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Abstract 

Distributional Semantic Models have been successful at 
predicting many semantic behaviors. The aim of this paper is 
to compare two major classes of these models – co-
occurrence-based models, and prediction error-driven models 
– in learning semantic categories from child-directed speech. 
Co-occurrence models have gained more attention in 
cognitive research, while research from computational 
linguistics on big datasets has found more success with 
prediction-based models. We explore differences between 
these types of lexical semantic models (as representatives of 
Hebbian vs. reinforcement learning mechanisms, 
respectively) within a more cognitively relevant context: the 
acquisition of semantic categories (e.g., apple and orange as 
fruit vs. soap and shampoo as bathroom items) from linguistic 
data available to children. We found that models that perform 
some form of abstraction outperform those that do not, and 
that co-occurrence-based abstraction models performed the 
best. However, different models excel at different categories, 
providing evidence for complementary learning systems. 

 
Introduction 

Distributional models of lexical semantics have had a large 
impact on cognitive science over the past two decades. In 
general, these models formalize the distributional hypothesis 
(Firth, 1957; Harris, 1970), and attempt to learn distributed 
representations for word meanings from statistical 
regularities across a large corpus of linguistic input. The 
resulting representations have been enormously valuable to 
researchers wanting to select and calibrate word stimuli 
balanced on semantic dimensions. They have also been 
successfully used as semantic representations in models of 
cognitive processes (e.g., word recognition, reading), and in 
a wide variety of applications ranging from automated 
tutoring to open question answering.  

Due in part to their practical successes, the algorithms 
that distributional models use to build semantic 
representations have also been hypothesized to be related to 
the cognitive mechanisms potentially used by humans to 
learn semantic representations from regularities in their 
language input1. The various learning mechanisms posited 
include simple co-occurrence learning, episodic abstraction, 

                                                             
1  To be fair, the transfer between practical algorithm and human 

mechanism has been bidirectional: Knowledge of how humans learn was 
used to inform the design of distributional algorithms, and the subsequent 
success of certain algorithms on practical tasks has then fed back to help 
narrow the range of likely cognitive mechanisms that humans use. 

reinforcement learning, and probabilistic inference (see 
Jones, Willits, & Dennis, 2015, for a review).  

The majority of distributional models in the cognitive 
science literature are from the family of co-occurrence 
models. Models of this family tend to apply unsupervised 
learning mechanisms to a frequency count of how often 
words co-occur with each other in a context (paragraph, 
document, or an n-word moving window). There are many 
specific models that differ in theoretically meaningful ways 
in terms of the learning mechanisms they apply, but all 
members of this family share the assumption that the learner 
is basically counting observed co-occurrences of stimuli in 
the environment. Hence, they are all based on error-less 
Hebbian-type learning mechanisms.  

Perhaps the best-known co-occurrence model in the 
cognitive literature is Latent Semantic Analysis (LSA; 
Landauer & Dumais, 1997). LSA basically applies a 
dimensionality reduction mechanism to a sparse word-by-
document frequency matrix computed from a large corpus 
of text. The resulting dense vectors emphasize higher-order 
statistical relationships among words: Two words that occur 
in similar contexts across language will have similar 
representations, even if they never directly co-occurred in a 
context. LSA vectors have been used to model how words’ 
semantic similarity predicts performance in vocabulary 
acquisition, categorization, reading, summarization, and a 
number of other cognitive tasks (see Landauer, 2006, for a 
review). Other popular models count the co-occurrences of 
words within a moving window, or how frequently words 
occur with predefined context words. For a review of the 
various co-occurrence algorithms and their performance on 
semantic tasks, we refer the reader to Bullinaria and Levy 
(2007) or Riordan and Jones (2011). 

A second family of predictive distributional models has 
been around for decades, based on principles of predictive 
encoding and error-driven learning core to theories of 
reinforcement learning. For example, early recurrent neural 
networks studied by Elman (1990) and St. John and 
McClelland (1990) learn distributed representations for a 
word’s co-occurrence history across their hidden layers. 
Feedforward networks studied by Rogers and McClelland 
(2004) similarly learn distributed semantic representations, 
representations that even contain hierarchical taxonomic 
relations. These model architectures rely on predicting a 
distributed set of features for each input word, then deriving 
an error signal from the difference between the prediction 
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and the observed context. Errors are backpropagated 
through the network to increase the likelihood that the 
correct output will be predicted given the input in the future. 

The mechanisms for predictive learning core to these 
models have been studied a great deal within reinforcement 
learning, and there is a considerable literature in cognitive 
neuroscience exploring how this type of learning is driven at 
the neural level by dopaminergic error signals, and is 
moderated by the basal ganglia, cingulate, and 
hippocampus. In practice, these predictive models have only 
been applied to small toy datasets to discover distributional 
structure; their capabilities have not been studied when 
applied to large, naturalistic corpus-based materials such as 
those that are used by simple co-occurrence models. 
However, there has been a recent resurge of interest in 
predictive models of distributional semantics. Howard et al., 
(2011) trained a predictive version of the Temporal Context 
Model (pTCM), a recurrent model of error-driven 
hippocampal learning, on a large text corpus and 
demonstrate impressive performance on word association 
tasks. Similarly, Shaoul et al. (2016) used a Naïve 
Discrimination Learning (NDL) procedure (a single-layer 
network trained using the Rescorla-Wagner learning 
procedure) to show that semantic representations can be 
learned from a relatively small sample of spoken language. 
Despite the many appealing properties of predictive 
distributional models, the bottom line is that they are 
heavily outperformed by co-occurrence models at 
accounting for human data on every lexical semantic task 
that has been tested. 

A new type of context-prediction model (a.k.a. “neural 
embedding model”) has emerged in the past few years; as 
Baroni et al. (2014) put it, these models are “the new kids 
on the distributional semantics block.” The predictive model 
of Mikolov et al. (2013), referred to in the literature as 
word2vec (W2V), is a feedforward neural network model 
with a hidden layer that uses error backpropagation to 
maximize the likelihood of either predicting context given a 
word, or predicting a word given the context. In this sense, 
W2V behaves much like the networks studied by Rogers 
and McClelland (2004), but applied to massive amount of 
linguistic data, and with some tricks to improve training 
efficiency. W2V has made a huge stir in the machine 
learning literature for its ability to outperform every other 
semantic model on benchmark tasks, and to achieve this 
impressive performance using an architecture that had been 
written off in the cognitive and linguistic literatures. Baroni 
et al. (2014) undertook a careful comparison of state-of-the-
art co-occurrence models and W2V, testing them on the 
same input corpus and with a large battery of different 
semantic tasks. They concluded that the hype surrounding 
W2V is warranted: Even under these very well controlled 
comparisons, W2V outperformed the current top performers 
studied by Bullinaria and Levy (2007). Since W2V has a 
similar architecture to many “toy” connectionist models that 
have been popular in cognitive science, its success on 
practical tasks is exciting to the field. However, it is 

important to note that current tests of W2V have been on 
very large corpora—the tests by Mikolov et al. (2013) were 
trained on over 1-billion words of text, and the comparisons 
by Baroni et al. (2014) were trained on a corpus of almost 3-
billion words. While estimates of the number of tokens a 
human will read/hear in a lifetime vary greatly, both of 
those corpora are orders of magnitude beyond the upper 
limit of a single human’s experience.  

Hence, our approach here is to scale the problem way 
down. We train co-occurrence and predictive models on the 
real-world speech that children experience from birth to age 
5 using the CHILDES corpus (MacWhinney, 1998), a 
resource used in previous work on computational modeling 
of early word categorization (e.g., Asr et al., 2013). This 
linguistic experience is a very different test for the models, 
and allows us to explore how their learning mechanisms 
might deal with the noisy data on which children must build 
their semantic representations. Given the superiority of 
W2V over co-occurrence models on large data and practical 
semantic tasks, and the similarity of its learning algorithm to 
popular error-driven models of development, how do the 
two families of models compare on their ability to learn 
complex structure on the same impoverished data that 
children receive?  

 

Co-occurrence Models 
To evaluate the performance of co-occurrence based 
models, two models were selected that have both performed 
well in previous evaluations, but that use different learning 
algorithms (thus providing breadth of coverage of different 
types of co-occurrence based models). One model uses an 
abstraction mechanism, whereas the other operates with 
simple summation of surface-level word co-occurrences.  
 

PCA-Based Vector Model 
The first model tested is notable for its use of principle 
components analysis (PCA) as the primary method of 
knowledge abstraction. This model computed co-
occurrences in a 12-word moving window (12 words in both 
the forward and backwards directions) for the 10,000 most 
frequent words in the corpus, resulting in a 10,000-by-
10,000 co-occurrence count matrix. These values were then 
normalized into positive point-wise mutual information 
values (Bullinaria & Levy, 2007). This matrix was then 
reduced using PCA, and the first 30 principle components 
were retained, resulting in 30-element vectors for each of 
the 10,000 words. This model is composite of several pre-
existing models, such as the HAL model (Lund & Burgess, 
1996), the COALS model (Rohde et al., 2005) and models 
by Bullinaria & Levy (2007).    

Sparse Random Vector Accumulator 
The second co-occurrence model we tested was from the 
family of Random Vector Accumulators (RVAs; see Jones, 
et al., 2015, for a review).  RVAs are essentially distributed 
count models. They initialize a unique random vector for 
each word prior to learning, and the word’s memory vector 
is then updated across learning as the sum of the vectors 
representing the words with which it has co-occurred. 
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Hence, RVAs are incremental learners with no abstraction 
mechanism (compared to PCA). We use a sparse-distributed 
RVA here (Recchia et al., 2015). To equate with the other 
models, the RVA was trained on the same 10k x 10k word 
co-occurrence matrix as was the PCA model. Each word 
was initially represented by an 8,000-element sparse ternary 
environment (E) vector. The memory (M) vector was then 
the frequency-weighted sum of the E vectors for all the 
words with which the target word co-occurred within a 12-
word context window. For example, if dog had a co-
occurrence frequency of 3, 1, 0, 2, with cat, shoe, bunny, 
and run, respectively, then Mdog = 3*Ecat + 1*Eshoe + 2*Erun. 
 

Predictive Models 
To compare to the RVA and PCA co-occurrence models, we  
tested two error-driven models. The primary objective was 
to evaluate the performance of the W2V predictive learning 
algorithm, but we also tested a second model of the error-
correction family based on the classic Rescorla-Wagner 
model of discrimination learning.  
 

W2V 
As described above, W2V is a multilayer neural network 
(with an input layer, an output layer, and one hidden layer) 
that learns word vectors by iterating through sample 
contexts. W2V comes with two slightly different 
architectures of a neural network for learning word 
embeddings: (1) cbow (context bag-of-words) and (2) 
skipgram. In the cbow architecture, a word is predicted as 
the output from its context input. During training, the input 
layer produces a weighted sum over the context words 
within a fixed adjacency window of the target word. Output 
activations are converted to a probability distribution over 
the vocabulary (softmax) and the weight matrices are 
updated through backpropagation of the errors. The network 
topology is similar for skipgram, except that in this 
architecture, a target word is used to predict the context in 
which it appears. In skipgram, several context vectors can 
be sampled from a certain window of adjacent words (e.g., 
given the input sentence “she found a cute cat in the 
garden”, the target word “cat” can be used to predict context 
unigrams “cute”, “in”, “a” and “the” when a window of size 
two (from each side) is considered. After training the model 
on a text corpus, the weight matrix between the hidden layer 
and the output layer in cbow or the one between the input 
layer and the hidden layer in skipgram represents the 
embeddings for the vocabulary words: V * N, where V is 
the size of vocabulary and N is the dimension of word 
vectors. In our experiments, we used a python 
implementation of the W2V model from Gensim (Řehůřek 
& Sojka, 2010). 
 

Naïve Discrimination Learner 
Like W2V, the Naïve Discrimination Learning (NDL) 
model learns to make predictions about a target word given 
its lexical context, or vice-versa. Unlike W2V, NDL has 
only an input layer and an output layer (with no hidden 
layer), and uses the Rescorla-Wagner learning procedure 
(Rescorla & Wagner, 1972) to learn a set of weights 

between target words and its cues (i.e. the other words in the 
window) that predict it. In addition to a long history of use 
in the psychology of learning (see Miller et al., 1995, for a 
review), NDL models are now being explored as models of 
infant word segmentation and how children learn the 
meanings of words (Baayen et al., 2015). 
 

Method 
Corpus  
We used the entire child-directed speech data in the 
American English subset of the CHILDES corpus 
(MacWhinney, 1998). This collection includes 
conversations between children (4 to 60 months of age) and 
their parents, care-givers and other children. Utterances 
directed to the target children were combined to create a 
corpus representative of the linguistic input of children from 
these ages. The resulting corpus consisted of 4,568 sub-
corpora (transcribed documents), containing 36,170 distinct 
word types and 8,323,266 total word tokens. The corpus is 
relatively well-distributed across ages and generally forms a 
decent snapshot of the input children get at various ages. 
Little pre-processing was done to the corpora beyond simple 
word tokenization. To equate comparisons across the 
models, from this corpus, we selected the 10,000 most 
frequently occurring words and used only those words as 
inputs into the four models. Words below this rank were 
excluded due to their low frequency in the corpus (<7). 
 

Evaluation Task 
We evaluated the performance of the models based on a 
word categorization task. For this task, we used 1,244 high 
frequency nouns from the corpus that unambiguously 
belonged to a set of 30 categories (like mammal, clothing,  
etc.). Thus, each non-identity pair of words either belonged 
to the same category (as in dog-cat for mammals and shoe-
sock for clothing) or to different categories (as in dog-shoe, 
dog-sock, cat-shoe, and cat-sock). 

The category membership of each pair was predicted 
using each model’s similarity score in a signal detection 
framework. For each word pair, the similarity score was 
compared to a decision threshold. If the similarity score was 
above that threshold, the pair was predicted to belong to the 
same category (classified a “hit” if this prediction was 
correct and a “false alarm” if this prediction was wrong). If 
the similarity score was below the threshold, the pair was 
predicted to belong to different categories (classified a 
“correct rejection” if this prediction was correct and a 
“miss” if this prediction was wrong). For each model, a 
single decision threshold was chosen, the threshold that 
maximized categorization accuracy for that model. Each 
model’s overall performance was assessed by computing 
balanced accuracy (BA) using the formula below: 

 
𝐵𝐴 =

1
2 ∗ (

ℎ𝑖𝑡𝑠
ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠 +

𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠
𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 + 𝑓𝑎𝑙𝑠𝑒	𝑎𝑙𝑎𝑟𝑚𝑠 ) 

 
Experiment 1 

Our first experiment focused on exploring the parameter 
space of the W2V model to see how an error-driven 
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distributional model learns from the specific characteristics 
of child-directed speech data: short sentences, simple 
structure, less ambiguity, etc.  
   

W2V Setup 
The skipgram architecture is known to perform better on 
smaller corpora and modeling rare words due to repeated 
sampling from a fixed window of context words, whereas 
cbow is trained faster, thus is more suitable for learning 
word embeddings from big text corpora. We tried both 
architectures in this experiment to see if this held true in our 
task. We also manipulated two other parameters in the 
model: the window size for collecting context words, and 
the hidden layer size, i.e., dimensionality of the resulting 
word embeddings. We examined window sizes of 2 and 12 
words from each side of the target word. Previous 
experiments showed that context words in a smaller window 
convey syntactic information about the target word, 
whereas, context words in a larger window convey more 
topical information (Levy & Goldberg, 2014a). Vector 
dimensionality (size of hidden layer) was set to 30, 50, 100, 
200 or 300 nodes. Larger hidden layers provide a finer-
grained distributional representation, and thus can be 
beneficial in learning word similarities to perform a 
categorization task. In contrast, smaller hidden layer sizes 
force the network to develop more abstract representations 
of meaning. Frequency cut-off was set to 1. Other 
parameters in the W2V training function were held constant 
across the experiments (for a complete description of the 
default parameter values please check the Gensim package). 

 

Results 
Figure 1 shows the accuracy of the model with different 
parameter considerations in the categorization task. As 
expected, the skipgram architecture learned similarity 
between the words better than the cbow architecture, 
resulting in superior categorization performance. 
Interestingly, considering a larger context window size 
(changing from 2 to 12 context words from each side of the 
target word) did not enhance the performance of the cbow 
model significantly. On the other hand, the skipgram model 
did benefit from more context words. When compared 
against the cbow results, this suggests that the size of our 
corpus is small for the connectionist model to learn the 
similarities between the words in our categorization dataset. 
That is why sampling smaller n-grams from a bigger 
window of adjacent words (the mechanism used only in the 
skipgram model) results in a significant boost in the 
backend performance. This observation is in line with 
previous experiments on large corpora (Mikolov et al. 2013) 
where the skipgram model outperformed cbow in semantic 
association tasks. The cbow model, on the other hand, 
recognizes syntactic associations (plural/singular) slightly 
better. This can be due to the way every training instance is 
used in either model: in skip-gram, unigrams are sampled 
from the context window and used one-by-one together with 
the target word in several training steps, whereas cbow uses 
the entire context frame of a word at once. 

      The second observation concerned the effect of vector 
dimensionality. While adding nodes to the hidden layer 
increased the categorization accuracy in lower scales (i.e., 
from 30 to 50) the effect disappeared in higher scales (100 
to 300). In fact, the best performing model overall is the 
skipgram with 200 hidden layer nodes (accuracy = 74.9%), 
not the one with 300. This can be due to the small and 
relatively less ambiguous vocabulary in the child-directed 
corpus, for which a smaller hidden layer would suffice and 
might generalize better to capture similarities between 
words within the coarse-grained categorization defined in 
our evaluation task. 

 
Figure 1. Mean classification accuracy (averaging across the 30 
semantic categories, error bars represent 95% CI) of the various 
W2V models, as a function of the window size (2 vs. 12), the size 
of the hidden layer vector (30, 50, 100, 200, 300), and architecture 
(cbow, skipgram). 

 
Figure 2. Mean classification accuracy on the 30 different 
categories, comparing the best performing cbow model to the best 
performing skipgram model (in both cases, w=12, v=200).  
 

The best performing W2V setup will be used in our next 
experiment in comparison to other models. Thus before we 
proceed, it is good to take a closer look at the learning of 
each word category by either of the architectures. Figure 2, 
compares the best cbow and skipgram models on every 
category within the evaluation dataset. First, the two models 
seem to be learning qualitatively different types of 
information: cbow captured the within-category similarity 
of furniture and household items relatively better than it did 
on dessert, fruit, vegetable and meat items. In contrast, 
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household and furniture were among the less accurate 
categories when detected by the skipgram model. Both 
models performed very well in categorization of numbers, 
days and months, but had difficulty with other categories 
such as plants. This suggests that the distributional 
properties of different semantic categories might be 
different. A correlation analysis of system performance 
across categories with token frequency, word types and 
entropy of the category items revealed that cbow learned 
categories with larger token frequency better (p<0.05), 
while the performance of skipgram on a category was 
statistically independent of these factors. 
 

Experiment 2 
In the second experiment we compare different 
distributional models in the word categorization task.  
 

Setup of the Models 
We trained each model with its optimal parameter settings. 
As we found in Experiment 1, for W2V this meant using the 
skipgram architecture with a window size of 12 and 200 
nodes for the hidden layer. For comparison, the optimal 
performing NDL model had a window size of 3, and like 
W2V, performed better predicting contexts from words 
rather than vice-versa (Shaoul et al., 2016). NDL has no 
hidden layer, and therefore is not comparable in terms of 
vector size. Since the co-occurrence models do not use 
error-driven learning, direction (word predicting context vs. 
context predicting word) was not a feature of these models. 
However, these models were both trained using a window 
size of 12 (making them comparable to the better 
performance of W2V). The PCA model has a parameter 
equivalent to the number of hidden units in W2V (i.e. the 
amount of abstraction that is used): the number of principle 
components retained. The peak performance of this model 
was obtained with 30 principle components. The RVA 
model also has a parameter, which is the size of the random 
environment vectors. The peak performance of the RVA 
model was obtained with a random vector size of 8000.  
 

Results 
Figure 3 compares the performance of each of the four 
models in the word categorization task. The two co-
occurrence models, PCA and RVA performed very 
differently. The PCA model had the advantage of learning 
latent relationships in the dataset, which likely helped it 
perform better on a small dataset such as the CHILDES 
corpus. Between the two predictive models, W2V was 
superior to the NDL. As with the PCA model, W2V’s 
hidden layer allows it learn abstract, latent relationships 
from the co-occurrence data. In machine learning, 
introducing a hidden layer to a neural network topology is 
considered as a method for capturing nonlinear correlations 
between the input and output of the model. In addition to 
NDL missing the hidden layer, the input to this model was 
different from that of the W2V skipgram used in this 
experiment. In fact, like the cbow model tested in our 
previous experiment, NDL did not benefit from larger 

context windows (thus its peak performance is that of it 
being trained on 3 context words from each side).  

 
Figure 3. Mean classification accuracy (averaging across the 30 
different categories and 95% CI) for the four DSMs. 
  

 
Figure 4. Mean classification accuracy on the 30 different 
categories for the four DSMs. 

 

Finally, a comparison between the overall performances 
of the best co-occurrence model (PCA) and the best 
predictive mode (W2V) in this task revealed the superiority 
of the co-occurrence model. PCA includes a relatively 
sophisticated post-processing of the raw co-occurrence 
vectors, whereas W2V involves an error-based learning. 
Inputs to the both models were very similar, that is the co-
occurrence information was collected from a window size of 
12 from each side of a target word. As we mentioned above, 
the number of principal components in the PCA was a good 
equivalent to the size of the hidden layer in the W2V. If we 
compare it against the skipgram with 30 nodes in the hidden 
layer (in our previous experiment), we find an even bigger 
difference in the performance of the two models. 

How models differ from one another qualitatively? 
Figure 4 provides an answer to this question by showing 
performance on each category separately. The models 
showed some variance in terms of what categories they 
learned better and what categories they learn worse. The 
less accurate models (NDL and RVA) tended to align fairly 
highly, doing relatively well and poorly on the same 
categories, and showing no significant difference in overall 
performance (t(29) = 1.48, p = 0.15). W2V outperformed 
both NDL and RVA, with a significantly higher overall 
performance (t(29) = 4.20, p < 0.001), and beating NDL on 
28/30 categories and RVA on 27/30 categories. The PCA 
model performed the best, having a significantly higher 
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overall performance than all three models (all p’s < .0001), 
and beating W2V on 30/30 categories, RVA on 29/30 
categories, and NDL on 30/30 categories. Accuracy of a 
category did not correlate with its types or token frequency. 

 

General Discussion 
Our analyses compared two models that involved the 

abstraction of latent representations (PCA and W2V) versus 
two models that do not perform abstraction (RVA and 
NDL) when trained on child-directed speech. Both models 
that perform abstraction strongly outperformed those that do 
not. Our analyses also compared two co-occurrence models 
(PCA and RVA) with two predictive models (W2V and 
NDL). In previous work, W2V has been demonstrated to 
surpass standard co-occurrence models when trained on 
large amounts of data (e.g., Baroni et al., 2014; Mikolov, 
2013). However, we found an interesting paradox: W2V 
was actually outperformed by a rather simple PCA-based 
co-occurrence model when applied to child-directed speech 
and with a classification of children’s concepts. It is 
important to note that our PCA model was also in the list of 
models in Baroni et al. that were compared to W2V. Hence, 
the story isn’t as simple as saying one model is “better” than 
the other. Despite the equivalence of the objective function 
optimization in W2V to the matrix factorization process of 
the PCA model (as pointed out in Levy & Goldberg 2014b), 
W2V involves an incremental error-driven learning process. 
It operates very well and efficiently with large amounts of 
data; also might be considered as a better simulation of the 
cognitive processes. On the other hand, our experiments 
show that PCA performs better on small and sparse 
linguistic data that children learn from. 

Future work needs to focus on correlating the models’ 
predictions with children’s response data. In addition, our 
target words were all from the same syntactic category 
(nouns). Different distributional model architectures have 
been shown to vary in the type of information they learn 
best (e.g., syntactic vs. semantic association; Mikolov et al., 
2013, or different types of semantic relations; Baroni et al., 
2014; Jones, Kintsch, & Mewhort, 2006). Our classification 
task was one that required the models to learn paradigmatic 
similarity well. Interestingly, in the survey of Baroni et al. 
(2014), paradigmatic tasks were among the cases where 
W2V did not outperform the co-occurrence models. Hence, 
our results may point to the benefit of having 
complementary learning systems when constructing a 
semantic representation: An error-driven predictive 
mechanism and a mechanism applied to direct co-
occurrences. There is no reason that the two learning 
mechanisms need to be mutually exclusive—there is a great 
deal of evidence that humans use both Hebbian and error-
driven learning (e.g., O’Reilly, 1998). It is a reasonable 
presumption that perhaps the two systems work together to 
construct semantic memory from episodic experience.  
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