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Abstract

The interaction of utterance comprehension and information
from a visual scene is characterized by the closely time-locked
coordination of incremental comprehension and attention in
the scene. Comprehension is also anticipatory, as revealed by
attention to objects in a scene before they are mentioned. The
interaction is further marked by the rapid and seamless inte-
gration of, and adaptation to, diverse information sources in
both the utterance and visual scene. These sources can inter-
act dynamically, both complementarily and, at times, conflict-
ingly. A recurrent sigma-pi neural network is presented that
implements an attentional mechanism to model these behav-
iors, directly instantiating thecoordinated interplay account
that suggests the utterance guides attention in the scene, which
in turn rapidly provides information that influences compre-
hension. A key aspect of the account is that the immediacy of
depicted events in the scene takes precedence over stereotyp-
ical knowledge when these two information sources conflict.
Crucially, the model captures this behavior without being ex-
plicitly trained to resolve the conflict, even when the relative
frequency of the information sources differs greatly.
Keywords: Connectionist modelling; situated utterance com-
prehension; language-scene interaction; attention

Introduction
All human communication occurs in context. Indeed, even
the so-called isolated phrase, coveted by linguists for its self-
contained syntactic and semantic properties, is understood
only within the context of human experience. In this way, the
study of how language relates to its context provides insight
into the very nature of language itself: how itmeansanything
at all. Understanding the interaction of language and context,
such as a visual environment, serves to identify and delineate
the cognitive mechanisms involved in language comprehen-
sion, and how resources such as linguistic and world knowl-
edge, as well as information from the visual context, are uti-
lized. This challenge is especially daunting because language
is inherently dynamic, and the utilization of these various in-
formation sources must be coordinated in real time.

Fortunately, a growing body of psycholinguistic research
in the visual worldsexperimental paradigm, wherein sub-
jects’ eye movements over a visual scene are monitored as
they listen to an utterance, has begun to yield tangible data on
the nature of the on-line interaction of utterance comprehen-
sion and context. Typically, that context is a visual scene that
can establish referents and relations, together with the partic-
ipants’ own linguistic and world knowledge. The analysis of
eye movements in a scene during utterance comprehension
under the controlled manipulation of a variety of informa-
tion sources has revealed five fundamental characteristics of

on-line situated utterance comprehension. First, on-line com-
prehension occursincrementallyand is closely time-locked
with attention to the scene (Tanenhaus, Spivey-Knowlton,
Eberhard, & Sedivy, 1995). Second, attention to objects in
a scene before they are mentioned in an utterance shows
that anticipation plays a vital role in comprehension (Alt-
mann & Kamide, 1999). Third, all available information
sources–linguistic and world knowledge, as well as scene
information–are rapidly and seamlesslyintegratedduring on-
line comprehension (Knoeferle, Crocker, Scheepers, & Pick-
ering, 2005; Kamide, Scheepers, & Altmann, 2003; Sedivy,
Tanenhaus, Chambers, & Carlson, 1999; Tanenhaus et al.,
1995). Fourth, sentence comprehension is highlyadaptiveto
the dynamic availability of information from these multiple
sources. Fifth, these sources of information arecoordinated:
the interaction between language and visual scene process-
ing is a two-way street. Comprehension of the unfolding ut-
terance both rapidly guides attention to objects in the scene
and, in turn, the attended region of the scene tightly con-
strains and influences comprehension, a process Knoeferle
and Crocker (in press) dub thecoordinated interplay account
(CIA). Furthermore, a full account of this interaction must
address the issue of what happens when information sources
conflict: which sources take precedence and why? Recent re-
search on the interaction between world knowledge and infor-
mation from a visual scene indicate that immediate depicted
events are preferred over knowledge about stereotypical re-
lationships when these conflict. Knoeferle and Crocker sug-
gest that such a preference may have its basis in the role the
immediate visual environment plays in child-directed speech
during language acquisition (e.g., Snow, 1977).

These characteristics of situated utterance comprehension
pose an interesting challenge for modellers. The success-
ful model should operate incrementally, anticipate upcoming
referents, rapidly and seamlessly integrate information from
multiple sources, adapt to available information, exhibit the
observed attentional shift during utterance comprehension,
and demonstrate the observed preference for the depicted
information over world knowledge when these information
sources conflict.

Two recently proposed models feature several of these
characteristics. The Fuse model by Roy and Mukherjee
(2005) uses an attentional mechanism to constrain the num-
ber of referents to improve speech recognition. The system
does predict different ways a person might describe objects
in a scene and biases how the words are recognized. The
scene employed contains only objects, and is always assumed



Figure 1:Coordinated Interplay Account When presented
with a sentence such asDen Piloten bespitzelt gleich der ...
(“The pilotacc spies-on shortly the ...”), participants could ei-
ther look at theDetektiv(“detective”) as the most likely up-
coming agent based on its stereotypical association with the
verbbespitzelt(“spies on”), or at theZauberer(“wizard”), de-
picted as doing the spying. Empirical results show that people
prefer the depicted event over stereotypical knowledge.

to be relevant to the speech signal being processed. On the
other hand, the model proposed by Mayberry, Crocker, and
Knoeferle (2005) operates both with and without a scene,
and the scene can contain both objects and actions that ex-
plicitly depict relationships between the objects. It pro-
cesses sentences incrementally and is able to use the infor-
mation about objects and events to predict upcoming argu-
ments. The network modelled results from five distinct ex-
periments in two separate simulations. In one of these simu-
lations, the model also demonstrated the observed preference
for the scene over stereotypical knowledge, but only after be-
ing explicitly trained to perform that resolution. However, the
model did not feature an attentional mechanism.

In this study, a novel system called CIANet is presented
that improves upon the model in Mayberry et al. (2005) in
four important ways:

• it exhibits the propercognitive propertiesof incrementality,
anticipation, integration, adaptation, and coordination,

• it models theempiricallyobserved preference for depicted
information over stereotypical knowledge,

• it employs aninnovativeattentional mechanism that gives
rise to this cognitively plausible behavior,

• it implements asimpleraccount of language-scene interac-
tion, resulting in faster training and better performance.

These characteristics allow the model to more directly imple-
ment the CIA, described next.

Coordinated Interplay Account
Knoeferle and Crocker (in press) presented a study that ex-
amined two issues. First, it replicated the finding that stored
knowledge about events that were not depicted and informa-
tion from depicted, but non-stereotypical, events each enable
rapid thematic interpretation. An example scene showed a

wizard spying on a pilot, to whom a detective is also serv-
ing food (see Figure 1). The item sentences were in Ger-
man, a language that allows both subject-verb-object (SOV)
and object-verb-subject (OVS) word order, with grammati-
cal function often indicated by case marking on the articles.
For this experiment, item sentences had an OVS order. When
people heard (Cond 1), case-marking on the first NP identi-
fied the pilot as a patient. The subsequent verb uniquely iden-
tified the detective as the only food-serving agent, as revealed
by more inspections to the agent of the depicted event (detec-
tive) than to the other agent. In contrast, when people heard
the verb in sentence (Cond 2), stereotypical knowledge about
jinxing identified the wizard as the only relevant agent, as in-
dicated by a higher proportion of anticipatory eye movements
to the stereotypical agent (wizard) than to the other agent.
(Cond 1) Den Piloten verk̈ostigt gleich der Detektiv.

The pilotacc serves shortly the detectivenom.
(Cond 2) Den Piloten verzaubert gleich der Zauberer.

The pilotacc jinxes shortly the wizardnom.
Second, the study determined therelative importanceof de-
picted events and verb-based thematic role knowledge. Par-
ticipants heard utterances (Cond 3 & 4) where the verb iden-
tified both a depicted (wizard) or a stereotypical agent (de-
tective). When faced with this conflict, people preferentially
relied upon the immediate event depiction over stereotypical
knowledge, looking more often at the wizard, the agent in the
depicted event, than at the other, stereotypical agent of the
spying action (the detective).
(Cond 3) Den Piloten bespitzelt gleich der Zauberer.

The pilotacc spies-on shortly the wizardnom.
(Cond 4) Den Piloten bespitzelt gleich der Detektiv.

The pilotacc spies-on shortly the detectivenom.
Combining insights from this study and prior psycholin-

guistic research, Knoeferle and Crocker (in press) propose
the coordinated interplay account (CIA) of situated utterance
comprehension. The CIA stipulates that initially the unfold-
ing utterance guides attention in the visual scene to estab-
lish reference to objects and events. Once identified, the at-
tended information rapidly constrains comprehension of the
utterance, allowing anticipation of upcoming arguments not
yet mentioned. Moreover, the immediacy of depicted events
takes priority over learned world knowledge such as stereo-
typical associations.

Modelling Dynamic Event Selection
Neural networks are a type of computational model that op-
erates through parallel computation over massively intercon-
nected simple processing units. These units take an input
pattern and integrate it with activation from other units to
produce an output pattern. Because their operation involves
summation and compression over often thousands of weights,
these connectionist systems are able to seamlessly integrate
disparate information sources, making them a natural choice
for modelling aspects of multimodal human information pro-
cessing, such as the interaction of language and scene in the
eye-tracking experiment just described.

CIANet is based on a simple recurrent network (SRN; El-
man, 1990) that has been modified to optionally take the rep-
resentation of a scene and produce a case-role interpretation



of the input utterance (see Figure 2). Processing is incremen-
tal, with each new input word interpreted in the context of the
scene, if present, and the sentence processed so far, as rep-
resented by a copy of the previous hidden layer serving as
additional input to the current hidden layer. Because these
types of associationist models automatically develop correla-
tions among the data they are trained on, they will typically
develop expectations about the output even before a sentence
is completely processed. Moreover, during the course of pro-
cessing a sentence these expectations can be overridden with
subsequent input, often resulting in the abrupt revision of an
interpretation in a manner strongly reminiscent of how hu-
mans seem to process language. Indeed, it is these character-
istics of incremental processing, the automatic development
of expectations, seamless integration of multiple sources of
information, and adaptation to new information that have en-
deared connectionist models to cognitive researchers.

The encoding of the scene used by CIANet features three
characters involved in two events (cf.,wizard spies-on pilot
anddetective serves pilotin Figure 1). The middle character
(e.g.,pilot ) is involved in both events as a patient. Only one
of the events, however, will be relevant to the input utterance.

The representations for the characters and actions in each
event are fed into the network’s hidden layer by shared agent,
action, and patient connections. The result is that the two
events’ constituents are effectively and separately superim-
posed. Thus, there is no explicit binding of each event’s
constituents; with shared weights, any of the constituents
could go with any other. CIANet solves this problem through
the use of an attentional mechanism that dynamically binds
events, and is described in the next section.

The who-did-what-to-whom was encoded for the events,
when depicted; grammatical information came from the lin-
guistic input. The SRN consisted of input and output assem-
blies of 144 units each. The input assemblies comprised the
six constituent representations in the scene and the current
word from the input sentence. The output assemblies made
up the verb, the first and second nouns, and a discriminator
that indicated whether the first noun was the agent or pa-
tient of the sentence. Typically, agent and patient assemblies
would be fixed in a case-role representation without such a
discriminator and the model required to learn to instantiate
them correctly (Miikkulainen, 1997), but CIANet performed
better when the task was recast as having to learn to isolate the
nouns in the order in which they are introduced in the utter-
ance, and separately mark how those nouns relate to the verb.
The hidden and context layers consisted of 400 units. The
network was initialized with weights between -0.01 and 0.01.
It was trained with backpropagation-through-time (Rumel-
hart, Hinton, & Williams, 1986) with a learning rate of 0.002.

Event Selection using Sigma-Pi Units

Mayberry et al. (2005) used explicitevent layersto build
compressed representations of the two events in the scene.
The compression process served to bind the entities and ac-
tions in the event together so that the network could access the
compressed information and make reliable predictions about
an upcoming argument once it had enough information (such
as the patient and verb to predict the relevant agent). The task
was complicated considerably by the fact that the two events
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Figure 2: Attention through Multiplicative Connections
The network modulates each event through a vector called
a gate that functions as an assembly of sigma-pi units mul-
tiplied element-wise with each constituent of an event. The
black circles indicate that the complement (one minus each
element of the gate) is multiplied element-wise against each
constituent of the other event. At each step of processing,
the gate is updated so that the most informative event has the
most influence on reducing the overall error.

were in effect superimposed over each other by virtue of the
shared links between the event layers and the hidden layer
of the network. Yet, the shared weights were deemed impor-
tant as they were meant to represent a single pathway used to
recognize each event in a scene.

Pilot studies suggested that event binding could instead be
effectively achieved by scaling the two events themselves by
differing degrees, and the network could use the resulting dis-
tinction to produce the correct output. The agents, the actions,
and the patients of the two events would then be fed directly
to the hidden layer through shared weights, leaving open the
possibility of adding more events in future experiments. The
empirical question, then, was how to most effectively scale
the two events.

The most straightforward approach would have employed
a singlegating unit that selected one event or the other by
scaling them to sum to 1, so that the more one event is ac-
tivated, the less is the other. Thus, if one event was scaled
by 0.9, then the other would be simply scaled by 0.1. Yet,
it proved difficult to train the network to perform this appeal-
ingly simple operation with just one gating unit. The reason is
that minimizing the error between outputs and targets meant
(4 · 144 =) 576 units were contributing to the overall error,
overwhelming the signal from the single gating unit and re-
sulting in erratic behavior when miniscule changes in the gat-
ing unit were amplified through recurrency. Various attempts
to improve its performance, such as altering the learning rate,
changing the gain, and phased training had little effect.

However, extending the gating unit into agating vec-
tor (or gate) of the same size as the lexical representations
(144 units) proved effective. The gating vector basically
transforms the architecture into a recurrent sigma-pi net-
work (Rumelhart et al., 1986). The units of the gate are mul-
tiplied element-wise with the corresponding units in each of
the three lexical representations comprising the agent, action,
and patient of an event (see Figure 2). To maintain the con-



straint that, the more active one event is, the less active the
other, each unit of the gate is subtracted from one to derive a
vector complement that then modulates the other event’s con-
stituents. In effect, the gate serves as a commonmaskfor the
constituents of one event that is optimized through training
to increase contrast by suppressing the elements of the other
event so as to minimize the error from the target case-role
interpretation of the sentence. The result is that the average
activation of the gating vector directly correlates with greater
activation of the attended event in a scene, effectively imple-
menting an attentional mechanism. Crucially, the network
is never taught which event to attend to. Because the gate
functions essentially as a second hidden layer, attention to
the most relevant event develops automatically on the basis of
error information from the multiplicative connections to the
modulated constituent representations of each event which is
backpropagated recurrently during training.

Training and Test Data

Recall that the four conditions in the experimental design
were used to measure the interaction of stereotypical thematic
role knowledge and information from depicted events in a
scene. In two of the conditions, only one or the other of these
two information sources was available, whereas in the other
two conditions, both sources were available and conflicting.
A major objective of the current study was to show that the
model could learn to correctly resolve the conflicting con-
ditions when trained only on the non-conflicting conditions.
Additionally, the model should perform correctly in the ab-
sence of a scene, anticipating the stereotypical agent at the
verb. Once it reads the final noun, it should produce that noun
as the correct agent for the utterance, possibly overriding the
anticipated filler.

The training corpus used in this study was based on sen-
tence templates of the two conditions with nonconflicting in-
formation sources. These sentences either involved stereotyp-
icality, in which case neither depicted event showed an action
that corresponded with the verb in the sentence; or they in-
volved only the scene, in which case no stereotypical agent
for the verb in the sentence was depicted. Twenty-four verbs
were used, together with their stereotypical agents, which is
half of that used in Mayberry et al. (2005), but SVO ver-
sions of all sentences were added to expose the network to
greater sentence variation. The training corpus was generated
from all possible combinations of referents in both OVS and
SVO word orders, while strictly holding out the original ex-
perimental materials as the test set. Because all the scenes in
these materials featured an action in one event and a plausi-
ble agent for the action in the other event (cf.bespitzeltand
Detektivin Figure 1), the network could potentially learn to
use this purely scene-based correlation to accomplish its task.
Accordingly, all such cases were filtered from the training
corpus to remove any source of subtle bias that might con-
found the results. These measures ensured that the test set
was as novel to the network as possible. Indeed, where an
event was relevant during training, it was irrelevant during
testing, so the network had to learn to ignore or suppress it
to produce the correct output. There were 13,632 sentences
in the training corpus, each of which had an event that was
most relevant to the sentence, and could be paired with one
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Figure 3:Effect of Stereotypicality parameterThe bar plot
shows the average accuracy of CIANet in correctly identify-
ing the agent as measured both at the adverb (anticipation)
and sentence-final (comprehension) for stereotypicality ratios
from 0.0 to 1.0. A clear preference for the depicted agent is
evident across all ratios up to 0.8.

of 6912 events generated randomly. Both OVS and SVO
test sets had 96 sentences and scenes based on the twenty
four verbs across the four conditions. All lexical items were
given 144-dimensional binary random representations to re-
move any features the network could use to develop correla-
tions that might confound the study. As an unbiased estimate
of human exposure to language in situated settings, the net-
work was trained on sentences with scenes half of the time,
and half of the time without.

In order to measure the relative influence of stereotypical
information versus depicted events, a single parameter, the
stereotypicality ratio, was manipulated during training that
controlled the relative frequency of sentences that appeared
with stereotypical agents to those with non-stereotypical
agents. Because the lexicon in the current study featured 24
verbs, each with its own stereotypical agent, the stereotypi-
cality ratio had to be greater than 1/24 (0.04167) for the net-
work to learn stereotypicality at all; otherwise, any ostensibly
stereotypical agent would appear as frequently as any other.
The greater this ratio, the stronger the association of a verb
with its stereotypical agent. If the ratio is too large, then the
network would learn the stereotypical association to the ex-
clusion of all others.

Results

Figure 3 reports the performance of CIANet for stereotypical-
ity ratios from 0.0 to 1.0. Accuracy is given as the percent-
age of targets at the network’s output layer that the model
correctly matches (based on human performance), both as
measured at the adverb (anticipation) and at the end of the
sentence (comprehension). Performance is measured at the
adverb rather than the verb because integration of the verb
with information from the scene causes the network to shift
attention to the relevant event, which manifests itself on the
next word. The process is loosely analogous to the use of the
adverb region in the analysis of the eye movements to allow
time for people to process the verb in the utterance and attend
to the scene. The model clearly demonstrates the qualitative
behavior observed in the experiment in that it is able to access
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Figure 4: Coordinated Interplay of Information Sources
The varying preference for the stereotypical (positive) versus
depicted (negative) agent averaged for each of the four con-
ditions over the test set clearly shows the model’s ability to
adapt to information as it processes a sentence incrementally.

the scene information and combine it with the incrementally
presented sentence to anticipate forthcoming arguments.

Crucially, the model learns the observed resolution in favor
of the depicted action when the two information sources con-
flict, despite never having been trained to do so. Moreover,
this performance is not simply a matter of setting the stereo-
typicality ratio just right, but is robust over a wide range of
parameter settings. The best overall performance is obtained
for settings of0.2 and0.3, at which the model predicts more
than 94% of the upcoming arguments correctly, and matches
over 99% of all arguments at the end of the sentence. The an-
ticipation accuracy does decrease as the stereotypicality ratio
is increased, but even at0.8, it correctly identifies the de-
picted agent over 83% of the time. The amount of training
for the network to converge on this level of performance also
increases, taking approximately five times as long for a set-
ting of 0.8 as for0.2. For settings greater than0.8, perfor-
mance failed to improve, despite extensive training. For1.0,
this failure is hardly surprising since the network only learns
stereotypical associations, but for0.9, performance may yet
improve with more training.

Is the gating vector even necessary? Could the network
learn to produce the correct response just from the superim-
posed patterns of the events to identify and correlate their
constituents? Several models were trained and tested with no
gating vector whatsoever to select events. On average, these
models achieved approximately 50% (i.e., chance) correct an-
ticipation of the upcoming agent.

Figure 4 gives a clearer view of how attention shifts over
the course of sentence processing for a stereotypicality ra-
tio of 0.5. The plot shows the difference between the Eu-
clidean distances of the network’s second noun output to the
two agents in the scene, normalized so that positive values in-
dicate a preference for the stereotypical (language) agent, and
negative values indicate a preference for the depicted (scene)
agent. These values were collected for all OVS test sentences
and averaged for each of the four experimental conditions.
The network shows no preference for either event agent as it
processes the first noun phrase,den Noun1, because the pa-
tient appears in both events. A preference for the stereotyp-

ical agent over all conditions is evident at the point that the
model has just processed the input verb, but not yet shifted
attention to the most relevant event. This behavior is a pre-
diction of CIANet that should be amenable to experimental
verification. The initial preference makes sense for Cond 2-3
because a stereotypical agent does appear in the scene, but
for Cond 1 it reflects a very slight negative correlation be-
tween the input verb and depicted agent that has developed as
an artifact of the limited number of verbs used in the study.
Nonetheless, the effect is completely overridden on the next
step at the adverb once the network has shifted attention to
the most relevant event, and the relative influence of language
and scene are clearly manifested. For Cond 1, in which only
case marking on the first NP and thematic role information
from the processed verb combine with information from the
depicted event, there is a strong preference for the depicted
agent. For Cond 2, there is likewise a strong preference for
the stereotypical agent since the processed input verb has no
corresponding depicted action. The two conflicting condi-
tions are identical up to the final noun phrase, and the inter-
action between the language and scene is evident in the net-
work’s shifting anticipation. Yet, the network does show a
clear preference for the depicted over the stereotypical agent
at the adverb. Finally, the zigzag form of the Cond 4 curve
in Figure 4 attests to the ability of CIANet to rapidly adapt to
information as it becomes available: at the verb, stereotypi-
cality is the most informative source, which is integrated with
information from the scene on the next step to shift attention
to the relevant event supporting anticipation of the depicted
agent, but finally overridden on the final noun, which turns
out to be the stereotypical agent.

General Discussion and Future Work

CIANet is a recurrent sigma-pi neural network that was mo-
tivated by, and directly implements, the coordinated interplay
account (CIA) of situated utterance comprehension. The use
of an attentional mechanism enables the model to exhibit a
number of importantcognitive properties. The model op-
erates incrementally, integrating an utterance word by word
with information from a scene, if present. It is also adap-
tive, able to perform correctly when there is no scene, and, in
general, avails itself of whatever information is present. The
model accurately anticipates upcoming arguments based on
either stereotypical knowledge or information from the scene.
The manner in which the events are selected can be seen as
instantiating the CIA: the utterance causes the network to ac-
tivate the gating vector to select the most relevant event in
the scene, which then directly influences the network’s full
interpretation, as revealed by what it anticipates.

In addition to this cognitive behavior, theprimary experi-
mental modellingresult of this study is that the network cor-
rectly learns to resolve conflicting information sources in fa-
vor of the immediate scene over stereotypical knowledge, de-
spite only being trained on nonconflicting sentences. This
means that the model is no longer “just fitting” the data, but
generalizing in a novel manner. Significantly, the result holds
over a wide range of ratios for the relative frequency of sen-
tences in the training corpus that have a stereotypical versus
a non-stereotypical agent. The network takes longer to learn
to use the scene information correctly as the stereotypicality



ratio increases, but the scene ultimately has a stronger influ-
ence on the interpretation once it has been integrated with
the input sentence. The reason for this behavior is that infor-
mation from the scene is available as each word of the input
sentence is processed, whereas the stereotypical information
only comes into play once the verb or its stereotypical agent
is processed. Because the network must learn to identify and
attend to the relevant event in the scene, its relative influence
becomes amplified with training.

To model the empirical results, themain innovationof the
model is the use of a gating vector to directly modulate the
two events fed into the SRN through shared weights. The
purpose of the gating vector is to implement an attentional
mechanism that can be more directly compared with human
behavior as observed in psycholinguistics experiments. The
assembly of sigma-pi units allows the network to select the
relevant event itself by effectively molding the shared weights
so that they capture the distributional characteristics of the
events within the task of producing the desired output for the
unfolding utterance. More research is needed to understand
the exact mechanism through which the multiplicative units
select the appropriate event, but current analysis suggests that
they function like a mask to increase contrast between the two
events by reducing the bits in the agent and verb representa-
tions of the irrelevant event that interfere with the recogniz-
able propagation of the relevant event. This behavior accords
well with evidence that attention–at least at the cellular level–
also works by increasing the discriminatory response among
stimuli (Taylor, Hartley, & Taylor, 2005).

Finally, the gating vector leads to a moreparsimonious
model in which the attentional mechanism is also directly in-
volved in binding the event participants together. This ap-
proach is a fundamental improvement over Mayberry et al.
(2005) because the elimination of the event layers simplifies
the architecture and results in training times that are faster by
up to an order of magnitude on the same corpus. Furthermore,
CIANet is able to learn to reliably make the correct conflict
resolutions when trained only on the two nonconflicting con-
ditions, whereas the earlier model was not.

Future research will focus on adding material to the current
training set to cover broader experimental results, including
the experiments initially modelled in the first simulation re-
ported in Mayberry et al. (2005). A particularly promising
direction, moreover, would be to exploit the attentional mech-
anism to handle more complex, possibly dynamic, scenes.
Lastly, the gating vector representations and their modula-
tion of the scene constituents suggest that they may provide
a more accessible way to develop a linking hypothesis be-
tween the attentional mechanism and the gaze probabilities
observed in Knoeferle and Crocker (in press).

Conclusion
CIANet is a recurrent sigma-pi neural network architecture
that successfully models situated utterance comprehension,
both when the individual information sources uniquely iden-
tify an interpretation and when they conflict. The model also
performs correctly with and without the scene. The primary
innovation of the network is the introduction of an attentional
mechanism to select the scene event most congruous with the
developing interpretation.
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