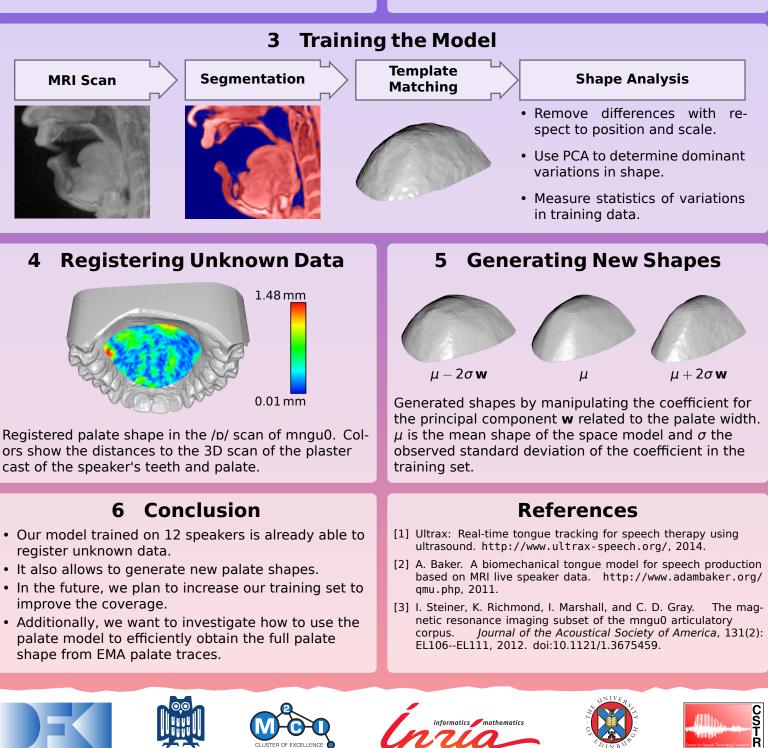
A Statistical Shape Space Model of the Palate Surface Trained on 3D MRI Scans of the Vocal Tract

Alexander Hewer^{1,3} Ingmar Steiner^{1,3} Timo Bolkart³ Stefanie Wuhrer² Korin Richmond⁴


¹DFKI Language Technology Lab ³Cluster of Excellence MMCI, Saarland University ²INRIA Grenoble Rhône-Alpes ⁴Centre for Speech Technology Research, University of Edinburgh

1 Motivation

- The palate plays an important role in articulation, e.g., in the production of obstruents such as /3, \int , j/.
- Training a statistical palate shape space can help with, e.g.,
 - creating unseen shapes that may be used in computer graphics;
 - registering unknown data that might be incomplete, such as palate traces acquired by electromagnetic articulography (EMA).

2 Datasets

- Volumetric magnetic resonance imaging (MRI) is regarded as the state-of-the-art modality for imaging the vocal tract.
- We use two MRI datasets for training: The one of Baker [2] (1 speaker) and the full dataset of the Ultrax project [1] (11 speakers).
- For evaluation, we use the volumetric MRI subset of the mngu0 corpus [3]. It contains data from one male speaker, including high-resolution 3D scans of a plaster cast of his teeth and palate.

