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A fundamental goal of psycholinguistic research is to understand the 
architectures and mechanisms that underlie language comprehension. 
Such an account entails an understanding of the representation and 
organization of linguistic knowledge in the mind and a theory of how 
that knowledge is used dynamically to recover the interpretation of the 
utterances we encounter. While research in theoretical and 
computational linguistics has demonstrated the tremendous complexities 
of language understanding, our intuitive experience of language is 
rather different. For the most part people understand the utterances they 
encounter effortlessly and accurately. In constructing models of how 
people comprehend language, we are thus presented with what we dub 
the performance paradox: How is it that people understand language so 
effectively given such complexity and ambiguity? 

In our pursuit and evaluation of new theories, we typically consider 
how well a particular model is able to account for observed results from 
the relevant range of controlled psycholinguistic experiments (empirical 
adequacy), and also the ability of the model to explain why the language 
comprehension system has the form and function it does (explanatory 
adequacy). Interestingly, research over the past twenty-five years has 
led to tremendous variety in proposals for parsing, disambiguation, and 
reanalysis mechanisms, many of which have been realized as 
computational models. However, while it is possible to classify models – 
e.g., according to whether they are modular, interactive, serial, parallel, 
or probabilistic – consensus at any concrete level has been largely 
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elusive. 
We argue here for an alternative approach to developing and 

assessing theories and models of sentence comprehension, which offers 
the possibility of improving both empirical and explanatory adequacy, 
while also characterizing kinds of models at a more relevant and 
informative level than the architectural scheme noted above. In the 
following subsections, we emphasize the important fact that a model’s 
coverage and behavior should not be limited to a few “interesting” 
construction types, but must also extend to realistically large and 
complex language fragments, and must account for why most processing 
is typically rapid and accurate, in addition to modeling pathological 
behaviors. We then argue that while the algorithmic description of a 
theory is essential to adequately assess its behavior and predictions, the 
theory of processing must also be stated at a more abstract level, e.g., 
Marr’s computational level (Marr, 1982). In addressing these issues, we 
suggest that many of the ideas from rational analysis (Anderson, 1991) 
provide important insights and methods for the development, 
evaluation, and comparison of our models. In the subsequent section, we 
then discuss a number of existing models that can be viewed within a 
rational framework in order to more concretely exemplify our proposals. 

 
Garden Paths versus Garden Var iety 

One great puzzle of human language comprehension is how easily 
people understand language despite its complexity and ambiguity, 
which we have termed the performance paradox. More puzzling is the 
fact that research in human sentence processing pays relatively little 
attention to this most fundamental and self-evident claim. In contrast, 
sentence processing research has focused largely on pathological 
phenomena: a relatively small proportion of ambiguities causing 
difficulty to the comprehension system. Examples include garden-path 
sentences, such as the well-known main verb/reduced-relative clause 
ambiguity initially noted by Bever (1970): 
 

(1) The horse raced past the barn fell 
 

In such sentences the verb raced is initially interpreted as the main 
verb, and only when the true main verb fell is reached can the reader 
determine that raced past the barn should actually have been interpreted 
as a reduced relative clause (cf., The horse which was raced past the barn 
fell). In this relatively extreme example, readers may not be able to 
recover the correct meaning at all, while other constructions may be 
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interpretable but result in some conscious or experimentally measurable 
difficulty. 
 

The idea behind such research is to use information about parsing 
and interpretation preferences, combined with the factors that modulate 
them – such as frequency, context, and plausibility – to gain insight into 
the underlying comprehension system (see Crocker, 1999, for an 
overview). While this empirical research strategy might be seen as 
tacitly assuming rapid and accurate performance in general -- relying on 
pathologies only as a means for revealing where the “seams” are in the 
architecture of the language comprehension system – existing models of 
processing typically focus on accounting only for these pathologies. 
Furthermore, with few exceptions, existing models can be considered 
toy implementations at best, with lexical and syntactic coverage limited 
to what is necessary to model some subset of experimental data. Thus 
while such models may provide interesting and sophisticated accounts of 
familiar experimental findings, they provide no account of more general 
performance. Many theories have not been implemented at all, making 
it even more problematic to assess their general coverage and behavior. 

 
Models à la Carte 

Within the general area of computational psycholinguistics, a striking 
picture emerges when one compares the state of affairs in lexical 
processing with that in sentence processing. While there are relatively 
few models of lexical processing which are actively under consideration 
(see Norris, 1999), there exist numerous theories of sentence processing 
with relatively little consensus for any one in particular (Crocker, 1999; 
Townsend & Bever, 2001, chapter 4). The diverse range of models stems 
primarily from the compositional and recursive nature of sentence 
structure, combined with ambiguity at the lexical, syntactic and 
semantic levels of representation. The result is numerous dimensions of 
variation along which algorithms for parsing and interpretation might 
differ, including: 

 
o Linguistic knowledge: What underlying linguistic representations, 

levels, interfaces, and structure-licensing principles are assumed? 
How is lexical knowledge organized and accessed? 

o Architectures: To what extent is the comprehension system organized 
into modules? What are the temporal dynamics of information flow 
in modular and non-modular architectures? 

o Mechanisms: What mechanisms are used to arrive at the 
interpretation of an utterance? Are representations constructed 
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serially, in parallel, or via competition? How does reanalysis take 
place? 

 
However, while the formal and computational properties of language 

logically entail that a large number of processing models is possible, the 
space of models should be constrained by available empirical processing 
evidence. To some extent this has been achieved. Virtually all models, 
for example, share the property of strict incrementality. That is, the 
parsing mechanism integrates each word of an utterance into a 
connected, interpretable representation as the words are encountered 
(Frazier, 1979; Crocker, 1996). Beyond this, however, there is little 
agreement about even the most basic mechanisms of the language 
comprehension system. 

Sentence processing research has long been preoccupied, for 
example, by the issue of whether the human language processor is 
fundamentally a restricted or unrestricted system, with various 
intermediate positions being proposed. Broadly, the restricted view 
holds that processing is served by informationally encapsulated 
modules, which construct only one interpretation (e.g., Frazier, 1979; 
Crocker, 1996). Unrestricted, or constraint-based, models on the other 
hand, assume that possible interpretations are considered in parallel, 
with all relevant information potentially being drawn upon to select 
among them (MacDonald, Pearlmutter & Seidenberg, 1994; McRae, 
Spivey-Knowlton & Tanenhaus, 1998). 

However, while there exists a compelling body of empirical evidence 
demonstrating the rapid influence of plausibility (Pickering & Traxler, 
1998) and visual information (Tanenhaus, Spivey-Knowlton, Eberhard & 
Sedivy, 1995; Knoeferle, Crocker, Scheepers & Pickering, in press) 
during comprehension, falsification of restricted processing architectures 
has not been possible. Furthermore, there is no direct empirical 
evidence supporting parallelism, i.e., that people simultaneously 
consider multiple interpretations for a temporarily ambiguous utterance 
as it unfolds. 

Another area where mechanisms have proven difficult to distinguish 
empirically is reanalysis: when does the parser decide to abandon a 
particular analysis, and how does it proceed in finding an alternative? 
Consider the following example: 

 
(2) The Australian woman saw the famous doctor had been drinking. 
 

There is strong evidence that, for constructions such as this, people 
initially interpret the noun phrase the famous doctor as the direct object of 
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saw (e.g., Pickering, Traxler & Crocker, 2000), raising the question of 
how people recover the ultimately correct structure, in which that noun 
phrase becomes the subject of the complement clause. Sturt, Pickering 
and Crocker (1999) defend a representation preserving repair model for 
recovering from misanalysis (Sturt  & Crocker, 1996), while Grodner,  
Gibson, Argaman, and Babyonyshev (2003) argue the same data can be 
accounted for using a destructive, re-parsing mechanism. Again, two 
apparently opposing models appear consistent with the same empirical 
findings. 

 
Challenges 

In summarizing the discussion above, we identify four key limitations, 
some or all of which affect most existing accounts of human sentence 
processing. We suggest these have contributed to both the lack of 
generality and comparability of our models, which has in turn stymied 
convergence within the field: 

 
Limited scope: Models traditionally focus on some particular aspect of 
processing, emphasizing, for example, lexical ambiguity, structural 
attachment preferences, word order ambiguity, or reanalysis. Few 
proposals exist for a unified, implementable model of, e.g., lexical and 
structural processing and reanalysis. To the extent that such proposals do 
exist (e.g., Jurafsky, 1996; Vosse & Kempen, 2000), they are still 
typically so narrow in coverage that assessing general performance is 
difficult.  

 
Model equivalence: Some models, while different in implementational 
detail, are virtually equivalent in terms of their behavior. For example, 
the symbolic model proposed by Sturt and Crocker (1996) overlaps 
substantially with Stevenson’s (1994) hybrid connectionist model with 
regard to what structures are recovered during initial structure building 
and reanalysis. Indeed, even the Grodner et al (2003) account might be 
considered as functionally equivalent: even though the precise reanalysis 
mechanism is fundamentally different from that of Sturt and Crocker 
(1996) and Stevenson (1994), the “state” of the models is fundamentally 
identical as each word is processed.  
 
Measure specificity: Models often vary with respect to the kind of 
experimental paradigms and observed measures they seek to account 
for. Models of processing load have relied primarily on self-paced 
reading data (Gibson, 1998; Hale, 2003), while theories of parsing rely 
on a variety of measures (e.g., first pass, regression path duration, and 
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total time) from eye-tracking during reading (e.g., Crocker, 1996; 
Frazier & Clifton, 1996). Some recent accounts are built upon the visual 
world paradigm, which monitors eye-movements in visual scenes 
during spoken comprehension (e.g., Tanenhaus et al, 1995; Knoeferle et 
al, in press), thus measuring attention, not processing complexity. Even 
more extremely, some models are based almost exclusively on 
neuroscientific measures, such as event-related potentials (Friederici, 
2002: Schlesewsky & Bornkessel, to appear), placing little emphasis on 
accounting for existing behavioral data. 
 
Weak linking hypotheses: Establishing the relationship between a model 
and empirical data demands a linking hypothesis, which maps the 
model’s behavior to empirically observed measures. In explaining 
reading time data, for example, various models have assumed 
processing time is due to structural complexity (Frazier, 1985), 
backtracking (Abney, 1989; Crocker, 1996), non-determinism (Marcus, 
1980), non-monotonicity (Sturt & Crocker, 1996), re-ranking of parallel 
alternatives (Jurafsky, 1996; Crocker & Brants, 2000), storage and 
integration cost (Gibson, 1998), the reduction of uncertainty (Hale, 2003), 
or competition (McRae et al, 1998). In addition, most models make only 
qualitative predictions as to the relative degree of difficulty. Those 
models which attempt more quantitative links with reading time data 
(McRae et al, 1998) fail to account for how structures are actually built 
(unlike the models outlined above), and are also highly fit to individual 
syntactic constructions.  
 

TOWARDS RATIONAL MODELS 

On the basis of discussion thus far, it should not be concluded that 
theories of sentence understanding posit particular processing 
architectures and implementations arbitrarily. In addition to linguistic 
assumptions, models are often heavily motivated and shaped by 
assumptions concerning cognitive limitations. Marcus (1980), Abney 
(1989), and Sturt and Crocker (1996) propose parsing architectures 
designed to minimize the computational complexity of backtracking. 
Some models argue that the sentence processor prefers less complex 
representations (Frazier, 1979), or assume other restrictions on working 
memory complexity. Other models restrict themselves by adopting a 
particular implementational platform, such as connectionist networks 
and stochastic architectures, as a way of incorporating cognitively-
motivated mechanisms (e.g., Stevenson, 1994; Vosse & Kempen, 2000; 
Christiansen & Chater, 1999; Sturt, Costa, Lombardo & Frasconi, 2003). 
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Indeed it seems uncontroversial that human linguistic performance is 
to some extent shaped by such specific architectural properties and 
cognitive limitations. It is also true, however, that relatively little is 
known about the extent to which this is the case, let alone the precise 
manner in which such limitations affect human language 
understanding. We therefore suggest that by focusing on specific 
processing architectures and mechanisms and cognitive limitation, 
theories of sentence processing are forced into making stipulations 
without concrete empirical justification, but which nonetheless impact 
upon the overall behavior of models. 

An alternative approach to developing a theory of sentence 
processing is to shift our emphasis away from particular mechanisms, 
and towards the nature of the sentence processing task itself: 

 An algorithm is likely understood more readily by understanding 
the nature of the problem being solved than by examining the 
mechanism (and the hardware) in which it is solved. (Marr, 1982, p.27) 

The critical insight here is that it can be helpful to have a clear 
statement of what the goal of a particular system is – and the function it 
seeks to compute – in addition to a model of how that goal is achieved, 
or how that function is actually implemented. For example, a systematic 
preference for argument attachment over modifier attachment, as 
argued for extensively by Pritchett (1992), can be viewed as providing 
an overarching explanation for a number of different preference 
strategies in the literature. Indeed, Crocker (1996) argues that Pritchett’s 
theory itself, which seeks to maximize satisfaction of syntactic and 
semantic constraints, can be viewed as realizing an even more general 
goal of human language processing: 

Principle of Incremental Comprehension (PIC): The sentence 
processor operates in such a way as to maximize comprehension 
of the sentence at each stage of processing. (Crocker, 1996, p.106) 

Such a statement in itself says little about the specific mechanisms 
involved and is indeed consistent with a range of proposals in the 
literature. It is, rather, intended as a claim about what kinds of models 
can be considered, and a general explanation for why they are as they 
are (namely, because they satisfy the PIC). This claim goes beyond 
saying that comprehension is incremental, something that is true of 
virtually all current models, and predicts that at points of ambiguity, the 
preferred structure should be the one that is maximally interpretable: 
e.g., it establishes the most dependencies, or maximizes role assignment 
and reception.  
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Focusing on the nature of the problem thus shifts our attention to the 
goals of the system under investigation, and the relevant properties of 
the environment. Anderson (1991) notes that there is a long tradition of 
attempting to understand cognition as rational: not because it follows 
some set of normative rules, but because it is optimally adapted to its 
task and environment. On the assumption that the comprehension 
system is rational, we can derive the optimal function for that system 
from a  specification of the goals and the environment. The Principle of 
Incremental Comprehension does this rather implicitly: it assumes the goal 
is to correctly understand the utterance, and the environment is one in 
which language is both ambiguous and encountered incrementally. 

In order to determine more precisely the function that 
comprehension seeks to optimize, we need also consider computational 
constraints in order to avoid deriving a function that is cognitively 
implausible in some respects (e.g., construction and evaluation of all – 
possibly infinite – interpretations, seems relatively implausible). 
However, an important aim of this kind of analysis is to see how much 
can be explained by avoiding appeal to such constraints except when 
they are extremely well motivated.  

It should be clear that in adopting a Marrian/Andersonian   
approach, we address several of the potential pitfalls that have plagued 
model builders to date: emphasis on what function is computed (Marr’s 
computational level), rather than specific algorithms and 
implementations should lead to better consensus, and more 
straightforward identification of models which are equivalent (in that 
they implement the same function). Furthermore, the approach 
emphasizes general behavior and performance, rather than the 
construction of models that are over-fitted to a few phenomena.  

Inspired by Anderson’s rational analysis, Chater, Crocker and 
Pickering (1998) motivate the use of probabilistic frameworks for 
characterizing and deriving mathematical models of human parsing and 
reanalysis. Probabilistic models of language processing typically 
optimize for the likelihood of ultimately obtaining the correct analysis 
for an utterance (Manning & Schütze, 1999).1 

                                                
1 We can formally express the Principle of Likelihood (PL) using notation 

standardly used in statistical language processing (Manning & Schütze, 1999): 

(eq 2) 

! 

ˆ t = argmax
t"T :yield (t )=s

P(t | s,K)  

The expression simply states that, from the set of all interpretations T which 
have as their yield the sentence s, we select the interpretation t which has the 
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This goal of adopting the most likely analysis, or interpretation, of an 
utterance seems plausible as a first hypothesis for a rational 
comprehension system. That is, in selecting among possible 
interpretations for an utterance, adopting the most likely one would be 
an optimally adaptive solution. Given our overriding assumption of 
incremental processing, this selection can also be applied at each point 
in processing: prefer the (partial) interpretation that is most likely, given 
the words of the sentence that have been encountered thus far. 

There are some very important and subtle issues concerning our use 
of probabilities here. Firstly, using a probabilistic framework to reason 
about, or characterize, the behavior of a system does not explicitly entail 
that people actually use probabilistic mechanisms (e.g., frequencies) but 
rather that such a framework can provide a good characterization of the 
system’s behavior. That is, non-probabilistic systems could exhibit the 
behavior characterized by the probabilistic theory. Of course, (some) 
statistical mechanisms will also be consistent with the behavior dictated 
by the probabilistic meta-theory, but these will require independent 
empirical justification.  

Furthermore, probabilities may be used as an abstraction. For 
example if a sentence s is globally ambiguous, having two possible 
structures, we might suggest that the probabilities, P(t1|s,K) and 
P(t2|s,K), for the two structures provide a good estimate or 
characterization of which is “more likely”. This is a perfectly coherent 
statement, even though the real reason one structure is preferred is 
presumably due to a complex array of lexical and syntactic biases, 
semantics and plausibility, pragmatics and context (some or all of which 
may in turn be probabilistic). That is, we are simply using probabilities 
as a short-hand representation, or an abstraction, of more complex 
preferences, which allows us to reason about the behavior of the 
language processing system (see Chater et al., 1998, for detailed 
discussion). 

It is in general not possible to determine probabilities precisely, 
rather we typically attempt to estimate probabilities using frequency 
counts from large corpora or norming studies (McRae et al. 1998; 
Pickering et al. 2000). Indeed, the usefulness of likelihood models in 
computational linguistics has led to a tremendous amount of research 
into how probabilistic language models can be developed on the basis of 
data-intensive, corpus techniques (see Manning & Schütze, 1999, for 
both an introduction and survey of recent models).  

                                                                                                          
greatest probability of being correct given the s, and our knowledge K. 
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In the following two sections we outline several examples of how the 
Principle of Likelihood has been applied to the development of particular 
models of language processing. Such models can be considered theories 
at Marr’s algorithmic level, in that they provide a characterization of how 
the language processor implements the maximum likelihood function.  

 
Lexica l Ambiguity Resolut ion 

Corley and Crocker (2000) present a broad-coverage model of lexical 
category disambiguation based on the Principle of Likelihood. Specifically, 
they suggest that for a sentence consisting of words w0…wn, the sentence 
processor adopts the most likely part-of-speech sequence t0…tn. More 
specifically, their model exploits two simple probabilities: (i) the 
conditional probability of word wi given a particular part of speech ti, 
and (ii) the probability of ti given the previous part of speech ti-1.2 As 
each word of the sentence is encountered, the system assigns it that part-
of-speech ti which maximizes the product of these two probabilities. This 
model capitalizes on the insight that many syntactic ambiguities have a 
lexical basis (MacDonald et al, 1994), as in (3): 

 
(3) The warehouse prices/makes are cheaper than the rest. 

 
These sentences are temporarily ambiguous between a reading in 

which prices or makes is the main verb or part of a compound noun. 
After being trained on a large corpus, the model predicts the most likely 
part of speech for prices, correctly accounting for the fact that people 
understand prices as a noun, but makes as a verb (see Crocker and 

                                                
2 Formally, we can write this as a function which selects that part-of-speech 

sequence which results in the highest probability: 

(eq 2) 

! 

ˆ t 0 ...ˆ t 
n

= argmax
t0 ...t

n

P(t0 ...t
n
,w0 ...w

n
)   

Directly implementing such a model presents cognitive and computational 
challenges. On the one hand, the above equation fails to take into account the 
incremental nature of processing (i.e. it assumes all words are available 
simultaneously), while on the other hand, the accurate estimation of such 
probabilities is computationally intractable due to data sparseness. Their 
approach, therefore, is to approximate this function using a bi-gram model, 
which incrementally computes the probability for a string of words as follows: 

(eq 3) 

! 

P(t0 ...tn ,w0...wn
) " P(w

i
| t
i
)P(t

i
| t
i#1)

i=1

n

$  
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Corley (2002), and references cited therein). Not only does the model 
account for a range of disambiguation preferences rooted in lexical 
category ambiguity, it also explains why, in general, people are highly 
accurate in resolving such ambiguities.  

Corley and Crocker's model provides a clear example of how we can 
use probabilistic frameworks to characterize both the function to be 
computed according to the rational analysis, and also to derive a 
practical, cognitively plausible approximation of this function which 
serves as the actual model (refer to (eq 2) and (eq 3) in footnote 2). Of 
course, subsequent empirical research might suggest the bi-gram model 
is inadequate and should be replaced by, e.g., a tri-gram model. Any 
such evidence, however, would only involve revision at the algorithm 
level, not of the overarching rational analysis, or computational level, since 
the tri-gram model still approximates the maximum likelihood function 
posited by the Principle of Likelihood. 

 
Syntact ic  Process ing 

While it provides a simple example of rational analysis, Corley and 
Crocker’s model cannot be considered a model of sentence processing, as 
it only deals with lexical category disambiguation. As noted above, 
directly estimating the desired probability of syntactic trees is 
problematic, since many have never occurred before. Thus, rather than 
trying to associate probabilities with entire trees, statistical models of 
syntactic processing typically associate a symbolic component that 
generates linguistic structures with a probabilistic component that 
assigns probabilities to these structures. A probabilistic context free 
grammars (PCFG), for example, associates probabilities with each rule 
in the grammar, and compute the probability of a particular tree by 
simply multiplying the probabilities of the rules used in its derivation 
(Manning & Schütze, 1999, chapter 11). 

In developing a model of human lexical and syntactic processing, 
Jurafsky (1996) further suggests using Bayes’ Rule to combine structural 
probabilities generated by a probabilistic context free grammar with 
other probabilistic information, such as subcategorization preferences for 
individual verbs.  The model therefore integrates multiple sources of 
experience into a single, mathematically well-founded framework. In 
addition, the model uses a beam search to limit the amount of 
parallelism required. 

Jurafsky’s model is able to account for a range of parsing preferences 
reported in the psycholinguistic literature. However, it might be 
criticized for its limited coverage, i.e., for the fact that it uses only a 
small lexicon and grammar, manually designed to account for a handful 
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of example sentences. In the computational linguistic literature, on the 
other hand, broad coverage probabilistic parsers are available that 
compute a syntactic structure for arbitrary corpus sentences with 
generally high accuracy. This suggests there is hope for constructing 
psycholinguistic models with similar coverage, potentially explaining 
more general human linguistic performance. Indeed, more recent work 
on human syntactic processing has investigated the use of PCFGs in 
wide coverage models of incremental sentence processing (Crocker & 
Brants, 2000). Their research demonstrates that even when such models 
are trained on large corpora, they are indeed still able to account not 
only for a range of human disambiguation behavior, but also exhibit 
good performance on natural text. Related work also demonstrates that 
such broad coverage probabilistic models maintain high overall 
accuracy even under the strict memory and incremental processing 
restrictions (Brants & Crocker, 2000) that seem necessary for cognitive 
plausibility. Finally, Hale (2003) extends the use statistical parsing 
models to providing a possible explanation of processing load, rather 
than ambiguity resolution. 

 
The Informat iv ity  Model 

The models outlined above all begin with the assumption that the 
Principle of Likelihood best characterizes the function of the sentence 
comprehension system. It is important to note, however, that alternative 
rational analyses may emerge, depending on the precise definition of 
the problem. Chater et al. (1998) argue that a more plausible rational 
analysis of human sentence processing must take into account a number 
of important cognitive factors before an appropriate optimal function can 
be derived. In particular, they consider the following: 

 
o Linguistic input contains substantial local ambiguity, which is 

resolved incrementally. 
o People consciously consider only one preferred, or foregrounded, 

interpretation of an utterance at any given time during parsing. 
o Immediate reanalysis is typically much easier than delayed 

reanalysis, and therefore is a lower cost operation. 
 

In deriving a rational analysis of interpretation, Chater et al. argue 
that the human parser is optimized so as to incrementally resolve each 
local ambiguity as it is encountered (Church & Patil, 1982). The result of 
the analysis is a function which includes not only likelihood, but also 
another measure, specificity, which determines the extent to which a 
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particular analysis is “testable”. That is, specificity measures the extent 
to which subsequent input will assist in either confirming or rejecting 
the foregrounded structure. On this account, the initially favored 
analysis is the one that is both “fairly likely” and “fairly testable”. The 
measure, which they term informativity (I), balances likelihood (P) and 
specificity (S), such that the interpretation which maximizes the product 
of these two is foregrounded at each point in processing.3 

This model contrasts with pure likelihood accounts in predicting that 
the sentence processor will prefer the construction of testable analyses 
over non-testable ones, except where the testable analysis is highly 
unlikely. The result will be a greater number of easy misanalyses 
(induced by less probable but more testable analyses), and a smaller 
number of difficult misanalyses (induced by more probable but less 
testable analyses).  This in turn means that the ultimately correct 
analysis will usually be obtained quickly, either initially or after rapid 
reanalysis. 

The most compelling empirical support for the Principle of 
Informativity stems from experiments by Pickering et al. (2000), in which 
the plausibility of a low frequency structural alternative (the NP-
complement subcategorization frame for a verb like realised) was 
manipulated, as in The athlete realized his {goals vs. shoes} ... were out of 
reach. Assuming a likelihood-based model, which would foreground an 
S-complement, there should be no effect of plausibility given that the 
low probability NP-complement option would no be considered during 
initial analysis.4 Reading time experiments demonstrated, however, a 
striking asymmetry between frequency bias and actual processing 
performance, indicating that the low frequency alternative was 
immediately considered during on-line sentence comprehension. 
Pickering et al. argued that the low frequency NP-complement analysis 
is locally more ‘specific’, and hence can be evaluated earlier than the 
high frequency S-complement alternative. For a system with limited 
processing resources, such a strategy is advantageous, as it minimizes 
the cost of reanalysis. 

Pickering et al. (2000) define the specificity of an analysis as a 

                                                
3 Again, we can formalize this straightformwardly as follows:  

(eq 5) 

! 

ˆ t = argmax
t"T :yield (t )=s

 I(t) = P(t) • S(t)   

 
4 Though see Crocker & Brants (2000) for an explanation of why their model 
does in fact account for this data. 
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measure of how strongly that analysis constrains the sentence’s 
continuation. A highly specific analysis entails that the parser has strong 
expections about the subsequent input. If these expectations are fulfilled, 
then this is taken as further support for the analysis, and parsing 
continues. If expectations are not fulfilled, the parser knows to 
immediately pursue an alternative analysis. Thus, Informativity predicts 
that the parser may prefer an analysis that is less probable than another, 
if it is more specific. While this leads to more misanalyses than a pure 
likelihood model, they are precisely those misanalyses from which the 
parser can recover quickly: an analysis that is potentially incorrect (i.e., 
improbable) would only be adopted if highly specific, hence the parser 
will be able to recognize and correct the error quickly.  

As noted by Pickering et al. (2000), the Principle of Informativity 
differs crucially from the Principle of Likelihood in that it favors the 
construction of interpretable dependencies, thus providing an 
overarching rational analysis explanation for previously proposed 
strategies in the literature, such as Minimal Attachment (Frazier, 1979), 
theta-attachment (Pritchett, 1992), and the Principle of Incremental 
Comprehension (Crocker, 1996) among others. 

The main point here, however, is not to argue whether the Principles 
of Likelihood or Informativity provide a better characterization of the 
function computed, but rather to highlight how different rational 
analyses can be developed, and their predictions, tested. Settling on a 
theory or analysis at Marr’s computational level enables us to constrain 
and compare the models which approximate such a theory. 
Furthermore, it allows us to distinguish data which falsifies a particular 
model from data which falsifies the more general theory. This is crucial, 
since models will typically be an imperfect approximation of the theory 
(taking into account, e.g., cognitive limitations on memory or 
processing, or simple practical/implementational constraints), and hence 
a particular model may well make slightly differing predictions from 
the computational theory.  

 
CONCLUSIONS 

This chapter has argued for a shift in how we go about developing 
models of human language comprehension. We suggest that by 
adopting insights from rational analysis, we will not only make more 
progress in developing our theories, but also in building, evaluating and 
comparing our models. 

 
1. Rational theories include a high-level characterization of the function 
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computed by the comprehension system, independent of specific 
architectural and mechanistic assumptions or stipulations. As such, a 
rational analysis provides both a predictive and explanatory basis 
for the mechanisms that implement it. 

2. The existence of a rational theory can help in identifying models 
that are functionally similar, differing primarily in implementation, 
and hopefully assist in identifying points of convergence among 
theories. 

3. Rational analyses derive from the primary observation that the 
comprehension is optimally adapted to the task of understanding. 
This places increased emphasis on explaining general performance, 
rather than modeling a handful of ambiguous constructions. 

 
We have briefly summarized a collection of models that can be 

straightforwardly viewed as rational. Many probabilistic models of 
comprehension can be seen as deriving from the more general Principle 
of Likelihood (see also Jurafsky, (2003) for an overview). We have shown, 
however, that differing assumptions concerning the nature of the 
comprehension task can result in optimal functions other than 
likelihood, as in the case of the Principle of Informativity, and also 
observed that such an analysis provides greater compatibility with 
existing, non-probabilistic, proposals in the literature. Indeed, it is 
important not to conflate, a priori, probabilistic models with frequency-
based models. While many researchers do assume that the probabilities 
in their models are derived from frequency of occurrence, we may also 
use it simply as short-hand for likelihoods which are derived from other 
sources (e.g., plausibility, rather then probability).  

There are at least two weaknesses of the rational analysis approach. 
First, the relatively abstract nature of a computational theory results in a 
relatively weak linking hypothesis. Typically, the theory will provide 
only qualitative predictions about processing, e.g., which interpretation 
should be preferred. This is simply due to the fact that more precise 
accounting of observed measures, such as reading times, will be 
dominated by the specific mechanisms that implement the theory, and 
those of the other perceptual systems involved. For example, most of the 
variance in reading times is accounted for by factors such as word length 
and frequency (Keller, 2003). This “weakness” can actually be viewed 
positively, in that it allows us to distinguish the qualitative predictions 
of the theory from the more quantitative predictions of specific models 
which we may be considering as implementations of the theory. 

Secondly, the approach is most appropriate in theorizing about 
cognitive systems that can be viewed as optimally adapted to their task 
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and environment. If the function of the system is shaped primarily by 
cognitive limitations or specific properties of the neural hardware, then 
such an analysis is seriously compromised. This contrasts starkly with 
the many models of sentence processing that are motivated precisely on 
the basis of cognitive limitations (working memory, parsing complexity) 
or specific processing architectures (e.g., connectionist networks, or 
modular information processing). 

We argue here, however, that there is sufficient evidence for the 
adaptive nature of human comprehension – including the rapid use of 
frequency information, visual and linguistic context, plausibility and 
world knowledge, as well as more general evidence for the speed, 
accuracy, and robustness of the comprehension system – to warrant the 
pursuit of rational accounts.  
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