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Abstract

Given the recent evidence for probabilistic
mechanisms in models of human ambiguity res-
olution, this paper investigates the plausibil-
ity of exploiting current wide-coverage, proba-
bilistic parsing techniques to model human lin-
guistic performance. In particular, we inves-
tigate the performance of standard stochastic
parsers when they are revised to operate incre-
mentally, and with reduced memory resources.
We present several techniques for ranking and
filtering analyses, together with experimental
results, varying the type of filtered edges (in-
active, active, both) and the beam type (vari-
able, fixed). Our results confirm that stochas-
tic parsers which adhere to these psychologi-
cally motivated constraints achieve good per-
formance. Memory can be reduced down to
1% (compared to exhausitve search) without re-
ducing recall and precision. Additionally, these
models exhibit substantially faster performance.
Finally, we argue that this general result is
likely to hold for more sophisticated probabilis-
tic parsing models.

1 Introduction

Language engineering and computational psy-
cholinguistics are often viewed as distinct re-
search programmes: engineering solutions aim
at practical methods which can achieve good
performance, typically paying little attention
to linguistic or cognitive modelling. Compu-
tational psycholinguistics, on the other hand,
is often focussed on detailed modelling of hu-
man behaviour for a relatively small number of
well-studied constructions. In this paper, we
suggest that, broadly, the human sentence pro-
cessing mechanism (HSPM) and current statis-
tical parsing technology can be viewed as having
similar objectives: to optimally (i.e. rapidly and

accurately) understand the text and utterances
they encounter.

Our aim is to show that large scale proba-
bilistic parsers, when subjected to basic cogni-
tive constraints, can still achieve high levels of
parsing accuracy. If successful, this will pro-
vide a plausible model of the fact that people,
in general, are also extremely accurate and ro-
bust. Such a result would also strengthen ex-
isting results showing that related probabilistic
mechanisms can explain specific psycholinguis-
tic phenomena.

To investigate this issue, we construct a stan-
dard ’baseline’ stochastic parser, which mir-
rors the performance of a similar systems (e.g.
(Johnson, 1998)). We then consider an incre-
mental versions of the parser, and evaluate the
effects of several probabilistic filtering strate-
gies which are used to prune the parser’s search
space, and thereby reduce memory load.

We present the results of several parsing
performance experiments, showing the accu-
racy of these systems with respect to both a
parsed corpus and the baseline parser. Qur
experiments suggest that a strictly incremen-
tal model, in which memory resources are sub-
stantially reduced through filtering, can achieve
precision and recall which equals that of 'un-
restricted’ systems. Furthermore, implemen-
tation of these restrictions leads to substan-
tially faster performance. In conclusion, we ar-
gue that such broad-coverage probabilistic pars-
ing models provide a valuable framework for
explaining the human capacity to rapidly, ac-
curately, and robustly understand “garden va-
riety” language. This lends further support
to psycholinguistic accounts which posit proba-
bilistic ambiguity resolution mechanisms to ex-
plain “garden path” phenomena.



2 Psycholinguistic Motivation

Theories of human sentence processing have
largely been shaped by the study of pathologies
in human language processing behaviour. Most
psycholinguistic models seek to explain the dif-
ficulty people have in comprehending structures
that are ambiguous or memory-intensive (see
(Crocker, 1999) for a recent overview). While
often insightful, this approach diverts attention
from the fact that people are in fact extremely
accurate and effective in understanding the
vast majority of their “linguistic experience”.
This observation, combined with the mounting
psycholinguistic evidence for statistically-based
mechanisms, leads us to investigate the merit of
exploiting robust, broad coverage, probabilistic
parsing systems as models of human linguistic
performance.

The view that human language processing
can be viewed as an optimally adapted sys-
tem, within a probabilistic framework, is ad-
vanced by (Chater et al., 1998), while (Juraf-
sky, 1996) has proposed a specific probabilis-
tic parsing model of human sentence process-
ing. In work on human lexical category dis-
ambiguation, (Crocker and Corley, to appear),
have demonstrated that a standard (incremen-
tal) HMM-based part-of-speech tagger models
the finding from a range of psycholinguistic ex-
periments. In related research, (Crocker and
Brants, 1999) present evidence that an incre-
mental stochastic parser based on Cascaded
Markov Models (Brants, 1999) can account for
a range of experimentally observed local am-
biguity preferences. These include NP/S com-
plement ambiguities, reduced relative clauses,
noun-verb category ambiguities, and ’that’-
ambiguities (where ’that’ can be either a com-
plementizer or a determiner).

Crucially, however, there are differences be-
tween the classes of mechanisms which are psy-
chologically plausible, and those which prevail
in current language technology. We suggest that
two of the most important differgences concern
incrementality, and memory resources. There is
overwhelming experimental evidence that peo-
ple constructing connected (i.e. semantically in-
terpretable) analyses for each initial substring
of an utterance, as it is encountered. That is,
processing takes place incrementally, from left
to right, on a word by word basis. In a re-

cent study, (Sturt and Lombardo, 1999) show
that processing a corpus incrementally indeed
needs a very low number of predictions. They
investigate headless projections required during
parsing and find that their number is 0 for more
than 80% of the constituents.

Secondly, it is universally accecpted that peo-
ple can at most consider a relatively small
number of competing analyses (indeed, some
would argue that number is one, i.e. process-
ing is strictly serial). In contrast, many exist-
ing stochastic parsers are “unrestricted”, in that
they are optimised for accuracy, and ignore such
psychologically motivated constraints. Thus the
appropriateness of using broad-coverage proba-
bilistic parsers to model the high level of hu-
man performance is contingent upon being able
to maintain these levels of accuracy when the
constraints of incrementality and resource limi-
tations are imposed.

3 Incremental Stochastic
Context-Free Parsing

The following assumes that the reader is fa-
miliar with stochastic context-free grammars
(SCFG) and stochastic chart-parsing tech-
niques. A good introduction can be found, e.g.,
in (Manning and Schiitze, 1999). We use stan-
dard abbreviations for terminial nodes, non-
terminal nodes, rules and probabilities.

This paper investigates stochastic context-
free parsing based on a grammar that is derived
from a treebank, starting with part-of-speech
tags as terminals. The grammar is derived by
collecting all rules X — « that occur in the tree-
bank and their frequencies f. The probability
of a rule is set to

P(X s a)= LX)

_%:f(X—HJz) (1)

For a description of treebank grammars see
(Charniak, 1996). The grammar does not con-
tain e-rules, otherwise there is no restriction
on the rules. In particular, we do not require
Chomsky-Normal-Form.

In addition to the rules that correspond
to structures in the corpus, we add a new
start symbol ROOT to the grammar and rules
ROOT — X for all non-terminals X togehter
with probabilities derived from the root nodes



in the corpus’.

For parsing these grammars, we rely upon
a standard bottom-up chart-parsing technique
with a modification for incremental parsing, i.e.,
for each words, all edges are processed and
possibly pruned before proceeding to the next
word. The outline of the algorithm is as follows.

A chart entry E consists of a start and endpo-
sition ¢ and j, a dotted rule X — a.7, the inside
probability 5(X; ;) that X generates the termi-
nal string from position ¢ to j, and information
about the most-probable inside structure. If the
dot of the dotted rule is at the rightmost posi-
tion, the corresponding edge is an inactive edge.
If the dot is at any other position, it is an active
edge. Inactive edges represent recognized hypo-
thetical constituents, while active edges repre-
sent prefixes of hypothetical constituents.

The ith terminal node t; that enters the chart
generates an inactive edge for the span (i —1,1).
Based on this, new active and inactive edges are
generated according to the standard algorithm.
Since we are interested in the most-probable
parse, the chart can be minimized in the fol-
lowing way while still performing an exhaustive
search. If there is more than one edge that cov-
ers a span (i,j) having the same non-terminal
symbol on the left-hand side of the dotted rule,
only the one with the highest inside probability
is kept in the chart. The others cannot con-
tribute to the most-probable parse.

For an inactive edge spanning ¢ to j and rep-
resenting the rule X — Y'...Y*, the inside
probability S is set to

k
Br(Xij) =P(X - V1.V [[B:(Y,) (2)
=1

where 4; and j; mark the start and end postition
of Y! having i = 4; and j = j;. The inside
probability for an active edge 54 with the dot
after the kth symbol of the right-hand side is
set to

k
Ba(Xij) =[] Bi(Y)) (3)
=1

We do not use the probability of the rule at this
point. This allows us to combine all edges with
the same span and the dot at the same position

!The ROOT node is used internally for parsing; it is
neither emitted nor counted for recall and precision.

but with different symbols on the left-hand side.
Introducing a distinguished left-hand side only
for inactive edges significantly reduces the num-
ber of active edges in the chart. This goes one
step further than implicitly right-binarizing the
grammar; not only suffixes of right-hand sides
are joined, but also the corresponding left-hand
sides.

4 Memory Restrictions

We investigate the elimination (pruning) of
edges from the chart in our incremental pars-
ing scheme. After processing a word and before
proceeding to the next word during incremental
parsing, low ranked edges are removed. This is
equivalent to imposing memory restrictions on
the processing system.

The original algorithm keeps one edge in the
chart for each combination of span (start and
end position) and non-terminal symbol (for in-
active edges) or right-hand side prefixes of dot-
ted rules (for active edges). With pruning, we
restrict the number of edges allowed per span.
The limitation can be expressed in two ways:

1. Variable beam. Select a threshold 8 > 1.
Edge e is removed, if its probability is pe,
the best probability for the span is p;, and

Y41
< = 4
De 9 (4)
2. Fized beam. Select a maximum number of
edges per span m. An edge e is removed, if
its probability is not in the first m highest
probabilities for edges with the same span.

We compare and rank edges covering the
same span only, and we rank active and inactive
edges separately. This is in contrast to (Char-
niak et al., 1998) who rank all edges. They
use normalization in order to account for dif-
ferent spans since in general, edges for longer
spans involve more multiplications of probabil-
ities, yielding lower probabilities. Charniak et
al.’s normalization value is calculated by a dif-
ferent probability model than the inside proba-
bilities of the edges. So, in addition to the nor-
malization for different span lengths, they need
a normalization constant that accounts for the
different probability models.

This investigation is based on a much simpler
ranking formula. We use what informally can be



described as the unigram probability of a non-
terminal node, i.e., the a priori probability of
the corresponding non-terminal symbol(s) times
the inside probability.

For an inactive edge (4,5, X — «,B1(Xi;)),
we use the probability

Pri(X;j) = P(X)-P(t;...t;_1X) (5)

P(X) - Br(Xq ) (6)

for ranking. f; is the inside probability for in-
active edges as given in equation 2, P(X) is the
a priori probability for non-terminal X, (as es-
timated from the frequency in the training cor-
pus) and Ppgy is the probability of the edge for
the non-terminal X spanning positions i to j
that is used for ranking.

For an active edge (i,j,X — Y!...Yk
YEHL...Y™m Ba(Y1---YF)) (the dot is after the
kth symbol of the right-hand side) we use:

Pra(Yiy gy -+ Y ) (7)

=P Y*) . Pt;.. .tV YF)(8)
=P YR BV - YEL)(9)

P(Y!---Y*) can be read off the corpus. Tt is
the a-priori probability that the right-hand side
: 1 k
of a pFodu(.:tlon has the prefix Y; ; ... Y7 .,
which is estimated by

f(Y1... Yk is prefix)
N

(10)

where N is the total number of productions in
the corpus? and 3,4 is the inside probability.

5 Experiments

We use sections 2 — 21 of the Wall Street Jour-
nal part of the Penn Treebank (Marcus et al.,
1993) to generate a treebank grammar. Traces,
functional tags and other tag extensions that do
not mark syntactic category are removed before
training®. No other modifications are made. For
testing, we use the 1578 sentences of length 40
or less of section 22. The input to the parser is
the sequence of part-of-speech tags.

For accuracy evaluation, we report labeled re-
call (LR), labeled precision (LP), and labeled

2Here, we use proper prefixes, i.e., all prefixes not
including the last element.
3As an example, PP-TMP=3 is replaced by PP.

F-Score (LF; the harmonic mean of LR and
LP). As a measure of the amount of work done
by the parser, we report the size of the chart
(SIZE), the average number of parallel hypothe-
ses (PAR), and parsing speed in tokens per sec-
ond (T/S). SIZE is the number of active and
inactive edges that enter the chart*, not count-
ing those hypothetical edges that are replaced
or rejected because there is an alternative edge
with higher probability, and not counting those
that are immediately pruned before generating
any other edge. PAR gives the average num-
ber of parallel hypotheses per span for all those
spans that have at least one analysis. T/S is
given as a relative measure. No serious efforts of
optimization have gone into the parser. Speed
is measured on a Pentium II 500 running Linux.

5.1 Variable Beam

For the first set of experiments, we define the
beam by a threshold 6 on the quotient of the
highest probability and the probability in ques-
tion (cf. equation 4). First, beams for active
and inactive edges are investigated separately.
Then, both types of edges are pruned. The
beams runs on a logarithmic scale from 2 to
2000. For pruning both types of edges, we
choose the sub-range around the first value, that
achieves at least an F-score equivalent to ex-
haustive parsing. No attempt to find the global
optimum is made.

5.2 Fixed Number of Analyses

For the second set of experiments, we define the
beam by a maximum number of edges per span.
Again, beams for active and inactive edges are
first investigated separately, then in combina-
tion. The beams run from 2 to 10. For pruning
both types of edges, we choose the sub-range
around the first value, that achieves at least an
F-score equivalent to that of exhaustive parsing.

5.3 Experimental Results

The results of our experiments are given in fig-
ure 1. The main finding is that for all types
of pruning (inactive/active/both, variable/fixed
beam) accuracy results equivalent to exhaustive
search can be achieved. Only very small beams

4SIZE is comparable to the “number of edges popped”
as given in (Charniak et al., 1998)



VARIABLE BEAM

PRUNING INACTIVE EDGES

FIXED BEAM

PRUNING INACTIVE EDGES

0; SIZE PAR T/S LR LP LF || m; SIZE PAR T/S LR LP LF
2 3.86% 1.2 282 67.00 7239 69.59 1 1.49% 1.0 439 29.90 56.44 39.09
5  4.95% 14 226 67.07 7251 69.68 2 9.3% 20 112 68.78 73.67 T71.14
10 8.25% 1.9 133 68.84 73.83 71.25 3 17.34% 3.0 51 68.83 73.79 71.22
20 10.89% 24 95 68.76 73.69 71.14 4 27.68% 3.9 26 68.84 7381 71.24
50 13.88% 2.7 72 68.82 73.80 71.22 5 36.45% 4.9 16 68.81 73.77 T1.21
100 16.96% 2.9 55 68.81 73.78 71.21 6 45.16% 5.9 11 68.82 73.79 71.22
200 20.57% 3.3 41 6882 73.79 71.22 7 52.84% 6.9 8 68.82 T73.79 71.22
500 28.29% 4.0 26 68.86 73.84 71.26 8 59.32% 7.9 6 68.82 T73.78 71.21
1000 36.59% 4.8 18 68.85 73.82 71.25 9 64.83% 8.9 5 68.82 T73.78 T71.21
2000 42.09% 5.6 13 68.95 73.76 71.28 | 10 71.03% 9.8 4 6882 73.78 71.21
exh. 141650 187 1.8 68.82 73.77 71.21 || erh. 141650 187 1.8 68.82 73.77 71.21
PRUNING ACTIVE EDGES PRUNING ACTIVE EDGES
0, SIZE PAR T/S LR LP LF || m, SIZE PAR T/S LR LP LF
2 3.61% 16.7 184 64.99 69.22 67.04 1 349% 165 217 60.60 64.44 62.46
5 3.7™% 168 146 66.46 71.19 68.74 2 38% 171 135 68.02 72.68 70.27
10 3.94% 170 122 67.62 7245 69.95 3 416% 176 102 68.78 73.55 71.08
20 4.22% 171 92 6832 73.26 70.71 4 439% 178 83 68.89 73.75 T71.24
50 4.52% 17.2 78 68.48 73.45 70.88 5 4.64% 18.0 70 68.81 73.75 T71.19
100 4.82% 17.3 67 68.63 73.62 71.04 6 4.8% 18.1 61 68.84 73.82 7T1.24
200 5.22% 174 56 68.79 73.78 71.20 7 5.09% 183 54 6891 73.90 71.32
500 5.88% 17.6 46 68.79 73.79 71.20 8 530% 183 49 68.88 73.87 7T1.29
1000 6.52% 17.7 39 6880 73.80 71.21 9 551% 184 45 68.87 73.83 71.26
2000 7.31% 179 33 68.83 7381 7124 10 5.71% 184 41 68.86 73.83 71.26
ezh. 141650 187 1.8 6882 73.77 71.21 ezh. 141650 187 1.8 68.82 73.77 71.21
PRUNING BOTH TYPES PRUNING BOTH TYPES
0; 0, SIZE PAR T/S LR LP LF||m; m, SIZE PAR T/S LR LP LF
5 500 1.44% 1.4 352 67.02 72.44 69.63 2 3 097% 20 331 68.62 73.42 70.94
5 1000 1.61% 1.4 338 67.03 72.46 69.64 2 4 1.15% 2.0 301 68.82 73.66 71.16
5 2000 1.83% 1.4 320 67.07 72.50 69.68 2 5 132% 2.0 278 68.81 73.72 71.18
10 500 1.95% 1.8 258 68.81 73.80 71.22 3 3 119% 3.0 263 68.82 73.60 71.13
10 1000 2.21% 1.8 245 68.82 73.82 71.23 3 4 137% 3.0 231 68.87 73.73 71.22
10 2000 2.54% 1.9 230 68.84 73.83 71.25 3 5 156% 3.0 208 68.81 73.73 71.19
20 500 2.29% 2.3 213 68.74 73.67 7112 4 3 1.39% 3.9 225 68.78 73.57 71.10
20 1000 2.62% 2.3 199 68.75 73.69 71.13( 4 4 1.59% 3.9 191 6887 73.75 71.23
20 2000 3.00% 2.3 185 68.76 73.69 71.14( 4 5 1.77% 3.9 170 68.80 73.75 71.19
erh. 141650 18.7 1.8 68.82 73.77 71.21 exh. 141650 18.7 1.8 68.82 73.77 71.21

Figure 1: Experimental results using a variable beam (left column) and a fixed beam (right column),
for pruning inactive and active separately and pruning both. ezh. gives the results for exhaustive
search. 6; and 6, are the threshold on the quotient for the beam for inactive and active edges, m;
and m, are the max. number of parallel analyses for the fixed beam. SIZE is the size of the chart in
percent of edges used for exhaustive search (for which the averaged absolute chart size per sentence
is given), PAR is the average number of parallel analyses per span, T/S is the parsing speed in
tokens per second, LR, LP, and LF are labeled recall, precision, and F-Score.




degrade performance®. The effect is very robust
despite the simple ranking formula. This signif-
icantly reduces memory requirements (given as
size of the chart) and increases parsing speed.

When comparing SIZE vs. F-Score, pruning
active edges yields a more efficient parser (ac-
tive: 4.82% chart size for 71.04% F-Score; inac-
tive: 8.25% chart size for 71.25% F-Score; simi-
lar results for a fixed beam), although somewhat
slower since more edges are tested (and imme-
diately pruned). Best efficiency is achieved by
pruning both types of edges. Using a vari-
able beam, 1.95% of the chart size are used
for an F-Score of 71.22%. The result is even
better for a fixed beam: 1.15% chart size for
71.16% F-Score®. When comparing VARIABLE
vs. FIXED, the fixed beams yield equivalent ac-
curacies but a much more efficient parser when
pruning both types of edges (1.15% vs. 1.95%
chart size; 301 vs. 258 tokens/second). This is
a surprising result and we do not have an ex-
planation for it.

6 Related Work

Probably mostly related to the work reported
here are (Charniak et al., 1998) and (Roark and
Johnson, 1999). Both report on significantly
improved parsing efficiency by selecting only a
subset of edges for processing. There are three
main differences to our approach. One is that
they use a ranking for best-first search while
we immediately prune hypotheses. They need
to store a large number edges because it is not
known in advance how many of the edges will be
used until a parse is found. The second differ-
ence is that we proceed strictly incrementally
without look-ahead. (Charniak et al., 1998)
use a non-incremental procedure, (Roark and
Johnson, 1999) use a look-ahead of one word.
Thirdly, we use a much simpler ranking formula.

Additionally, (Charniak et al., 1998) and
(Roark and Johnson, 1999) do not use the
original Penntree encoding for the context-free
structures. Before training and parsing, they
change/remove some of the productions and in-
troduce new part-of-speech tags for auxiliaries.
The exact effect of these modifications is un-

Given the amount of test data (26,322 non-terminal
nodes), results within a range of around 1% are equiva-
lent with a confidence degree of a = 99%.

50r even 0.97% chart size for 70.94% F-Score.

known, and it is unclear if these affect compa-
rability to our results.

The heavy restrictions in our method (imme-
diate pruning, no look-ahead, very simple rank-
ing formula) have consequences on the accuracy.
Using right context and sorting instead of prun-
ing yields roughly 2% higher results’. But our
work shows that even with these massive re-
strictions, the chart size can be reduced to only
slightly over 1% without a decrease in accuracy
when compared to exhaustive search.

We use a pure stochastic context-free gram-
mar as the base model. This can be improved
upon. As (Charniak, 1997) shows, adding word
statistics significantly improves accuracy. Fur-
thermore, (Johnson, 1998) shows that changes
in the structural encoding also significantly im-
proves results. In order to test our hypothesis
that the effects of incremental processing and
massive pruning found here are also valid for
improved models, we performed the series of
experiments as reported in section 5 with the
“parent” encoding proposed by Johnson. The
relative results were equivalent, but recall and
precision were shifted up by around 8%, which
supports our hypothesis.

7 Conclusions

A central challenge in computational psycholin-
guistics is to explain how it is that people are
so accurate and robust in processing language.
Given the substantial psycholinguistic evidence
for statistical cognitive mechanisms, our objec-
tive in this paper was to assess the plausibility
of using wide-coverage probabilistic parsers to
model human linguistic performance. In par-
ticular, we set out to investigate the effects of
imposing incremental processing and significant
memory limitations on such parsers.

The central finding of our experiments is
that incremental parsing with massive (almost
99%) pruning of the search space does not
impair the accuracy of stochastic context-free
parsers. This basic finding was robust across
both the pruning strategy (active edges, inac-

"Comparison of results is not straight-forward since
(Roark and Johnson, 1999) report accuracies only for
those senstences for which a parse tree was generated
(between 93 and 98% of the sentences), while our parser
(except for very small beams) generates parses for vir-
tually all sentences, hence we report accuracies for all
sentences.



tive, or both) and a range of relative and abso-
lute beam widths. We did however, observe sig-
nificantly reduced memory and time complexity
when using combined active/inactive edge filter-
ing, and a fixed beam size. To our knowledge,
this is the first investigation on tree-bank gram-
mars that systematically varies the edge type
and the beam type for pruning. Especially the
better performance of the fixed beam compared
to the variable beam is surprising.

Our aim in this paper is not to challenge
state-of-the-art parsing accuracy results. For
our experiments we used a purely context-free
stochastic parser combined with a very sim-
ple pruning scheme based on simple “unigram”
probabilities, and no use of right context. We
do, however suggest that our result should apply
to richer, more sophistacted probabilistic mod-
els. As mentioned in section 6, for example, us-
ing Johnson’s technique of encoding the parent
node to introduce additional context informa-
tion, resulted in the same performance gains in
our incremental, resource limited, parser.

We therefore conclude that wide-coverage,
probabilistic parsers do not suffer impaired ac-
curacy when subject to strict cognitive memory
limitations and incremental processing. Fur-
thermore, parse times are substantially reduced.
This suggests that it may be fruitful to pursue
the use of these models within computational
psycholinguistics, where it is necessary to ex-
plain not only the relatively rare 'pathologies’ of
the human parser, but also its more frequently
observed accuracy and robustness.
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