Foundations of Speech and Language Technology:

Dialogue

Ivana Kruijff-Korbayová korbay@coli.uni-sb.de www.coli.uni-sb.de/~korbay/ → Teaching

Introduction

- Monologue vs. dialogue/conversation
- Written vs. spoken language
- Dialogue systems: NLI, ECA, HRI
- Application domains: database info, education/training, entertainment, assistance, collaboration
- What properties do conversations have?

13/1/2010

IKK: FSLT/Dialogue

2

Introduction

- · How do we know what conversations look like?
 - Study human-human conversations
 - Ultimate benchmark for "naturalness"
 - But, dialogue systems have specific requirements
 - Study human-computer conversations (data collected with actual systems)
 - Realistic, but confined to implemented functionality
 - Study simulated human-computer conversations, (data collected in Wizard-of-Oz studies, where a human simulates the system, given an algorithm)

Conversation is a Joint Activity

- Collaboration
- Turns and turn-taking
- Speech acts
- Grounding
- Local and global structure
- Conversational Implicatures

Collaboration

- Conversation (and communication in general) is a joint activity:
 - It has a purpose (agreed on by the participants)
 - It involves cooperation: neither agent can accomplish the task alone
- Collaborating (being cooperative): helping each other to establish and accomplish goals by, e.g.,
 - Cooperative interpretation beyond literal meaning (inference)
 - Cooperative responses
 - Complying with requests or directives when possible
 - Providing more information than requested (when it is relevant or useful), also correcting false presuppositions or misconceptions
 - Intensional answers and generalizations

- Taking initiative when this helps to accomplish the joint activity

13/

Conversation is joint action: Turns and Turn-Taking

Turn Taking

- Dialogue turn = a continuous contribution from one speaker
- Dialogue participants take turns (like in a game): A, B, A, B
- Though it is generally not obvious when a turn in natural dialog is finished, turn-taking appears fluid in normal conversation:
 - Speech overlap < 5%
 - Minimal pauses between speakers (< 100 ms)
- How does it work?

Turn Taking Rules

- Conversational analysis (Sacks et al. 1974)
- Transition-relevance places
 - = places where the utterance structure allows speaker shift to occur (typically at utterance boundaries, but also smaller units)
 - TRPs are signaled by syntax (phrase boundaries), intonation, gaze, gesture; also cultural conventions apply
- At each TRP (current speaker A):
 - If A selected B as next speaker, B should speak
 - If A did not select the next speaker, then anyone may take a turn
 - If no-one else takes a turn, then A may take it
 - (To get a turn if not selected, a speaker must "cut in" at a TRP)

7

5

Turn-Taking Rules: Implications

- Turn switching:
 - There are explicit signals
 - Some turns require a response from another speaker:
 - auestion answer
 - A: What time is it?
 - B: It's 5 p.m. / B: I don't have a watch.
 - greeting greeting, compliment downplayer, request grant
 - Such pairs are called adjacency pairs (Schealoff, 1968)
 - Preferred vs. dispreferred second parts

13/1/2010

IKK: FSLT/Dialogue

9

Turn-Taking Rules: Implications

• Significance of silence: the absence of a second part of an adjacency pair can carry meaning, e.q.,

Mom: What color is the shirt? Child: --

Mom: Will you please put the book back? Child: --

A (clearly addressing B): Hi, how are you? B (ostensively continuing their activity): --

13/1/2010

IKK: FSLT/Dialogue

10

Turn Taking Models in Human-Computer Dialog

- Rigid: no interruptions
 - System speaks until it completes it's turn, then waits • How long to wait? (Is the user still there? Did s/he hear?)
 - System lets User to finish turn, then starts
 - How to determine end of user's turn? (Is the user finished?)
 - Problems: user must wait for end of system turn; misrecognition if user speaks too early; a pause may be mistaken for end of turn
- Flexible: with barge-in:
 - User barge-in: system speaks until it completes it's turn or until it detects an interruption
 - Open-mic: system listening all-the-time
 - Problems: talk vs. noise; also system's own talk is "noise"
 - Push-to-talk: user pushes button to take a turn
 - Problems: button pushed or released too early
 - System barge-in: When is a TRP? When appropriate at all? 11

IKK: FSLT/Dialogue 13/1/2010

Conversation is Action: Speech Acts

Speech Acts

Speech act theory (Wittgenstein 1953, Austin 1962, Searle 1975)

- Each utterance is an action performed by the speaker I declare the Olympic Games open. I object!
 - I bet 5 Euro it will snow.
- Every utterance constitutes three kinds of acts on context:
 - Locutionary act: the act of uttering the words with their semantic content
 - Illocutionary act (= speech act): the communicative act the speaker performs by saying the words, e.g., asking, answering, promising, etc.
 - Perlocutionary act: the effect of the utterance on the hearer's feelings, thoughts or actions, intended or unintended (e.g., making someone laugh, scaring someone, making someone stop, etc.)

13/1/2010	IKK: FSLT/Dialogue	13

Conversation is Joint Action: Grounding

Speech Act Types

Assertive	S commits to sth being the case	Comment, suggest, swear, boast, conclude
Directive	S attempts to get H do sth	Ask, order, request, beg, invite, advise
Commissive	S commits to future course of action	Promise, plan, vow, bet, oppose
Expressive	S expresses psychological state	Thank, apologize, welcome, deplore
Declarations	S changes world	Resign, name, fire

13/1/2010

IKK: FSLT/Dialogue

14

Grounding

- Conversation is a collective act performed by the speaker and the hearer
- Speaker and hearer need to establish mutual knowledge / common ground (Stalnaker 1978)
- Principle of (joint) closure:
 - Agents performing a (joint) action require evidence, sufficient for current purposes, that they have succeeded in performing it (Clark 1996)

Grounding

Contribution = joint linguistic act:

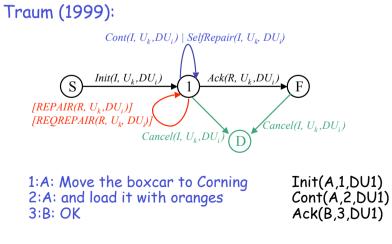
$$\underbrace{\underbrace{S}_{S: \ Presentation}}_{Init(I, \ U_k, DU_i)} \bullet \underbrace{1}_{H: \ Acceptance} \underbrace{Ack(R, \ U_k, DU_i)}_{H: \ Acceptance} \bullet \underbrace{F}_{Acceptance}$$

1:A=I: Move the boxcar to Corning 2:A=I: and load it with oranges 3:B=R: OK

13/1/2010

IKK: FSLT/Dialogue

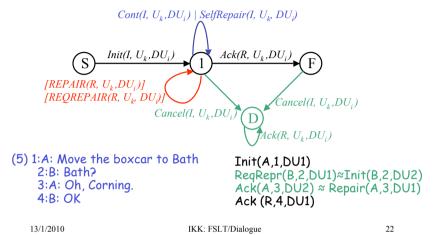
Positive Grounding Feedback


Continued attention
Relevant next contribution
Acknowledgement (nod or "continuer", e.g., uh-huh, yeah; or assessment, e.g., that's great)
Demonstration (by paraphrasing, reformulating or cooperatively completing)
Display (verbatim repetition)

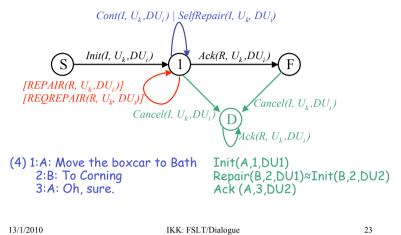
13/1/2010	IKK: FSLT/Dialogue	19

Grounding Problems

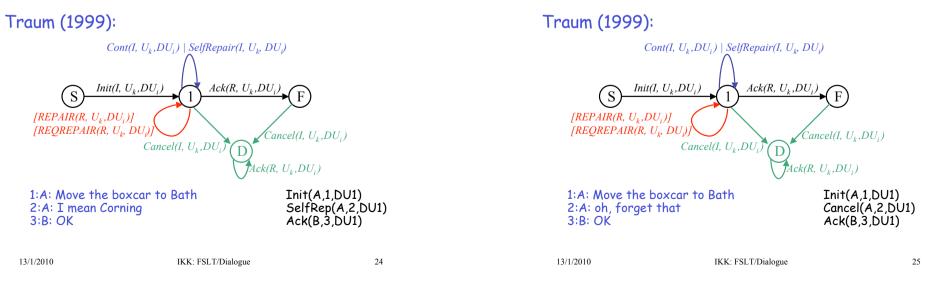
- Grounding problems are due to
 - Lack of perception or understanding
 - Ambiguity
 - Conflicts (differences in beliefs)
 - Misunderstanding (misinterpretation)
- Clarification and repair strategies, e.g., repair, ask for clarification, repetition, rephrase


Grounding Acts

17


Grounding Acts

Traum (1999):


Grounding Acts

Traum (1999):

Grounding Acts

Grounding Acts

Verification Strategies

- Immediate explicit feedback (and verification request)
 - S: Where do you want to go?
 - U: Hamburg.
 - S: Traveling to Hamburg. (OK?)
 - U: Yes.
 - S: When do you want to go?
 - = very safe, but tedious!
- Immediate "implicit" feedback by incorporating material to be grounded in the next system turn
 - S: Where do you want to go?
 - U: Hamburg.
 - S: And when do you want to go to Hamburg?
 - = User may still correct misunderstanding right away
- Delayed explicit feedback by summarizing at task end S: So. Traveling from Saarbrücken to Hamburg on Monday June 6
 - = may be completely mislead, hard to recover from a misunderstanding

13/1/2010

IKK: FSLT/Dialogue

```
Handling Non-Understanding
```

When a system cannot recognize or interpret a user's input to a prompt:

- "Sorry I did not understand"
- Ask for repetition
- Repeat prompt as was
- Reformulate prompt
- S1: When do you want to go?
- S2: Say the date you want to depart.
- Provide suggestions/help S3: You can say today or a date.
- A combination of these strategies is useful

IKK: FSLT/Dialogue

27

Initiative

- Who is in control of the dialogue progression?
 - Being the one who's talking does not necessarily mean being in control, e.g., just answering a question, requesting confirmation
 - Dialogue initiative vs. task initiative
- Basically, two models:
 - Fixed initiative model (one participant in control)
 - System-initiative: can drive dialogue as desired by prompting user, but may be unnatural and inconvenient for user (directive prompts)
 - User initiative: can do what & when wants (if knows what to do), but difficult for system, because it doesn't know what is coming
 - Mixed initiative model (either participant can assume initiative, depending on knowledge, skills, situation, etc.)
 - Typical in human-human conversation
 - · How to decide whether to take initiative?

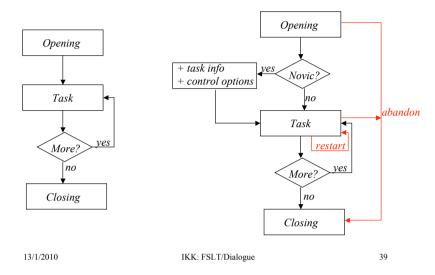
Conversation Structure

26

Conversation Structure

- Local: adjacency pairs = speech act sequences that occur regularly, are even conventionalized (obligation to respond, expected responses)
 - Greeting-greeting
 - Question-answer
 - Compliment-downplayer
 - Accusation-denial
 - Offer-acceptance
 - Request-grant
 - -

13/1/2010


- Global: Common overall organization
 - e.g., telephone call(s):
 - 1. Enter a conversation with a summons-response adjacency pair
 - 2. Identify speakers
 - 3. Establish joint willingness to converse
 - 4. Raise the first topic (usually done by the caller)
 - Certain speech acts are expected depending on the place in conversation

IKK: FSLT/Dialogue

38

Conversational Implicature

Conversation Structure

Maxims of Conversation

- Cooperative Principle
 - Maxim of quality
 - Maxim of quantity
 - Maxim of relevance
 - Maxim of manner
- · Conversational implicatures arise based on
 - Assumed adherence to maxims
 - Blatant violation of maxims

Dialogue Economy

- Maxim of quantity, maxim of manner --> Dialogue utterances are often "reduced": they contain anaphora or ellipsis, or are fragmentary
- The full intended meaning can normally be recovered w.r.t. the previous utterances and from the situational context
- Keeping track of the context is therefore essential to coherent dialogue
- Without modeling these phenomena, dialogue can appear unnatural or even go wrong

IKK: FSLT/Dialogue

43

Dialogue Economy

U: Do any samples contain bismuth and ruthenium? S: Yes. U: Give me their overall analyses.

U: Do any samples contain bismuth and ruthenium? S: No. U: Then what do they contain?

A: What time is Twelfth Night playing tonight? B: (It starts at) 8:10 p.m. A: And Hamlet?

G: where are you in relation to the top of the page just now? F: about four inches G: four inches? F: yeah

13/1/2010

IKK: FSLT/Dialogue

44

Conclusions

- Characteristics of human-human dialogue that also (should) hold for human-computer dialogue:
 - Collaboration: purpose, cooperation, initiative
 - Turn-taking
 - Dialogue acts
 - Grounding
 - Global and local structure
 - Conversational implicature
- · but they present challenges for modeling

Reading

Basic:

[1] D. Jurafsky and J. Martin (2009):

Speech and Language Processing. Second Edition. Chapter 24.1, pp. 847-855.

Further:

- [2] D. Jurafsky and J. Martin (2009): Speech and Language Processing. Second Edition. Chapter 24.2-8, pp. 847-894.
- [3] B. Grosz, M. Pollack and C. Sidner (1989): Discourse. In Foundations of Cognitive Science. M. Posner (ed.). MIT Press. pp. 437-468.
- [4] D. Traum (1999): Computational Models of Grounding in Collaborative Systems. AAAI Fall Symposium on Psychological Models of Communication. Pp. 124-131. http://people.ict.usc.edu/~traum/Papers/psych.ps