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Abstract

The ability to monitor the communicative suc-
cess of its utterances and, if necessary, provide
feedback and repair is useful for a dialog sys-
tem. We show that in situated communication,
eyetracking can be used to reliably and effi-
ciently monitor the hearer’s reference resolu-
tion process. An interactive system that draws
on hearer gaze to provide positive or nega-
tive feedback after referring to objects outper-
forms baseline systems on metrics of referen-
tial success and user confusion.

1 Introduction

Because dialog is interactive, interlocutors are con-
stantly engaged in a process of predicting and mon-
itoring the effects of their utterances. Typically, a
speaker produces an utterance with a specific com-
municative goal in mind—e.g., that the hearer will
perform an action or adopt a certain belief—, and
chooses one particular utterance because they pre-
dict that it will achieve this communicative goal.
They will then monitor the hearer’s reactions and
infer from their observations whether the prediction
actually came true. If they recognize that the hearer
misunderstood the utterance, they may repair the
problem by diagnosing what caused the misunder-
standing and giving the hearer feedback. In a task-
oriented dialog in which the hearer must perform a
part of the task, feedback is especially important to
inform the hearer when they made a mistake in the
task. Ideally, the speaker should even detect when
the hearer is about to make a mistake, and use feed-
back to keep them from making the mistake at all.

Many implemented dialog systems include a com-
ponent for monitoring and repair. For instance,
Traum (1994) presents a model for monitoring the
grounding status of utterances in the TRAINS sys-
tem; Young et al. (1994) show how the student’s
utterances in a dialog system can be used to un-
cover mistaken assumptions about their mental state;
and Paek and Horvitz (1999) discuss an automated
helpdesk system that can track grounding under un-
certainty. However, most of these systems rely on
the user’s verbal utterances as their primary source
of information; monitoring thus presupposes an
(error-prone) language understanding module.

In the context of situated communication, where
the speaker and hearer share a physical (or virtual)
environment, one type of observation that can poten-
tially give us a very direct handle on the hearer’s un-
derstanding of an utterance is eye gaze. Eyetracking
studies in psycholinguistics have shown that when
listeners hear a referring expression, they tend to
rapidly attend to the object in a scene to which they
resolve this expression (Tanenhaus et al., 1995; Al-
lopenna et al., 1998). For utterances that involve ref-
erences to objects in the current environment, one
can therefore ask whether eyetracking can be used
to reliably judge the communicative success of the
utterance. This would be of practical interest for
implemented dialog systems once eyetracking be-
comes a mainstream technology; and even today, a
system that reliably monitors communicative suc-
cess using eyetracking could serve as a testbed for
exploring monitoring and repair strategies.

In this paper, we present an interactive natural-
language generation (NLG) system that uses eye-



tracking to monitor communicative success. Our
system gives real-time instructions that are designed
to help the user perform a treasure-hunt task in the
virtual 3D environments of the recent Challenges
on Generating Instructions in Virtual Environments
(GIVE; Koller et al. (2010)). It monitors how the
user resolves referring expressions (REs) by map-
ping the user’s gaze to objects in the virtual environ-
ment. The system takes gaze to the intended referent
as evidence of successful understanding, and gives
the user positive feedback; by contrast, gaze to other
objects triggers negative feedback. Crucially, this
feedback comes before the user interacts with the
object in the virtual environment, keeping the user
from making mistakes before they happen.

We evaluate our system against one baseline that
gives no feedback, and another that bases its feed-
back on monitoring the user’s movements and their
field of view. We find that the eyetracking-based
system outperforms both on referential success, and
that users interacting with it show significantly fewer
signs of confusion about how to complete their task.
This demonstrates that eyetracking can serve as a
reliable source of evidence in monitoring commu-
nicative success. The system is, to our knowledge,
the first dialog or NLG system that uses the hearer’s
gaze to monitor understanding of REs.

Plan of the paper. The paper is structured as fol-
lows. We first discuss related work in Section 2. We
then describe our approach as well as the baselines
in Section 3, set up the evaluation in Section 4 and
present the results in Section 5. In Sections 6 and 7
we discuss our findings and conclude.

2 Related work

Dialog systems model a process of grounding, in
which they decide to what extent the user has under-
stood the utterance and the communicative goal has
been reached. Observing the user behavior to moni-
tor the state of understanding is a key component in
this process. A full solution may require plan recog-
nition or abductive or epistemic reasoning (see e.g.
Young et al. (1994), Hirst et al. (1994)); in practice,
many systems use more streamlined (Traum, 1994)
or statistical methods (Paek and Horvitz, 1999).
Most dialog systems focus on the verbal interaction
of the system and user, and the user’s utterances are

therefore the primary source of evidence in the mon-
itoring process. Some incremental dialog systems
can monitor the user’s verbal reactions to the sys-
tem’s utterances in real time, and continuously up-
date the grounding state while the system utterance
is still in progress (Skantze and Schlangen, 2009;
Buss and Schlangen, 2010).

In this paper, we focus on the generation side of a
dialog system—the user is the hearer—and on mon-
itoring the user’s extralinguistic reactions, in par-
ticular their gaze. Tanenhaus et al. (1995) and Al-
lopenna et al. (1998) showed that subjects in psy-
cholinguistic experiments who hear an RE visually
attend to the object to which they resolve the RE.
The “visual world” experimental paradigm exploits
this by presenting objects on a computer screen and
using an eyetracker to monitor the subject’s gaze.
This research uses gaze only as an experimental tool
and not as part of an interactive dialog system, and
the visual worlds are usually limited to static 2D
scenes. Also, such setups cannot account for the re-
ciprocal nature of dialog and the consequences that
hearer gaze has for the speaker’s monitoring process.

In the context of situated dialog systems, previ-
ous studies have employed robots and virtual agents
as speakers to explore how and when speaker gaze
helps human hearers to ground referring expressions
(Foster, 2007). For instance, Staudte and Crocker
(2011) show that an agent can make it easier for the
(human) hearer to resolve a system-generated RE by
looking at the intended referent, using head and eye
movements. Conversely, the performance of a sys-
tem for resolving human-produced REs can be im-
proved by taking the (human) speaker’s gaze into ac-
count (Iida et al., 2011). Gaze has also been used to
track the general dynamics of a dialog, such as turn
taking (Jokinen et al., in press).

Here we are interested in monitoring the hearer’s
gaze in order to determine whether they have under-
stood an RE. To our knowledge, there has been no
research on this; in particular, not in dynamic 3D
environments. The closest earlier work of which we
are aware comes from the context of the GIVE Chal-
lenge, a shared task for interactive, situated natural
language generation systems. These systems typi-
cally approximate hearer gaze as visibility of objects
on the screen and monitor grounding based on this
(Denis, 2010; Racca et al., 2011).



Figure 1: A first-person view of a virtual 3D environment.

3 Interactive natural-language generation
in virtual environments

In this paper, we consider the communicative situ-
ation of the GIVE Challenge (Koller et al., 2010;
Striegnitz et al., 2011). In this task, a human user can
move about freely in a virtual indoor environment
featuring several interconnected rooms and corri-
dors. A 3D view of the environment is displayed on
a computer screen as in Fig. 1, and the user can walk
forward/backward and turn left/right, using the cur-
sor keys. They can also press buttons attached to the
walls, by clicking on them with the mouse once they
are close enough. The small and big white circles in
Fig. 1, which represent eyetracking information, are
not actually visible to the user.

The user interacts with a real-time NLG system in
the context of a treasure-hunt game, where their task
is to find a trophy hidden in a wall safe. They must
press certain buttons in the correct sequence in or-
der to open the safe; however, they do not have prior
knowledge of which buttons to press, so they rely
on instructions and REs generated by the system. A
room may contain several buttons other than the tar-
get, which is the button that the user must press next.
These other buttons are called distractors. Next to
buttons, rooms also contain a number of landmark
objects, such as chairs and plants, which cannot di-
rectly be interacted with, but may be used in REs
to nearby targets. Fig. 2 shows a top-down map of
the virtual environment in which the scene of Fig. 1
arose. We call an entire game up to the successful
discovery of the trophy, an interaction of the system
and the user.

Figure 2: A map of the environment in Fig. 1; note the
user in the upper right room.

3.1 Monitoring communicative success

NLG systems in the GIVE setting are in an interac-
tive communicative situation. This situation repre-
sents one complete half of a dialog situation: Only
the system gets to use language, but the user moves
and acts in response to the system’s utterances. As a
result, the system should continuously monitor and
react to what the user does, in real time. This is
most tangible in the system’s use of REs. When a
user misinterprets (or simply does not understand)
a system-generated RE, there is a high chance that
they will end up pressing the wrong button. This
will hinder the completion of the task. A system
that predicts how the user resolves the RE by mon-
itoring their movements and actions, and that can
proactively give the user feedback to keep them from
making a mistake, will therefore perform better than
one which cannot do this. Furthermore, if the sys-
tem can give positive feedback when it detects that
the user is about to do the right thing, this may in-
crease the user’s confidence.

Monitoring communicative success in GIVE in-
teractions and providing the right feedback can be
challenging. For example, in the original interaction
from which we took the screenshot of Fig. 1, the sys-
tem instructed the user to “push the right button to
the right of the green button”, referring to the right-
most blue button in the scene. In response, the user
first walked hesitantly towards the far pair of buttons
(green and blue), and then turned to face the other
pair, as seen in Fig. 3. A typical NLG system used



Figure 3: The scene of Fig. 1, after the user moved and
turned in response to a referring expression.

in the GIVE Challenge (e.g., Dionne et al. (2009),
Denis (2010), Racca et al. (2011)) may try to predict
how the user might resolve the RE based on the vis-
ibility of objects, timing data, or distances. Relying
only on such data, however, even a human observer
could have difficulties in interpreting the user’s reac-
tion; the user in Fig. 3 ended up closer to the green
and blue buttons, but the other buttons (the two blue
ones) are, to similar degrees, visually in focus.

The contribution of this paper is to present a
method for monitoring the communicative success
of an RE based on eyetracking. We start from the
hypothesis that when the user resolves an RE to a
certain object, they will tend to gaze at this object.
In the scene of Fig. 3, the user was indeed looking
at the system’s intended referent, which they later
pressed; the small white circles indicate a trace of re-
cent fixations on the screen, and the big white circle
marks the object in the virtual environment to which
the system resolved these screen positions. Our sys-
tem takes this gaze information, which is available in
real time, as evidence for how the user has resolved
its RE, and generates positive or negative feedback
based on this.

3.2 NLG systems
To demonstrate the usefulness of the eyetracking-
based approach, we implemented and compared
three different NLG systems. All of these use
an identical module for generating navigation in-
structions, which guides the user to a specific lo-
cation, as well as object manipulation instructions
such as “push the blue button”; “the blue button”

is an RE that describes an object to the user. The
systems generate REs that are optimized for being
easy for the hearer to understand, according to a
corpus-based model of understandability (Garoufi
and Koller, 2011). The model was trained on human
instructions produced in a subset of the virtual envi-
ronments we use in this work. The resulting system
computes referring expressions that are correct and
uniquely describe the referent as seen by the hearer
at the moment in which generation starts.

Unlike in the original GIVE Challenge, the gen-
erated instructions are converted to speech by the
Mary text-to-speech system (Schröder and Trouvain,
2003) and presented via loudspeaker. At any point,
the user may press the ‘H’ key on their keyboard to
indicate that they are confused and request a clari-
fication. This will cause the system to generate an
instruction newly; if it contains an RE, this RE may
or may not be the same as the one used in the origi-
nal utterance.

The difference between the three systems is in the
way they monitor communicative success and deter-
mine when to give feedback to the user.

The no-feedback system. As a baseline system,
we used a system which does not monitor success
at all, and therefore never gives feedback on its own
initiative. Notice that the system still re-generates an
RE when the user presses the ‘H’ key.

Movement-based monitoring. As a second base-
line, we implemented a system that attempts to mon-
itor whether a user understood an RE based on their
movements. This system is intended to represent
the user monitoring that can be implemented, with
a reasonable amount of effort, on the basis of imme-
diately available information in the GIVE setting.

The movement-based system gives no feedback
until only a single button in the current room is vis-
ible to the user, since it can be hard to make a re-
liable prediction if the user sees several buttons on
their screen. Then it tracks the user’s distance from
this button, where “distance” is a weighted sum of
walking distance to the button and the angle the user
must turn to face the button. If, after hearing the RE,
the user has decreased the distance by more than a
given threshold, the system concludes that the hearer
has resolved the RE as this button. If that is the but-
ton the system intended to refer to, the system utters



the positive feedback “yes, that one”. For incorrect
buttons, it utters the negative feedback “no, not that
one”. Although the negative feedback is relatively
vague, it has the advantage of limiting the variability
of the system’s outputs, which facilitates evaluation.

Eyetracking-based monitoring. Finally, the
eyetracking-based system attempts to predict
whether the user will press the correct button
or not by monitoring their gaze. At intervals of
approximately 15 ms, the system determines the
(x,y) position on the screen that the user is looking
at. It then identifies the object in the environment
that corresponds to this position by casting a ray
from the (virtual) camera through the screen plane,
and picking the closest object lying within a small
range of this ray (Fig. 1; see Staudte et al. (2012) for
details). If the user continously looks at the same
object for more than a certain amount of time, the
system counts this as an inspection of the object; for
our experiments, we chose a threshold of 300 ms.
Once the system detects an inspection to a button in
the room, it generates positive or negative feedback
utterances in exactly the same way as the movement
system does.

Both the movement-based and the eyetracking-
based model withhold their feedback until a first
full description of the referent (a first-mention RE)
has been spoken. Additionally, they only provide
feedback once for every newly approached or in-
spected button and will not repeat this feedback un-
less the user has approached or inspected another
button in the meantime. Example interactions of a
user with each of the three systems are presented in
Appendix A.

4 Evaluation

We set up a human evaluation study in order to as-
sess the performance of the eyetracking system as
compared against the two baselines on the situated
instruction giving task. For this, we record partic-
ipant interactions with the three systems employed
in three different virtual environments. These en-
vironments were taken from Gargett et al. (2010);
they vary as to the visual and spatial properties of
the objects they contain. One of these environments
is shown in Fig. 2. Overall, 31 participants (12 fe-
males) were tested. All reported their English skills

as fluent, and all were capable of completing the
tasks. Their mean age was 27.6 years.

4.1 Task and procedure

A faceLAB eyetracking system (http://www.
seeingmachines.com/product/facelab)
remotely monitored participants’ eye movements on
a 24-inch monitor, as in Fig. 4 and 5 of Appendix B.
Before the experiment, participants received written
instructions that described the task and explained
that they would be given instructions by an NLG
system. They were encouraged to request additional
help any time they felt that the instructions were not
sufficient (by pressing the ‘H’ key).

The eyetracker was calibrated using a nine-point
fixation stimulus. We disguised the importance of
gaze from the participants by telling them that we
videotaped them and that the camera needed calibra-
tion. Each participant started with a short practice
session to familiarize themselves with the interface
and to clarify remaining questions. We then col-
lected three complete interactions, each with a dif-
ferent virtual environment and NLG system (alter-
nated according to a Latin square design). Finally,
each participant received a questionnaire which was
aimed to reveal whether they noticed that they were
eyetracked and that one of the generation systems
made use of that, and how satisfied they were with
this interaction. The entire experiment lasted ap-
proximately 30 minutes.

4.2 Analysis

For the assessment of communicative success in
these interactions, we considered as referential
scenes the parts of the interaction between the onset
of a first-mention RE to a given referent and the par-
ticipant’s reaction (pressing a button or navigating
away to another room). To control for external fac-
tors that could have an impact on this, we discarded
individual scenes in which the systems rephrased
their first-mention REs (e.g. by adding further at-
tributes), as well as a few scenes which the partic-
ipants had to go through a second time due to tech-
nical glitches. To remove errors in eyetracker cali-
bration, we included interactions with the eyetrack-
ing NLG system in the analysis only when we were
able to record inspections (to the referent or any dis-
tractor) in at least 80% of all referential scenes. This



success success w/out confusion #scenes
system all easy hard all easy hard all easy hard

eyetracking 93.4 100.0 90.4 91.9 100.0 88.2 198 62 136
with feedback 94.3 100.0 91.7 92.8 100.0 89.4 194 62 132
without feedback 50.0 - 50.0 50.0 - 50.0 4 0 4

no-feedback 86.6* 100.0◦ 80.6* 83.5** 98.9◦ 76.5** 284 88 196

movement 89.8◦ 100.0◦ 85.2◦ 87.5◦ 97.8◦ 82.8◦ 295 92 203
with feedback 93.9 100.0 90.6 91.9 97.7 88.7 247 88 159
without feedback 68.8 100.0 65.9 64.6 100.0 61.4 48 4 44

Table 1: Mean referential success rate (%) and number of scenes for the systems, broken down by scene complexity
and presence of feedback. Differences of overall system performances to the eyetracking system are: significant at
** p < 0.01, * p < 0.05; ◦ not significant.

filtered out 9 interactions out of the 93 we collected.
Inferential statistics on this data were carried out

using mixed-effect models from the lme4 package
in R (Baayen et al., 2008). Specifically, we used
logistic regression for modeling binary data, Poisson
regression for count variables and linear regression
for continuous data.

5 Results

On evaluating the post-task questionnaires, we did
not find any significant preferences for a particular
NLG system. Roughly the same number of them
chose each of the systems on questions such as
“which system did you prefer?”. When asked for
differences between the systems in free-form ques-
tions, no participant mentioned the system’s reaction
to their eye gaze—though some noticed the (lack of)
feedback. We take this to mean that the participants
did not realize they were being eyetracked.

Below, we report results on objective metrics that
do not depend on participants’ judgments.

5.1 Confusion

A key goal of any RE generation system is that
the user understands the REs easily. One measure
of the ease of understanding is the frequency with
which participants pressed the ‘H’ key to indicate
their confusion and ask for help. The overall average
of ‘H’ keystrokes per interaction was 1.14 for the
eyetracking-based system, 1.77 for the movement-
based system, and 2.26 for the no-feedback system.
A model fitted to the keystroke distribution per sys-
tem shows significant differences both between the

eyetracking and the no-feedback system (Coeff. =
0.703, SE = 0.233, Wald’s Z = 3.012, p < .01) and
between the eyetracking and the movement-based
system (Coeff. = 0.475, SE = 0.241, Wald’s Z =
1.967, p < .05). In other words, the feedback
given by the eyetracking-based system significantly
reduces user confusion.

5.2 Referential success

An even more direct way to measure the interac-
tion quality is the ratio of generated REs that the
participants were able to resolve correctly. In our
evaluation, we looked at two different definitions
of success. First, an RE can count as success-
ful if the first button that the user pressed after
hearing the RE was the system’s intended referent.
The results of this evaluation are shown in the left-
most part of Table 1, under “success”. A logis-
tic mixed-effects model fitted to the referential suc-
cess data revealed a marginal main effect of sys-
tem (χ2(2) = 5.55, p = .062). Pairwise com-
parisons further show that the eyetracking system
performs significantly better than the no-feedback
system (Coeff. = −0.765, SE = 0.342, Wald’s Z =
−2.24, p < .05); no significant difference was found
between the eyetracking-based and the movement-
based system.

Second, we can additionally require that an RE
only counts as successful if the user did not press
the ‘H’ key between hearing the first-mention RE
and pressing the correct button. This is a stricter
version of referential success, which requires that
the system recognized cases of potential confusion



and did not force the user to take the initiative in
case of difficulties. It is in line with Dethlefs et al.’s
(2010) findings that metrics that penalize difficul-
ties the user encountered before successfully com-
pleting the task are better predictors of user satisfac-
tion than ones that only consider the eventual task
completion. Our results on this metric are shown
in the middle part of Table 1, under “success with-
out confusion”. We observe again a main effect of
system (χ2(2) = 7.78, p < .05); furthermore, the
eyetracking system elicited again more correct but-
tons than the no-feedback system (Coeff. = −0.813,
SE = 0.306, Wald’s Z = −2.66, p < 0.01).

To obtain a more detailed view of when and to
what extent the systems’ behavior differed, we dis-
tinguished scenes according to their complexity. A
scene was classified as easy if a) there were no dis-
tractors in it, or b) all distractors had different colors
from the target, while the system included the color
attribute in its RE. All other scenes were considered
hard. Note that “easy” and “hard” are properties of
the scene and not of the system, because every sys-
tem generated the same REs in each scene.

In the experiments, we found essentially no differ-
ence between the success rates of different systems
on easy scenes (see the “easy” columns of Table 1):
All systems were almost always successful. The
differences came almost exclusively from the hard
scenes, where the eyetracking system performed sig-
nificantly better than the no-feedback system (suc-
cess: Coeff. = −0.793, SE = 0.348, Wald’s Z =
−2.28, p < 0.05; success without confusion: Coeff.
= −0.833, SE = 0.315, Wald’s Z = −2.64, p < 0.01)
and, at least numerically, also much better than the
movement system.

There was a particularly interesting difference in
the feedback behavior of the eyetracking and move-
ment systems on hard scenes (see the rightmost part
of Table 1, labeled “#scenes”). In easy scenes,
both systems almost always gave feedback (62/62
= 100.0%; 88/92 = 95.6%); but for hard scenes,
the ratio of scenes in which the movement system
gave feedback at all dropped to 159/203 = 78.3%,
whereas the ratio for the eyetracking system re-
mained high. This may have contributed to the over-
all performance difference between the two systems.

#actions distance duration idle
system (norm.) (norm.) (norm.) (sec)

eyetracking 1.06 1.22 1.49 256.6
no-feedback 1.22* 1.27 1.59 272.5
movement 1.16 1.26 1.56 274.4

Table 2: Mean values of additional metrics. Differences
to the eyetracking system are significant at * p < 0.05.

5.3 Further performance metrics

Finally, we measured a number of other objective
metrics, including the number of actions (i.e., but-
ton presses), the distance the user traveled, the to-
tal duration of the interaction, and the mean time
a participant spent idle. Even though these mea-
sures only partly provide statistically significant re-
sults, they help to draw a clearer picture of how the
eyetracking-based feedback affects performance.

Because the three virtual environments were of
different complexity, we normalized the number of
actions, distance, and duration by dividing the value
for a given interaction by the minimum value for all
interactions of the same virtual environment. The re-
sulting measures are shown in Table 2. Participants
performed significantly fewer actions in the eye-
tracking system than in the no-feedback system (Co-
eff. = 0.174, SE = 0.067, t = 2.57, p(mcmc) < .05);
there were also trends that users of the eyetracking-
based system traveled the shortest distance, needed
the least overall time, and spent the least time idle.

The only measure deviating from this trend is
movement speed, i.e., the speed at which users re-
acted to the systems’ instructions to press certain
buttons. For all successful scenes (without confu-
sion), we computed the speed by dividing the GIVE
distance (including turning distance) between the
target referent and the user’s location at the time of
the instruction containing the first-mention RE by
the time (in seconds) between hearing the instruc-
tion and pressing the target. The mean movement
speed is 0.518 for the no-feedback system, 0.493 for
the movement system, and 0.472 for the eyetracking
system. A marginal main effect of movement speed
confirms this trend (χ2(2) = 5.58, p = .061) and
shows that participants moved more slowly when
getting eyetracking-based feedback than when get-
ting no feedback at all (Coeff. = 0.0352, SE =



0.0166, t = −4.97, p(mcmc) < .05).

6 Discussion

The results in Section 5 demonstrate the usefulness
of eyetracking as a foundation for monitoring and
feedback. Compared to the no-feedback system, the
eyetracking-based system achieved a significantly
lower confusion rate and a significantly higher RE
success rate, especially on hard instances. The dif-
ference increases further if we discount scenes in
which the user had to ask for help, thus forcing the
system to give feedback anyway. In other words,
eyetracking provides reliable and direct access to the
hearer’s reference resolution process. Real-time di-
alog systems can use gaze information to monitor
the success of REs and generate feedback before the
user actually makes a mistake.

Monitoring and feedback could also be achieved
without using eyetracking. To explore this alterna-
tive, we compared eyetracking against a movement-
based system. We found that the former outper-
formed the latter on hearer confusion and (at least
numerically) on referential success, while not per-
forming worse on other measures. This means that
the improvement comes not merely from the fact
that feedback was given; it is also important when
and where feedback is given. The crucial weakness
of the movement-based system is that it gave feed-
back for hard instances much more rarely than the
eyetracking system. Increasing recall by lowering
the system’s confidence threshold would introduce
fresh errors. Further improvements must therefore
come at the cost of a more complex monitoring sys-
tem, both conceptually and in terms of implementa-
tion effort. From this perspective, eyetracking offers
good performance at low implementation cost.

One result that seems to go against the trend is that
users of the eyetracking system moved significantly
more slowly on their way to a target. We see two
possible explanations for this. First, it may be that
users needed some time to listen to the feedback, or
were encouraged by it to look at more objects. A
second explanation is that this is not really a differ-
ence in the quality of the systems’ behavior, but a
difference in the populations over which the mean
speed was computed: The speed was only averaged
over scenes in which the users resolved the RE cor-

rectly, and the eyetracking system achieved commu-
nicative success in many cases in which the others
did not—presumably complex scenes in which the
user had to work harder to find the correct button.
This issue bears more careful analysis.

Finally, the eyetracking-based system could be
improved further in many ways. On the one hand,
it suffers from the fact that all objects in the 3D en-
vironment shift on the screen when the user turns
or moves. The user’s eyes will typically follow the
object they are currently inspecting, but lag behind
until the screen comes to a stop again. One topic
for future work would be to remove noise of this
kind from the eyetracker signal. On the other hand,
the negative feedback our system gave (“no, not that
one”) was quite unspecific. More specific feedback
(“no, the BLUE button”) might further improve the
system’s performance.

7 Conclusion

We described an interactive NLG system that uses
eyetracking to monitor the communicative success
of the REs it generates. The communication is sit-
uated in a virtual 3D environment in which the user
can move freely, and our system automatically maps
eyetracking screen coordinates to objects in the en-
vironment. A task-based evaluation found that the
eyetracking-based system outperforms both a no-
feedback system and a system whose feedback is
based on the user’s movements in the virtual envi-
ronment, along with their field of view.

Eyetracking is currently widely available in re-
search institutions, which should make our system
easy to reimplement in other situated domains. We
anticipate that eyetracking may become mainstream
technology in the not-too-distant future. But even
in a purely research context, we believe that the di-
rectness with which eyetracking allows us to observe
the hearer’s interpretation process may be useful as
a testbed for efficient theories of grounding.
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Figure 4: A screenshot from the faceLAB software, including visualization of eye-gaze position in 3D space.
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A Example interactions

The following interactions between a user (U) and
each of the three systems (S) were recorded during
the systems’ attempts to instruct the user to press the
rightmost blue button shown in Fig. 1.

A.1 Eyetracking system
(1) S: Push the right button to the right of the green

button.
U: (approaches the pair of blue and green but-
ton and inspects one of them)
S: No, not that one!
. . . (U inspects other buttons in the scene, while
S provides appropriate feedback)
U: (inspects the correct target)
S: Yes, that one!
U: (presses the correct button)

A.2 Movement system
(2) S: Push the right button to the right of the green

button.
U: (approaches the pair of blue and green but-
tons; once the user is very close to the blue but-
ton, it happens to become the only button visi-
ble on screen)
U: (continues moving closer to the blue button)
S: No, not that one!
U: (has no time to react to the system’s feed-
back and presses the wrong blue button)

A.3 No-feedback system
(3) S: Push the right button to the right of the green

button.
U: (presses the wrong blue button)

B The experimental setup

Figure 5: A faceLAB eyetracking system monitored par-
ticipants’ eye movements during the interactions.


