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ABSTRACT
Psycholinguistic studies of situated language processing have re-
vealed that gaze in the visual environment is tightly coupled with
both spoken language comprehension and production. It has also
been established that interlocutors monitor the gaze of their part-
ners, a phenomenon called "joint attention", as a further means
for facilitating mutual understanding. We hypothesise that human-
robot interaction will benefit when the robot’s language-related gaze
behaviour is similar to that of people, potentially providing the user
with valuable non-verbal information concerning the robot’s in-
tended message or the robot’s successful understanding. We report
findings from two eye-tracking experiments demonstrating (1) that
human gaze is modulated by both the robot speech and gaze, and
(2) that human comprehension of robot speech is improved when
the robot’s real-time gaze behaviour is similar to that of humans.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics; I.2.7 [Artificial Intelli-
gence]: Natural Language Processing; J.4 [Social and Behavioral
Science]: Psychology

General Terms
Experimentation, Human Factors, Measurement

Keywords
gaze, visual attention, experimental methods, user study/evaluation

1. INTRODUCTION
Where people look is very closely coupled with what they hear

and say. Psycholinguistic studies of situated language processing
have revealed that speakers look at objects shortly before mention-
ing them, while listeners tend to look at mentioned objects in their
visual environment shortly after hearing the reference. It has also
been established that interlocutors monitor the gaze of their part-
ners to establish "joint attention". Seeing what the partner looks at
can provide valuable information about what is being talked about

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HRI’09, March 11–13, 2009, San Diego, California, USA.
Copyright 2009 ACM 978-1-60558-404-1/09/02 ...$5.00.

and further facilitate mutual understanding. We hypothesise that
such gaze behaviour may also be beneficial in spoken human-robot
interaction (HRI), and we present two eye-tracking experiments to
evaluate this claim.

The close coupling of gaze with production has been established
by several previous studies, e.g., [7]. It has been shown that refer-
ential gaze in speech production is part of the planning process for
an intended utterance and typically precedes the onset of the corre-
sponding linguistic reference by approximately 800msec - 1sec. [6,
14]. Further it has been established that listeners’ visual attention
is driven by what they hear ([12, 13, 19]). Among others, [1] have
investigated exactly when people look at what they hear: people
look approximately 200-300 msec after the onset of the referential
noun at a suitable referent in their environment.

It has further been established that interlocutors monitor the gaze
of their partners if they can (see [5] for a comprehensive account of
joint attention). Studies investigating this kind of gaze in communi-
cation [8] have provided evidence that listeners use speakers’ gaze
to identify a target before the linguistic point of disambiguation
(i.e., the point in the sentence where other possible interpretations
can be eliminated and the sentence can be verified). They show that
the speaker’s gaze helps to identify possible referents of an utter-
ance, even when it was initially misleading due to the experimental
setup. Subjects can establish a mapping of the speaker’s gaze to
their own visual scene and, thus, still make use of the speaker’s
gaze early during comprehension.

Combining the results described above, we can envisage the fol-
lowing scenario: Two people (A and B) are talking about an object
(e.g. a mug) that is visible to both of them. According to the gaze
production pattern, A says "Pass me the mug, please." and looks at
the mug approx. 1 sec before saying "mug". To confirm the heard
information, listener B then looks at the mug approx. 300 msec af-
ter A started saying "mug". Taking the duration of the actual word
"mug" into account, these patterns results in a 1,5 -2 sec time span
between the speaker’s gaze towards the mug and the listener’s gaze
to that same object. If additionally A and B can see each other,
joint attention can be established throughout this communication.
Listener B can follow A’s gaze towards the mug right away and an-
ticipate A’s utterance about the mug. The time span between A’s
and B’s gaze towards the mug is shortened dramatically and B can
faster understand A’s utterance. Furthermore, in a situation when
there are several mugs, gaze may provide a means of referential
disambiguation.

The above mentioned findings illustrate how gaze during spo-
ken communication is systematically and automatically coupled to
situated speech. For that reason, speakers can reliably monitor lis-
teners’ eye movements to see whether they have been understood.
Similarly, listeners can interpret speakers’ eye movements to help



rapidly identify, and disambiguate among, intended referents.
Considerable work has already been done on robot gaze in HRI,

e.g., for turn-taking [4] or with respect to information structure of
the generated utterance [15]. It was further established that the
perception of robot gaze is coupled to the robot’s head orientation
by [9]. It has also been shown that robot head movement towards
the speaker and away from the speaker can signal engagement in
a conversation [17]. Moreover, it has been shown that robot gaze
alternating between the listener and an object of interest at relevant
dialogue points results in greater non-verbal engagement of the par-
ticipants [21]. However, the on-line psycholinguistic findings from
studies of human speech and gaze that have motivated our work
have, to our knowledge, not yet been applied in HRI.

We hypothesise that people exploit robot gaze to comprehend a
robot’s utterances about its environment, and as a consequence seek
to establish joint attention with the robot. We further hypothesise
that humans integrate this visual information about gaze direction
during language comprehension in a similar manner as in human-
human communication. Specifically, we predict that the robot’s
gaze directly influences where people look in a scene (Prediction
1) and that this affects people’s comprehension of the robot’s utter-
ance (Prediction 2).

The particular setting of the experiments is as follows. We recorded
videos of a robot that looked at objects presented on a table in front
of it while it produced statements about this scene. Our participants
are eye-tracked while observing these videos. They are also in-
structed to determine the ’correctness’ of the robot’s statement with
respect to the scene and to respond by pressing a button accord-
ingly. We examine the human behaviour in response to the robot’s
gaze behaviour and/or errors in the statements’ propositional truth.
A pilot study [18] has already demonstrated this general method to
be suitable for our purposes.

We consider two dependent measures: We use eye-tracking to
monitor when people look at what and for how long; We also record
response times of the participants in response to the robot’s state-
ment. While common evaluation methods in HRI (like question-
naires) often rely on personal interpretations of the users, we de-
cided to make use of the traditional measures used in human-human
studies, i.e., eye-tracking and response times. These measures have
the advantage of being taken "on-line" at a sampling rate of 2 msec.
That is, we observe the human behaviour during processing and we
can directly relate it to the unfolding visual and linguistic events in
the experimental stimuli.

Moreover, our design has several advantages over previous user
or evaluation studies in HRI. The video-based presentation enables
us to create a larger number of stimuli off-line and show them on-
line. This is a precondition for collecting statistically reliable data.
Furthermore, the off-line stimuli preparation allows us to carefully
control and manipulate robot utterance production and the related
robot gaze behaviour separately. Specifically the robot’s gaze and
speech can be synchronised to be similar to that of humans. In the
presented studies, we made use of such gaze patterns for produc-
ing referential robot gaze, i.e., fixations towards an object approx-
imately 1 sec before it is mentioned. Human visual attention can
then be observed in response to both the robot utterance and gaze.
Thus, we can measure the effect of robot gaze versus robot utter-
ance on the participant’s visual attention towards potential referents
in the scene. More precisely, if robot gaze is indeed considered to
be an expression of robot attention (and, hence, is potentially ben-
eficial for communication), then we expect to observe that partici-
pants exploit this early piece of information to visually ground and
fully understand the uttered sentence.

Although it might be argued that this is not true interaction, it

(a) Unambiguous condition.

(b) Ambiguous condition.

Original sentence: ”Die Kugel ist neben einer Pyramide.”
(Translation: ”The sphere is next to a pyramid.”)

Figure 1: Sample scenes from Experiment 1.

has been shown that a video-based scenario without true interac-
tion yields similar results to a live-scenario and can be considered
to provide (almost) equally valuable insights into the subject’s per-
ception and opinion [20]. Further, the subjective perception of re-
mote versus collocated agents (for both robots and virtual agents)
has been studied by [11] and similar results were presented.

Using the experimental paradigm outlined above, we conducted
two experiments. Experiment 1 examines whether human gaze is
influenced by both robot speech (revealed by the listener’s looks
towards a mentioned object) and gaze (looks towards an object fix-
ated by the robot). Experiment 2 examines the benefit of robot gaze
for comprehension of robot speech. We compare human behaviour
in response to videos in which robot gaze is correct, infelicitous or
absent.

2. EXPERIMENT 1

2.1 Goal
In this study we investigate whether people’s gaze is influenced

by robot gaze and speech on-line. Participants saw the robot while
it gave a description of several objects in its view. A description
such as "The sphere is next to a pyramid." is accompanied by robot
gaze to a sphere and then to a pyramid, each occurring shortly be-
fore the robot utters the corresponding noun phrases (Figure 1).
This within-subjects design has one factor (ambiguity) with two
levels. In one condition, the video shows among other shapes one
sphere and one pyramid. In the second, ambiguous condition, there
are two pyramids in the scene, both matching the utterance "The
sphere is next to a pyramid." Both conditions require a positive an-
swer since the statements of both conditions are always true.

Since participants need to verify the statement against the scene,
we assume that their gaze behaviour is influenced by the robot’s
utterance. It is unclear, however, whether participants follow the
robot’s gaze as well. In the unambiguous condition, both robot
gaze and speech refer to a unique target object. In the ambiguous



condition, the robot’s utterance identifies two potential referents
(two pyramids) while robot gaze is directed only towards the target
pyramid. We observe and compare our participants’ looks towards
the target pyramid and the distractor object in both conditions to
establish whether people follow robot gaze.

2.2 Methods

2.2.1 Participants
Forty-eight native speakers of German, mainly students enrolled

at Saarland University, took part in this study (14 males, 34 fe-
males). Most of them had no experience with robots. They were
told that the eye-tracker camera was monitoring their eye move-
ments and pupil size to measure the cognitive load of the task on
them.

2.2.2 Materials
A set of 16 items was used. Each item appeared in both condi-

tions. One condition comprises a scene that is uniquely described
by the uttered sentence. The other condition comprises a scene
which is ambiguously described by the corresponding sentence.
The ambiguity results from two potential target objects in the scene
as shown in Figure 1.

We created 1920×1080 resolution video-clips showing a People-
Bot robot1 onto which a pan-tilt-unit is mounted. This pan-tilt-unit
carries a stereo camera which appears as the head and/or eyes of
the robot. Note, that head orientation and eye-gaze of the robot
is therefore identical.2 The robot stands behind a table with a set
of coloured objects in front of it. The objects are plain geometrical
shapes of different colours and sizes. In the unambiguous condition
(Figure 1(a)), each shape occurs only once on the table and the ut-
tered sentence has a unique interpretation with respect to the scene.
In the ambiguous condition (Figure 1(b)), two objects of the same
shape (but of different colours and sizes) are target and distractor
referents in a corresponding sentence. The video-clips each show
a sequence of camera-movements consecutively towards the object
mentioned first and the target object on the table. At the same time,
a synthesised sentence of the form given in Example (1) is played
back.

The robot fixations and the spoken sentence are timed such that
a ’fixation’ towards an object happens approximately one second
prior to the onset of the referring noun phrase which is consis-
tent with psychological findings about the co-occurrence of ref-
erential gaze and referring expressions in human speech produc-
tion [7]. Because of these distinct time windows we can study
both types of reactive human gaze separately: one being elicited
by robot gaze (joint attention), the other being utterance-mediated
(inspecting mentioned objects).

In both conditions the participant has to give a positive answer
since both statements are true. Further, across the 16 items we bal-
anced the stimuli with respect to target size (eight target objects are
big and have small distractors and vice versa) and target location.
In addition to the 16 item videos described above, we constructed
56 filler videos (of which 24 videos were used as items in Experi-
ment 2).

1kindly provided by the DFKI CoSy/CogX group:
http://www.dfki.de/cosy/www/index.html.
2Previous studies support the assumption that listeners use mostly
head orientation as indicator for visual attention rather than eye-
gaze itself so that a distinct realisation of the two does neither seem
necessary nor is it technically possible at this stage (see [9] for HRI
and [8] for HHI)

2.2.3 Procedure and Task
An EyeLink II head-mounted eye-tracker monitored participants’

eye movements at a sampling rate of 500 Hz. The video clips were
presented on a 24-inch colour monitor. Viewing was binocular, al-
though only the dominant eye was tracked, and participants’ head
movements were unrestricted. For each trial, a video was played
until the participant pressed a button or until an overall duration
of 12 seconds was reached. There were two buttons side by side,
one for each response option. The button configuration was chosen
such that participants always had to use their main hand to press the
"correct" button. After a drift correction interlude the next video
clip was presented. The participants were instructed by a short text
to attend to the scene and quickly decide whether the robot’s state-
ment was right or wrong with respect to the scene. To make the
task appear more natural, participants were further told that their
results were used as feedback in a machine learning procedure for
the robot. The entire experiment lasted approximately 30 minutes.

2.2.4 Analysis
The presented videos are segmented into Interest Areas (IA), i.e.,

each video contains regions that are labelled "target" and "distrac-
tor". The output of the eye-tracker is mapped onto these IAs to
yield the number of participant fixations on an object. The spoken
utterance is a sentence similar to the one shown in Figure 1, de-
scribing the relation between a couple of objects. For our analysis
the "pyramid" is encoded as the target reference. In the unambigu-
ous condition, the "pyramid" refers to exactly one target object. In
the ambiguous condition, the "pyramid" may refer to the target
object or the distractor object since there are two pyramids in the
scene.

Figure 2: The approximate timing of utterance-driven robot
gaze for the given sentence.

We segment the video/speech stream into two Interest Periods
(IP) based on the onsets and offsets of the encoded linguistic events.
The IPs identify the time regions when the robot head fixates the
target object and when it refers linguistically to the target object
(see Figure 2). For the analysis of the participants’ fixations, we
compute proportions of fixations per IA within each IP in a condi-
tion (fixations on an IA are divided by all fixations in this IP, i.e.
proportions between 0 and 1). For each IP in particular, we com-
pare the fixation proportions on the target and the distractor area
between all conditions. IP1 is defined as the 1000 msec period
preceding the onset of the target phrase, and contains the robot’s
fixation on the target object as well as some verbal content preced-
ing the target noun phrase ("next to"). IP2 stretches from the noun
phrase onset (including the determiner) to offset and has a mean
duration of 674 msec (min=488, max=972 msec).

The offset of IP2 also marks the end of the sentence. The elapsed
time between this offset and the moment of the button press com-



prises the response time.3 For the statistical analysis of both the
response time and the fixation proportions, we use the repeated-
measures analysis of variance (ANOVA). Subject and item means
are entered separately into the analyses. The fixation proportions
factor IA (target, distractor) and condition (unambiguous, ambigu-
ous).

2.2.5 Predictions
If robot gaze is not used, we expect participants to solely rely

on the robot’s utterance and thus fixate the distractor object more
often in the ambiguous condition than in the unambiguous condi-
tion. If, however, participants do follow gaze, we expect to observe
looks towards the target even before it is being mentioned (in IP1)
because the robot’s gaze precedes the target mentioning. Further-
more, if people interpret gaze as identifying the intended referent,
they should continue to favour the target over the distractor when
it is mentioned (IP2), even in the ambiguous condition. Since both
conditions are true, and gaze is consistent with human behaviour,
we expect to observe no difference in response times between both
conditions. Indeed, a difference in response times would suggest
that people were unable to use gaze effectively in the ambiguous
condition.

2.3 Results

Fixations
We observed that participants look significantly more often at the
target than at the distractor in both conditions. That is, there is
a main effect for factor IA during IP1 (F 1 (1, 45) = 58.28 and
F 2 (1, 14) = 189.66, with p1 < 0.005 and p2 < 0.005) and
during IP2 (F 1 (1, 45) = 87.93 and F 2 (1, 14) = 43.36, with
p1 < 0.005 and p2 < 0.005). That this effect is observable in IP1
indicates that participants in fact follow the robot’s gaze towards
the target object. Moreover, participants looked equally often at
the target object in the ambiguous and the unambiguous condition
as depicted in Figure 3, suggesting that participants followed robot
gaze to the target even when there was another potential referent in
the scene.

Further, we did not observe a main effect for ambiguity in ei-
ther IP, i.e., the influence of an additional referent is not signifi-
cant with respect to participants’ gaze. In IP2, however, we found
that participants looked more often towards the distractor object
in the ambiguous condition than in the unambiguous condition.
This effect may have caused the observed interaction effect be-
tween the factors IA and ambiguity in IP2 (F 1 (1, 45) = 9.19 and
F 2 (1, 14) = 5.68, with p1 < 0.005 and p2 < 0.05). The increase
in the number of looks towards the distractor object suggests that
participants do notice the referential ambiguity and accordingly fix-
ate the distractor in the ambiguous condition. Nevertheless, there is
a strong preference for fixating the target object in both conditions
which indicates that participants easily identify the target despite
the scene ambiguity.

Response Times
As expected, we observe no significant difference in the response
times (F 1 (1, 47) = 0.747 and F 2 (1, 14) = 0.026).4 In both con-
ditions participants are equally fast in determining the validity of
3Trials were excluded from this analysis if the participant gave a
wrong answer. Wrong and correct button presses cannot be com-
pared with respect to response times. Four percent of the trials had
to be excluded for this reason.
4F 1 and F 2 yield the results of analyses based on subject means
and item means, respectively.

Figure 3: Fixation proportions by condition and interest area,
for both interest periods.

the statement. The findings on both response time and the recorded
eye movement data are coherent with our hypothesis that humans
seek to establish joint attention with the robot, i.e. that they follow
the robot’s gaze to the target (Prediction 1). However, sentences in
Experiment 1 were referentially ambiguous, possibly emphasizing
the role of robot gaze. To reliably test Prediction 2, the influence
of robot gaze when accompanying uniquely identifiable sentences
needs to be explored which was done in Experiment 2.

3. EXPERIMENT 2

3.1 Purpose
Experiment 1 demonstrates that human gaze is influenced by

both robot gaze and speech. In Experiment 2, we sought to fur-
ther investigate the actual benefit of robot gaze. To separate the
influence of robot gaze and speech we manipulate the congruency
of our robot’s gaze as a cue for intended meaning and the validity
of the statements.

More precisely, in a 2×3 within-subjects design, we manipulate
two factors: Statement validity (true or false) and gaze congruency.
The latter denotes the match of the visual reference (established by
the robot’s gaze) with the linguistic reference (made in the robot’s
statement), and comprises three levels (congruent, incongruent, no
robot gaze). We consider gaze to be congruent (and informative)
when it is directed towards the same object that is going to be men-
tioned shortly afterwards (reference match) while it is considered
as incongruent when gaze is directed to an object different from
the mentioned referent (mismatch). In the third congruency level
robot gaze is absent to provide a baseline condition in which the
participants’ visual attention is purely a response to the produced
utterance. In Experiment 2, the robot’s statement is of the form that
is given in the example sentence below.



Example:
”Der Zylinder ist groesser als die Pyramide, die pink ist.”
(”The cylinder is bigger than the pyramid that is pink.”)

The scene provides two potential referents (e.g. two pyramids of
different sizes and colours) one of which the robot mentions. One
referent matches the description of the scene while the other does
not, which determines the statement truth. The manipulation of
both factors, statement validity and congruency, results in six con-
ditions per item. Below, we provide an example for all conditions
sentence (2) can appear in (given a corresponding scene depicted
in Figure 4) :
Conditions for the example sentence given above:

1. True statement: "The cylinder is bigger than the pyramid that
is pink."

(a) Congruent (looks to mentioned object that makes sen-
tence valid = (small) pink pyramid),

(b) Incongruent (looks to another object that would make
sentence invalid = (big) brown pyramid),

(c) No robot gaze

2. False statement: "The cylinder is bigger than the pyramid
that is brown."

(a) Congruent (looks to mentioned object that makes sen-
tence invalid = (big) brown pyramid),

(b) Incongruent (looks to another object that would make
sentence valid = (small) pink pyramid),

(c) No robot gaze

3.2 Methods

3.2.1 Participants and Procedure
This study was run simultaneously with the first experiment. The

items of one experiment were used as filler items for the other.
Therefore, the participants as well as the procedure were identical
for both experiments.

3.2.2 Materials
A set of 24 items was used. Each item consists of three different

videos and two different sentences, i.e., appears in six conditions.
Additionally we counterbalance each item by reversing the com-
parative adjective, i.e., from ”bigger” to ”smaller” such that the
target becomes the distractor and vice versa. We obtain a total of
twelve videos per item while ensuring that target size, location and
colour were balanced. All versions show the same scene and only
differ with respect to where the robot looks and whether it refers to
the correct (target) object. All twelve object shapes appear twice
as target-distractor pairs. The actual objects were pre-tested in or-
der to make sure that their size and colour differences were easily
recognisable. The questionnaire we used showed photographs of
the original scenes excluding the robot. Twenty participants had to
judge whether a given item sentence accurately described what was
visible in the scene. The results suggest that object comparisons are
easily assessed.

The videos were of the same type as in Experiment 1. The robot
fixations and the spoken sentence are again timed such that a fix-
ation towards an object happens approximately one second prior
to the onset of the referring noun. In this experiment, we can ob-
serve the two types of reactive human visual attention in separate
conditions: In addition to the fact that robot-gaze occurs in a time
window preceding the uttered reference, we introduce a baseline

condition not showing any robot-gaze at all. Since Experiments 1
and 2 were run simultaneously, we had 48 fillers (16 items from
Experiment 1 and an additional set of 32 filler videos) for 24 item
videos.

Twelve lists of stimuli each containing 72 videos were created.
Each participant saw only one condition of an item and, in total,
four videos in each condition. The order of the item trials was
randomised for each participant individually.

3.2.3 Analysis
The IAs in this study contain the target and the distractor objects.

The "pyramid" from the example sentence above is the target ref-
erence that has two referents in the scene when it is mentioned: the
small, pink target pyramid or the large, brown distractor pyramid.

Figure 5: The approximate timing of utterance-driven robot
gaze, in condition true-congruent.

We segmented the video/speech stream into three Interest Peri-
ods (IP) as depicted in Figure 5. IP1 is defined as the 1000 msec
period ending at the onset of the target phrase (IP2). It contains
the robot’s fixation towards the target object as well as some verbal
content preceding the target noun phrase (e.g. "bigger than"). IP2
stretches from the target phrase onset (including the determiner)
to offset and has a mean duration of 674 msec. IP3 is defined as
the 700 msec period beginning at the onset of the disambiguating
colour adjective. For the analysis of the participants’ fixations, we
compute proportions of fixations per IA within each IP in a con-
dition (as described for Experiment 1). For each IP individually,
we compare the fixation proportions on the target and the distractor
area between all conditions.

The adjective denoting the colour of the referent completes the
linguistic reference and identifies the actual target. Only at that
point in time is it possible to judge the statement validity, which
is why it is called the linguistic point of disambiguation (LPoD).5

The elapsed time between this adjective onset and the moment of
the button press is therefore considered as the response time.

As in Experiment 1, the respective means are entered separately
for subjects and items into the Repeated-Measures ANOVA. Both,
response time means and fixation proportions, are analysed with
two factors: statement validity and robot gaze congruency.

3.2.4 Predictions
In Experiment 1 we found that people exploit robot gaze to re-

solve a reference. In Experiment 2, we can compare between the
presence and absence of robot gaze and the congruency of the latter
in order to evaluate the utility of robot gaze. Based on our hypoth-

5A similar design, also featuring late linguistic disambiguation
with early visual disambiguation by means of gaze-following, was
already successfully tested in a study on human-human interaction
by [8] .



(a) Robot looks at partner, (b) ...at first object,

(c) ...at TARGET object, (d) ...and back up.

Figure 4: Sample scene from Experiment 2.

esis and supporting findings from Experiment 1, we expect par-
ticipants’ gaze to be mediated by robot speech. We particularly
expect to observe this when robot gaze is absent since participants’
fixations within the scene should then be driven by the robot’s ut-
terance.

Since our item sentences reveal the target object, i.e., which ob-
ject is being mentioned, only at the end of a sentence, participants
can keep several hypotheses about referents until the LPoD. We
therefore expect gaze throughout the utterance to reveal the lis-
tener’s hypothesis about the intended referent. Specifically, in IP1
we predict gaze-mediated fixations while in IP2 we expect fixations
on both the target and distractor IAs when the robot mentions the
target noun phrase. Based on where the robot looks and what it
says, we expect participants to preferably fixate the IA that they
consider to be the actual target. IP3 reveals the match (congru-
ent condition) or mismatch (incongruent condition) of visual and
linguistic references made by the robot. Since the statement (and
therefore the linguistic reference) has to be judged for its validity,
we expect participants to then preferably fixate the actual target IA.

For response times, a main effect of statement validity is ex-
pected due to the bias in our stimuli (true statements have faster
response times than false statements). We also expect a main ef-
fect of gaze congruency: If participants exploit robot gaze, they
can anticipate the validity of statements in those stimuli when gaze
is congruent with the statement. In contrast, when gaze is incon-
gruent with the statement, we expect that participants anticipate a
proposition that eventually does not match with the actual robot
statement. Hence, we assume slower response times for incongru-
ent robot gaze. Since the absence of gaze neither facilitates nor
complicates the judgement of the statement validity, we predict in-
termediate response times for this condition.

3.3 Results

Fixations
In Figure 6 we have plotted the average fixation proportions of our
participants on the IAs (target and distractor) within each IP.6 On

6Differences reported here as significant were statistically signifi-
cant in pairwise post-hoc comparisons.

(a) Fixation proportions for
true statements.

(b) Fixation proportions for
false statements.

Figure 6: Fixation proportion means for all three interest peri-
ods.

the left-hand side, the true conditions are depicted. In all three
of these graphs, the robot utters the same sentence about the target
(e.g. the small pink pyramid from the example sentence) while only
its gaze behaviour differs. When comparing these three graphs, the
impact of the presence or absence of robot gaze on the participants’
fixations becomes evident:

IP1: During IP1, robot gaze is the only potential cue to the in-
tended target (e.g. big or small pyramid). The upper left graph de-
picts the true-congruent condition (tc), i.e., the robot’s gaze refers
to the same object that the (true) statement refers to, namely the tar-
get. This graph also shows significantly more fixations on the target
IA than the distractor IA. The middle-left graph plots fixations in
the true-no robot gaze condition (tn). In contrast to the conditions
containing robot gaze, there are almost no fixations on the target
or distractor IAs during this IP. The bottom-left graph depicts fixa-



tions in the true-incongruent condition (ti), when the robot looks at
the distractor IA. Similarly (yet reversed), we observe significantly
more fixations on the distractor IA than on the target IA.

IP2: In IP2 the robot utters the target noun phrase (e.g. "the
pyramid"). The fixation pattern observed in IP1 for both gaze con-
ditions is enhanced in IP2. The mentioning of the noun phrase
increased fixations on the already preferred IA. In the absence of
gaze, participants begin to fixate the small target pyramid which
satisfies the linguistic description so far ("The cylinder is bigger
than the pyramid").

IP3: This IP contains the LPoD specifying which pyramid is
indeed being mentioned. In the tc-condition the robot gaze and
statement match and so participants remain fixating the target IA
and hardly look at the distractor. However, in the ti-condition the
mismatch between visual and linguistic reference becomes appar-
ent and participants have to realise that the robot’s statement is not
about the distractor object. Probably in order to re-judge the state-
ment’s validity, they start to look at the target IA as well (no signif-
icant difference between target and distractor IA now).

The fixation pattern is almost identical for false statements. What
is being fixated by the robot, and therefore by the participant, is re-
versed. The statement is false in these conditions, i.e., the robot
mentions the distractor object (e.g. big brown pyramid). False
- congruent gaze therefore means that the robot also looks at the
distractor object. Consequently, in the fc-condition participants
mainly fixate the distractor IA as well. Note, that for both tn- and
fn-conditions the videos are identical up to IP2. The fixation pat-
terns nicely confirm this by showing a simultaneous fixation in-
crease on the target IA in both conditions up to that point. The
fixation patterns then diverges in IP3 according to the LPoD. In the
no-gaze conditions, it becomes apparent that participants predict a
suitable object as the referent (target) based on the available lin-
guistic material. When robot gaze is present, however, it overrides
this linguistic prediction: in the false-congruent condition, gaze-
following to the distractor is observed even though the distractor
does not fulfill the linguistic description given up to IP2.

Response Times
We found main effects for both statement validity and gaze con-
gruency in the response times as plotted in Figure 7. Specifically,
participants were significantly faster (at an average of 139.73 msec)
when they had to give a positive answer than when the statement
of the robot was false (F 1 (1, 47) = 17.69 and F 2 (1, 23) = 7.93,
with p1 < 0.005 and p2 < 0.05). Gaze congruency also has
a significant effect on response times (F 1 (2, 46) = 13.55 and
F 2 (2, 46) = 25.7, with p1 < 0.005 and p2 < 0.005). In the
absence of an interaction of the two factors, we can compare the
three levels of the congruency factor independent of statement va-
lidity. In the congruent condition, i.e., when the robot looks to-
wards the object that it is going to mention, participants are sig-
nificantly faster (135.49 msec on average) in giving their response
than when there is no robot gaze involved. Participants are faster
in the no robot gaze condition than when the robot’s gaze is in-
congruent with its statement (145.37 msec on average). The re-
sult is a cascaded response time pattern: true < false, congruent
< no gaze < incongruent. A post-hoc pairwise comparison with
a Bonferroni adjustment further reveals pairwise significant dif-
ferences between response times in the true-congruent and false-
congruent conditions (F 1 (1, 47) = 11.45 and F 2 (1, 23) = 6.41,
with p1 < 0.005 and p2 < 0.05) and between the true-no robot
gaze and false-no robot gaze condition (F 1 (1, 47) = 6.14 and
F 2 (1, 23) = 4.98, with p1 < 0.05 and p2 < 0.05). The two
incongruent conditions do not differ significantly with respect to

Figure 7: Average response times for true and false statements,
per gaze congruency condition.

response time.
The response times clearly suggest that congruent gaze bene-

fits and incongruent gaze disrupts comprehension relative to the
no robot gaze condition (Prediction 2). This suggests that partici-
pants do associate robot gaze with the robot’s statement about ob-
jects in the scene. We assume that they start building hypotheses
about the statement’s validity according to the robot’s gaze and be-
fore the LPoD. Hence, participants are able to make their decisions
faster when gaze is congruent with the statement than in those cases
where there was no robot gaze in the video. On the other hand,
when the robot’s gaze is incongruent and leads the participant to a
referent different from the mentioned one, the participant has to re-
assess the statement’s validity and construct a new hypothesis. We
suggest that this additional comprehension time occurring at the
LPoD causes the slow-down in response time.

Concluding our results for Experiment 2, we find that the re-
sponse time results support the interpretation of our findings from
the observed eye movements described above and, similarly, sug-
gest that participants follow both robot gaze and robot speech.

4. CONCLUSIONS AND FUTURE WORK
We have shown that detailed insights from situated human com-

munication can be applied to human-robot-interaction. The pre-
sented evidence shows that this cognitively motivated robot-gaze
behaviour is beneficial in HRI and that humans react in a manner
typical of HHI to both robot speech and robot gaze.

More precisely, we predicted that the robot’s gaze directly influ-
ences where people look in a scene (Prediction 1) and, further, that
this affects people’s comprehension of the robot’s utterance (Pre-
diction 2). The two studies presented in this paper revealed that
participants make use of robot gaze, i.e., they follow it when it is
available, which clearly supports Prediction 1. This is the case even
when the task does not require them to do so: In our experiments
it suffices to match the uttered statement against the scene with-
out paying attention to the robot’s movements. In Experiment 2
in particular, we showed that robot gaze which is congruent with
the uttered sentence helps human interlocutors to faster judge utter-
ances than if robot gaze was absent. On the other hand, when robot
gaze was incongruent with the utterance, i.e., it referred to a differ-
ent object, it slowed people down. This evidence clearly confirms
Prediction 2.

We have further shown that humans integrate robot gaze on-line



during incremental utterance comprehension and that this influ-
ences comprehension speed. We suggest that this effect is due to
a reduction (congruent gaze) or increase (incongruent gaze) of the
hypothesis space during comprehension, as a result of cues pro-
vided by cognitively motivated robot gaze behaviour.

The impact of these findings for the design of systems control-
ling robot gaze is considerable. We conclude that referential robot
gaze contributes to a faster and more fluent communication and
thus is to be preferred over a robot that does not look at the objects
it is talking about. However, when the robot is not entirely certain
about the location of a referent (or which object to look at) it is
advisable not to initiate any fixations, since these may disrupt the
comprehension of the user.

Moreover, we suggest that the proposed experimental design is
genereally suitable to investigate what beliefs humans have about
robots and their capabilities. The attribution of beliefs, goals and
desires to others is a crucial skill in social interaction ([2, 3]). This
capability is necessary in order to realise, for instance, what the in-
teraction partner is attending to and why. Attention, intentions and
beliefs are important aspects of human-robot interaction as well.
Of course, a robot is not expected to act like a human, but with in-
creased communicational skills the expectations towards the robot
will also rise.

Previous research has considered a Theory of Mind (ToM) model
and its utility for human-robot interaction from the robot perspec-
tive. Scasselatti and colleagues, for instance, attempted to imple-
ment two ToM models on a robot system [16]. Their aim was to
equip a robot with a system that enables the robot to "engage in
natural human social dynamics" by maintaining a ToM for the hu-
man partners it interacts with. Others have attempted to investigate
what mental models people have for robots [10] with a focus on the
appearance of the robot and the anthropomorphism that people as-
sociate with it. With our design, however, we can investigate more
precisely what features of a ToM humans build when interacting
with a robot. For instance, what do people think about the robot’s
cognitive capabilities. Is the robot considered to have (visual) at-
tention which reflects internal (and even intentional) states? Which
modality do people preferably trust in and consider more reliable?
A ToM model that is based on HRI instead of HHI might be simpler
and yet more effective when applied to a robot system.

The studies conducted so far and reported here provide support
for our hypothesis that people pay attention to robot gaze, exploit it
and integrate the gained information during utterance comprehen-
sion. We conclude that humans consider robot gaze to be mean-
ingful and that cognitively motivated gaze behaviour can therefore
contribute to more natural and fluent HRI in general.
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