or over threshold

## Video Game Experience

- Video game experience did NOT correlate with:
  - Sex
  - Strategy
  - Time
  - Number of fixations

- In general women
  - took longer to complete the task on a given trial
  - Made more errors than men
- No sex differences in 8 landmark condition
- Women's performance decreases as landmarks decrease
- Women made more errors per trial than men in 0-landmark condition only





# Results – Navigational Errors



# Results – Navigational Errors



# Conclusion – Navigational Performance

- Women made more errors and took more time to complete the task than men
  - Effect modulated by number of available landmarks
    - Women performed less well than men in the absense of landmarks (equally well with)
- Differences in brain activation patterns found Gron, Wunderlich, Spitzer, Tomczak and Riepe (2000)
- Conclude: Women make more use of landmarks than men

# **Results – Gaze and Navigation**

## **Results – Gaze and Navigation**

- Women made more landmark fixations than men
  - More fixations by women than men in 2- and 6-landmark trials
- Number of fixations correlated with amount of time to complete task (all conditions)
- No difference between men and women in number of fixations or landmark use

# **Eye Movement Differences**



# **Eye Movement Differences**



# Conclusion – Gaze and Navigation

- Women's performance more affected by absence of landmarks
  - → sex differences in use of visual information for navigation
- Total number of fixations higher in women, but proportion of resource use equal between women and men

 $- \rightarrow$  could explain latencies in previous work

# Conclusion – Gaze and Navigation

- Differences in decreases in landmark fixation with habituation
  - → women spend more time acquiring landmark related visual information
    - → may explain differences in speed found in past studies
- Men make fewer errors navigating a virtual environment with 0 landmarks
  - Probably due to differences in landmark use

# Results – Navigational Strategies

# **Navigational Strategies**

#### Spatial

- Construction of cognitive map of environment with relative positions of landmarks
- Response
  - Learning a sequence of body movements in response to a stimulus, ie a starting position, an environmental feature
- Determined based on 'detailed verbal reports'

# Results – Navigational Strategies

- Equal proportions of men and women
  - Used a spatial strategy (55%)
  - Used a response strategy (45%)
- Increase in use of a response strategy throughout experiment
  - Equal proportionally for men and women
    - Spatial: 8 (men), 6 (women)
    - Response: 16 (men), 12 (women)

#### **Spatial vs Response Learners**



## **Results – Gaze and Strategies**

- Spatial learners had greater resource use than response learners
- Spatial strategy → longer total duration of landmark fixations on first, but not subsequent trials (compared to response strategy)

# Conclusion – Navigational Strategies

- No interaction between sex and navigational strategy
- Spatial learners may look to landmarks more during initial trials while forming a cognitive map

# Results – Environmental Landmarks

# Results – Environmental Landmarks

- Participants of both sexes spent < 10% of time looking at landmarks (resource use)
- Resource use increased with number of landmarks, levelling off at 6 landmarks
- Number of landmarks participants reported using increased with number of landmarks available
- Spatial strategists reported using landmarks more

## Results – Environmental Landmarks

- Resource use decreased significantly throughout the experiment
  - Significant negative correlation for men
  - No significant correlation for women

# Conclusion – Environmental Landmarks

 Women continue to use landmarks despite habituation

# Further Questions and Improvements

- More coherent inclusion of spatial and response strategies.
- More explicit discussion of types of errors.
- Only 7 participants.
- Potential confound:
  - does more fixation really lead to longer completion time,
  - or does longer time in the maze lead result in more fixations

# Landmarks' use in speech map navigation tasks Roger, Bonnardel, Le Bigot (2011)

# **Background: A-GPS**

- Assisted global positioning system
- Mobile phones
- Driver and pedestrian
- Relatively little use of landmarks so far

# **Purpose of the Study**

- Better understand role of landmarks in human navigation
  - Performance
  - Preference
- Determine frame-of-reference to be used in over-the-phone guidance systems
- How: route description task using Wizard-of-Oz paradigm



- Use of landmarks in navigational systems improves accuracy and satisfaction.
- Neutral landmarks improve performance and satisfaction over addressee-centred landmarks.

#### **Predictions**

- Participants will make fewer errors, take less time to perform a navigation task, and experience greater satisfaction when provided with landmarks as opposed to without landmarks.
- Use of addressee-centred landmarks will lead to more errors, longer performance time, and less satisfaction of neutral landmarks.

# Wizard-of-Oz Paradigm

- Instructions are given by a human simulating the functionalities of an automatic guidance system
- Participants do not know that the system is simulated
- 27 participants
  - 14 men
  - 13 women

- Steps that must be followed from location A to destination B on a laminated map
- 10 event maps, one for familiarisation
  - 3 trials with each
- Modified with markers representing landmarks
  - Experimental mentioned
  - Extra unmentioned

#### Analyse drawing actions:

- Total number (including corrections)
- Efficient actions (total minus corrections)
- Satisfaction feedback



- Instructions synthesized using SPOweb
- 3 experimental conditions:
  - 1) Adressee-centred landmark
    - 'Turn into the second hallway, the cloakroom will be on your left'
  - 2) Neutral landmark
    - 'Turn into the second hallway, there will be a <u>a cloakroom close by</u>'
  - 3) No landmark
    - 'Turn right into the second hallway that bears off the left'

#### 3 routes per map, 5 instructions each

| Position | Instruction                                                            | Type of instruction |
|----------|------------------------------------------------------------------------|---------------------|
| 1        | Go straight ahead                                                      | Not manipulated     |
| 2        | Turn left into the second hallway,<br>you will see the rest room       | Experimental        |
| 3        | Turn right into the first hallway                                      | Not manipulated     |
| 4        | Take an immediate left, you will see<br>an information centre close by | Experimental        |
| 5        | Turn right into the first hallway                                      | Not manipulated     |
| 6        | You have now arrived at the recreation room                            | Not manipulated     |

- Participants could use 5 vocal commands
  - Repeat
  - Next
  - Previous
  - Summary
  - Restart

# Hypothesis

- Landmarks improve navigation efficiency and satisfaction
- Landmark frames-of-reference have an effect on efficiency and satisfaction
- Time to navigate and errors should decrease with use of landmarks



- Each participant and 'Wizard' was equipped with landphone and headset, recorded
- Participant was recorded with a camera
- No eye-tracking

- Errors and Hesitations
  - No landmarks → more errors and hesitations
  - No significant difference between addressee-centred and neutral landmarks
- Drawing marks and completion time
  - No landmarks → more drawing actions and longer completion time
  - No significant difference between addressee-centred and neutral landmarks

 Unlike predicted, use of addressee-centred landmarks did not decrease performance and satisfaction.

Means (and Standard Deviations) for navigation performances according to instruction formulation (type of landmarks).

|                    | Addressee-centered<br>landmarks | No landmarks  | Neutral<br>landmarks |
|--------------------|---------------------------------|---------------|----------------------|
| Directional errors | 1.06 (.93)                      | 1.84 (1.09)   | 1.05 (.90)           |
| Completion time    | 83.40 (21.65)                   | 92.73 (30.88) | 79.6 (20.55)         |
| Hesitations        | 1.39 (.70)                      | 1.65 (.93)    | 1.24 (.66)           |
| Drawing actions    | 9.12 (1.43)                     | 10.06 (2.32)  | 9.29 (2.09)          |

## **Results - Satisfaction**

#### With landmarks yields higher satisfaction than no landmarks

Means (and Standard-Deviations) for satisfaction measures according to instructions' formulation (type of landmark).

|                                         | Addressee-centered landmarks | No landmarks | Neutral landmarks |
|-----------------------------------------|------------------------------|--------------|-------------------|
| General satisfaction (max 15)           | 12.72 (1.16)                 | 11.78 (1.45) | 12.74 (.99)       |
| Amount of information (max 5)           | 4.03 (1.03)                  | 3.76 (1.12)  | 3.96 (1.15)       |
| Formulation preferences (mean position) | 3.34 (.50)                   | 1.59 (.48)   | 2.41 (.54)        |

## Conclusion

#### Landmarks

- Increase performance
- Increase satisfaction

#### **Further Questions**

#### Addresse-centred versus neutral landmarks

#### **Questions of Interest**

- How are these strategies (euclidian/landmark-based) used?
  - Reliance on landmarks when available
  - Equal looking to landmarks between men and women
  - Lack of landmarks appears to increase errors in women's navigation but not men's

#### **Questions of Interest**

- What navigational strategy do people prefer?
  - Prefer landmarks
- Does performance vary by strategy?
  - Inclusion of landmarks in directions improves task performance times
  - Use of landmarks reduces error

# Further Questions and Improvements

- Add directions to Experiment 1
  - How does gaze vary with directions? Using landmarks? Without landmarks?
- Add eye-tracking to Experiment 2
  - Do people fixate on landmarks?
  - Gaze patterns?
  - Possibly implement experiment 2 in a virtual setting.
- Differences across age groups? Experience? Cultures? Etc.

#### **Practical Applications**

 Include a landmark-based option in navigational systems.

#### **Practical Applications**

 Include a landmark-based option in navigational systems.