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The cognitivesystem is not &rely a passive receiver offormation. Ithas someneasure

of control of whatinformation itreceives;and how hat information isprocessed. Control
over the information received may be exercisedwide variety of waysfrom adjustments

to the sense organs (e.g., by moving the eyes)edsions concerninghich newspaper to
read. Controlover howinformation is processed is equally ubiquitous, ranging from
attentional mechanisn{presuming that sucimechanisms at least to some degree bias the
resources applied to processing different aspedisesfensoryinput) to how much effort

to spendhinking about anove in apossiblemove in achessgame, or on alecision in
everyday life.

The cognitivesystem is engaged inpaiocess of inquify about the world: it must
chosehow to collectinformation and how tgrocess hat information. An analogy is
intended herdetweeninquiry by the cognitivesystem and organized inquimvolved in
research. Inquiry in research also involves judicious cooiref information (e.g.which
experiments are performed, whicioservations are made) and how that information is
processedhow that data is analyseayhat hypohesesare proposedwhen are they
abandoned, and so on). We shall develop this analogy further below.

Inquiry is difficult, whether in a cognitive or scientific contekiecause it typically
must proceed ithe face of very seveme@source limitations. Information gathering must
therefore be highlyselective. It isnot possiblefor example, toobtain a high-resolution
image of the entire visual world; the fovea must be directed towards a tiny part ioiabat
at any one time. Similarly, it is not possible to redichewspapers, aall articles in a single
newspaper; reading must be highdglective toobtain maximum benefit. Information
processing must also be highdglective: attentioannot be directedverywhereonly a
tiny fraction of sequences of chess moves can be analysed, and so on.

Given that people (and animals) appear to be highlgcessful information
processing systems, presumably these problem of directing ingugryypically solved
satisfactorily. How is this possible? This chapter provides a framef@orianswering
questions of this form, at the level of ratioaallysis (Anderson, 199@991; Oaksford &
Chater, 1995a). Rational analysis involves providing a normaiusified account of how
the problem can be s@ld,and this account must also Hescriptively correct in that the
cognitive processes under study must implement (or, fikefe, cheaply approximate) this

1 The use of “inquiry” in this sense was suggested to us by Mike Oaksford, in relation to
work in his PhD thesis (Oaksford, 1989), who has also contributed significantly to many of
the fundamental ideas in this paper. This term was used in a related sense by Stalnaker
(1984).



analysis. The criterion aflescriptive correctness tieshe account to empirical data; the
criterion of normative justification explains why the cognitive process is successful.

This chapter is concernezkclusively withoutlining normativeproposals for the
rationalanalysis of inquiryThe main goal is to explore the rangeagpitions available in
building potential rational analysis of specific aspects of cognition involving inquiry. We do
this in two ways: first by outlining ththeoreticalunderpinnings of Bayesian and decision-
theoreticapproaches tthe rational direction of inquiry; anskecond by showing idetall
how a rationabknalysiscan be developedtiaking the case of local ambiguity resolution in
parsing. Thedescriptivecorrectness opotential accounts ofhis form, when related to
empiricalevidence, ioutsidethe scope of this chapter. Bipcussing omormativeissues,
this paper has thigavour of apriori inquiry; but notice that thaltimate usefulness of any
of the approaches the rationalanalysis ofcognitive processesvolving inquiry depends
crucially on the ability to explain empiricdata,and thus satisfy botthe normative and
descriptive criteria.

This paper isdivided into two parts, dealingith general issues and the specific
rational analysis of parsing in turn. In Part 1, we begin by considettieg general
frameworks for rationality in terms ofwhich normative acamts of inquiry can be
developed. We thewonsiderhow these frameworkallow us to define thevalue of
information. This allows us to consideow to estimate thealue ofinformation-gathering
inquiry, which has the goal of obtaining information. Roughly, thihésexpectedalue of
the information that W be obtained, balanced against tt@sts ofconducting thenquiry.
Part 1 concludes with a discussion of the relationship between the different framthabrks
have been introduced. In Part 2, we show how a specific ratoaglsis of inquirycan be
developed, drawing on the problem of local ambiguity resolution in parsing. Because natural
language is locally highly ambiguous, there are frequentiyiraber of possible parses
consistenwith the current input; computationaésourcdimitations presumably mean that
all possibilities cannot be considered simultaneouslyth8@arser must choose imhich
order to consider the various possible parses consistent with the current input. W& grov
rational analysis of how these choices should be made, assumitigetigaial of the arser
is to maximize theprobability of obtaining the globally corregiarse forthe sentence.
Finally, we briefly drawsome conclusions concerning future researchtran rational
analysis of cognitive processes involving inquiry.




PART 1. A FRAMEWORK FOR THERATIONAL ANALYSIS OF INQUIRY

Formal frameworks for rationality
Before we cardevelop a normative account of hamquiry shouldproceed, we need to
establish a formal framewofiflr rationality, interms ofwhich the rationality ofdecisions
about inquiry can be assessed.

We consider two possible starting pointhe first begins by searching for a
framework for rational thought — the goal is_to know as mughoasible abouthe world.
The second beginwith the goal ofrational choice--the goal is to make thest possible
decisions. Irthe first framework,inquiry is valuablefor its own sakebecause it leads to
knowledge--inquiry is “disinterested”. In the second framework, inquiry is only
worthwhile if it leads to better decisions.

Both starting points may seem unpromising because they appear texteaseely
deepissues. The firsstarting point, of pursuingthe goal of knowledge;orresponds to
facing the problem of epistemology; the second, of decidimgt to do,corresponds to the
problem of ethics.

Fortunately, howevehoth classes of problegan be reformulated in more modest
and moretractableterms. The problem gfursuingknowledge can be reformulated as the
problem of how to move from a given set of beliefs to further beliefs. The deepest questions
of epistemology--concerning how beliefs aatimately be grounded, rather than circularly
depending on each other--dhais side-stepped. A @atigm approach to this reformulated
problem is as follows. We assuntigat eachproposition is associatedith a number
between Gand 1, expressinthe “degree of belief” in thaproposition(where 0 denotes
certainty that the proposition is false, and 1 denotes certainty that it is true). The problem of
decidingwhat to think can now beviewed as a prdbm of decidingwhat number to
associate to a given proposition, in the light of the numbers thdtasareadyassigned to
other propositionsThere are a large number @fell-known lines of arguments (see
Earman,1992; Howson &Urbach, 1989) which converge on the conclusion thhts
process shoulébllow the standard laws of probability theory. These argumiegfisimise
the possibility of interpreting probability theory asrermative calculusfor uncertain
inferencé. Specifically, probability theory can serve as the prescriftionvhat weshould

2 Of course, there are also other legitimate interpretations of probability theory, such as
expressing relations between limiting frequencies of events of various kinds in sequences of
repeated experiments. Debates concerning the correct interpretation of probability typically
centre on which interpretation is appropriate in scientific or statistical inquiry, but are not
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think, given some (typically very partial) set gifzen information: this is commonly known
as the Bayesian approach to inference (de Finetti, 1972; Keynes, 1921; Lindley, 1971).
The problem of making decisiortan be reformulated as the problem of how to

movefrom agivenset of beliefs and desires to actiombe deepest questions of ethics--
concerning how desires should ultimately be grounded, rather than circularly depending on
each other--are thus also side-steppé@dparadigm approach to this reformulated problem
is as follows. We assume that a real nundaer be associateslith eachpossibleevent (or
“outcome”), representing its “subjectivatility” for the decisionmakef. Higher valued
events are assumed to be preferred in a forced chwiltdower valued events. Beliefs are
associatedavith probabilities asefore. Therare then a number efell-known arguments
which converge on the conclusion tlwdioosinghow to actshould follow the laws of
decision theory. The recommendation of decision theory is that astiondd be chosen to
maximize expected utility, where timeeasure otitility, and the probabilities in the light of
which the expectation is assessed, are take asgiven

These frameworks$or rational choice arealuablestarting pointsfor the rational
analysis of cognitive processes. But beforéaunching into discussing how these
frameworks may bapplied, a fewclarificatory comments are iarder. First,recall that a
rational analysis must baormatively justified and descriptively correqiOaksford &
Chaterr, 1995a1996). These rational choice moddiave normativgustifications, but it is
an empiricalissue whether cognitiveprocessescan fruitfully be viewed asproviding
approximations to them. This questican only be decided case-by-case by constructing
rational analyses, and comparing them agamistvant empiricalata. Aswith any other
style of explanation iscience, a rationanalysis willtypically be iterativelyrefined in the
light of empiricalresults; rather than beindgerived apriori. Second, note that weave
framed thediscussion so far iterms of agentsyith beliefs, desires and actions. But the
same style of analysisiay be applied tsub-personakognitive processes, awell as
agents--indeed this is the standard case for the rational analysis of cognition. ¢asasch
“beliefs” are information states (associatedth numerical valuesinterpretable as

relevant in the psychological context of developing rational analyses, where the subjective
interpretation is the only meaningful possibility.

3 We also ignore the case in which the rational agent must reason about the behaviour of
other rational agents, which is treated by game-theory and discussed in Colman, this
volume.

4 This requires that a subjective utility function exists for the person’s set of preferences
(e.g., de Groot, 1970).

> Though it may also take other forms, such as the “minimax” criterion, which
recommends choosing the action whose worst case is least bad, which is standard in game
theory (von Neumann & Morgenstern, 1944).



probabilities),“desires” or “utilities” are simply defined by (typically) numericahlues;
actions correspond to operations or outputshef processor. Theational analysis of
parsing developed will havliis characterf-or example, itassumes thdhe parser chooses
operations to maximize the probability of finding the intended glphede ofthe sentence.
But this does not mean that the parser really hasféer desires about parses,wirether
they succeed, merely that tparser is assumetlr example, tostore numbersvhich
represent theprior probability itassigns to wéous parsing structuresndeed, even this
assumption is dispensable, becatise prescriptions ofthe rationalanalysis may be
implemented (or approximated) usiall kinds of different algorithms and representations.
Nonethelessfor expository clarity, we will talk of cognitive processes‘deciding,”
“choosing,” “preferring,”and so on--such usagase dispensable, althougionvenient,
anthropomorphisms.

This brings us to the third point of clarification: that the use of rational thesras
probability theory and decision theory in the ratioaahlysis of some ofhe cognitive
mechanisms of which agents are composed in no way implies that the whols hgbeis,
desires and actions can geen arationalanalysis.The validity ofsuch “rationalchoice”
explanations of human behaviour asvhole is, of course, guestion of fundamental
importance, whichhasattracted extensive controvensjthin experimental psychologffor
example,Gigerenzer,Hoffrage & Kleinbdlting, 1991; Kahneman, D,1996; Kahneman,
Slovic & Tversky, 1982), as well as in economics and the social scitssfor example,
Arrow, Colombatto, Perlman & Schmidi996; Elster, 1983,1989; Sen, 1990; Simon,
1982). Butthe usefulness ofhe rationalanalysis ofcognitive mechanisms is independent
of such debates.

We noted at the outset that choices about what to do or think must typicatisidee
in the face of limited informationand limited computationakesource& The relative
emphasis on these tvkinds of limitation will, of course, depend on the context. In some
contexts, the computational resources may be sufficient to processtlable, partialdata,
and themain question of interest iBow to choosewhich new data teselect. Here, the
problem is_optimal data selection. In other contexts, the main problem may be limitations on

computationatesourcesavailable touseexistingdata,and the mairgquestion of interest is
how to allocate thesesourceoptimally to analysehis data. Heréhe problem is optimal

computationalresourceallocation. Thereare, of course,hybrids where both factors are
important, but we shall ignore these for simplicity.

6 This corresponds to the general distinction between data-limited and resource-limited
cognitive processes (Norman & Bobrow, 1975).



In this paper, we presat a uniformtreatment ofproblems. The firstproblem,
optimal data selectiomasbeen extensively studied; but the second, optimal computational
resourceallocation, is relativelyunexplored. Buthe two problemsare closely related--in
essencethe decision to carry outome furthercalculation can beviewed asdirectly
analogous tdahe decision tacollect some more data--and henttee analyses othe first
problem canshed light on the second. Carrying out observations and carrying out
calculations are simply two differetytpes of inquirywhich can lead to new information
(although, as we shall nobelow, the problem of computationaésource allcation does
raise certain fresh issues).

We now consider how the two frameworks for rational choice introdabede can
be used to provide theories of hawquiry shouldproceed. This requires first establishing
how each framework allows a value to be attached to information.

The value of information
From the perspective ofdisinterested inquiry,” anatural and straightforward goal is
simply to maximize theamount of information gainédoy an investigation, whether or not
this data is useful with respect to other utilities (Lindley, 198&ckay,1992). Specifically,
the amount of information gained is viewed as reduction in uncertainty, where uncertainty is
measured byhe standard entropy measure from information theory (Sharit#8). We
shall consider this measure in the analysis below, partly becausegehéslity,and partly

because ithas been analyseanathematically. Therare, however, manynore specific
informational goalswhich may be moragelevant to therational analysis of pdicular
cognitive tasks, particular where more genegalals do notlead directly to a tractable
analysis. We shall choose osechspecific goal in developing a ratiorehalysis oflocal
ambiguity resolution imparsingbelow — namely, maximizing therobability of correctly
parsing a sentence.

7 An alternative goal to maximizing information gain is maximizing the change from the
distribution of probabilities over the hypotheses before and after the data is received. The
standard measure of this change is the Kullback-Liebler distance between the distribution in

UP(H,|K& N)O

P(H|K)
where H, K and Nhave the meanings outlined below in the text. It turns out that the
expected value of this quantity is identical to the expected value of information gain, even
though information gain and Kullback-Liebler distance are not the same for any particular
piece of data, N (Lindley, 1956). Thus, we have an alternative starting point for an account
of optimal data selection. This may have advantages in certain contexts (see Oaksford and

Chater’s (1996) response to Evans and Over (1996) for an example in the context of a
rational analysis of the selection task).

the light of the data and the original distributioz: P(H,|K& N)log,



We assumehat the ageftstartswith backgrouncknowledge, K.This knowledge

determines the degree of belief in a range of mut@aityusiveand exhaustive hypotheses,
Hj, from aset, H,such thateach H is associatedvith a probability, given the initial

background knowledge, K:(Rj|K). The agent’s aim is ttearn more abouthich of these
hypotheses is true. Whattise value associatedvith a particular piece ohew information,
N (which may be the result c(fomeinvestigation, or might bgiven to theagent“for
free”)?

On this approachthe value of N isdetermined by the amount of informatithat
the agentgains about _H. Informatiogain is the initial uncertaintyminus the revised
uncertainty, i.e., after N is known:

The agent’s initial uncertainty, Uncertainty(H|is:

UncertaintyH|K) = = P(H,|K)log, P(H,|K) (1)

After N is known, the probabilities of thej hvill be revised,using Bayes'theoreni to
P(Hi|K&N), and the uncertainty will then be:

Uncertainty|K& N) = —z P(H,|K& N)log, P(H,|K& N) (2)

The information gain,g(N), associated with i therefore expressed:

I,(N) = UncertaintyH|K) - UncertaintyH|K& N) 3)

This isthe value ofthe information, Nwith respect to the set of hypotheses,fiem the
point of view of disinterested inquiry.

We now turn to the value of information fraitme point ofview of decision making
(seeBerger,1985). The agentust choosdetween aset of actions, A These actions are
assumed tdave anmpact onsome aspect dhe world, which is of interest to the agent.
This aspect of the world is modeled as a discrete set of outcomgsyRict is associated
with a utility U(Oug). For example, the aaihs mightcorrespond tdhe choice of the kind

of flour used when baking @ke,and the outcome might be the quality of da&e (good,

8 The use of the term “agent,” like “knowledge,” is merely for convenience, to refer to a
reasoning system of some kind. As we mentioned above, there is no commitment to
whatever aspect of the cognitive system is under study having beliefs, desires, and the like.

€ ~ P(NjH,& K)P(H.|K)
9 Specifically, P(H;|K& N) = Z P(N[H,& K)P(H;|K)
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average, or poor), according to some criterion. But the agent may nowkmaivithe relation
between the choices and outcomes is. The ageatt&l information about the relationship

between actions and outcomes may be expressed by the agent’s estimates of the conditional
probabilities of each kind of outcome, given each kind of action: pAQU). Notice that

the presence of the “K” in this formula captures the fact that these estimadiesesingined

in the light of background knowledge, excluding the new information.
These estimates allow the expected utility, EUK}\ of each action to bealculated,

given knowledge K. Specifically,

EU(AIK) = ¥ P(Out|A, K)U(Out) @)

The best policy is to choose the actiog, Avhich maximizes this quantity, i.e., where

m= argimaxEU(A|K) (5)
and thus,
EU(A,IK) = miaxgz P(Out|A, K)U(Outj)g (6)

J

Now, after the new information Hrrives, theagent can make r@ew set of estimates of the

relationship between actionsand outcomes, taking account tfis new information:
P(Ouf|Am, K&N). This allows the agent to produce a revised estimate of sumeessful

the previous choice of strategy would lbsing the action_4,, chosen bythe strategy
outlined above.

EU(A,IK& N) = 5 P(Out | A, K& N)U(Out,) (7)

So this gives an estimate (in the light of now knowing N) of n@l the agent wouldhave
done before N was known. To obtain an estimate of the @ale we need to contrast this

figure with the estimate of the expected utility if the action is chosen after informathas N
arrived. Paralleling (7), we note that the expected utility of arbitaation, A, is now

estimated as:

EU(AIK& N) = 3 P(Out|A,K& N)U(Out,) (8)



The best policy is to choose the actiog, which maximizes this quantity, i.e., where

q= argimaxEU(A|K& N) 9)
and thus,
EU(A|K& N) = miaxgz P(Out|A,K& N)U(Outj)g (20)

J

Thus, the gain in expected utility, i.e., the value, Y @ésociated with learning is:

V(N) = EU(A, |K& N) - EU(A,|K& N) (11)

where_q is the choice of action in the light_of &hd_mis the choice of action before im

known. Note, of course, that.if N does not cause the agent to change the choice of action, the
two terms on the right hand side of (8) are the same, anf2/(N So, in sum, thealue of

a piece of newinformation is determined by thempact that ithas onthe agent’s
expectations about what will occgiven each action; buhis impact isonly of value if the

agent actually decides to change course of action. This follows the spirit of the utility-based
approach--information is not of interefr its own sake, bubonly in its influence on
actiort©,

In this section, we have outlined measures ofviilee ofinformation, onerom the
perspective of disinterested inquignd onewhere information is to besed tomaximize
expected utilities. We now consideow these accounts of thalue ofinformation can be
used as the basis foalculating the expectedhlue ofthe information that will be obtained
from a process of inquiry.

The expected value of inquiry

10As stated, the utility-based view of information may seem unacceptably myopic. After all,
it is possible that information may not immediately cause a change of action, but when
combined with later information, it may do so. The utility-based view can be extended to
take account of sequential information gathering, essentially by taking expectations about
the possible results of future inquiry, their impact on action, and hence on utility. This leads
to the field of “preposterior” analysis (e.g., Berger 1985) where calculations are extremely
complex both conceptually and in terms of computational tractability.

10



Now we have defined the value of a piece of information, we cancnosgiderthe expected
value of inquingl. We begin by putting aside a worrpat the very idea athoosing dine
of inquiry to give the most valuableinformation is conceptually incoherenthatever the
criterion of value. Only if one has obtained some data can one know haeléviant to the
problem in hand; and therefore it seems impossiblprédict beforehandavhich data is
likely to beuseful.Fortunately, this argument is naélid. Although it is notpossible to
predict how useful the outcome of a particular seéochmore data will be, it ipossible to
estimate the expected value of this information, baseohers current knowledge. Optimal
inquiry invdves choosing toobtainnew data so that thexpectedvalue ofthe information
obtained is as great as possible.

The theory of opthal data selection develops in two differamtys, depending on
which of the twonotions ofthe value ofinformation describedbove isused. Ifvalue is
considered as a utility of some kind, which is to be tramfé@gainst otheditilities, then we
can set the problem in a decision-theoretic context. This gives rise to the extieesiyeof
so-called“preposterior analysis” in Bag&n decision theory (e.gBerger,1985; Wald,
1947, 1950). If the value of information is not considered afiitg, but value ismeasured
instead as the amount of informatigained, then the pbtem may be set in terms of
probability theory and information theory. Thyivesrise tothe Bayesiaranalysis of the
information value in an experiment (Lindley, 1956; Good, 1966; Mackay, 1992).

We now consider the formal development of the disinterested and decision-theoretic
approaches to assessing the expected value of inquiry in turn.

From adisinterested persptive, inquiry should bedirected tohave the greatest
possibleexpected information gairsupposehat we areconsidering an westigation,_Iny
which itself has costC(Inv)12. Whether it isworth carrying out the investigation Inv
depends on whether the expected value of the information gatheted éxceeds the cost
of the investigation C(Inv

The value of the information that will be obtained by Inv cannot be known before the
investigation. This is because the result,dgys cannot be known until the investigation has

been carried out. However, the agent Wilie epectations about the results, P¢nvi{K).

It is therefore possible tcalculate the expectaglue of the investigationpased on these

expectations, before it is carried out:
The expected information gain bfv, Elg(Inv), is thesum ofthe informationgains

associated with each possible result, weighted by the probability of that result:

11See also Young (this volume) for a related analysis of the value of inquiry in the context
of understanding how people search computer menus.

12In general, the cost may not be fixed, but may also need to be estimated.
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Ely(IMV) = 3 PUINV,oqu K)o (V) (12)

result

Given a choice betweedifferent mutually exclusivecourses of ingstigation, the agent
should choose the investigation Inv with the highegisEbre.

This measure ofhe value of disinterested inquinhasbeen recentlyused as the
basis for aationalanalysis of so-calletindicative” versions of Wason’s (1966, 1968)
selection task (Oaksford &hater, 1994, 1995l,996; see als®aksford & Chater,this
volume; Over &Jessop, this Yome). In“indicative” selectiontasks, people arasked to
test whether a hypoesis istrue or false. Thisuggestshat people maynderstand this
task as involving disinterested inquiry, because no utilities are either speciSadgasted.
In the context of the selection task, the possiiiquiries” are theturning over of each of
four cards, and the hypmtses under consideraticare a conditional rule and an
“independence rule’about what is on eactside of the cards. Thisrational analysis
provides a good fit with a wide range of empirical data, and novel predictions attiisnt
have recently been confirmed (Oaksford, Chater, Grainger & Larkin, in press).

Notice thatthis approachhas entirely ignoredthe cost of carrying out an
investigation--because the goal is disinterested inquiry, there is no direct conbettiean
the value of the information obtained and the costs required to obtain that information. This
is because information gain is measured in “bits” of information, whereas cost is measured
in terms of utility of some kind, and hence these cannot meaningfully be compared.
Nonetheless, costs can be taken into account as constraithks iorestigationnvolved in
disinterested inquiry, assuming that a finite amount of resources, R, iddavdted to the

pure pursuit of knowledgeSuppose that weéhave anumber of possible lines of
investigation, Iny, with costs C(Iny, and withresources R. If we assume thia¢ expected

information gain fromeach_Iny are independent, then the optimal portfolio_ofj Irs/ that
which maximizes the overalhformationgain, while thesum ofthe C(Iny) is less than R
(i.e., while staying “within budget”). But notice that, ingeneral, theinformation gain
associatedwith different Iny will not be independent, because thesults of one
investigationwill typically reduce the uncertainty about tlesults of otheinvestigations.
The mathematics required deal withthis is very complex,and the calculations will not
typically be tractable.

We now considethe analysis forthe case where the goal iofjuiry is toimprove
decision makingAgain, because thgalue ofthe informationfrom the inquiry that wil be

12



obtained byinv cannot be known before thevestigation, the choice ahquiry must be
based on the expected value of the investigatiofniz)/

EV(IM) = (15 PNy KOV (10 ] (1) (13

esult

Notice that, because the value of inquiry is measured in termidityf and thecost of the
inquiry canalso be measured in termsugility, the costcan be incorporated directly into
the equation, in contrast to the case of disinterested inquiry.

If the agentmust choosebetween arange of possiblanvestigations (typically
including the“null” investigation, whichgains noinformation, butcosts nothing), the
investigation, Inv, with the highest value @w) should be chosen.

This type of approachasbeenused by Anderson (1990) in proposingational
analysis of problem solving — where inquagnsists of a search through a problgmace.
Anderson seeshe keyquestion in problem solving as searching this spacgain
maximum advantage in the facel@avycomputationacosts. Oaksfor@nd Chatef1994)
also apply this type of analysis to explaining deontic selection teskselegon tasks in
which the participant must determine whether or not outcomes or behavior conform to some
normative rule (e.g., that only people over 18 are allowetfiid). Normativerules cannot,
of course, be tested. Instead, following Manktelow @wdr (1987),0aksfordand Chater
assume that peopimplicitly impose utilities concerning the importance of uncovering or
missing violations of the rule(under-age drinkers)The expected utility of each card
selection accurately predicts performarmesr a widerange of variants of the deontic
selection task. Alongside this psychologiealrk, there is also avell-developed literature
on optimal investigation in zoology, where maximizing utilit@sch as food supply or
frequency of mating is the goal (e.¢gamil, Krebs & Pulliam, 1987; McNamara &
Houston, 1992). The successtlése rationainalyses suggest thexpected utility might
provide the basis for successful rational analyses in other psychological domains.

The analyses whave giverapply to bothkinds of inquiry: information gathering
and informationprocessing. Buhotice that in the case of informatigmocessingwith
limited computationalresourcesthere is an additional complication: Decidivghich
information toprocessmay itself take up significant computatiomasourcesTherefore
somebalancemust be struclbetween, orthe onehand, spending so muckomputational
effort deciding how théimited computationatesources should be used ttra resources
themselves are completedxhausted once the decisionréachedand on the othehand,

13



leaping blindly into some particular piece of information processing, with no nshether
this is likely to be fruitful.

A different, though alsocomplex, caseariseswhere resourcesare not strictly
limited, but must be obtained at some cdsar example, the time g@ersoncan spend
deciding what to do may be unlimited in some contexts.pErtsoncould thinkall day and
the next day and so omithout reaching a decision--there is no rigithe limit. But by
spending thigime thinking, theperson is nogable to engage isome other enjoyable or
useful activity. In economic terms, the time used for thinking rfasiight” atthe“cost”
of thelost opportunity to do something else. with the case whereesourcesare rigidly
limited, somebalancemust be foundetweenbeing lostforever in thoughtand choosing
what to do completely blindly.

We do not attempltere to survey thpossibleways in whichthese trade-offs may
be made. The number dfieoreticaloptions isvery large and unexplored, anghich
approach is adopted will depend on thegnitive process under consideration. In
developingour rational analysis oflocal ambiguity resolutiorbelow, weshall describe a
way of simplifying the problem of dealingnvith computational resource limitations:
specifically, by assuming that the more resousresused, the more likely the computation
is to “crash,” and then trading ofthe expected probability of solving the problem by
performing some computation agaitisé probability that the computation will cause a
“crash.” An obviousway toset up such a trade-off is tavethe goal of maximizing the
overall probability of solving the problem successfully. We shall seethiswapproach can
be applied in detail belowNote that this simplification is a general strategyrational
analysis. It will often be necessary, lsre, to moverom a very general goawhere
analysis is notractable (e.g., maximizing expected information gain or expadiéty
given limited computational resources), to a specific goal wdnreadysis isractable, which
is assumed to approximate the general goal. The garabisis is, nonethelessportant,
because it defines a standard agawtgth theappropriateness dhe specific goal can be
assessed.

Relation between normative accounts of inquiry for action and thought
We have sketched two approaches to optimal data seledtipanding orwhether the goal
is optimizing action or optimal disinterested inquiry. It might seem that the second approach
is redundant, at least from a psychological pointi@f, becausédistinterestedthought”
might appear to be a rather implausible doala cognitive system. This line of thinking
would suggest that the right gdak the cognitivesystem is some form aftility. From an
evolutionary perspectivepne might propose inclusive fitness; from an ethogical
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perspective, one miglproposemaximizinggoals such aautritional value of diethumber
of offspring, etc; from an economic perspectivegne mightproposemaximizing some
subjective notion of utility(as defined by the participant’'s preferenceknowledge, it
might seem, is only valuable to the extent that it contributes to gultinghoice of actions
so that such goals as these are maximized.

In practice,however, arexclusivefocus onutility may sometimes be inappropriate.
Frequently, it is not feasibl®r a cognitive process oragent to decidevhat practical goal
might be served by theesults of somenvestigation. In sciencdor example, it is well-
accepted that pureesearch mayave enormous long-ternpractical implicationsand is
therefore worth funding; but in pure research the immediate task is disinterested inquiry--in
our terms, attempting to maximizeformationgain, with noconcernfor potentialuses to
which that information might bput. From a utility-basegerspective, the ideal would, of
course, be to fund only that pure reseawith long term benefits. But it is not possible to
decide beforehand which research this will be--and hence funding disinterested inquiry is an
appropriate surrogate goal. Similarly, maognitive processesnay also be guided by the
goal of “disinterested inquiry.”Exploratory behavior in animalsand children, and the
general phenomenon of curiosity seemstggest that thisnay beso. At the level of
providing rational anlayses forcognitive mechanisms it is likewise possible that the
appropriate goal is disinterested inquiry.

In general, a decision-theoretic perspective is likely to be appropriate invdzeses
the relation betweemformation and action igelatively straightforward andrelatively
inflexible. Where thisrelation is complex andhangeable, amformation-gain rational
analysis may be more appropriate.

Let us consider two examples from perception. First, consider the perceysieah
of the frog, which is gearetbwards the detection adark, fast, moving concavilobs
(among other things{Lettvin, Maturana , McCullough &Pitts, 1959). Thus, thefrog’s
perceptual system seems adaptive not because it attempts to gain as much information about
the world as possible, but because the information that it gains is relevant to its (@agions
snapping in the direction of the perceived blob), which relate to its utilities (e.g., eating flies).
Notice that a decision-theoret@nalysis seems appropriate here becabse relation
between thenformation concerning the motion of theob is relatively straightforwardly
and inflexibly related to something that has positive utility for the frog--eating a fly.

By contrast, theprocesses ohuman perceptual organizatiamvolved in making
sense of line drawings, and other degraded stimuli commonly used in psychological studies,
do not appear to relate directly or in a stabley to specific actions or utilities. Gestalt
principlessuch as'good continuation” or “common fate’may aid the segmentation of
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the image, andssist inthe process obbject recognition; but the consequences that they
have for action, if any, will depend critically on what it is thabesng recognizedOne and

the same Gestalt principle majlow a perceiver irone case to recognizelian, and in
another to recognize a friend--the actions and utilities in thecaseswill, of course, be
radically different,and unpredictable. A myriad of background circumstances will also be
relevant — inencountering a lion at theoo, processes ofperceptual organization
contributing to recognition mightaveonly the slightesutility and effect on actions, if the

lion is behind bars; but might trigger flight asdveone’s life if the lion hasescaped. The
flexibility of the relationshipbetween thenformation gained fronprocesses gberceptual
organization and their effect on utilitissiggests that such processeght usefully be
considered as primarily geared towards providing as rich a representation of the
environment agossible:that is, as engaged idisinterested inquiry. Interestingly, the
literature on perceptual organizatibastacitly assumedhat this isthe goal of perceptual
organization, byassumingthat the goal of perceptual organization is utility-independent:
that the goal is either constructing the most likely organization of the percsiitoalus or

the simplest (Chater (1996) has recently shown that, under natural interpretations of each of
these viewpoints, they can lsbown to beequivalent). The distinctiobetween deision-
theoretic and information-theoretapproaches provides an interesting frameworkthe
general debate over the extent to which perception candersiood asaving the goal of
providing a rich general representation of the world (e.g., Marr, 1982), or as being geared
towards serving particular actions (e.g., Gibson, 1979).

In the light of these considerations, it seems most appropriate to view the problem of
parsing from the point of view of disinterested inquiry, rather than from a decision-theoretic
perspective, given that the relation between information about the quarset of asentence
may have an aibrary, and typically extremelycomplex, relationship to the utilities and
potential actions of the language understander. But a decision-theoretic analysis would seem
to suggest thathe parser shouldletermine its strategies on thasis ofexactly these
factors. But while perhaps desirablepiinciple, such an analysis istractably complex in
practice. We therefore nodevelop a specific rationanalysis ofhow the parser may
choose taesolve syntactic ambiguitiebased on an approximation to an informaiam
approach, rather than a utility-based approach.

PART 2: A CASESTUDY: LOCAL AMBIGUITY RESOLUTION IN PARSING

16



The problem of local ambiguity
We beginour rationalanalysis by outlininghe problem that waim to analyseresolving
local ambiguities in natural languagarsing. Ingeneral terms, the sentengarsing task
involves recovering annterpretation from a linguistic signalvhich is often highly
ambiguous. A sentence may be globally ambiguous, as demonstrated by the following pair:

(a) “INP: Flying planes] frightened the pilot”
(b) “[Gerund: Flying planes] frightened the child”

It is also possible, indeagry common, thasentences will contailocal ambiguities. This
arises fromthe fact that peopl@rocesslanguage incrementallygonstructing apartial
interpretation as each word is encountered, whether relagaod. This is demonstrated by
the well-known reduced relative clause construction:

(c) “The actress sent the flowers was pleased”

Whenthe wordsent isencountered, the humararsermay process it ¢her as the main
predicate of the sentencand interpret the actress as stsbject, orconstruct a reduced
relative clause (Cf. "The actress who wasent...”). This is alocal ambiguity, since
ultimately only one orthe otheranalysis Wl turn out to be correct. In thisase,people
systematicallypursuethe former analysis, and then garden-paltienthis ultimately turns
out to be incorrect. If they cannot reco¥esm this gardenpath, with some acceptable
period oftime, then wesay thatthe parser has crashed. One hetsmfor dealingwith
suchambiguity might be to construetl possible analyses iparallel. However, people’s
inability to recover (oftn) from sentences such @3, suggests that this isot the case.
Indeed if we consider a more difficudtxample, weencounter furtherevidence against
complete parallelism:

(d) “The man knew the solution to the problem was incorrect”
In this case, the noun phrase “the solutiorcah be locally interpreted as either the direct
object, whichturns out to bencorrect, or an embedded subject, which is ultimately proved
correct. Indeed, other interpretations are possgueh asthe beginning of gossessive

noun phrase:

(e) “The man knew the solution's discoverer was clever”
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Theoretically, due to the recursive nature of the possessive construction, there are an infinite
number of possiblepartial syntacticanalyses forthe fragment“The man knew the
solution...”. Given that thdhuman mind idinite, there is noway for it to simultaneously
entertain an infinite number of partial parses.

In dealing with theproblem of local ambiguity, we caherefore conclude that the
human parsepursues dher a single, serial analysis, orbaunded number oparallel
analyses. In eithetase, weassumethere is one analysisyhich is “favoured” by the
parser. For the remainder of this paper we will assume the simpler serial modasliévk
however, that whatollows could be equallyvell applied to abounded, rankegbarallel
mechanism.

Given that the general goal of thgarser is torecover themost probable
interpretation for the sentence awlaole, what strategfor resolving local ambiguitiewill
best achieve this? The sentencgrocessing literature has posited numerous parsing
strategiessuch as Frazier's (1979Ylinimal Attachmentand Late Closure principle. Such
strategies,however, are typically motivated by thalesire to minimise computational
complexity or memoryoad, rather than obtaining a likelyarse.Indeed,Hindle & Rooth
(1993) demonstrate thatfor prepositional phraseattachment ambiguities, Minimal
Attachment will make the incorrect attachmeecision in more tha®0% of irstances
(based on corpus findings).

Another strategy, which might be naturaligsumed irthe context of the present
discussion, would be to adopt the most likely analysis at each local point of ambiguity. This
suggestion is approximatelyhat has beenproposed undethe heading of “costraint-
based” theories gbarsing, in the context of @arallel, competitive-activation architecture, .
We arguehowever that whilesuperficially appealinghis approach is not optim#ébr the
resolution of local ambiguity.

Constraint-based theories are clospdaallel likelihoodaccounts. In suchodels,
parsing preferenceare based onthe simultaneous interaction ahultiple constraints
(MacDonald, 1994; MacDonaldPearlmutter, & Seidenberdl994; Trueswell, 1996;
Trueswell, Tanenhaus, & Garnsey, 1994; Trueswell, Tanenhaus, & K@88; cf.Taraban
& McClelland, 1988; Tyler & Marslen-Wilson, 1977). These constraintselate to any
properties ofthe encountered sentence that may influet€econtinuation, including
subcategorisation preferences, other syntacis, the meaning of the fragment, the nature
of the discourse context, and prosody or punctuation. Such navdelsirestricted, ithat
all potentially relevansources ofinformation can be employeduring initial processing
(Pickering, 1997; Traxler & Pickering,996). Data about thessources ofnformation can

18



be estimatedrom corpus counts oobtained from productiortasks where participants
completesentences frorthe point of ambiguityonwards. Foinstance, a fevparticipants
might complete “The man realised...” using a noun (e.g., “his godlst)most will use a
complement clause (e.d.,.his goalswere unattainable™); and most participamsight
complete “The man realised his...” using a noun pkrb phrase on @omplement-clause
analysis (e.g., “...goals were unattainable”). From this, such madelsl assume that the
parser would prefer the complement-clause analysis to the object analysis (e.g., Trueswell et
al., 1993), and would foreground it by “his” at the latest. This is as predictikliyood
accounts. However, recent constraint-based models sometimes assutheeptuaer pays
attention tobroader classes in making decisigesg., MacDonald,1994; MacDonald,
Pearlmutter, & Seidenberd,994; Trueswell, 1996; Trueswell, Tanenhaus, & Garnsey,
1994; Trueswell, Tanenhaus, & Kelld993). It might be noted that more verbs are
transitive thanintransitive, say,and thus support &ansitive analysis of a fairlyrare
intransitive-preference verb. Unless therb were extremelyare (with the data about
preferences beingnreliable),such a heuristiovould go against likelihood. Constraint-
based models therefore approximate to likelihood, but may diverge from it in some cases.

Formulation of the problem
We assume that the specific goal of gaser is tanaximize theprobability of recovering
the parse of the input as generated by the spé&Réis specific goal is more useful than a
general goal such as obtaining as much information as possiblehieanput,because the
role of the parser is not tliscover as much information, whatever kind, apossible, but
is to discover one particulaiece of information, the correstructure of the input being
analysed, so thathis informationcan beused inbuilding up an appropriate semantic
representation of the input. Of course, the larger goal of the languagessing system
may be inquiry into the intentions of speakers, the state of the world, or even (according to a
utility-based viewpoint) how to improve their choices of actions. dBighlarger goalshave
such a complexelationship to parsing a sentence (fundamentally becaystactic
properties of sentences are not directly related to their semantic and pragmatic properties), it
seems unlikelyhat suchlarger goalscan beusefully related to the problem afhoosing
between alternative parses.

13 Of course, the speaker will presumably not consciously intend any syntactic analysis,

only the message conveyed. But presumably the language processing system of the speaker
will have assigned a syntactic analysis to the sentence produced, or at least some
representation (e.g., a semantic representation) which determines the correct global syntactic
analysis. Note that there are some syntactic ambiguities which have no semantic
consequences, but that these are not relevant here.
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We shall assuméhat the performance of thearser on aiven input can be
classified unambiguously asther asuccesgthe globally correcparse isrecovered) or a
failure (it is not). But this isclearly a significant oversimplificatiorhecause parsing may
succeed to a greater lesser degree. At onextreme it might lead to structure for the
sentence which is incorrect in some midetail; at theother extreme it might lead total
breakdown early in the sentence, so thatuseful informationcan beused to costrain
semantic processes. The simplifying assumption that patses ®ucceed or fail pvides,
howeverthe starting poinfor a rich andtractable rationahnalysis. We hope that future
research will considenow theanalysis of a notion of graded success in parsiigit be
incorporated into this kind of account.

Processing assumptions
The task of resolving local ambiguity in parsing must proceed in the face of the two types of

informational limitation--limiteddata,and limited computationaresourceswith which to
analyse that data--that we described in Part I. lirh#gation on data is inherent in the
problem--it is this that means the parser faces a problem of local ambiguity; but the problem
of limited datacannot be directhaddressed bthe parser, because theurce ofdata (in
speech understanding) is outside its cohtroBy contrast, theparser doeshave control

over how it allocates computatiorr&sources in analysintye curreninput, so that it has

the best chance possible of successfully navigating through the sedoeal @mbiguities it

faces undethe severe real-timeonstraints of parsing fast speedrerefore, itseems
appropriate to setting the rationahalysis of parsingvithin the framework of optimal
computational resource allocation, rather than optimal data selection.

Any problem involving the allocation afomputationaresources must begin from
some assumptions abotlte nature of theesources to ballocated. Fortunately, these
assumptiongan be verygeneral constraints otine structure of the language processor,
rather than requiring a fullgletailedtheory of languagerocessingFirst, we must ask: Is
the parserserial, parallel, or somewhere in betwedriits is, of course, a&entral and
unresolvedissue inthe study of human sentence processing, asdigeussedabove. In
developing theanalysishere, wechoose to assume thtie parser has astrict serial
architecturepecause this ithe simplest, andhostextreme form of resourcdimitation in
this context. We suspect thiie conclusions from this analysis camwyer, tosome extent,

14n reading, by contrast, the parser has the opportunity to influence the way in which
language input is sampled—e.g., by influencing fixation times, or by triggering regressive
eye-movements. Of course, this control may not be exercised directly (which might appear
unlikely according to a strong modularity viewpoint, e.g., Fodor, 1983), but instead by later
processes which depend on the output of the parser.
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when the assumption of strict seriality is weakened, to allow a modest degree of parallelism-
-but investigating this question rigorously remains a topic for future research.

A serial parser must choose a single optidren it reaches cal ambiguity.Later
in the sentence, it may become clear that the choice was incorreqiaiee musthen
“backtrack” to reviseits previous choice. Thighoice, too, may bencorrect and
subsequently requinevision. Eventually,the parser makeshe correct choice and further
backtracking is not requiredEventually, if allgoeswell, the parser reachethe globally
correct parse forthe sentenceFor simplicity, we shall assume that globalyntactic
ambiguity of the entire sentence is sufficiently rare that it can be ignored, so that a globally
consistent parse, when found, will be the correct parse.

With limitless time and memory, and an adequate knowledge of the structure of the
language, theparser couldeventually alwaydind a globally consistent parder any
grammatical sentencaimply by exhaustively searchintprough the space ofpossible
sequences of parsing choices. But in practice, the parser has limited resources, faid may
We assume that the principal source of failur@ansing occurs in abandoning oogtion,
and attempting to backtrack to another--ifeirievable failureoccurs at thisstage, we say
that the parser has “crashed”. We assume thairtiteability of backtracking successfully
is determined by two independent factors: the difficulty of backtracking out of the current
hypothesis; and thethe difficulty of setting up thesecond parse. Th&dependence
assumptions mearikat the probability osuccessfullyswitching fromparsel to parse2 is
the product of the probability descaping” from parselmultiplied by the probability of
setting up parseZ To minimize the probability of crashing, the parser must aim to find the
correct hypothbsis as rapidly as possible--becaesery time itfollows up a falselead
which must berejected,there is a possibilityhiat it will crash. Notice that this is a very
simple model of the limitations on the parser--it captures only the fact that back-tracking is
error-prone. A moreealistic account mighdlsotake into account the fact that tharger
must workwith an input which arrives in real-timeand that excessive backtracking may
mean that the parser falls irretrievably behind the input which it is parsing.

We have so far noted that the parser may fail by crashinghButeed taninimize
the amount of back-tracking to reduce the probabilitycadshing introduces another
possible source of erroincorrectly rejecting the corregarse. Considethe common
situation in which theparser makes a olte at a local ambiguity whicbomes to seem
unlikely (although not impossiblajiven later ontext. If theparse is pursued, then it is

151t is possible that these processes are not strictly independent - for example, it is possible
that difficulties in escaping from parsel may lead to increased difficulties in setting up
parse2 (see, for example, Pritchett, 1992).
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likely that back-tracking W be required, with theassociatedisk of crashing. But if the
parse is not pursued, thémere is therisk that this parsewas correct afteall, and the
possibility of a correct parse has thereby been mi8sAd optimal choice of parsing order
requires finding the correct balance betwedhese two risks--of crashing during
unnecessary search, and of mistakenly rejecting the correct parse.

To sum up, we assume thidite parser choosethe order in which to consider
alternative hypotheses at a pointl@fal ambiguity to minimize theverall probability of a
crash in parsing a sentence. Determining what choicgsatiser shoulgnake involves two
steps.First, we show thatgiven certain asumptions, the global goal of reducing the
probability of crashing throughotite entire sentence can be reduced toldbal goal of
reducing the probability ofrashing atach specific local ambiguity. We thehow how
this local goal can be achieved.

Step 1: From global to local maximization.

Suppose thahere is a singlpossibleglobal parse, and that there aréocal ambiguities,
L, , in the sentence. The correct parse wilkd@ched if each of the local ambiguities can

be dealt withsuccessfully(i.e., the correct hypbesis is adopted at thktcal ambiguity,
perhaps after some backtracking).

P(successful global parse)P(success dt,) x P(success dt,)x...xP(success dt,)

i (14)
= | P(success dt,)
1=1

Note that this independence assumption may be a significant simplifidaioaxample, it
is quitepossible that ithe local ambiguityL, wasonly resolvedwith extreme difficulty,

then the parser will be more likely tmash orthe next local ambiguityl, . But we ignore

such factorshere and assuminthat the chance ofuccess atach local ambiguity is
completely independent of the previauses.Given independence, the goal of maximizing
the probability of achieving the globally successful parse translates into the task of trying to
maximize each element of th@oduct--that is, at eaclocal ambiguity L, aiming to
maximize the chance a@hoosingthe correcparse at thaambiguity (where thécorrect”

local parse is simply determined by the single globally successful parse).

16 We assume for simplicity that the parser cannot return to options that it has already
rejected, although it would also be interesting to considering the analysis where this
assumption is not made.
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This means that the goal of maximizing the probability etiecessfugjlobal parse
can be translated into a sequence of indepenoesitgoals: maximizing the probability of
the correct local parse, at each local ambiguity. That is, the parser must maximize:

P(success dt,) (15)

This will be the goal in all the analysis below.

Step 2: Locally optimal parse selection
We now consider how the parser should choose how to order its pardesaitaanbiguity
in order tomaximize theprobability that is gets througlnat ambiguitysuccessfully(i.e.,
consistentwith some globallypossible parse). Weall theseparses“hypotheses,” and
label themH,...H,

An obvious suggestion is that we chodise hypotheses purely on thasis of the
probability that they areorrect, conditional orall the relevantinformation that can be

accessed. We shall call these probabilities priors, because they are pasedsingny of
the hypotheses against subsequent context, and they are de(tdied

We can assume, without lossgenerality, that the Ipothesesareordered in some
specific way, sayH,...H, : i.e. that H is choserfirst, and ifthis isrejected b is chosen,
and so of’. We will considerthe probability that theparsereventually selects a correct
hypothesis fronthese, giverthis order. We will then considérow theorder should be
optimized, to maximize the probability of success.

Supposethe hyothesisH; is true. Then the probability of settling on it is the
product ofthe probability of‘escaping” from all the hyptheseswhich wereconsidered
previously, theH,...H;_,. This must be multiplied by the probability of successfully settling
on H;, which requires that the hypasis H; can be‘set up” successfully, and thethat
the processor “sticks” with, rather than spuriously rejefdts,

For each of theH,...H,_;, the probability of escapinguccessfully from an
erroneous hypothesisl, successfully setting up, an@jecting, the hypothesis without

crashing (assuming these are independent) is:

P(escapeH,) = P(Set_ upH,|H,)P(RejectH.|H.) (16)

17 Notice that by assuming a fixed order, we are ruling out the possibility that the nature of
the failure on one hypothesis may determine the next hypothesis to try. This is, of course,
only of importance in cases where there are more than two possible structures to be
considered. To our knowledge, this possibility has not been proposed by other theorists,
and we ignore it here.
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Note that these probabilities are conditional on the factihas false, insymbols, H, . To
finally settle on the correct hygusis H; requires successfully escaping freach of the

j-1 previous hypotheses, which has probability:

|_| P(escapéH,) (17)

<)

Having “escaped” the preceding incorrect hypotheses, eansiderthe probability of
settling on the corredtypothesis. For this toccur, the correct ippthesis must be set up
correctly, and then not spuriously jeeted. Again assuming theseprocesses are
independent, this gives:

P(settleH,) = P(Set_upH,|H,)(1- P(RejectH, [H,)) (18)

Combing (17) and (18), we conclude that, if the correpbthesis isH; the probability of

choosing it is:

P(settleH j)|_| P(escapéH,) (19)

i<]

So far, we havassumedhat the correct hypothesis I3;. But, of course, at the point of
local ambiguity, the correct hypothesis may be anyof.H_ , with priors P(H,)...P(H,) .

So the probability of settling on the correct hypestis is a sum derms of theform (19),
weighted by the prior for each hypothesis:

n ] U
P(succeed at local ambiguity)z ErD(H ;)P(settleH j)|_| P(escapeHi)E (20)
=1

i<]

This expression assum#st weconsiderthe hypaheses irthe order H,...H, We intend

to maximize (20) by optimizing the order in which the hypotheses are considered.

The argument proceeds in two parte first part compares just two orders:
H,..HH.,...H, and H,..H,, H,...H,, and shows thathere is a simple rule for

determining which order allows a higher value of (20). The secondipants that thisule
determines the optimal order in which the hypotheses should be considered.

24



1: Comparing two similaorders. Wedenote the sequendd,...H,,,H,...H, by
G...GG,,...G,, whereG, =H,,,, G, = H, and otherwiseG = H,. The probability of
successfully endingvith the correct hypothesisvith the order of Hi+1 and _H swapped

mirrors the expression (20):

"0 0
P, (succeed at local ambiguity)z HD(GJ)P(settleGj)ﬂ P(escapeSl)E (21)
=1

i<]

Swapping H, and H,,, improves the probability ofsuccessfully parsinghe local
ambiguity if and only ifthe expression in (21) igreater than(20). The derivation in
Appendix A shows that this holds if and only if:

1 1

P(H x P(settleH X > P(H,) x P(settleH, ) x 22
(He) x PlsetleH ) x 3 —pe o > PH) x Plsettler) x ey @2)

This meanghat swappingH, and H,,, improves the probability ofuccessfully parsing

the local ambiguity if and only if condition (22) holds.

2: Establishing an optimal order. We have now providegya of deciding between
two orders of the fornH,...H.H,,,...H, andH,...H, H,...H, . Condition (22) showthat

the choice is determined purely Ipyoperties ofthe hypothesesH, and H,,;, and is

completely independent @l the other hypotheses, and the probabilities associaitd
them. This means that we can write (22) as

f(Hep) > £(H,) (23)

1
1- P(escaped,)

Appendix B proves that the optimalrder in which to test hgotheses is in
descending order of (H,) (where ties can be broken arbitrarily).

where f(H,) = P(H,) x P(settleH,) x

Thus, wehavethe conclusion that thparser should first considéne hypothesis
with the highestvalue of f(H,). This conditionhas asimple intuitive meaning. Thérst

term of f(H,) indicates that, other things being equal, theadiyesiswith the highest prior
should be tested firsThe secondterm indicates that, othénings beingequal,hypotheses
which, if correct, are asy tosettle on, are to be tested earlier. The third term inditades
other things being@qual, the hgothesis fromwhich it is eagst to escape when it is not
correct should be preferred. Thigational analysis thereby provides strong set of
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predictions about parsingreferencesassuming hat parsing preferenceare at least
approximately optimal. Testing the empirical adequacthisfrationalanalysis will require

both empirical dataconcerning parsing, but also analysis of natural language corpora (to
obtain,for example appropriate estimates pfiors for different parsing hypotheses in the
context of particular types of local ambiguities).

We stress that this rational analysis of parsing preferences is one of many possible
rational analyses that could be devised. As Anderson (1989Q,) stresses, finding a good
rational analysis, like finding good scientific theory of anykind, involves aniterative
interaction of theory and data. We are currently obtainghgvant empiricabvidence, but
this is beyond the scope of this chapter, and we exipaithis will require adjustment and
elaboration of this account. For the present, we hogteghtis analysis will provide a useful
starting point fromwhich the iteration betweetheory anddata can begin in the case of
parsing, andhat it serves more generally as an illustration of how a rateoray/sis of a
cognitive processvolving inquiry can be developed. Specifically, Wepe that it usefully
illustrates the simplifications that may lmvolved in moving from a generalrational
framework to a specific and tractable rational analysis of cognitive performance.

Conclusion

The rational analysis of inquiry is a large, and relatively unexplored, afetucé research.
As we have seen, a widange ofcognitive processedvolve the distribution of resources,
either in information gathering or information processing, so that inquiry effexdive as
possible. Wehavealso seen that themre formal frameworks in terms ofhich such
analysescan be provided. Sdrom a normative point of view, the prospects forational
analysis of inquiry seem bright.

But rational analysis must be normatively justified and descriptively adeqimais.
a crucialquestion for futureresearch concernthe degree to which thpredictions of
rational analysis ofcognitive processesnvolving inquiry can predict empirical data. We
have noted already that Anderson’s raticara@lysis of problem solving ar@aksford and
Chater’s (1994) account of the selection task have captured a wide range of empirical data.

In addition, however, we note that there is an fundamesaalon tdoelieve that the
rational analysis of inquiry shouldjltimately, be possible. Ourcognitive processes are
remarkablyeffective information processors--famore effective thanany artificial system
that we can devise at dealing with tigcertainty and complexity of threal world.Inquiry
is so central to cognition that seemsglikely that theprocesses of guiding inquimnust,
similarly, be highly effectiveSuch success seems ramuire following, to somelevel of
approximation,some normatively justified principlesfor guiding inquiry--otherwise this
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success idnexplicable. If this iscorrect, the rationahnalysis of cognitive processes
involving inquiry must be possibleéhere must be someormatively justified account to
which the cognitivesystem approximates. Argumerits the mere existence of rational
analyses, are, of course, only partially reassuring. The cissiad iswhether it ispossible
to devise rational analysegich are normativel\and descriptively adequate. VWepethat
this chapter has shown that this is indeed sufficiently likely to justify future research.
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Appendix A: Derivation involved in comparing two parsing orders

We denote the sequencHl,...H,.H,..H, by G..GG.,,...G,, where G =H,,,,
G,,, = H, and otherwisé5, = H, . By the analysis inthe text, swapping therder of H1
and_H increases the probability @hoosingthe correct hypthesis if and only if (21) >

(20). Thefollowing derivationshows thathe relationship can bexpressed in &imple
form. We first expand (21) as follows:

k=1[] O
= le ErD(Gj)P(settleGj)l_I P(escapéi.)g

i<]

+P(G,)P(settleG,) |_| P(escapés.)

1<k

+P(G,.,) P(settIeGkﬂ)@D(escapéBk) |_| P(escapes )%

1<k

+j iz EF(G]. )P(settleG; )%kj P(escapées )ﬁﬁ(escapeek) P(escapésm)%:: P(escapés, )%

+2

= ZEF( H,)P(settleH, ) |_| P(escapéH, )E

1<)

+P(H,,,)P(settleH, ,,) |_| P(escapéH,)

1<k

+P(H,) P(settIer)QD(escape-lkﬂ) |_| P(escapéH, )@

1<k

+,—:i+z EF(H ;) P(settleH, )%kj P(escapéH, )%(escape-lm)P(escapé—lk)gzi P(escapéH, )%

+2
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which gives:

= ZEF( H,)P(settleH)) |_| P(escapeH, )E

1<)

+P(H,,,)P(settleH, ,,) |_| P(escapéH,)

Al
+P(Hk)P(settIer)QD(escape-lkﬂ) |_| P(escapéH, )@ (A

1<k

n

+ Z P(H,)P(settleH,) |_| P(escapéH,)

<]
For comparison with the original order H, we now rearrange (20) in a similar form:

= EEF( H,)P(settleH, ) |_| P(escapéeH, )E
+P(H,)P(settleH, ) |_| P(escapeH.)

A2
+P(Hk+1)P(settIerﬂ)@D(escap&-lk) |_| P(escapéH, )% (A2

1<k

+ i P(Hj)P(settIeHj)n P(escapeH.)

<)

Order G is better than orderitexpression (Al) igreater tharexpression (A2). Thisuill
be true if and only if:

P(H,.,)P(settleH, ,)[] P(escapeH;)

1<k

+P(H,) P(settIer)QD(escape-lkﬂ) |_| P(escapeH, )g
= A3
> P(Hk)P(settIer)H P(escapéH,) A3

1<k

+P(H,.,) P(settIerﬂ)@D(escape-lk) |_| P(escapeH, )@

1<k
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which is true if and only if

P(H,.,)P(settleH,,,) + P(H,)P(settleH, ) P(escapeH, ,,)
> P(H, )P(settleH, ) + P(H,,,)P(settleH, ,,)P(escape, )

P(H,,,)P(settleH, ,,)(1- P(escapéH,)) > P(H, ) P(settleH, )(1 - P(escapeH,.,))

1 1
P(H,.,) x P(settleH, ,,) x > P(H,) x P(settleH, ) x A4
(He) X Plsettle ) x T > P(H) x PlsettieH) x -t (A4)

This gives the result stated in the text as (22).
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Appendix B: Proof that the optimal order is to choose
hypotheses in descending orderfoifi)
We first note that there is an order which is optimal (there may be more thanaimerder
as ties are possible), because there are only a finite number of orders.

We then use Reductio Ad Absurdem. That is, we assume that an optimal order E is
not in descending order of(H,). This implies hat there is at leasine pair ofadjacent

hypothesesH,, and H,,, whereH_ is chosen beforél, , but wheref(H, ) > f(H,,).
Now consider the order D, which is the same as E, exceptiha chosen before
H,. By Part I, D is better than E. But this means that E is not opfirha.contradicts our

original assumption that E was optimal. Therefore the optmrd#r is to sect hypotheses
in descending order of (H,) . The completes the proof.
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