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The cognitive system is not merely a passive receiver of information. It has some measure

of control of what information it receives; and how that information is processed. Control

over the information received may be exercised in a wide variety of ways, from adjustments

to the sense organs (e.g., by moving the eyes), to decisions concerning which newspaper to

read. Control over how information is processed is equally ubiquitous, ranging from

attentional mechanisms (presuming that such mechanisms at least to some degree bias the

resources applied to processing different aspects of the sensory input) to how much effort

to spend thinking about a move in a possible move in a chess game, or on a decision in

everyday life.

The cognitive system is engaged in a process of inquiry1 about the world: it must

chose how to collect information and how to process that information. An analogy is

intended here between inquiry by the cognitive system and organized inquiry involved in

research. Inquiry in research also involves judicious control over information (e.g., which

experiments are performed, which observations are made) and how that information is

processed (how that data is analysed, what hypotheses are proposed, when are they

abandoned, and so on). We shall develop this analogy further below.

Inquiry is difficult, whether in a cognitive or scientific context, because it typically

must proceed in the face of very severe resource limitations. Information gathering must

therefore be highly selective. It is not possible, for example, to obtain a high-resolution

image of the entire visual world; the fovea must be directed towards a tiny part of that image

at any one time. Similarly, it is not possible to read all newspapers, or all articles in a single

newspaper; reading must be highly selective to obtain maximum benefit. Information

processing must also be highly selective: attention cannot be directed everywhere; only a

tiny fraction of sequences of chess moves can be analysed, and so on.

Given that people (and animals) appear to be highly successful information

processing systems, presumably these problem of directing inquiry are typically solved

satisfactorily. How is this possible? This chapter provides a framework for answering

questions of this form, at the level of rational analysis (Anderson, 1990, 1991; Oaksford &

Chater, 1995a). Rational analysis involves providing a normatively justified account of how

the problem can be solved, and this account must also be descriptively correct in that the

cognitive processes under study must implement (or, more likely, cheaply approximate) this

                                    
1 The use of “inquiry” in this sense was suggested to us by Mike Oaksford, in relation to
work in his PhD thesis (Oaksford, 1989), who has also contributed significantly to many of
the fundamental ideas in this paper. This term was used in a related sense by Stalnaker
(1984).
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analysis. The criterion of descriptive correctness ties the account to empirical data; the

criterion of normative justification explains why the cognitive process is successful.

This chapter is concerned exclusively with outlining normative proposals for the

rational analysis of inquiry. The main goal is to explore the range of options available in

building potential rational analysis of specific aspects of cognition involving inquiry. We do

this in two ways: first by outlining the theoretical underpinnings of Bayesian and decision-

theoretic approaches to the rational direction of inquiry; and second by showing in detail

how a rational analysis can be developed, taking the case of local ambiguity resolution in

parsing. The descriptive correctness of potential accounts of this form, when related to

empirical evidence, is outside the scope of this chapter. By focussing on normative issues,

this paper has the flavour of a priori inquiry; but notice that the ultimate usefulness of any

of the approaches to the rational analysis of cognitive processes involving inquiry depends

crucially on the ability to explain empirical data, and thus satisfy both the normative and

descriptive criteria.

This paper is divided into two parts, dealing with general issues and the specific

rational analysis of parsing in turn. In Part 1, we begin by considering the general

frameworks for rationality in terms of which normative accounts of inquiry can be

developed. We then consider how these frameworks allow us to define the value of

information. This allows us to consider how to estimate the value of information-gathering

inquiry, which has the goal of obtaining information. Roughly, this is the expected value of

the information that will be obtained, balanced against the costs of conducting the inquiry.

Part 1 concludes with a discussion of the relationship between the different frameworks that

have been introduced. In Part 2, we show how a specific rational analysis of inquiry can be

developed, drawing on the problem of local ambiguity resolution in parsing. Because natural

language is locally highly ambiguous, there are frequently a number of possible parses

consistent with the current input; computational resource limitations presumably mean that

all possibilities cannot be considered simultaneously. So the parser must choose in which

order to consider the various possible parses consistent with the current input. We provide a

rational analysis of how these choices should be made, assuming that the goal of the parser

is to maximize the probability of obtaining the globally correct parse for the sentence.

Finally, we briefly draw some conclusions concerning future research on the rational

analysis of cognitive processes involving inquiry.
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PART 1: A FRAMEWORK FOR THE RATIONAL ANALYSIS OF INQUIRY

Formal frameworks for rationality
Before we can develop a normative account of how inquiry should proceed, we need to

establish a formal framework for rationality, in terms of which the rationality of decisions

about inquiry can be assessed.

We consider two possible starting points. The first begins by searching for a

framework for rational thought – the goal is to know as much as possible about the world.

The second begins with the goal of rational choice--the goal is to make the best possible

decisions. In the first framework, inquiry is valuable for its own sake, because it leads to

knowledge--inquiry is “disinterested”. In the second framework, inquiry is only

worthwhile if it leads to better decisions.

Both starting points may seem unpromising because they appear to raise extremely

deep issues. The first starting point, of pursuing the goal of knowledge, corresponds to

facing the problem of epistemology; the second, of deciding what to do, corresponds to the

problem of ethics.

Fortunately, however, both classes of problem can be reformulated in more modest

and more tractable terms. The problem of pursuing knowledge can be reformulated as the

problem of how to move from a given set of beliefs to further beliefs. The deepest questions

of epistemology--concerning how beliefs can ultimately be grounded, rather than circularly

depending on each other--are thus side-stepped. A paradigm approach to this reformulated

problem is as follows. We assume that each proposition is associated with a number

between 0 and 1, expressing the “degree of belief” in that proposition (where 0 denotes

certainty that the proposition is false, and 1 denotes certainty that  it is true). The problem of

deciding what to think can now be viewed as a problem of deciding what number to

associate to a given proposition, in the light of the numbers that one has already assigned to

other propositions. There are a large number of well-known lines of arguments (see

Earman, 1992; Howson & Urbach, 1989) which converge on the conclusion that this

process should follow the standard laws of probability theory. These arguments legitimise

the possibility of interpreting probability theory as a normative calculus for uncertain

inference2. Specifically, probability theory can serve as the prescription for what we should

                                    
2 Of course, there are also other legitimate interpretations of probability theory, such as
expressing relations between limiting frequencies of events of various kinds in sequences of
repeated experiments. Debates concerning the correct interpretation of probability typically
centre on which interpretation is appropriate in scientific or statistical inquiry, but are not
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think, given some (typically very partial) set of given information: this is commonly known

as the Bayesian approach to inference (de Finetti, 1972; Keynes, 1921; Lindley, 1971).

The problem of making decisions can be reformulated as the problem of how to

move from a given set of beliefs and desires to actions. The deepest questions of ethics--

concerning how desires should ultimately be grounded, rather than circularly depending on

each other--are thus also side-stepped3. A paradigm approach to this reformulated problem

is as follows. We assume that a real number can be associated with each possible event (or

“outcome”), representing its “subjective utility” for the decision maker4. Higher valued

events are assumed to be preferred in a forced choice with lower valued events. Beliefs are

associated with probabilities as before. There are then a number of well-known arguments

which converge on the conclusion that choosing how to act should follow the laws of

decision theory. The recommendation of decision theory is that actions should be chosen to

maximize expected utility, where the measure of utility, and the probabilities in the light of

which the expectation is assessed, are take as given5.

These frameworks for rational choice are valuable starting points for the rational

analysis of cognitive processes. But before launching into discussing how these

frameworks may be applied, a few clarificatory comments are in order. First, recall that a

rational analysis must be normatively justified and descriptively correct (Oaksford &

Chaterr, 1995a, 1996). These rational choice models have normative justifications, but it is

an empirical issue whether cognitive processes can fruitfully be viewed as providing

approximations to them. This question can only be decided case-by-case by constructing

rational analyses, and comparing them against relevant empirical data. As with any other

style of explanation in science, a rational analysis will typically be iteratively refined in the

light of empirical results; rather than being derived a priori. Second, note that we have

framed the discussion so far in terms of agents, with beliefs, desires and actions. But the

same style of analysis may be applied to sub-personal cognitive processes, as well as

agents--indeed this is the standard case for the rational analysis of cognition.  In such cases,

“beliefs” are information states (associated with numerical values interpretable as

                                                                                                            
relevant in the psychological context of developing rational analyses, where the subjective
interpretation is the only meaningful possibility.
3 We also ignore the case in which the rational agent must reason about the behaviour of
other rational agents, which is treated by game-theory and discussed in Colman, this
volume.
4 This requires that a subjective utility function exists for the person’s set of preferences
(e.g., de Groot, 1970).
5 Though it may also take other forms, such as the  “minimax” criterion, which
recommends choosing the action whose worst case is least bad, which is standard in game
theory (von Neumann & Morgenstern, 1944).
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probabilities), “desires” or “utilities” are simply defined by (typically) numerical values;

actions correspond to operations or outputs of the processor. The rational analysis of

parsing developed will have this character. For example, it assumes that the parser chooses

operations to maximize the probability of finding the intended global parse of the sentence.

But this does not mean that the parser really has beliefs or desires about parses, or whether

they succeed, merely that the parser is assumed, for example,  to store numbers which

represent the prior probability it assigns to various parsing structures. Indeed, even this

assumption is dispensable, because the prescriptions of the rational analysis may be

implemented (or approximated) using all kinds of different algorithms and representations.

Nonetheless, for expository clarity, we will talk of cognitive processes “deciding,”

“choosing,” “preferring,” and so on--such usages are dispensable, although convenient,

anthropomorphisms.

This brings us to the third point of clarification: that the use of rational theories such

probability theory and decision theory in the rational analysis of some of the cognitive

mechanisms of which agents are composed in no way implies that the whole agent’s beliefs,

desires and actions can be given a rational analysis. The validity of such “rational choice”

explanations of human behaviour as a whole is, of course, a question of fundamental

importance, which has attracted extensive controversy within experimental psychology (for

example, Gigerenzer, Hoffrage & Kleinbölting, 1991; Kahneman, D, 1996; Kahneman,

Slovic & Tversky, 1982), as well as in economics and the social sciences (see, for example,

Arrow, Colombatto, Perlman & Schmidt, 1996; Elster, 1983, 1989; Sen, 1990; Simon,

1982). But the usefulness of the rational analysis of cognitive mechanisms is independent

of such debates.

We noted at the outset that choices about what to do or think must typically be made

in the face of limited information, and limited computational resources6. The relative

emphasis on these two kinds of limitation will, of course, depend on the context. In some

contexts, the computational resources may be sufficient to process the available, partial, data,

and the main question of interest is how to choose which new data to select. Here, the

problem is optimal data selection. In other contexts, the main problem may be limitations on

computational resources available to use existing data, and the main question of interest is

how to allocate these resources optimally to analyse this data. Here the problem is optimal

computational resource allocation. There are, of course, hybrids where both factors are

important, but we shall ignore these for simplicity.

                                    
6 This corresponds to the general distinction between data-limited and resource-limited
cognitive processes (Norman & Bobrow, 1975).



7

In this paper, we present a uniform treatment of problems. The first problem,

optimal data selection, has been extensively studied; but the second, optimal computational

resource allocation, is relatively unexplored. But the two problems are closely related--in

essence the decision to carry out some further calculation can be viewed as directly

analogous to the decision to collect some more data--and hence the analyses of the first

problem can shed light on the second. Carrying out observations and carrying out

calculations are simply two different types of inquiry which can lead to new information

(although, as we shall note below, the problem of computational resource allocation does

raise certain fresh issues).

We now consider how the two frameworks for rational choice introduced above can

be used to provide theories of how inquiry should proceed. This requires first establishing

how each framework allows a value to be attached to information.

The value of information
From the perspective of “disinterested inquiry,” a natural and straightforward goal is

simply to maximize the amount of information gained7 by an investigation, whether or not

this data is useful with respect to other utilities (Lindley, 1956; Mackay, 1992). Specifically,

the amount of information gained is viewed as reduction in uncertainty, where uncertainty is

measured by the standard entropy measure from information theory (Shannon, 1948). We

shall consider this measure in the analysis below, partly because of its generality, and partly

because it has been analysed mathematically. There are, however, many more specific

informational goals which may be more relevant to the rational analysis of particular

cognitive tasks, particular where more general goals do not lead directly to a tractable

analysis. We shall choose one such specific goal in developing a rational analysis of local

ambiguity resolution in parsing below – namely, maximizing the probability of correctly

parsing a sentence.

                                    
7 An alternative goal to maximizing information gain is maximizing the change from the
distribution of probabilities over the hypotheses before and after the data is received. The
standard measure of this change is the Kullback-Liebler distance between the distribution in

the light of the data and the original distribution: P(Hi |K& N)
i

∑ log2

P(Hi |K& N)
P(Hi |K)







,

where H  i  , K and N have the meanings outlined below in the text. It turns out that the
expected value of this quantity is identical to the expected value of information gain, even
though information gain and Kullback-Liebler distance are not the same for any particular
piece of data, N (Lindley, 1956). Thus, we have an alternative starting point for an account
of optimal data selection. This may have advantages in certain contexts (see Oaksford and
Chater’s (1996) response to Evans and Over (1996) for an example in the context of a
rational analysis of the selection task).
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We assume that the agent8 starts with background knowledge, K. This knowledge

determines the degree of belief in a range of mutually exclusive and exhaustive hypotheses,
H  i  , from a set, H, such that each Hi is associated with a probability, given the initial

background knowledge, K: P(Hi|K). The agent’s aim is to learn more about which of these

hypotheses is true. What is the value associated with a particular piece of new information,

N (which may be the result of some investigation, or might be given to the agent “for

free”)?

On this approach,  the value of N is determined by the amount of information that

the agent gains about H. Information gain is the initial uncertainty minus the revised

uncertainty, i.e., after N is known:

The agent’s initial uncertainty, Uncertainty(H|K) is:

Uncertainty(H|K) = − P(Hi |K)
i

∑ log2 P(Hi |K) (1)

After N is known, the probabilities of the H  i   will be revised, using Bayes’ theorem9 to

P(H  i  |K&N), and the uncertainty will then be:

Uncertainty(H|K& N) = − P(Hi |K& N)
i

∑ log2 P(Hi |K& N) (2)

The information gain, I  g  (N), associated with N is therefore expressed:

 Ig(N) = Uncertainty(H|K) - Uncertainty(H|K& N) (3)

This is the value of the information, N, with respect to the set of hypotheses, H, from the

point of view of disinterested inquiry.

We now turn to the value of information from the point of view of decision making
(see Berger, 1985). The agent must choose between a set of actions, A  i  . These actions are

assumed to have an impact on some aspect of the world, which is of interest to the agent.
This aspect of the world is modeled as a discrete set of outcomes, Outj, which is associated

with a utility U(Out  j  ). For example, the actions might correspond to the choice of the kind

of flour used when baking a cake, and the outcome might be the quality of the cake (good,

                                    
8 The use of the term “agent,” like “knowledge,” is merely for convenience, to refer to a
reasoning system of some kind.  As we mentioned above, there is no commitment to
whatever aspect of the cognitive system is under study having beliefs, desires, and the like.

9 Specifically, P(Hi |K& N) = P(N|Hi & K)P(Hi |K)
P(N|Hj & K)P(Hj |K)

j
∑

.
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average, or poor), according to some criterion. But the agent may not know what the relation

between the choices and outcomes is. The agent’s partial information about the relationship

between actions and outcomes may be expressed by the agent’s estimates of the conditional
probabilities of  each kind of  outcome, given each kind of action: P(Outj|A  i  , K). Notice that

the presence of the “K” in this formula captures the fact that these estimates are determined

in the light of background knowledge, excluding the new information.
These estimates allow the expected utility, EU(A  i  |K), of each action to be calculated,

given knowledge K.  Specifically,

EU(Ai |K) = P(Outj |Ai
j

∑ ,K)U(Outj ) (4)

The best policy is to choose the action, A   m   , which maximizes this quantity, i.e., where

m = argmax
i

EU(Ai |K) (5)

and thus,

EU(Am|K) = max
i

P(Outj |Ai
j

∑ ,K)U(Outj )






(6)

Now, after the new information N arrives, the agent can make a new set of estimates of the

relationship between actions and outcomes, taking account of this new information:
P(Out  j  |A   m   , K&N). This allows the agent to produce a revised estimate of how successful

the previous choice of strategy would be, using the action A   m   , chosen by the strategy

outlined above.

EU(Am|K& N) = P(Outj |Am
j

∑ ,K& N)U(Outj ) (7)

So this gives an estimate (in the light of now knowing N) of how well the agent would have

done before N was known. To obtain an estimate of the value of N, we need to contrast this

figure with the estimate of the expected utility if the action is chosen after information N has
arrived. Paralleling (7), we note that the expected utility of arbitrary action, A  i  , is now

estimated as:

EU(Ai |K& N) = P(Outj |Ai
j

∑ ,K& N)U(Outj ) (8)
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The best policy is to choose the action, A  q  , which maximizes this quantity, i.e., where

q = argmax
i

EU(Ai |K& N) (9)

and thus, 

EU(Aq|K& N) = max
i

P(Outj |Ai
j

∑ ,K& N)U(Outj )






(10)

Thus, the gain in expected utility, i.e., the value, V(N), associated with learning N is:

V(N) = EU(Aq|K& N) − EU(Am|K& N) (11)

where q is the choice of action in the light of N, and m is the choice of action before m is

known. Note, of course, that if N does not cause the agent to change the choice of action, the

two terms on the right hand side of (8) are the same, and V(N) = 0. So, in sum, the value of

a piece of new information is determined by the impact that it has on the agent’s

expectations about what will occur given each action; but this impact is only of value if the

agent actually decides to change course of action. This follows the spirit of the utility-based

approach--information is not of interest for its own sake, but only in its influence on

action10.

In this section, we have outlined measures of the value of information, one from the

perspective of disinterested inquiry, and one where information is to be used to maximize

expected utilities. We now consider how these accounts of the value of information can be

used as the basis for calculating the expected value of the information that will be obtained

from a process of inquiry.

The expected value of inquiry

                                    
10As stated, the utility-based view of information may seem unacceptably myopic. After all,
it is possible that information may not immediately cause a change of action, but when
combined with later information, it may do so. The utility-based view can be extended to
take account of sequential information gathering, essentially by taking expectations about
the possible results of future inquiry, their impact on action, and hence on utility. This leads
to the field of “preposterior” analysis (e.g., Berger 1985) where calculations are extremely
complex both conceptually and in terms of computational tractability.
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Now we have defined the value of a piece of information, we can now consider the expected

value of inquiry11. We begin by putting aside a worry: that the very idea of choosing a line

of inquiry to give the most valuable information is conceptually incoherent, whatever the

criterion of value. Only if one has obtained some data can one know how it is relevant to the

problem in hand; and therefore it seems impossible to predict beforehand which data is

likely to be useful. Fortunately, this argument is not valid. Although it is not possible to

predict how useful the outcome of a particular search for more data will be, it is possible to

estimate the expected value of this information, based on one’s current knowledge. Optimal

inquiry involves choosing to obtain new data so that the expected value of the information

obtained is as great as possible.

The theory of optimal data selection develops in two different ways, depending on

which of the two notions of the value of information described above is used. If value is

considered as a utility of some kind, which is to be traded off against other utilities, then we

can set the problem in a decision-theoretic context. This gives rise to the extensive theory of

so-called “preposterior analysis” in Bayesian decision theory (e.g., Berger, 1985; Wald,

1947, 1950). If the value of information is not considered as a utility, but value is measured

instead as the amount of information gained, then the problem may be set in terms of

probability theory and information theory. This gives rise to the Bayesian analysis of the

information value in an experiment (Lindley, 1956; Good, 1966; Mackay, 1992).

We now consider the formal development of the disinterested and decision-theoretic

approaches to assessing the expected value of inquiry in turn.

From a disinterested perspective, inquiry should be directed to have the greatest

possible expected information gain. Suppose that we are considering an investigation, Inv,

which itself has cost C(Inv)12. Whether it is worth carrying out the investigation Inv

depends on whether the expected value of the information gathered by Inv exceeds the cost

of the investigation C(Inv).

The value of the information that will be obtained by Inv cannot be known before the
investigation. This is because the result, Invresult  , cannot be known until the investigation has

been carried out. However, the agent will have expectations about the results, P(Inv  result|K).

It is therefore possible to calculate the expected value of the investigation, based on these

expectations, before it is carried out:
The expected information gain of Inv, EI  g  (Inv), is the sum of the information gains

associated with each possible result, weighted by the probability of that result:

                                    
11See also Young (this volume) for a related analysis of the value of inquiry in the context
of understanding how people search computer menus.
12In general, the cost may not be fixed, but may also need to be estimated.



12

EIg(Inv) = P(Invresult|K)
result
∑ Ig(Invresult) (12)

Given a choice between different mutually exclusive courses of investigation, the agent
should choose the investigation Inv with the highest EI  g   score.

This measure of the value of disinterested inquiry has been recently used as the

basis for a rational analysis of so-called “indicative” versions of  Wason’s (1966, 1968)

selection task (Oaksford & Chater, 1994, 1995b, 1996; see also Oaksford & Chater, this

volume; Over & Jessop, this volume). In “indicative” selection tasks, people are asked to

test whether a hypothesis is true or false. This suggests that people may understand this

task as involving disinterested inquiry, because no utilities are either specified or suggested.

In the context of the selection task, the possible “inquiries” are the turning over of each of

four cards, and the hypotheses under consideration are a conditional rule and an

“independence rule” about what is on each side of the cards. This rational analysis

provides a good fit with a wide range of empirical data, and novel predictions of this account

have recently been confirmed (Oaksford, Chater, Grainger & Larkin, in press).

Notice that this approach has entirely ignored the cost of carrying out an

investigation--because the goal is disinterested inquiry, there is no direct connection between

the value of the information obtained and the costs required to obtain that information. This

is because information gain is measured in “bits” of information, whereas cost is measured

in terms of utility of some kind, and hence these cannot meaningfully be compared.

Nonetheless, costs can be taken into account as constraints on the investigation involved in

disinterested inquiry, assuming that a finite amount of resources, R, is to be devoted to the

pure pursuit of knowledge. Suppose that we have a number of possible lines of
investigation, Inv  i  , with costs C(Inv  i  ), and with resources R. If we assume that the expected

information gain from each Invi  are independent, then the optimal portfolio of Inv  i   is that

which maximizes the overall information gain, while the sum of the C(Invi) is less than R

(i.e., while staying “within budget”). But notice that, in general, the information gain
associated with different Invi will not be independent, because the results of one

investigation will typically reduce the uncertainty about the results of other investigations.

The mathematics required to deal with this is very complex, and the calculations will not

typically be tractable.

We now consider the analysis for the case where the goal of inquiry is to improve

decision making. Again, because the value of the information from the inquiry that will be
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obtained by Inv cannot be known before the investigation, the choice of inquiry must be

based on the expected value of the investigation EV(Inv):

EV(Inv) = P(Invresult|K)
result
∑ V(Invresult)







− C(Inv) (13)

Notice that, because the value of inquiry is measured in terms of utility, and the cost of the

inquiry can also be measured in terms of utility, the cost can be incorporated directly into

the equation, in contrast to the case of disinterested inquiry.

If the agent must choose between a range of possible investigations (typically

including the “null” investigation, which gains no information, but costs nothing), the

investigation, Inv, with the highest value EV(Inv) should be chosen.

This type of approach has been used by Anderson (1990) in proposing a rational

analysis of problem solving – where inquiry consists of a search through a problem space.

Anderson sees the key question in problem solving as searching this space to gain

maximum advantage in the face of heavy computational costs. Oaksford and Chater (1994)

also apply this type of analysis to explaining deontic selection tasks: i.e., selection tasks in

which the participant must determine whether or not outcomes or behavior conform to some

normative rule (e.g., that only people over 18 are allowed to drink). Normative rules cannot,

of course, be tested. Instead, following Manktelow and Over (1987), Oaksford and Chater

assume that people implicitly impose utilities concerning the importance of uncovering or

missing violations of the rule (under-age drinkers). The expected utility of each card

selection accurately predicts performance over a wide range of variants of the deontic

selection task. Alongside this psychological work, there is also a well-developed literature

on optimal investigation in zoology, where maximizing utilities such as food supply or

frequency of mating is the goal (e.g., Kamil, Krebs & Pulliam, 1987; McNamara &

Houston, 1992). The success of these rational analyses suggest that expected utility might

provide the basis for successful rational analyses in other psychological domains.

The analyses we have given apply to both kinds of inquiry: information gathering

and information processing. But notice that in the case of information processing with

limited computational resources there is an additional complication: Deciding which

information to process may itself take up significant computational resources. Therefore

some balance must be struck between, on the one hand, spending so much computational

effort deciding how the limited computational resources should be used that the resources

themselves are completely exhausted once the decision is reached, and on the other hand,
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leaping blindly into some particular piece of information processing, with no notion whether

this is likely to be fruitful.

A different, though also complex, case, arises where resources are not strictly

limited, but must be obtained at some cost. For example, the time a person can spend

deciding what to do may be unlimited in some contexts. The person could think all day and

the next day and so on without reaching a decision--there is no rigid time limit. But by

spending this time thinking, the person is not able to engage in some other enjoyable or

useful activity. In economic terms, the time used for thinking must “bought” at the “cost”

of the lost opportunity to do something else. As with the case where resources are rigidly

limited, some balance must be found between being lost forever in thought, and choosing

what to do completely blindly.

We do not attempt here to survey the possible ways in which these trade-offs may

be made. The number of theoretical options is very large and unexplored, and which

approach is adopted will depend on the cognitive process under consideration. In

developing our rational analysis of local ambiguity resolution below, we shall describe a

way of simplifying the problem of dealing with computational resource limitations:

specifically, by assuming that the more resources are used, the more likely the computation

is to “crash,” and then trading off the expected probability of solving the problem by

performing some computation against the probability that the computation will cause a

“crash.” An obvious way to set up such a trade-off is to have the goal of maximizing the

overall probability of solving the problem successfully. We shall see how this approach can

be applied in detail below. Note that this simplification is a general strategy in rational

analysis. It will  often be necessary, as here, to move from a very general goal where

analysis is not tractable (e.g., maximizing expected information gain or expected utility

given limited computational resources), to  a specific goal where analysis is tractable, which

is assumed to approximate the general goal. The general analysis is, nonetheless, important,

because it defines a standard against which the appropriateness of the specific goal can be

assessed.

Relation between normative accounts of inquiry for action and thought
We have sketched two approaches to optimal data selection, depending on whether the goal

is optimizing action or optimal disinterested inquiry. It might seem that the second approach

is redundant, at least from a psychological point of view, because “distinterested thought”

might appear to be  a rather  implausible goal for a cognitive system. This line of thinking

would suggest that the right goal for the cognitive system is some form of utility. From an

evolutionary perspective, one might propose inclusive fitness; from an ethological
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perspective, one might propose maximizing goals such as nutritional value of diet, number

of offspring, etc; from an economic perspective, one might propose maximizing some

subjective notion of utility (as defined by the participant’s preferences). Knowledge, it

might seem, is only valuable to the extent that it contributes to guiding the choice of actions

so that such goals as these are maximized.

In practice, however, an exclusive focus on utility may sometimes be inappropriate.

Frequently, it is not feasible for a cognitive process or agent to decide what practical goal

might be served by the results of some investigation. In science, for example, it is well-

accepted that pure research may have enormous long-term practical implications, and is

therefore worth funding; but in pure research the immediate task is  disinterested inquiry--in

our terms, attempting to maximize information gain, with no concern for potential uses to

which that information might be put. From a utility-based perspective, the ideal would, of

course, be to fund only that pure research with long term benefits. But it is not possible to

decide beforehand which research this will be--and hence funding disinterested inquiry is an

appropriate surrogate goal. Similarly, many cognitive processes may also be guided by the

goal of “disinterested inquiry.” Exploratory behavior in animals and children, and the

general phenomenon of curiosity seem to suggest that this may be so. At the level of

providing rational anlayses for cognitive mechanisms it is likewise possible that the

appropriate goal is disinterested inquiry.

In general, a decision-theoretic perspective is likely to be appropriate in cases where

the relation between information and action is relatively straightforward and relatively

inflexible. Where this relation is complex and changeable, an information-gain rational

analysis may be more appropriate.

Let us consider two examples from perception. First, consider the perceptual system

of the frog, which is geared towards the detection of dark, fast, moving concave blobs

(among other things) (Lettvin, Maturana , McCullough & Pitts, 1959). Thus, the frog’s

perceptual system seems adaptive not because it attempts to gain as much information about

the world as possible, but because the information that it gains is relevant to its actions (e.g.,

snapping in the direction of the perceived blob), which relate to its utilities (e.g., eating flies).

Notice that a decision-theoretic analysis seems appropriate here because the relation

between the information concerning the motion of the blob is relatively straightforwardly

and inflexibly related to something that has positive utility for the frog--eating a fly.

By contrast, the processes of human perceptual organization involved in making

sense of line drawings, and other degraded stimuli commonly used in psychological studies,

do not appear to relate directly or in a stable way to specific actions or utilities. Gestalt

principles such as “good continuation” or “common fate” may aid the segmentation of
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the image, and assist in the process of object recognition; but the consequences that they

have for action, if any, will depend critically on what it is that is being recognized. One and

the same Gestalt principle may allow a perceiver in one case to recognize a lion, and in

another to recognize a friend--the actions and utilities in the two cases will, of course, be

radically different, and unpredictable. A myriad of background circumstances will also be

relevant – in encountering a lion at the zoo, processes of perceptual organization

contributing to recognition might have only the slightest utility and effect on actions, if the

lion is behind bars; but might trigger flight and save one’s life if the lion has escaped. The

flexibility of the relationship between the information gained from processes of perceptual

organization and their effect on utilities suggests that such processes might usefully be

considered as primarily geared towards providing as rich a representation of the

environment as possible: that is, as engaged in disinterested inquiry. Interestingly, the

literature on perceptual organization has tacitly assumed that this is the goal of perceptual

organization, by assuming that the goal of perceptual organization is utility-independent:

that the goal is either constructing the most likely organization of the perceptual stimulus or

the simplest (Chater (1996) has recently shown that, under natural interpretations of each of

these viewpoints, they can be shown to be equivalent). The distinction between decision-

theoretic and information-theoretic approaches provides an interesting framework for the

general debate over the extent to which perception can be understood as having the goal of

providing a rich general representation of the world (e.g., Marr, 1982), or as being geared

towards serving particular actions (e.g., Gibson, 1979).

In the light of these considerations, it seems most appropriate to view the problem of

parsing from the point of view of disinterested inquiry, rather than from a decision-theoretic

perspective, given that the relation between information about the correct parse of a sentence

may have an arbitrary, and typically extremely complex, relationship to the utilities and

potential actions of the language understander. But a decision-theoretic analysis would seem

to suggest that the parser should determine its strategies on the basis of exactly these

factors. But while perhaps desirable in principle, such an analysis is intractably complex in

practice. We therefore now develop a specific rational analysis of how the parser may

choose to resolve syntactic ambiguities, based on an approximation to an information gain

approach, rather than a utility-based approach.

PART 2: A CASE STUDY: LOCAL AMBIGUITY RESOLUTION IN PARSING
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The problem of local ambiguity
We begin our rational analysis by outlining the problem that we aim to analyse: resolving

local ambiguities in natural language parsing. In general terms, the sentence parsing task

involves recovering an interpretation from a linguistic signal which is often highly

ambiguous. A sentence may be globally ambiguous, as demonstrated by the following pair:

(a) “[NP: Flying planes] frightened the pilot”

(b) “[Gerund: Flying planes] frightened the child”

It is also possible, indeed very common, that sentences will contain local ambiguities. This

arises from the fact that people process language incrementally, constructing a partial

interpretation as each word is encountered, whether read or heard. This is demonstrated by

the well-known reduced relative clause construction:

(c) “The actress sent the flowers was pleased”

When the word sent is encountered, the human parser may process it either as the main

predicate of the sentence, and interpret the actress as its subject, or construct a reduced

relative clause (Cf. "The actress who was sent...”). This is a local ambiguity, since

ultimately only one or the other analysis will turn out to be correct. In this case, people

systematically pursue the former analysis, and then garden-path when this ultimately turns

out to be incorrect. If they cannot recover from this garden path, with some acceptable

period of time, then we say that the parser has crashed. One mechanism for dealing with

such ambiguity might be to construct all possible analyses in parallel. However, people’s

inability to recover (often) from sentences such as (c), suggests that this is not the case.

Indeed if we consider a more difficult example, we encounter further evidence against

complete parallelism:

(d) “The man knew the solution to the problem was incorrect”

In this case, the noun phrase “the solution...” can be locally interpreted as either the direct

object, which turns out to be incorrect, or an embedded subject, which is ultimately proved

correct. Indeed, other interpretations are possible, such as the beginning of a possessive

noun phrase:

(e) “The man knew the solution's discoverer was clever”
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Theoretically, due to the recursive nature of the possessive construction, there are an infinite

number of possible partial syntactic analyses for the fragment “The man knew the

solution...”. Given that the human mind is finite, there is no way for it to simultaneously

entertain an infinite number of partial parses.

In dealing with the problem of local ambiguity, we can therefore conclude that the

human parser pursues either a single, serial analysis, or a bounded number of parallel

analyses. In either case, we assume there is one analysis, which is “favoured” by the

parser. For the remainder of this paper we will assume the simpler serial model. We believe,

however, that what follows could be equally well applied to a bounded, ranked parallel

mechanism.

Given that the general goal of the parser is to recover the most probable

interpretation for the sentence as a whole, what strategy for resolving local ambiguities will

best achieve this? The sentence processing literature has posited numerous parsing

strategies, such as Frazier's (1979)  Minimal Attachment and Late Closure principle. Such

strategies, however, are typically motivated by the desire to minimise computational

complexity or memory load, rather than obtaining a likely parse. Indeed, Hindle & Rooth

(1993) demonstrate that for prepositional phrase attachment ambiguities, Minimal

Attachment will make the incorrect attachment decision in more than 60% of instances

(based on corpus findings).

Another strategy, which might be naturally assumed in the context of the present

discussion, would be to adopt the most likely analysis at each local point of ambiguity. This

suggestion is approximately what has been proposed under the heading of “constraint-

based” theories of parsing, in the context of a parallel, competitive-activation architecture, .

We argue, however, that while superficially appealing, this approach is not optimal for the

resolution of local ambiguity.

Constraint-based theories are close to parallel likelihood accounts.  In such models,

parsing preferences are based on the simultaneous interaction of multiple constraints

(MacDonald, 1994; MacDonald, Pearlmutter, & Seidenberg, 1994; Trueswell, 1996;

Trueswell, Tanenhaus, & Garnsey, 1994; Trueswell, Tanenhaus, & Kello, 1993; cf. Taraban

& McClelland, 1988; Tyler & Marslen-Wilson, 1977).  These constraints relate to any

properties of the encountered sentence that may influence its continuation, including

subcategorisation preferences, other syntactic cues, the meaning of the fragment, the nature

of the discourse context, and prosody or punctuation.  Such models are unrestricted, in that

all potentially relevant sources of information can be employed during initial processing

(Pickering, 1997; Traxler & Pickering, 1996). Data about these sources of information can
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be estimated from corpus counts or obtained from production tasks where participants

complete sentences from the point of ambiguity onwards.  For instance, a few participants

might complete “The man realised...” using a noun (e.g., “his goals”), but most will use a

complement clause (e.g., “...his goals were unattainable”); and most participants might

complete “The man realised his...” using a noun plus verb phrase on a complement-clause

analysis (e.g., “...goals were unattainable”). From this, such models would assume that the

parser would prefer the complement-clause analysis to the object analysis (e.g., Trueswell et

al., 1993), and would foreground it by “his” at the latest.  This is as predicted by likelihood

accounts.  However, recent constraint-based models sometimes assume that the parser pays

attention to broader classes in making decisions (e.g., MacDonald, 1994; MacDonald,

Pearlmutter, & Seidenberg, 1994; Trueswell, 1996; Trueswell, Tanenhaus, & Garnsey,

1994; Trueswell, Tanenhaus, & Kello, 1993).  It might be noted that more verbs are

transitive than intransitive, say, and thus support a transitive analysis of a fairly rare

intransitive-preference verb. Unless the verb were extremely rare (with the data about

preferences being unreliable), such a heuristic would go against likelihood.  Constraint-

based models therefore approximate to likelihood, but may diverge from it in some cases.

Formulation of the problem

We assume that the specific goal of the parser is to maximize the probability of recovering

the parse of the input as generated by the speaker.13 This specific goal is more useful than a

general goal such as obtaining as much information as possible from the input, because the

role of the parser is not to discover as much information, of whatever kind, as possible, but

is to discover one particular piece of information, the correct structure of the input being

analysed, so that this information can be used in building up an appropriate semantic

representation of the input. Of course, the larger goal of the language processing system

may be inquiry into the intentions of speakers, the state of the world, or even (according to a

utility-based viewpoint) how to improve their choices of actions. But such larger goals have

such a complex relationship to parsing a sentence (fundamentally because syntactic

properties of sentences are not directly related to their semantic and pragmatic properties), it

seems unlikely that such larger goals can be usefully related to the problem of choosing

between alternative parses.

                                    
13 Of course, the speaker will presumably not consciously intend any syntactic analysis,
only the message conveyed. But presumably the language processing system of the speaker
will have assigned a syntactic analysis to the sentence produced, or at least some
representation (e.g., a semantic representation) which determines the correct global syntactic
analysis. Note that there are some syntactic ambiguities which have no semantic
consequences, but that these are not relevant here.
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We shall assume that the performance of the parser on a given input can be

classified unambiguously as either a success (the globally correct parse is recovered) or a

failure (it is not). But this is clearly a significant oversimplification, because parsing may

succeed to a greater or lesser degree. At one extreme it might lead to a structure for the

sentence which is incorrect in some minor detail; at the other extreme it might lead to total

breakdown early in the sentence, so that no useful information can be used to constrain

semantic processes. The simplifying assumption that parses either succeed or fail provides,

however, the starting point for a rich and tractable rational analysis. We hope that future

research will consider how the analysis of a notion of graded success in parsing might be

incorporated into this kind of account.

Processing assumptions

The task of resolving local ambiguity in parsing must proceed in the face of the two types of

informational limitation--limited data, and limited computational resources with which to

analyse that data--that we described in Part I. The limitation on data is inherent in the

problem--it is this that means the parser faces a problem of local ambiguity; but the problem

of limited data cannot be directly addressed by the parser, because the source of data  (in

speech understanding) is outside its control14. By contrast, the parser does have control

over how it allocates computational resources in analysing the current input, so that it  has

the best chance possible of successfully navigating through the series of local ambiguities it

faces under the severe real-time constraints of parsing fast speech. Therefore, it seems

appropriate to setting the rational analysis of parsing within the framework of optimal

computational resource allocation, rather than optimal data selection.

Any problem involving the allocation of computational resources must begin from

some assumptions about the nature of the resources to be allocated. Fortunately, these

assumptions can be very general constraints on the structure of the language processor,

rather than requiring a fully detailed theory of language processing. First, we must ask: Is

the parser serial, parallel, or somewhere in between? This is, of course, a central and

unresolved issue in the study of human sentence processing, as we discussed above. In

developing the analysis here, we choose to assume that the parser has a strict serial

architecture, because this is the simplest, and most extreme, form of resource limitation in

this context. We suspect that the conclusions from this analysis carry over, to some extent,
                                    
14In reading, by contrast, the parser has the opportunity to influence the way in which
language input is sampled—e.g., by influencing fixation times, or by triggering regressive
eye-movements. Of  course, this control may not be exercised directly (which might appear
unlikely according to a strong modularity viewpoint, e.g., Fodor, 1983),  but  instead by later
processes which depend on the output of the parser.
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when the assumption of strict seriality is weakened, to allow a modest degree of parallelism-

-but investigating this question rigorously remains a topic for future research.

A serial parser must choose a single option when it reaches a local ambiguity. Later

in the sentence, it may become clear that the choice was incorrect. The parser must then

“backtrack” to revise its previous choice. This choice, too, may be incorrect and

subsequently require revision. Eventually, the parser makes the correct choice and further

backtracking is not required. Eventually, if all goes well, the parser reaches the globally

correct parse for the sentence. For simplicity, we shall assume that global syntactic

ambiguity of the entire sentence is sufficiently rare that it can be ignored, so that a globally

consistent parse, when found, will be the correct parse.

With limitless time and memory, and an adequate knowledge of the structure of  the

language, the parser could eventually  always find a globally consistent parse for any

grammatical sentence, simply by exhaustively searching through the space of possible

sequences of parsing choices. But in practice, the parser has limited resources, and may fail.

We assume that the principal source of failure in parsing occurs in abandoning one option,

and attempting to backtrack to another--if irretrievable failure occurs at this stage, we say

that the parser has “crashed”. We assume that the probability of backtracking successfully

is determined by two independent factors: the difficulty of backtracking out of the current

hypothesis; and then the difficulty of setting up the second parse. The independence

assumptions means that the probability of successfully switching from parse1 to parse2 is

the product of the probability of “escaping” from parse1, multiplied by the probability of

setting up parse2.15 To minimize the probability of crashing, the parser must aim to find the

correct hypothesis as rapidly as possible--because every time it follows up a false lead

which must be rejected, there is a possibility that it will crash. Notice that this is a very

simple model of the limitations on the parser--it captures only the fact that back-tracking  is

error-prone. A more realistic account might also take into account the fact that the parser

must work with an input which arrives in real-time, and that excessive backtracking may

mean that the parser falls irretrievably behind the input which it is parsing.

We have so far noted that the parser may fail by crashing. But the need to minimize

the amount of back-tracking to reduce the probability of crashing introduces another

possible source of error: incorrectly rejecting the correct parse. Consider the common

situation in which the parser makes a choice at a local ambiguity which comes to seem

unlikely (although not impossible) given later context. If the parse is pursued, then it is

                                    
15It is possible that these processes are not strictly independent - for example, it is possible
that difficulties in escaping from parse1 may lead to increased difficulties in setting up
parse2 (see, for example, Pritchett, 1992).
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likely that back-tracking will be required, with the associated risk of crashing. But if the

parse is not pursued, then there is the risk that this parse was correct after all, and the

possibility of a correct parse has thereby been missed16. An optimal choice of parsing order

requires finding the correct balance between these two risks--of crashing during

unnecessary search, and of mistakenly rejecting the correct parse.

To sum up, we assume that the parser chooses the order in which to consider

alternative hypotheses at a point of local ambiguity to minimize the overall probability of a

crash in parsing a sentence. Determining what choices the parser should make involves two

steps. First, we show that, given certain assumptions, the global goal of reducing the

probability of crashing throughout the entire sentence can be reduced to the local goal of

reducing the probability of crashing at each specific local ambiguity. We then show how

this local goal can be achieved.

Step 1: From global to local maximization.

Suppose that there is a single possible global parse, and that there are n local ambiguities,
Li , in the sentence. The correct parse will be reached if each of the n local ambiguities can

be dealt with successfully (i.e., the correct hypothesis is adopted at that local ambiguity,

perhaps after some backtracking).

P(successful global parse)= P(success at L1) × P(success at L2)×...×P(success at Ln)

= P(success at Li )
i =1

n

∏ (14)

Note that this independence assumption may be a significant simplification. For example, it
is quite possible that if the local ambiguity Li  was only resolved with extreme difficulty,

then the parser will be more likely to crash on the next local ambiguity, Li . But we ignore

such factors here and assuming that the chance of success at each local ambiguity is

completely independent of the previous ones. Given independence, the goal of maximizing

the probability of achieving the globally successful parse translates into the task of trying to
maximize each element of the product--that is, at each local ambiguity Li  aiming to

maximize the chance of choosing the correct parse at that ambiguity (where the “correct”

local parse is simply determined by the single globally successful parse).

                                    
16 We assume for simplicity that the parser cannot return to options that it has already
rejected, although it would also be interesting to considering the analysis where this
assumption is not made.
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This means that the goal of maximizing the probability of a successful global parse

can be translated into a sequence of independent local goals: maximizing the probability of

the correct local parse, at each local ambiguity. That is, the parser must maximize:

P(success at Li ) (15)

This will be the goal in all the analysis below.

Step 2: Locally optimal parse selection

We now consider how the parser should choose how to order its parses at a local ambiguity

in order to maximize the probability that is gets through that ambiguity successfully (i.e.,

consistent with some globally possible parse). We call these parses “hypotheses,” and
label them H1...Hn

An obvious suggestion is that we choose the hypotheses purely on the basis of the

probability that they are correct, conditional on all the relevant information that can be

accessed. We shall call these probabilities priors, because they are prior to assessing any of
the hypotheses against subsequent context, and they are denoted P(Hi ) .

We can assume, without loss of generality, that the hypotheses are ordered in some
specific way, say: H1...Hn : i.e. that H 1  is chosen first, and if this is rejected H  2   is chosen,

and so on17. We will consider the probability that the parser eventually selects a correct

hypothesis from these, given this order. We will then consider how the order should be

optimized, to maximize the probability of success.
Suppose the hypothesis Hj  is true. Then the probability of settling on it is the

product of the probability of “escaping” from all the hypotheses which were considered
previously, the H1...Hj −1. This must be multiplied by the probability of successfully settling

on Hj , which requires that the hypothesis Hj  can be “set up” successfully, and then that

the processor “sticks” with, rather than spuriously rejects, Hj .

For each of the H1...Hj −1, the probability of escaping successfully from an

erroneous hypothesis Hi  successfully setting up, and rejecting, the hypothesis without

crashing (assuming these are independent) is:

 P(escape Hi ) = P(Set_ up Hi |Hi )P(Reject Hi |Hi ) (16)

                                    
17 Notice that by assuming a fixed order, we are ruling out the possibility that the nature of
the failure on one hypothesis may determine the next hypothesis to try. This is, of course,
only of importance in cases where there are more than two possible structures to be
considered. To our knowledge, this possibility has not been proposed by other theorists,
and we ignore it here.
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Note that these probabilities are conditional on the fact that Hi  is false, in symbols, Hi . To

finally settle on the correct hypothesis Hj  requires successfully escaping from each of the

j-1 previous hypotheses, which has probability:

P(escape Hi )
i < j
∏ (17)

Having “escaped” the preceding incorrect hypotheses, we consider the probability of

settling on the correct hypothesis. For this to occur, the correct hypothesis must be set up

correctly, and then not spuriously rejected. Again assuming these processes are

independent, this gives:

 P(settle Hi ) = P(Set_ up Hi |Hi ) 1− P(Reject Hi |Hi )( ) (18)

Combing (17) and (18), we conclude that, if the correct hypothesis is Hj  the probability of

choosing it is:

P(settle Hj ) P(escape Hi )
i < j
∏ (19)

So far, we have assumed that the correct hypothesis is Hj . But, of course, at the point of

local ambiguity, the correct hypothesis may be any of H1...Hn , with priors P(H1)...P(Hn) .

So the probability of settling on the correct hypothesis is a sum of terms of the form (19),

weighted by the prior for each hypothesis:

P(succeed at local ambiguity)= P(Hj )P(settle Hj ) P(escape Hi )
i < j
∏






j =1

n

∑ (20)

This expression assumes that we consider the hypotheses in the order H1...Hn  We intend

to maximize (20) by optimizing the order in which the hypotheses  are considered.

The argument proceeds in two parts. The first part compares just two orders:
H1...HkHk+1...Hn  and H1...Hk+1Hk...Hn , and shows that there is a simple rule for

determining which order allows a higher value of (20). The second part shows that this rule

determines the optimal order in which the hypotheses should be considered.
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1:  Comparing two similar orders. We denote the sequence H1...Hk+1Hk...Hn  by

G1...GkGk+1...Gn , where Gk = Hk+1 , Gk+1 = Hk  and otherwise Gi = Hi . The probability of

successfully ending with the correct hypothesis with the order of H k+1   and H  k   swapped

mirrors the expression (20):

PG(succeed at local ambiguity)= P(Gj )P(settle Gj ) P(escape Gi )
i < j
∏






j =1

n

∑ (21)

Swapping Hk  and Hk+1 improves the probability of successfully parsing the local

ambiguity if and only if the expression in (21) is greater than (20). The derivation in

Appendix A shows that this holds if and only if:

P(Hk+1) × P(settle Hk+1) × 1
1− P(escape Hk+1)

> P(Hk ) × P(settle Hk ) × 1
1− P(escape Hk )

    (22)

This means that swapping Hk  and Hk+1 improves the probability of successfully parsing

the local ambiguity if and only if condition (22) holds.

2: Establishing an optimal order. We have now provided a way of deciding between
two orders of the form H1...HkHk+1...Hn  and H1...Hk+1Hk...Hn . Condition (22) shows that

the choice is determined purely by properties of the hypotheses Hk  and Hk+1, and is

completely independent of all the other hypotheses, and the probabilities associated with

them. This means that we can write (22) as

f (Hk+1) > f (Hk ) (23)

where f (Hi ) = P(Hi ) × P(settle Hi ) × 1
1− P(escape Hi )

.

Appendix B proves that the optimal order in which to test hypotheses is in
descending order of f (Hi )  (where ties can be broken arbitrarily).

Thus, we have the conclusion that the parser should first consider the hypothesis
with the highest value of f (Hi ) . This condition has a simple intuitive meaning. The first

term of f (Hi )  indicates that, other things being equal, the hypothesis with the highest prior

should be tested first. The second term indicates that, other things being equal, hypotheses

which, if correct, are easy to settle on, are to be tested earlier. The third term indicates that,

other things being equal, the hypothesis from which it is easiest to escape when it is not

correct should be preferred. This rational analysis thereby provides a strong set of
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predictions about parsing preferences, assuming that parsing preferences are at least

approximately optimal. Testing the empirical adequacy of this rational analysis will require

both empirical data concerning parsing, but also analysis of natural language corpora (to

obtain, for example, appropriate estimates of priors for different parsing hypotheses in the

context of particular types of local ambiguities).

We stress that this rational analysis of parsing preferences is one of many possible

rational analyses that could be devised. As Anderson (1990, 1991) stresses, finding a good

rational analysis, like finding a good scientific theory of any kind, involves an iterative

interaction of theory and data. We are currently obtaining relevant empirical evidence, but

this is beyond the scope of this chapter, and we expect that this will require adjustment and

elaboration of this account. For the present, we hope that this analysis will provide a useful

starting point from which the iteration between theory and data can begin in the case of

parsing, and that it serves more generally as an illustration of how a rational analysis of a

cognitive process involving inquiry can be developed. Specifically, we hope that it usefully

illustrates the simplifications that may be involved in moving from a general rational

framework to a specific and tractable rational analysis of cognitive performance.

Conclusion
The rational analysis of inquiry is a large, and relatively unexplored, area of future research.

As we have seen, a wide range of cognitive processes involve the distribution of resources,

either in information gathering or information processing, so that inquiry is as effective as

possible. We have also seen that there are formal frameworks in terms of which such

analyses can be provided. So, from a normative point of view, the prospects for rational

analysis of inquiry seem bright.

But rational analysis must be normatively justified and descriptively adequate. Thus,

a crucial question for future research concerns the degree to which the predictions of

rational analysis of cognitive processes involving inquiry can predict empirical data. We

have noted already that Anderson’s rational analysis of problem solving and Oaksford and

Chater’s (1994) account of the selection task have captured a wide range of empirical data.

In addition, however, we note that there is an fundamental reason to believe that the

rational analysis of inquiry should, ultimately, be possible. Our cognitive processes are

remarkably effective information processors--far more effective than any artificial system

that we can devise at dealing with the uncertainty and complexity of the real world. Inquiry

is so central to cognition that it seems likely that the processes of guiding inquiry must,

similarly, be highly effective. Such success seems to require following, to some level of

approximation, some normatively justified principles for  guiding inquiry--otherwise this
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success is inexplicable. If this is correct, the rational analysis of cognitive processes

involving inquiry must be possible: there must be some normatively justified account to

which the cognitive system approximates. Arguments for the mere existence of rational

analyses, are, of course, only partially reassuring. The crucial issue is whether it is possible

to devise rational analyses which are normatively and descriptively adequate. We hope that

this chapter has shown that this is indeed sufficiently likely to justify future research.
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Appendix A: Derivation involved in comparing two parsing orders

We denote the sequence H1...Hk+1Hk...Hn  by G1...GkGk+1...Gn , where Gk = Hk+1 ,

Gk+1 = Hk  and otherwise Gi = Hi . By the analysis in the text, swapping the order of H k+1  

and H  k   increases the probability of choosing the correct hypothesis if and only if (21) >

(20). The following derivation shows that the relationship can be expressed in a simple

form. We first expand (21) as follows:

= P(Gj )P(settle Gj ) P(escape Gi )
i < j
∏






j =1

k−1

∑
+P(Gk )P(settle Gk ) P(escape Gi )

i <k
∏

+P(Gk+1)P(settle Gk+1) P(escape Gk ) P(escape Gi )
i <k
∏





+ P(Gj )P(settle Gj ) P(escape Gi )
i =1

k−1

∏




P(escape Gk )P(escape Gk+1) P(escape Gi )

i =k+2

j

∏


















j =k+2

n

∑

= P(Hj )P(settle Hj ) P(escape Hi )
i < j
∏






j =1

k−1

∑
+P(Hk+1)P(settle Hk+1) P(escape Hi )

i <k
∏

+P(Hk )P(settle Hk ) P(escape Hk+1) P(escape Hi )
i <k
∏





+ P(Hj )P(settle Hj ) P(escape Hi )
i =1

k−1

∏




P(escape Hk+1)P(escape Hk ) P(escape Hi )

i =k+2

j

∏


















j =k+2

n

∑
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which gives:

= P(Hj )P(settle Hj ) P(escape Hi )
i < j
∏






j =1

k−1

∑
+P(Hk+1)P(settle Hk+1) P(escape Hi )

i <k
∏

+P(Hk )P(settle Hk ) P(escape Hk+1) P(escape Hi )
i <k
∏





+ P(Hj )P(settle Hj ) P(escape Hi )
i < j
∏

j =k+2

n

∑

(A1)

For comparison with the original order H, we now rearrange (20) in a similar form:

= P(Hj )P(settle Hj ) P(escape Hi )
i < j
∏






j =1

k−1

∑
+P(Hk )P(settle Hk ) P(escape Hi )

i <k
∏

+P(Hk+1)P(settle Hk+1) P(escape Hk ) P(escape Hi )
i <k
∏





+ P(Hj )P(settle Hj ) P(escape Hi )
i < j
∏

j =k+2

n

∑

(A2)

Order G is better than order H if expression (A1) is greater than expression (A2). This will

be true if and only if:

P(Hk+1)P(settle Hk+1) P(escape Hi )
i <k
∏

+P(Hk )P(settle Hk ) P(escape Hk+1) P(escape Hi )
i <k
∏





> P(Hk )P(settle Hk ) P(escape Hi )
i <k
∏

+P(Hk+1)P(settle Hk+1) P(escape Hk ) P(escape Hi )
i <k
∏





(A3)
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which is true if and only if

P(Hk+1)P(settle Hk+1) + P(Hk )P(settle Hk )P(escape Hk+1)

> P(Hk )P(settle Hk ) + P(Hk+1)P(settle Hk+1)P(escape Hk )

P(Hk+1)P(settle Hk+1)(1− P(escape Hk )) > P(Hk )P(settle Hk )(1− P(escape Hk+1))

P(Hk+1) × P(settle Hk+1) × 1
1− P(escape Hk+1)

> P(Hk ) × P(settle Hk ) × 1
1− P(escape Hk )

    (A4)

This gives the result stated in the text as (22).
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Appendix B: Proof that the optimal order is to choose
hypotheses in descending order of f (Hi )

We first note that there is an order which is optimal (there may be more than one such order

as ties are possible), because there are only a finite number of orders.

We then use Reductio Ad Absurdem. That is, we assume that an optimal order E is
not in descending order of f (Hi ) . This implies that there is at least one pair of adjacent

hypotheses, Hm  and Hn , where Hm  is chosen before Hn , but where f (Hn) > f (Hm) .

Now consider the order D, which is the same as E, except that Hn  is chosen before

Hm . By Part I, D is better than E. But this means that E is not optimal. This contradicts our

original assumption that E was optimal. Therefore the optimal order is to select hypotheses
in descending order of f (Hi ) . The completes the proof.


