



#### Lecture 8

## Wrapping Up

I.Kruijff-Korbayová MPI, November 2007 Information Structure



## Wrapping Up





## **Outline**

- Alligning IS terminologies
- Discussion of differences among approaches
- Empirical verification
- Summary and conluclusions

I.Kruijff-Korbayová MPI, November 2007 Information Structure



## **Aligning IS Terminologies**

| Mathesius,   |                                    |             |                       |
|--------------|------------------------------------|-------------|-----------------------|
| Firbas,      | Theme                              | VS.         | Rheme                 |
| Daneš        |                                    |             |                       |
| Sgall et al. | Topic (CB)                         | VS.         | Focus (NB)            |
|              | topic proper vs. contrastive topic |             | focus proper          |
| Halliday     | [Theme] Given vs. New              |             | [Rheme] Given vs. New |
| Chomsky,     | Topic                              | vs. Comment |                       |
| Jackendoff,  |                                    |             |                       |
| Krifka       | Presupposition                     | VS.         | Focus                 |
| Rooth        |                                    |             |                       |
| Vallduví     | Ground                             | VS.         | Focus                 |
|              | Tail vs. Link (Kontrast)           |             | Kontrast              |
| Steedman     | Theme                              | VS.         | Rheme                 |
|              | Background vs. Focus               |             | Background vs. Focus  |

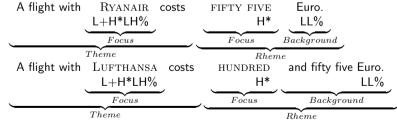
I.Kruijff-Korbayová MPI, November 2007



## **Aligning IS Terminologies**

But, be aware of differences concerning:

- Definitions of the IS categories and operational criteria
- Level(s) at which IS distinctions are made, e.g., surface, deep, semantics. . .
- Flexible vs. fixed syntactic constituents, and how do IS components correspond to them
- Multiple themes
- Multiple "foci", discontinuity of IS components
- Degree of recursivity of IS notions (if any)
- IS-boundary at main clause level vs. "deeper"
- IS in complex sentences


I.Kruijff-Korbayová Information Structure

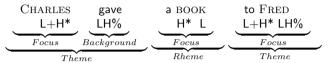


MPI, November 2007

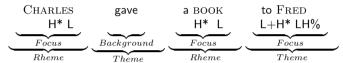
#### Surface vs. Semantics

(183)U: What is the price of a flight to London?




I.Kruiiff-Korbayová Information Structure MPI, November 2007



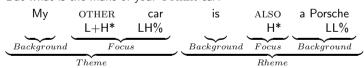

## **Multiple Foci**

(181) I know what Marcel gave to Harry.

But what did CHARLES give to FRED?



(182) I know what Marcel gave to Harry. But who gave what to FRED?




I.Kruijff-Korbayová Information Structure MPI, November 2007



(184) I know that THIS car is a PORSCHE.

But what is the make of your OTHER car?





#### "Flexible Constituents"

(185) I know which result Marcel predicted. But which result did Marcel prove?



I.Kruijff-Korbayová Information Structure MPI, November 2007



#### **Deeper Embedded IS Boundary?**

(Sgall et al., 1986), (Partee et al., 1998)(p.135):

(189) Which teacher did you meet yesterday?

(190) 
$$(Yesterday)_{cb} (I)_{cb} (met)_{cb} (the teacher)_{cb} (of CHEMISTRY)_{nb}$$
.

#### Steedman:

(191) (I read a book about)  $_{Theme}$  (COMPLETENESS)  $_{Rheme}$  (Steedman, 2000a) [p.678]

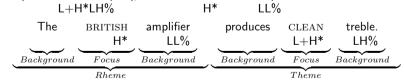
I.Kruiiff-Korbayová Information Structure MPI, November 2007



#### "Flexible Constituents"

(Steedman, 2000b; Steedman, 2000a): flexible, but not arbitrary!

(188) 
$$\star$$
 (They only asked whether I knew the woman who CHAIRED) (the zoning board). L+H\*LH% H\*LL%


I.Kruijff-Korbayová Information Structure MPI, November 2007



#### **Deeper Embedded IS Boundary?**

(Prevost, 1995; Prevost, 1996)

(193) I know the AMERICAN amplifier produces MUDDY treble. (But WHAT ) (produces CLEAN treble)?



(194) I know the AMERICAN amplifier produces MUDDY treble.

(But WHICH amplifier) (produces CLEAN treble)?

L+H\* LH% H\* LL%



## **Deeper Embedded IS Boundary?**

(195) Which amplifier did you buy? I bought a  $\mbox{\footnote{British}}$  amplifier.

H\* LL%

(196) 
$$(I)_{cb}$$
 (bought)<sub>cb</sub> (a (BRITISH)<sub>nb</sub> (amplifier)<sub>cb</sub>.

(197) 
$$\underbrace{\text{(Amplifier)}_{cb}\text{ (I)}_{cb}\text{ (bought)}_{cb}}_{Tomic}\underbrace{\text{(a BRITISH one)}_{nb}}_{Focus}$$

(198) 
$$(Zesilovač)_{cb} (\emptyset)_{cb} (jsem koupila)_{cb} (BRITSKÝ)_{nb}$$

cf.

(199) Use the bought an amplifier from Britain 
$$\frac{1}{Rheme}$$

I.Kruijff-Korbayová Information Structure MPI, November 2007



## **Recursivity and IS in Complex Sentences**

- (200) (Where do you buy wine if it's Sunday?)

  If it's Sunday, we buy wine over the STATE LINE. L+H\*LH% H\*LL%
- (201) Although Clyde married BERTHA, he is not HAPPY.
- (202) Clyde isn't HAPPY, although he married BERTA.

what's Focus/Kontrast and what's Rheme? Any explicit indicators?

- particles, e.g., Japanese (Komagata, 1999), (Komagata 2003)
- intonation, e.g., (Steedman, 2000a)
- word order in German subordinate clause, e.g., (Günthner, 1996)
- placement of clitics in Czech
- etc. ???

I.Kruiiff-Korbayová Information Structure MPI, November 2007



#### **Recursivity**

What is the domain of IS partitioning?

- Sentence?
- Utterance?
- Clause?
- "Basic" proposition? (e.g., cf. Daneš's Theme-Rheme nexus)
- Is IS fully recursive? (e.g., (Partee, 1995))

cf., e.g., (Partee et al., 1998), (Kruijff, 2001), (Komagata 2003)

I.Kruijff-Korbayová Information Structure MPI, November 2007



(203) Do you see that old boat next to the Amsterdam?

(204) 
$$(I)_{cb}$$
 (can see)<sub>nb</sub> (a (VERY)<sub>nb</sub> (old)<sub>cb</sub> TALLSHIP)<sub>nb</sub> (next to the Amsterdam)<sub>cb</sub>

(205) I can see a VERY old 
$$H^*$$
 TALLSHIP next to the Amsterdam  $L+H^*$ 

Theme

Rheme

Theme

Theme



#### **Summary**

- There are different proposals in the literature
- How to decide?
- Do the differences actually matter?
- i.e., do they result in different predictions?
- When yes, we can test the predictions! Can't we?
- Empirical evaluation:
  - psycholinguistic experiments
  - corpus-based experiments
  - experiments with practical systems (indirect evaluation)
    - \* direct evaluation: output-quality judgements
    - \* indirect, task-based evaluation, e.g., success rate in dialogue system

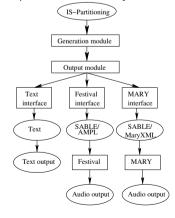
I.Kruijff-Korbayová Information Structure MPI, November 2007



# Controling Intonation of Spoken Dialog System Output

(Kruijff-Korbayová et al., 2003)

- Within the Gothenburg Dialogue System (GoDiS), experimental dialogue system built using the TrindiKit (TRINDI, D'Homme, SIRIDUS projects)
- Determination of Theme/Rheme partitioning according to the QUD (QudTR rule): if QUD corresponds to the result of  $\lambda$ -abstracting over a part of the content, this part becomes the Rheme
- Determination of Focus/Background partitioning within each Theme and Rheme by determining alternatives, i.e., semantically parallell but not identical elements, w.r.t. shared commitments and/or domain knowledge




#### **Example Practical System Evaluation**

I.Kruijff-Korbayová Information Structure MPI, November 2007



Producing synthesized output with contextually varied intonation in GoDiS



I.Kruijff-Korbayová Information Structure MPI, November 2007 I.Kruijff-Korbayová Information Structure MPI, November 2007



### **Experimental Implementation Evaluation**

- Using the German TTS system Mary (Schröder and Trouvain, 2001) with various ways of intonation annotation
- Administered through a website (www.coli.uni-sb.de/cl/projects/siridus)
- Test of concept
- Experiment 1: default vs. controlled intonation using GToBI or SABLE
  - Dialogue fragments displayed on screen
  - Several turns provide context for target utterance
  - Target utterance synthesized in different versions
  - Subjects judge appropriateness of intonation in the given context
- Experiment 2: only default vs. GToBI controlled intonation
  - Subjects judge intonation without context
  - Subjects judge appropriateness of intonation in the given context

I.Kruijff-Korbayová Information Structure MPI, November 2007



## **Experimental Evaluation Experience**

- Proper (standard) evaluation methodology is lacking
- Indirect evaluation through task success / completion time does not seem suitable, because of accumulation of effects through dialogue (moreover, it would have to be Wizard of Oz, because of coverage and robustness issues)
- Direct evaluation is hard to design as a proper experiment:
  - Do subjects really take context into account?
  - Are they judging contextual appropriateness of the intonation pattern and not the quality of the synthesized output as such?
    - \* Absolute judgments allow comparison of judgments across dialogues
    - \* Comparative judgments could neutralize relatively low synthesis quality



## **Experimental Evaluation Results**

Although the results are not significant, observed tendencies correspond to expectations:

- overall average judgments worse for default than for controlled intonation
- average judgments per IS pattern also worse for default than for controlled intonation
   (not much difference across patterns, though one would expect it!)
- judgments of default intonation in isolation closer to those where the context is matching with this, then to those where the context does not match
- roughly same results whether looking at absolute values of judgments or taking differences between values in isolation and in context, per subject

I.Kruijff-Korbayová Information Structure MPI, November 2007



#### Annotation of IS in Corpora

I.Kruijff-Korbayová Information Structure MPI, November 2007 I.Kruijff-Korbayová Information Structure MPI, November 2007



## Why IS Annotation?

- Diverse and under-formalized terminology
- Lack of intuitions about the interpretation of complex IS, e.g. interaction with clause complexity, quantifiers, discourse relations, thematic structure in texts,
- Can we compare and test the theories against corpus data?

I.Kruijff-Korbayová Information Structure MPI, November 2007



## **Desiderata for Annotation Methodology**

- Theory-neutral notions
- Robustness
- Cross-linguistic applicability
- Genre/Register independence
- Multiple layers



#### **IS Annotation: Problems**

- Existing annotations are scarce, disparate, and theory-specific
- Existing theories are empirically inadequate: both too vague and too detailed, i.e., theoretically defined concepts are too brittle to apply to real-life data
- Lack of annotation methodology

We hope IS annotation can contribute to develop better intuitions, identifying critical issues obtain explanatorily more adequate perspectives on the realization & interpretation of IS

I.Kruijff-Korbayová Information Structure MPI, November 2007



#### **IS** annotation

- Theory-specific annotation
  - various small corpora, typically not available for reuse
  - Prague Dependency Treebank of Czech (Hajičová et al., 2003)
- Theory-neutral annotation: more basic, IS-relevant features
- Anaphoric relations: various
- Familiarity status at Edinburgh Uni (Nissim et al., 2004)
- Syntactic and semantic features of referring expressions: GNOME project at Edinburgh Uni (Poesio, 2004)
- MULI project at Saarland Uni (Baumann et al., 2004a; Baumann et al., 2004b)
- Penn Discourse Treebank Project at UPenn (Miltsakaki et al. 2004)

I.Kruijff-Korbayová Information Structure MPI, November 2007 I.Kruijff-Korbayová Information Structure MPI, November 2007



#### **TFA Annotation in PDT**

Annotation of the TFA concepts in the Prague Dependency Treebank (Buráňová et al., 2000; Hajičová et al., 2003)

- data from the Czech National Corpus
- TFA is annotated in the dependency structures at the tectogrammatical level
- ordering of nodes represents communicative dynamism (deep, underlying order)
- each node is annnotated with the TFA attribute:
  - T contextually bound
  - F contextually non-bound
  - C contrastivelly bound (Partee et al., 1998)
- guidelines in Czech (cca 50 pages)
- PDT version 2.0 with several thousand sentences annotated with TFA as well
  as coreference will be released in the fall of 2004

I.Kruijff-Korbayová Information Structure MPI, November 2007



## **Familiarity Status Annotation**

(Nissim et al., 2004)

- data: the Switchboard section of the Penn Treebank (dialog)
- annotation of referring expressions with familiarity status (Prince, 1981; Prince, 1992)
- brand new: create a new discourse referent for a previously unknown entity
- unused: create a new discourse referent for a known entity
- inferable: create a new discourse referent for an inferable entity
- evoked (textually or situationally): access an available discourse referent

|            | Discourse-new | Discourse-old |
|------------|---------------|---------------|
| Hearer-new | brand new     | inferable     |
| Hearer-old | unused        | evoked        |

• tool: the NITE workbench

I.Kruiiff-Korbayová Information Structure MPI, November 2007



#### **Anaphora Annotation**

- DRAMA (Passoneau, 1996) (available through the MATE project website)
- MUC-6 and MUC-7 (MUC Coreference Specification)
- the DRI guidelines (Carletta et al., 1997), see (www.dfki.de/dri)
- the MATE project (Poesio et al., 1999), see (www.cogsci.ed.ac.uk/~poesio/MATE/coreference.html ormate.mip.ou.dk
- bridging references (Poesio and Vieira, 1998)
- coreference and bridging in the Heidelberg Text Corpus, MMAX tool (Müller and Strube, 2001a)

I.Kruijff-Korbayová Information Structure MPI, November 2007



#### **NP Annotation in the GNOME Project**

(Poesio, 2004)

- data from various sources
- Annotation of nominal referring expressions with syntactic and semantic features relevant for NP generation
- the semantic attributes include, e.g., animacy, ontological status, countability, quantification and generic vs. specific reference
- detailed guidelines available from the GNOME project website



#### Penn Discourse Treebank Project

(Miltsakaki et al. 2004)

• data: the Penn Treebank

 annotation of explicit and implicit discourse connectives and their arguments (Webber and Joshi, 1998)

• tool: WordFreak

I.Kruijff-Korbayová Information Structure



MPI, November 2007

MPI, November 2007

### **MULI: Syntax Layer Annotation**

- IS-relevant aspects of realization:
  - Positioning
  - Ordering (words, phrases, clauses)
  - Marked syntactic constructions
  - Morphological marking (in some languages)
  - Definiteness marking (in some languages)
- Treebank data already available
- annotation of additional features: presence of marked syntactic constructions in clauses

Information Structure

• tool: XMLspy

I.Kruijff-Korbayová



## Multilayer IS Annotation in the MULI project

(Baumann et al., 2004a; Baumann et al., 2004b)

- data from the WSJ section of the PTB (English) and from the Negra/TIGER Treebank (German)
- annotation of markables at multiple layers, with layer-specific features (syntax, discourse, prosody)
- English: 7k words/320 sentences; German 3.5k words/250 sentences
- Multi-layer stand-off annotation with shared base data; layer-specific tools, translation into shared XML format

I.Kruijff-Korbayová Information Structure MPI, November 2007



#### **MULI: Layer Annotation**

- recording of read text, just one speaker, only the German corpus
- annotation of intonation following GToBI (?)
  - Position and type of boundary tones
- Position and type of accents
- Position and size of phrase boundaries cf. (?)

• tool: EMU



#### **MULI: Discourse Layer Annotation**

- Annotation of expressions with discourse referent properties
  - Semantic type and sort
  - Denotation characteristics:
  - \* Extensional vs. intensional reference
  - \* Unique, existential or variable determitation
  - \* Countability and quantification
  - Familiarity status (Prince, 1981)
  - Anaphoric relations: Coreference and various types of bridging
- guidelines (cca 30 pages)
- tool: MMAX (Müller and Strube, 2001b)

I.Kruiiff-Korbayová Information Structure MPI, November 2007



#### **Conlusions**





#### How Much Work is it?

- It's hard: . . .
  - Also designing annotation methodology and schemes
- And quite time-consuming
- Intonation: 30 min/sent. (incl. discussion)
- Discourse: 10 min/sent. (create markables and links, assign properties)
- Syntax: 5 min/sent. –only addt'l annotation (clause segmentation, classification); Treebank available

I.Kruijff-Korbayová Information Structure MPI, November 2007



#### **Summary and Conclusions**

- IS is an important aspect of meaning at the interface between utterance and discourse
- a theory relating IS and DS is essential for accurate NL processing
- formal accounts emerging, some embodied into practical systems
- many questions concerning IS partitioning and its realization in different languages still open
- Further research topics:
  - further systematization of terminologies
  - formalization and computational modeling&testing
  - empirical and corpus-based studies
  - cross-linguistic investigations and multilingual applications