
Finding Syntactic Structure in Unparsed Corpora
The Gsearch Corpus Query System

Steffan Corley (steffan@sharp.co.uk)
Sharp Laboratories of Europe
Oxford Science Park, Oxford OX4 4GB, UK

Martin Corley (martin.corley@ed.ac.uk)
Department of Psychology and Human Communication Research Centre
University of Edinburgh
7 George Square, Edinburgh EH8 9JZ, UK

Frank Keller (frank.keller@ed.ac.uk)
Institute for Communicating and Collaborative Systems
Division of Informatics, University of Edinburgh
2 Buccleuch Place, Edinburgh EH8 9LW, UK

Matthew W. Crocker (crocker@coli.uni-sb.de)
Computational Linguistics, Saarland University
Box 15 11 50, 66041 Saarbrücken, Germany

Shari Trewin (s.trewin@ed.ac.uk)
Institute for Communicating and Collaborative Systems
Division of Informatics, University of Edinburgh
80 South Bridge, Edinburgh EH1 1HN, UK

Abstract. The Gsearch system allows the selection of sentences by syntactic criteria
from text corpora, even when these corpora contain no prior syntactic markup. This
is achieved by means of a fast chart parser, which takes as input a grammar and
a search expression specified by the user. Gsearch features a modular architecture
that can be extended straightforwardly to give access to new corpora. The Gsearch
architecture also allows interfacing with external linguistic resources (such as taggers
and lexical databases). Gsearch can be used with graphical tools for visualizing the
results of a query.

Keywords: corpus search, parsing, syntactic annotation, SGML, computational
linguistics, psycholinguistics

1. Introduction

Large on-line corpora constitute an increasingly important source
of empirical data for language research. While numerous tools ex-
ist for lexical analysis of on-line texts, such as concordance software
(e.g., CQP/Xkwic, Christ, 1994; WordSmith Tools, Berber Sardinha,
1996), researchers are increasingly interested in syntactic investigations
of large corpora. Not only do such investigations directly support
purely linguistic research, such as grammar development, they are

To appear in Computers and the Humanities, 2000.



2 Corley et al.

also of interest to psycholinguists and computational linguists whose
models increasingly rely on information such as structural and lexical
frequencies.

While large on-line corpora are increasingly available for a variety
of languages and genres, most are annotated with shallow information
only, such as part of speech information, and possibly lemmas. Parsed
corpora—due to the amount of human effort required to achieve rea-
sonable accuracy and consistency—remain rare and relatively small.1

Furthermore, syntactically annotated corpora are inevitably compro-
mised by particular linguistic assumptions of their designers, which are
in turn often influenced by what can be annotated with some degree
of consistency. Thus researchers wishing to study particular or subtle
linguistic distinctions must often work against the annotation scheme
and search tools associated with a particular corpus.

In this paper we present the Gsearch system: a tool designed to facil-
itate the investigation of lexical and syntactic phenomena in unparsed
corpora. Gsearch permits users to search for linguistic structures by
processing a query based on a user definable grammar. The grammar
notation is powerful and flexible: users define their own context free
grammar where the terminals may be regular expressions over elements
in the corpus (e.g., words, lemmas, part of speech tags) as well as calls
to external databases and resources (e.g., WordNet, Miller et al., 1990).

Gsearch is intended as a flexible tool for scientists wishing to study
corpora, and is not intended for accurate unsupervised parsing. The
nature of lexical and syntactic ambiguity means that Gsearch will often
return a parse which—while strictly correct with respect to the supplied
grammar and query—is inappropriate for a particular substring. That
is, given a grammar for some constituent (e.g., verb phrases (VPs)),
Gsearch will match every substring in the corpus that can be parsed
as a VP according to the grammar. Human inspection is still required
to distinguish false positives from those items of interest. To facilitate
this, tools are provided to easily view the parsed output, and also to
construct and develop subcorpora.

2. Design

The modular design of Gsearch makes the system easily extendible and
allows Gsearch to be integrated with existing corpus tools via a pipeline
architecture.

1 For example, susanne, Sampson, 1995; Penn Treebank, Marcus et al., 1993;
negra, Skut et al., 1997; Prague Dependency Treebank, Hajič, 1998; International
Corpus of English, Greenbaum, 1996.

gsearch_online.tex; 20/04/2000; 20:02; p.2



Gsearch 3

UNIFORM OUTPUT FORMAT

Filter Filter

Visualization Tool

Gsearch Subcorpus

SGML

UNIFORM INPUT FORMAT

Tagger

Untagged Corpus

Filter

Corpus 1 Corpus 2 Corpus 3

Filter1 Filter 2 Filter 3 Gsearch Subcorpus

Regular Expression Matcher

External Linguistic Resources

Query
Parser

Chart
Controller

Contextfree Grammar

Figure 1. Gsearch architecture

2.1. System Architecture

The general architecture of the Gsearch system is depicted in Figure 1.
The user specifies a query as a sequence of terminals and non-terminals
of the grammar (see Section 3.2). The controller reads a sentence at a
time from the corpus, and passes the sentence, together with the query,
to the chart parser.

This chart parser is the core of Gsearch. The parser matches gram-
mar terminals to corpus data fields using a regular expression matcher.
These corpus data fields may either be part of the input corpus
(e.g., words, lemmas, part of speech tags) or may be created on the fly
using external linguistic resources (e.g., a lexical database). The parser
attempts to build syntactic structure that matches the user-specified
query. Successful matches are passed back to the controller for output.

The current version of Gsearch only supports lexical markup in
the input corpus. Structural markup is ignored, with the exception of
sentence markup, as the Gsearch parser computes matches only within
a given sentence.

Gsearch relies on a Uniform Input Format (UIF) for the corpora
it accesses. For each corpus supported by Gsearch, a filter is required

gsearch_online.tex; 20/04/2000; 20:02; p.3



4 Corley et al.

that translates the specific format the corpus is encoded in into the
UIF. The UIF will usually include the word tokens and their parts of
speech as marked up in the corpus. However, Gsearch also supports
a pipeline architecture where the input is taken from the output of a
tagger running on a previously untagged corpus.

The output of a Gsearch query is encoded in a Uniform Output
Format (UOF), which is passed through an output filter that transforms
it into the specific format required for a given output module (such as
a visualization tool to display tree structures).

This modular architecture allows for easy extendibility of the
Gsearch system (see Section 5 for details). To add a new corpus, for
instance, it is straightforward to write a filter that transforms the cor-
pus format into Gsearch’s UIF. Similarly, a new output module can be
added by making the relevant UOF filter available.

Gsearch also supports a limited form of subcorpus handling by al-
lowing the saving of the output of a Gsearch query in a subcorpus
format, on which further Gsearch queries can be carried out.

2.2. Parser

The parser is implemented as a bottom up chart parser (Earley, 1970;
Aho and Ullman, 1972). A chart parser adds found constituents and
partially matched rules to a table or chart, rather than simply using
its agenda to maintain such information. The parser avoids adding
the same constituent to the table twice; this prevents the parser from
repeating the same (possibly unsuccessful) derivation twice based on
slightly different analyses of a constituent near the bottom of the parse
tree.

We have made two modifications to the standard chart parsing al-
gorithm. Firstly, as we are looking for the user query at any sentence
position, we add the goal at every sentence position. The second modi-
fication is an optimization to the base algorithm. If the user provides a
large grammar containing many rules that are irrelevant to the current
query, the basic algorithm would build large amounts of structure that
could not satisfy the user query. We avoid much of this redundant work
using an oracle (Aho and Ullman, 1972). An oracle is a table recording
which constituents can be left-corner descendents of other constituents
in any parse structure licensed by the grammar. For instance, using the
grammar in Figure 2, adj may be a left-corner descendent of np, but
prep may not. This oracle can be calculated automatically from the
grammar.

Armed with such an oracle, we can discard any analysis that results
in a constituent that cannot be a left-descendent of a current goal. We

gsearch_online.tex; 20/04/2000; 20:02; p.4



Gsearch 5

Table I. Gsearch performance on the BNC (100 million words). The search times (in
CPU seconds) are averaged over five Gsearch runs. The last column specifies the average
search performance (in words per second). The data were obtained on a Sparc Ultra 5/10
(256MB memory, 333MHz clock rate, Solaris 2.5.1).

Grammar Query NP VP NP VP NP PP PP Avg. Perf.

Minimal time 860 864 1,321 1,400 90,048

(19 rules) hits 5,294,084 4,567,413 1,776,905 674,063

Subcat time 1,196 3,262 2,999 2,863 38,785

(106 rules) hits 5,795,674 4,142,012 3,209,508 874,796

Possessives time 4,578 5,425 9,048 10,005 13,776

(140 rules) hits 4,852,226 4,567,413 1,328,470 464,848

therefore avoid building much extraneous structure; this optimization
results in impressive performance even when the user grammar is quite
large.

2.3. Performance

Table I gives an overview of the performance of Gsearch for different
grammars and queries. The following grammars were tested:

− Minimal (19 rules): a minimal grammar (see Figure 2) was included
to estimate baseline performance.

− Subcat (106 rules): a grammar for extracting subcategorization
information (Lapata, 1999; Lapata and Brew, 1999). Its main focus
is VP structure.

− Possessives (140 rules): a grammar for finding possessive NPs and
other nominal constructions (Zamparelli, 1998). Coverage for VPs
is minimal.

In this evaluation, Gsearch took between 14 and 167 minutes to search a
100 million word corpus, depending on the size of the grammar and the
complexity of the query. The average search performance for the base-
line grammar was 90,048 words per second. For the more comprehensive
Subcat grammar Gsearch achieved a performance of 38,785 words per
second, while its performance fell to 13,776 words per second for the
specialized Possessive grammar.

gsearch_online.tex; 20/04/2000; 20:02; p.5



6 Corley et al.

Table II. Corpora available with Gsearch

Corpus Name Markup kWords Description

bnc bnc tag, lemma 100,000 Balanced corpus of British English

Brown brown tag 1,000 Balanced corpus of American English

susanne susie tag, lemma 128 Subcorpus of Brown corpus

Wall Street Journal wsj tag 8,000 Newspaper corpus; American English

Frankfurter Rundschau fr tag, lemma 40,000 Newspaper corpus; German

negra negra tag, morph 268 Subcorpus of FR corpus

3. Queries

The general form of a Gsearch query is as follows:

gsearch [<options>] <corpus> <grammar> <goal>

This section explains the arguments <corpus>, <grammar>, <goal>,
and <options> in more detail.

3.1. Corpus

The argument <corpus> specifies the name of the corpus to be
searched. Each corpus has to be registered in a Gsearch setup file before
it can be accessed. The setup file specifies a symbolic name for the
corpus and contains information on its location and on the filter to be
used for it. This information remains invisible to the user, who only
needs to supply the symbolic name to access the corpus (although a
user’s local setup files can override global defaults).

Gsearch comes with filters for a number of corpora that are widely
used. These include the British National Corpus (Burnard, 1995), the
Brown Corpus (Francis et al., 1982), the susanne Corpus (Sampson,
1995),2 the Wall Street Journal Corpus (Marcus et al., 1993), the Frank-
furter Rundschau Corpus,3 and the negra Corpus (Skut et al., 1997).
Table II gives an overview of these corpora, detailing their markup,
their approximate size, and the symbolic names used to access them in
a standard Gsearch setup.

2 The susanne corpus includes detailed syntactic markup (Sampson, 1995),
although this is not made available to Gsearch via the standard (supplied) filter.

3 This corpus is part of the European Corpus Initiative Multilingual Corpus I
(ECI/MCI) distributed by the Association for Computational Linguistics.

gsearch_online.tex; 20/04/2000; 20:02; p.6



Gsearch 7

%% general part
vp --> v1
vp --> v1 np
vp --> v1 pp
v1 --> adv* verb adv*
np --> det n1+ pp*
np --> n1+ pp*
np --> np conj np
n1 --> adj* noun+
n1 --> n1 conj n1
pp --> prep np

%% corpus specific part
verb --> <tag=VV.*> % main verb
noun --> <tag=NN.*> % common noun
noun --> <tag=NP.*> % proper noun
det --> <tag=AT.*> % determiner
adj --> <tag=AJ.*> % adjective
adj --> <tag=ORD.*> % ordinal
adv --> <tag=AV0.*> % adverb
prep --> <tag=PR.*> % preposition
conj --> <tag=CJ.*> % conjunction

Figure 2. Example of a Gsearch grammar

3.2. Grammar

The argument <grammar> specifies a grammar file, which has to contain
a context-free grammar represented in the Gsearch grammar format,
which is similar to the format of definite clause grammars (DCGs).

Figure 2 gives an example of a Gsearch grammar. The grammar is
divided into a general part, which typically consists of phrase-structure
rules, and a corpus-specific part, which typically contains a mapping
from the terminal symbols of the grammar to the part of speech tags
defined in the corpus to be queried (here, the bnc).

The left hand side of a grammar rule contains a non-terminal, while
the right hand side specifies a terminal symbol or one or more non-
terminal symbols. For non-terminals, the characters ‘*’ and ‘+’ may be
used to express the Kleene star and the closure operator, respectively.

Terminals take the form <<field>=<regex>>, where <field> is a
data field in the corpus, and <regex> specifies a regular expression to
be matched against this field. The conjunction of regular expressions

gsearch_online.tex; 20/04/2000; 20:02; p.7



8 Corley et al.

over data fields is supported via the ‘&’ operator, and negation can be
expressed by using ‘!=’ instead of ‘=’.

The fields available for all corpora are word for the word token, and
tag for the part of speech. Additional fields may be available if the
corpus contains a richer markup, or if an external linguistic resource is
used to supply the value of a given field (see Section 5.4).

3.3. Goal

A Gsearch search expression (<goal>) is formulated as a sequence of
terminal and non-terminal symbols of the grammar. As an example,
consider the following query, which searches the bnc using the grammar
GrammarBNC (given in Figure 2) for a pattern that consists of an NP
followed by two PPs:

gsearch bnc GrammarBNC np pp pp

A subset of the result of this query is given in Figure 3.
The following query can be used to search the susanne Corpus for

instances of the noun show followed by a PP:

gsearch susie GrammarSusie "<tag=NN.* & word=show>" pp

Conjunction and negation of regular expressions over data fields is also
supported in Gsearch queries.

3.4. Options

A number of command-line options can be specified to control how
Gsearch processes a given query. There are two types of options:

Output options control which information is included in the out-
put of a Gsearch query. The user can specify whether terminals and
preterminals are to be included and which data fields are to be printed.
The user can also control how much context is to be supplied with a
matched sentence.

Parse options allow the user to influence the behavior of the
Gsearch parser. This includes whether or not multiple matches per
sentence will be returned, and whether or not punctuation is taken
into account when matching a sentence. There is also an option that
controls the maximum number of matches that Gsearch will return
before terminating the search. This allows the testing of a grammar
and a query without having to search the full corpus.

A detailed description of the options is provided in the Gsearch User
Manual (Corley et al., 1999).

gsearch_online.tex; 20/04/2000; 20:02; p.8



Gsearch 9

<div>
<head>"file=A/A0/A00 sentence=s40"</head>
<p>
<s40>There is
<np><w AT0>no
<n1><w NN1>limit</n1></np>

<pp><w PRP>to
<np><w AT0>the

<n1><w NN1>number</n1></np></pp>
<pp><w PRF>of
<np><n1><w NN2>ways</n1></np></pp>

to raise money.</s40>
</p>
</div>

<div>
<head>"file=A/A0/A00 sentence=s81"</head>
<p>
<s81>Many people with AIDS have to spend
<np><n1><w AJ0>long <w NN2>periods</n1></np>
<pp><w PRF>of
<np><n1><w NN1>time</n1></np></pp>

<pp><w PRP>in
<np><n1><w NN1>hospital</n1></np></pp>

unless there is someone at home who can
help and look after them.</s81>
</p>
</div>

Figure 3. sgml output

4. Output and Visualization

By default, Gsearch generates sgml output, with phrase boundaries
marked up as sgml attributes (a sample output for the query in
Section 3.3 is given in Figure 3).

Gsearch output can be visualized using Viewtree, Adwait Ratna-
parkhi’s tool for displaying syntactic trees (distributed with Gsearch).4

Viewtree allows browsing through the trees generated by a Gsearch
query, and the access of a tree directly via its number (a unique iden-
tification is created for each sentence). Viewtree has the facility to

4 Viewtree can also be obtained from http://www.cis.upenn.edu/~adwait/ .

gsearch_online.tex; 20/04/2000; 20:02; p.9



10 Corley et al.

Figure 4. Viewtree output

generate Postscript files for individual trees. A Viewtree screenshot is
provided in Figure 4.

As an alternative to Viewtree, the diagram engine Thistle (Calder,
1998a; Calder, 1998b)5 can be used to visualize the result of a Gsearch
query. In contrast to Viewtree, Thistle allows the incremental pro-
cessing of Gsearch output, i.e., the result of a query can be viewed
tree by tree, even before the query is complete. Thistle comes with a
full diagram editor that can save, edit, and print Gsearch output, as
well as generate Postscript from it. A Thistle screenshot is provided in
Figure 5.

Gextract (grammar extract) is a post-processor for Gsearch that
allows random sampling from the result of a Gsearch query. This
functionality is useful if a representative sample of a search result has
to be obtained (e.g., because the full result is too large for manual
inspection).

5. Extendibility

An important feature of Gsearch is its modular architecture (see Sec-
tion 2.1), which allows for easy extendibility by adding new corpora,
taggers, visualization tools, and external linguistic resources.

5 Thistle is not included in the Gsearch distribution. It can be obtained from
the Language Technology Group at the University of Edinburgh. For details, please
refer to http://www.ltg.ed.ac.uk/software/thistle/.

gsearch_online.tex; 20/04/2000; 20:02; p.10



Gsearch 11

Figure 5. Thistle output

5.1. Corpora

To make a new corpus searchable with Gsearch, one simply has to
provide a filter that translates the specific format the corpus is encoded
in into Gsearch’s Uniform Input Format.

Writing such a filter is straightforward, based on the Programmer’s
Interface provided by Gsearch and the filter prototype that is part of the
Gsearch distribution. To customize this prototype for a specific corpus,
the user simply has to write a C function which scans a corpus file and
returns the contents of the data fields marked up in the corpus. As an
alternative, Gsearch filters can be implemented from scratch in other
programming languages such as Perl (which might be less efficient,
however).

5.2. Taggers

As illustrated in Figure 1, the support for taggers also relies on
Gsearch’s filter model. For each tagger that is to interface with Gsearch,
a filter must be provided that translates the tagger’s output format into
Gsearch’s Uniform Input Format.

The tagger and the associated filter have to be registered in the
Gsearch setup file. A user can then query an untagged corpus by spec-

gsearch_online.tex; 20/04/2000; 20:02; p.11



12 Corley et al.

ifying the name of the tagger on the Gsearch command line (instead of
the name of a corpus) and supplying the name of the corpus file to be
queried. Gsearch will then run the tagger on this file, with the output
piped into Gsearch’s parser via the associated filter.

The present Gsearch distribution includes filters for Thorsten
Brants’ TnT tagger (Brants, 1998) and for Andrei Mikheev’s LT POS
tagger (Mikheev, 1997).6

5.3. Visualization Tools

The modular architecture exploits output filters to transform Gsearch’s
Uniform Output Format (UOF) into the format required for a given
output module. This allows new output modules to be added straight-
forwardly to the existing ones (sgml, Viewtree, Thistle) by writing a
new output filter.

5.4. External Linguistic Resources

Certain applications require access to linguistic information that is not
directly encoded in a given corpus, but can be provided by external
linguistic resources. An example is sense information for a given word,
based on its entry in a lexical database such as WordNet (Miller et al.,
1990).

Gsearch provides access to such external linguistic resources by
treating the information they provide as data fields in a corpus. These
data fields can then be referenced in Gsearch queries and grammars
just like any other field that is directly marked up in the corpus.

Such external data fields have to be declared in the grammar file
by specifying how to access the external linguistic resource. Gsearch
will then generate a query to the resource based on an existing data
field (such as word or lemma). The external linguistic queries will be
optimized where possible so as to occur last in the terminal matching
process.

Consider the following example:
gsearch susie GrammarSusie "<tag=NN.* & hypo=organism>" pp

This command searches the susanne corpus for nouns followed by a
PP, where the hyponyms of the noun have to include organism. Gsearch
obtains the information for the hypo field by querying WordNet using
the lemma field as the argument.

6 The taggers are not included in the Gsearch distribution. TnT can
be obtained from the Department of Computational Linguistics at Saar-
land University, http://www.coli.uni-sb.de/~thorsten/tnt/ . LT POS is avail-
able from the Language Technology Group at the University of Edinburgh,
http://www.ltg.ed.ac.uk/software/pos/.

gsearch_online.tex; 20/04/2000; 20:02; p.12



Gsearch 13

6. Research Conducted Using Gsearch

The Gsearch system has been used for a number of corpus-based studies
in psycholinguistics (Corley and Cuthbert, 1997; Corley and Haywood,
1999; Lapata and Keller, 1998; Sturt et al., 1999a; Sturt et al., 1999b),
computational linguistics (Lapata, 1999; Lapata and Brew, 1999; Lap-
ata et al., 1999), and theoretical linguistics (Zamparelli, 1998). Gsearch
has also been used as a teaching tool in courses on Data-Intensive Lin-
guistics and Theoretical Linguistics at the School of Cognitive Science,
University of Edinburgh.

Within psycholinguistics, many current experiments rely on the sub-
categorization frequency biases of particular verbs. While these can be
easily extracted from current parsed corpora, such as the Penn Tree-
bank (Marcus et al., 1993), there are often insufficient occurrences of
particular verbs to obtain reliable statistics. Further, there is the prob-
lem that such corpora are relatively unbalanced—the Penn Treebank
consisting in large part of text from the Wall Street Journal—and may
therefore give a very skewed perspective on normal usage frequencies.
To counter these issues, Sturt et al. (1999a) and Sturt et al. (1999b) ex-
ploited Gsearch to extract subcategorization frequencies from the BNC,
a 100M word corpus with much more balanced content. In particular,
Sturt et al. were concerned with the local ambiguity which occurs with
verbs that can be followed by either an NP or bare S complement, such
as in:

(1) a. The athlete realized [NP his goals].
b. The athlete realized [S [NP his goals] were out of reach].

A noun phrase grammar was written which allowed Sturt et al. to find
occurrences of the relevant verb followed by an NP (which could also
be the subject of an embedded sentence). A random sample of 100
instances were then classified by hand as NP, bare S, or other. These
biases were then used to construct experimental materials in which verb
frequency biases were a crucially controlled factor.

An example of a more computational application of Gsearch is the
study by Lapata (1999), who examined verb subcategorization alterna-
tions such as the dative and the benefactive alternation (Levin, 1993).
As examples consider (2) and (3):

(2) a. John offers shares to his employees.
b. John offers his employees shares.

(3) a. Leave a note for her.
b. Leave her a note.

gsearch_online.tex; 20/04/2000; 20:02; p.13



14 Corley et al.

Relevant subcat frames were extracted from the BNC using Gsearch
and postprocessed using linguistic heuristics, statistical filtering tech-
niques, and taxonomic knowledge. Lapata showed that this process
reliably acquires verb alternations, and that the subcat frequencies
obtained can be used to estimate the productivity of an alternation
and the typicality of its members.

7. Availability

Gsearch is implemented in C and runs under Solaris. A Linux
port is currently in preparation. Gsearch is freely available
for non-commercial use. Download information can be found at
http://www.hcrc.ed.ac.uk/gsearch/. There is also a mailing list for
Gsearch users, which carries announcements relating to Gsearch devel-
opment. To subscribe, please send an e-mail containing the word ‘sub-
scribe’ in the message body to gsearch-request@cogsci.ed.ac.uk.

Acknowledgements

Work on Gsearch was funded in part by the UK Economic and So-
cial Research Council, and is currently funded in a collaborative ARC
project between the University of Edinburgh and Saarland University
by the British Council and the Deutscher Akademischer Austausch-
dienst. We are grateful to the following people for suggestions and
advice regarding Gsearch: Jo Calder, Claire Grover, Ewan Klein, Maria
Lapata, Patrick Sturt, Roberto Zamparelli.

References

Aho, A. V. and J. D. Ullman: 1972, The Theory of Parsing, Tanslation and
Compiling. Englewood Cliffs, NJ: Prentice-Hall.

Berber Sardinha, A. P.: 1996, ‘Review: WordSmith Tools’. Computers & Texts 12,
19–21.

Brants, T.: 1998, ‘TnT: A Statistical Part-of-Speech Tagger. Installation and User’s
Guide’. Department of Computational Linguistics, Saarland University.

Burnard, L.: 1995, ‘Users Guide for the British National Corpus’. British National
Corpus Consortium, Oxford University Computing Service.

Calder, J.: 1998a, ‘How to Build a (Quite General) Linguistic Diagram Editor’. In:
P. Olivier (ed.): Proceedings of the 2nd Workshop on Thinking with Diagrams.
Aberystwyth, pp. 71–78.

gsearch_online.tex; 20/04/2000; 20:02; p.14



Gsearch 15

Calder, J.: 1998b, ‘Thistle: Diagram Display Engines and Editors’. Technical
Report HCRC/TR-97, Human Communication Research Centre, University of
Edinburgh.

Christ, O.: 1994, ‘A Modular and Flexible Architecture for an Integrated Cor-
pus Query System’. In: Proceedings of the 3rd Conference on Computational
Lexicography and Text Research. Budapest, pp. 23–32.

Corley, M., S. Corley, M. Crocker, F. Keller, and S. Trewin: 1999, ‘Gsearch User
Manual’. Human Communication Research Centre, University of Edinburgh.

Corley, M. and M. Cuthbert: 1997, ‘Indiviual Differences in Modifier Attach-
ments: Experience-Based Factors’. Paper presented at the 3rd Conference on
Architectures and Mechanisms for Language Processing, Edinburgh.

Corley, M. and S. Haywood: 1999, ‘Parsing Modifiers: The Case of Bare-NP Ad-
verbs’. In: Proceedings of the 21st Annual Conference of the Cognitive Science
Society. Vancouver, pp. 126–131.

Earley, J.: 1970, ‘An Efficient Context-Free Parsing Algorithm’. Communications of
the ACM 13(2), 94–102.

Francis, W. N., H. Kučera, and A. W. Mackie: 1982, Frequency Analysis of English
Usage: Lexicon and Grammar. Boston: Houghton Mifflin.

Greenbaum, S. (ed.): 1996, Comparing English Worldwide: The International Corpus
of English. Oxford: Clarendon Press.

Hajič, J.: 1998, ‘Building a Syntactically Annotated Corpus: The Prague Depen-
dency Treebank’. In: E. Hajičová (ed.): Issues of Valency and Meaning: Studies
in Honor of Jarmila Panevová. Prague: Karolinum, pp. 106–132.

Lapata, M.: 1999, ‘Acquiring Lexical Generalizations from Corpora: A Case Study
for Diathesis Alternations’. In: Proceedings of the 37th Annual Meeting of the
Association for Computational Linguistics. College Park, MA, pp. 397–404.

Lapata, M. and C. Brew: 1999, ‘Using Subcategorization to Resolve Verb Class
Ambiguity’. In: Proceedings of Joint SIGDAT Conference on Empirical Methods
in Natural Language Processing and Very Large Corpora. College Park, MA, pp.
266–274.

Lapata, M. and F. Keller: 1998, ‘Corpus Frequency as a Predictor of Verb Bias’.
Poster presented at the 4th Conference on Architectures and Mechanisms for
Language Processing, Freiburg.

Lapata, M., S. McDonald, and F. Keller: 1999, ‘Determinants of Adjective-Noun
Plausibility’. In: Proceedings of the 9th Conference of the European Chapter of
the Association for Computational Linguistics. Bergen, pp. 30–36.

Levin, B.: 1993, English Verb Classes and Alternations: A Preliminary Investigation.
Chicago: University of Chicago Press.

Marcus, M. P., B. Santorini, and M. A. Marcinkiewicz: 1993, ‘Building a Large
Annotated Corpus of English: The Penn Treebank’. Computational Linguistics
19(2), 313–330.

Mikheev, A.: 1997, ‘Automatic Rule Induction for Unknown Word Guessing’.
Computational Linguistics 23(3), 405–423.

Miller, G. A., R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller: 1990, ‘Intro-
duction to WordNet: An On-line Lexical Database’. International Journal of
Lexicography 3(4), 235–244.

Sampson, G.: 1995, English for the Computer: The SUSANNE Corpus and Analytic
Scheme. Oxford: Clarendon Press.

Skut, W., B. Krenn, T. Brants, and H. Uszkoreit: 1997, ‘An Annotation Scheme for
Free Word Order Languages’. In: Proceedings of the 5th Conference on Applied
Natural Language Processing. Washington, DC, pp. 88–95.

gsearch_online.tex; 20/04/2000; 20:02; p.15



16 Corley et al.

Sturt, P., M. J. Pickering, and M. W. Crocker: 1999a, ‘Exploring the Reanalysis
as a Last Resort Strategy’. Paper presented at the 12th CUNY Conference on
Human Sentence Processing, New York.

Sturt, P., M. J. Pickering, and M. W. Crocker: 1999b, ‘Structural Change and
Reanalysis Difficulty in Language Comprehension’. Journal of Memory and
Language 40(1), 136–150.

Zamparelli, R.: 1998, ‘A Theory of Kinds, Partitives and of/z Possessives’. In: A.
Alexiadou and C. Wilder (eds.): Possessors, Predicates and Movement in the
Determiner Phrase. Amsterdam: John Benjamins, pp. 259–301.

Address for Offprints:
Frank Keller
Institute for Communicating and Collaborative Systems
Division of Informatics, University of Edinburgh
2 Buccleuch Place
Edinburgh EH8 9LW, UK

gsearch_online.tex; 20/04/2000; 20:02; p.16


