
Syntactic systematicity in sentence processing

with a recurrent self-organizing network

Igor Farkaš ∗,1

Department of Applied Informatics, Comenius University

Mlynská dolina, 842 48 Bratislava, Slovak Republic

Matthew W. Crocker 2

Department of Computational Linguistics, Saarland University

Saarbrücken, 66041, Germany

Abstract

As potential candidates for explaining human cognition, connectionist models of
sentence processing must demonstrate their ability to behave systematically, gen-
eralizing from a small training set. It has recently been shown that simple recur-
rent networks and, to a greater extent, echo-state networks possess some ability to
generalize in artificial language learning tasks. We investigate this capacity for a
recently introduced model that consists of separately trained modules: a recursive
self-organizing module for learning temporal context representations and a feed-
forward two-layer perceptron module for next-word prediction. We show that the
performance of this architecture is comparable with echo-state networks. Taken to-
gether, these results weaken the critisism of connectionist approaches, showing that
various general recursive connectionist architectures share the potential of behaving
systematically.

Key words: recurrent neural network, self-organization, next word prediction,
systematicity

∗

Email addresses: farkas@fmph.uniba.sk (Igor Farkaš),
crocker@coli.uni-sb.de (Matthew W. Crocker).
1 Also part time with Institute of Measurement Science, Slovak Academy of Sci-
ences, Bratislava. The work was supported in part by Slovak Grant Agency for
Science and by the Humboldt Foundation.
2 M. Crocker’s research was supported by SFB 378 Project “Alpha”, awarded by
the German Research Foundation.

Preprint submitted to Elsevier 25 October 2007

1 Introduction

The combinatorial systematicity of human language refers to the observation
that a limited lexicon can be combined with a limited number of syntactic
configurations to yield a very large, possibly infinite, number of possible sen-
tences. As potential candidates for explaining human cognition, connectionist
models must necessarily be able to account for the systematicity of human
language. This potential capability was questioned by Fodor and Pylyshyn
[10] and is still a matter of debate [4,1]. Hadley [13] first proposed that sys-
tematic behavior is a matter of learning and generalization: A neural network
trained on a limited number of sentences should generalize to be able to pro-
cess all possible sentences. Moreover, he claims, since people learn systematic
language behavior from exposure to only a small fraction of possible sentences,
a neural network should similarly be able to learn from a relatively small pro-
portion of possible sentences, if it is to be considered cognitively plausible.
Hadley further distinguishes betweeen weak and strong systematicity. A net-
work is weakly systematic if it can process sentences with novel combinations
of words, but these words are in the syntactic positions they also occurred in
during training (e.g. the network trained on sentences boy loves girl and dog

chases cat can also process dog chases girl). Strong systematicity, on the other
hand, requires generalization to new syntactic positions (e.g. the ability to
process the sentence dog chases boy, provided that noun boy never appeared
as an object during training). 3

According to Hadley, connectionist models were at best weakly systematic,
whereas human language requires strong systematicity. Various connectionist
attempts were restricted in various ways. Either they required specific rep-
resentations [14] or network architectures [2], or they reported mixed results
[5]. The most encouraging results with a general network architecture using a
larger test set have been obtained in [12]. Nevertheless, what is still desired is
the demonstration of robust, scalable, strong systematicity in various general
connectionist models [11].

Van der Velde etal. [25] claimed that even weak systematicity lies beyond the
capabilities of connectionist models. They evaluated a simple recurrent net-
work (SRN, [6]) in an artificial language learning task (next-word prediction)
and argued that their SRN failed to process novel sentences appropriately
(e.g. by correctly distinguishing between nouns and verbs). However, Frank
[11] extended these simulations and showed that even their SRN, whose limita-
tions had arisen from overfitting in large networks [25], could display some gen-

3 Bodén and van Gelder [3] proposed a more fine-grained taxonomy of the levels of
systematicity, but since here we only focus on weak systematicity, there is no need
to introduce this taxonomy here.

2

eralization performance if the lexicon size was increased. Furthermore, Frank
demonstrated that generalization could be improved upon by employing an
alternative architecture – the echo-state network (ESN, [16]) that requires
less training (its input and recurrent weights are fixed) and is less prone to
overfitting.

In our recent work, we investigated the potential benefit of an alternative
approach based on self-organization, in learning temporal context represen-
tations. Specifically, these self-organizing modules based on Recursive SOM
(RecSOM; [26]) learnt to topographically represent the most frequent subse-
quences (left contexts) from the input stream of symbols (English text). We
experimented with various recursive self-organizing modules, coupled with two
types of a single-layer prediction module [9]. Using a next-word prediction task
we showed that the best performance was achieved by the so called RecSOM-
sard module (to be explained in Sec. 3.1) coupled with a simple perceptron.
This model also turned out to be more robust (with respect to node lesioning)
and faster to train than SRNs. In this paper, we investigate the weak syntactic
systematicity of the RecSOMsard-based model and compare its performance
with ESN. 4

2 Input data

The sentences were constructed using the grammar in Table 1, which subsumes
the grammar used in [25]. The language consists of three sentence types: sim-
ple sentences with an N-V-N structure, and two types of complex sentences,
namely, right-branching sentences with an N-V-N-w-V-N structure and centre-
embedded sentences with an N-w-N-V-V-N structure (‘w’ stands for who).
Complex sentence types represent commonly used English-like sentences such
as boy loves girl who walks dog and girl who boy loves walks dog, respectively.

Table 1
Grammar used for generating training and test sentences.

S → Simple (.2) | Right (.4) | Centre (.4) N → N1 | N2 | N3 | N4

Simple → N V N . V → V1 | V2 | V3 | V4

Right → N V N w V N . Nx → nx1 | nx2 | ...

Centre → N w N V V N . Vx → vx1 | vx2 | ...

Content words (nouns and verbs) are divided into four groups N1, ..., N4 and
V1, ..., V4. Let W denote the lexicon size (i.e. the total number of word types

4 The shorter version of this work appeared in [8].

3

in the language), then each group has (W -2)/8 nouns and the same number
of verbs. Hence, for W=18 we have four nouns and four verbs per group (who
and ‘.’ are also considered words). The training set consisted of all sentences
in which all content words were taken from the same group. That is, simple
sentences had the form “nxi vxj nxk .”, right branching sentences had the
form “nxi vxj nxk w vxl nxm.” and centre-embedded sentences had the form
“nxi w nxj vxk vxl nxm.”. The range of indices depends on lexicon size W :
i, ..., m ∈ {1, ...(W -2)/8}. The number of simple sentences used for training
ranged from 32 (W = 18) to 500 (W = 42), and the number of complex
sentences from 256 (W = 18) to 25000 (W = 42). Regarding the data set size,
we followed the regime described in [11]. This controlled training setup ensured
that the proportion of training sentences relative to all possible sentences
remained very small (∼0.4%) which is a linguistically motivated requirement.

In contrast to training sentences, each test sentence contained content words
from as many different groups as possible, which corresponds to the most com-
plicated case [25,11]. That is, each simple sentence had the form “nxi vyj nzk .”,
where x 6= y 6= z. Analogically, the five content words in right branching and
centre-embedded test sentences came from all four different groups. The num-
ber of simple test sentences ranged from 192 (W = 18) to 3000 (W = 42).
To make testing more efficient, from the huge number of possible complex
test sentences we randomly selected 100 right branching sentences and 100
centre-embedded sentences (similarly to [11]) for each lexicon size.

3 RecSOMsard-P2 model

Our architecture consists of two modules that can be trained separately: a
context-learning RecSOMsard and a prediction module based on a two-layer
perceptron (hence P2). Adding a hidden layer of units in the prediction module
was shown to enhance prediction accuracy in ESN [11] and hence is also used
here to facilitate comparison.

3.1 Model description

The architecture of the RecSOMsard module is shown in Figure 1a. It is
based on RecSOM [26] that has an extra top layer appended to its output.
Each RecSOM unit i ∈ {1, 2, ..., N} has two weight vectors associated with
it: wi ∈ R

W linked with an W -dimensional input s(t), and ci ∈ R
N linked

with the context y(t− 1) = (y1(t− 1), y2(t− 1), ..., yN(t− 1)) containing map
activations yi(t− 1) from the previous time step.

4

(a)

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

������
������
������

������
������
������

������
������
������
������

������
������
������
������ y(t)

wi

s(t)

ci
y(t−1)

y’(t)

(b)
�������������
�������������
�������������

�������������
�������������
�������������

������
������
������
������
������
������

������
������
������
������
������
������

Fig. 1. (a) RecSOMsard architecture. The bottom part (without the top layer)
represents RecSOM whose activity vector y is transformed to y’ by a mechanism
described in the text. In RecSOM, solid lines represent trainable connections, and
the dashed line represents a one-to-one copy of the activity vector y. (b) A two-layer
perceptron with inputs y’.

The output of a unit i at time t is computed as yi(t) = exp(−di(t)), where

di(t) = α‖s(t)−wi‖
2 + β‖y(t− 1)− ci‖

2 . (1)

In Eq. 1, ‖ · ‖ denotes the Euclidean norm, and parameters α > 0 and β > 0
respectively influence the effect of the input and the context upon a unit’s
profile. Both weight vectors are updated using the same form of Hebbian
learning rule [26]:

∆wi = γ.hik(t).(s(t)−wi) (2)

∆ci = γ.hik(t).(y(t− 1)− ci) (3)

where k is an index of the winner, k = arg mini∈{1,2,...,N}{di(t)} (which is
equivalent to the unit with the highest activation yk(t)), and 0 < γ < 1 is the
learning rate [26]. Neighborhood function hik is a gaussian (of width σ) on the
distance d(i, k) of units i and k in the map:

hik(t) = exp{−d(i, k)2/σ2(t)} . (4)

The “neighborhood width”, σ(t), linearly decreases in time to allow for form-
ing topographic representation of input sequences. RecSOM units self-organize
their receptive fields to topographically represent temporal contexts (subse-
quences) in a Markovian manner [23]. However, unlike other recursive SOM-
based models (overviewed in [15]), in case of a more complex symbolic se-
quence, RecSOM’s topography of receptive fields can be broken which yields
a non-Markovian fixed-input asymptotic dynamics [22,24].

The RecSOMsard module contains SardNet-like [17] output (untrained) post-
processing whose output then feeds to a prediction module. In each iteration,
the winner’s activation yk in RecSOM is transformed to a sharp Gaussian

5

profile y′
i = exp{−d(i, k)2/σ2

y} centered arround the winner k, and previous
activations in the top layer are decayed via y′←λy′ as in SardNet. However,
whereas SardNet assumes σ2

y ≈ 0), for our prediction purposes, local spread-
ing of the map activation (i.e. σ2

y > 0) turned out to be beneficial [9]. Once
the winner is activated, it is removed from competition and cannot represent
later input in the current sentence. It was observed in SardNet that forcing
other (neighboring) units to participate in the representation allows each unit
to represent different inputs depending on the context, which leads to an ef-
ficient representation of sentences, and which also helps to generalize well to
new sentences. Hence, this feature is expected to transfer to RecSOMsard.
At boundaries between sentences, all y′

i are reset to zero. Using the above
procedure, the activations y(t) with mostly unimodal shape are transformed
into a distributed activation vector y′(t) whose number of peaks grows with
the position of a current word in a sentence. As a result, the context in Rec-
SOMsard becomes represented both spatially (due to SardNet) and temporally
(because RecSOM winner in the trained map best matches the current input
in a particular temporal context). In [9] we concluded that this spatiotempo-
ral representation of the context was the reason for the best performance of
RecSOMsard.

3.2 Training the networks

Using localist encodings of words, networks were trained on the next word
prediction task by being presented one word at a time. All training sentences
were concatenated in random order without breaks between sentences. Fol-
lowing [11], the ratio of complex to simple sentences was 4:1 throughout the
entire training phase, as it has been shown that “starting small” [7] is not
necessary for successful SRN training [20]. For each model and each lexicon
size, 10 networks were trained for ∼300,000 iterations and differed only in
their initial weights, that were uniformly distributed between -0.1 and +0.1.
First, the RecSOMsard module was trained, and then its outputs were used
to train the perceptron. Values of some RecSOMsard parameters were found
empirically and were then fixed: λ = 0.9, γ = 0.1, σy = 1. The effect of other
parameters was systematically investigated (N, α, β). The perceptron, having
10 hidden units with logistic activation function (as in [11]), was trained by
online back-propagation (without momentum), with the learning rate that
was set to linearly decrease from 0.1 to 0.01. Cross-entropy was used as the
error function, therefore the perceptron output units had softmax activation
functions, i.e.

ai =
eneti

∑

j enetj
, (5)

6

18 26 34 42
0.0

0.1

0.2

0.3
simple

G
PE

18 26 34 42
0.0

0.1

0.2

0.3
right−branching

18 26 34 42
0.0

0.1

0.2

0.3
centre−embedded

Fig. 2. Mean GPE measure for the three sentence types as a function of lexicon size
W . Error bars were negligible for training data denoted by ’x’ and hence are not
shown. The lines marked with ’o’ refer to the testing data.

18 26 34 42
0.5

0.6

0.7

0.8

0.9

1.0
simple

FG
P

18 26 34 42
0.5

0.6

0.7

0.8

0.9

1.0
right−branching

18 26 34 42
0.5

0.6

0.7

0.8

0.9

1.0
centre−embedded

Fig. 3. Mean FGP measure for the three sentence types as a function of lexicon size
W (’x’ = training data, ’o’ = testing data).

where netj is the total input activation received by output unit j.

4 Experiments

4.1 Performance measures

We rated the network performance using two measures. Let us denote G the
set of words in the lexicon that form grammatical continuations of the input
sequence seen by the network so far. The first measure is the grammatical pre-
diction error (GPE) defined in [25] as the ratio of the sum of non-grammatical
output activations a(¬G) =

∑

i/∈G ai and the sum of total output activation
a(¬G) + a(G), i.e.

FGP =
a(¬G)

a(¬G) + a(G)
(6)

7

Since we have softmax output units (i.e. the overall output activation is nor-
malized to one 5), GPE = a(¬G). Frank [11] argues that GPE lacks a baseline
(that would correspond to the network with no generalization) and that this
problem is overcome by an alternative measure he introduced to quantify the
generalization (we call it Frank’s generalization performance, FGP). FGP is
based on comparing network’s a(G) with predictions of a bigram statistical
model, whose grammatical activation b(G) =

∑

i∈G bi, where bi is the proba-
bility of the word i given the current word. FGP is formally defined as

FGP =

a(G)−b(G)
b(G)

if a(G) ≤ b(G)

a(G)−b(G)
1−b(G)

if a(G) > b(G)
(7)

The marginal cases result as follows: If a(G) = 1, then FGP = 1 (perfect
generalization); if a(G) = 0 (completely non-grammatical predictions), then
FGP = -1; a non-generalizing network with a(G) = b(G) (i.e. behaving as a
bigram model) would yield FGP = 0. Hence, positive FGP score measures
degree of generalization. As noted in [11], this scheme fails when b(G) = 1,
which happens when the set G of grammatically correct next words depends
only on the current word. In such an event, generalization is not required
for making a flawless prediction and even a perfect output (i.e. a(G) = 1)
would result in FGP = 0. With the given grammar, this only happens when
predicting the beginning of the next sentence (which always starts with a
noun). Therefore, network performance when processing ‘.’ remains undefined.

4.2 Results

We ran extensive simulations that can be divided into three stages:
(1) Effect of N : First, we looked for a reasonable number of map units N
(using map radii 9, 10, 12, 14, 16) and trying a few map paramater pairs
(α, β) satisfying 1 < α < 3 and 0.4 < β < 1. We found that beyond N =
12 × 12 = 144 the test performance stopped to significantly improve. Hence,
for all subsequent simulations we used this network size.
(2) Effect of α and β: We systematically investigated the influence of these
map parameters and found that they did have an impact on the mean GPE.
The following constraints were deduced to lead to the best performance: 0.8 ≤
α ≤ 1.5, 0.2 ≤ β ≤ 0.6 and 0.4 ≤ α − β ≤ 1.1. Figure 2 shows the mean of
mean GPEs (computed for 8 concrete α-β pairs from the above intervals) as
a function of W . Training error was negligible, and test error that remains
below 10% can be seen to reduce with larger lexicon. Similar dependence was
observed in [11] in terms of increasing FGP, both in case of SRN and ESN

5 This does not hold, however, in case of using sigmoid output neurons, as in [25].

8

N V N
0.0

0.1

0.2

0.3

G
P

E

simple

N V N w V N
0.0

0.1

0.2

0.3
right−branching

N w N V V N
0.0

0.1

0.2

0.3
centre−embedded

Fig. 4. Mean GPE for the three sentence types, averaged over test sentences and all
lexicon sizes (N = 144, α = 0.8, β = 0.4).

models. In the case of our model (Figure 3), this trend in FGP is only visible for
centre-embedded sentences. Also, our FGP values are slightly worse than those
of ESN [11], but still clearly demonstrate the occurrence of generalization.

N V N
0.5

0.6

0.7

0.8

0.9

1.0

FG
P

simple

N V N w V N
0.5

0.6

0.7

0.8

0.9

1.0
right−branching

N w N V V N
0.5

0.6

0.7

0.8

0.9

1.0
centre−embedded

Fig. 5. Mean FGP for the three sentence types, averaged over test sentences and all
lexicon sizes (N = 144, α = 0.8, β = 0.4).

(3) Mean word predictions: Next, we took the model (given by N, α, β) with
the lowest mean GPE and calculated its performance for individual inputs
(words) in tested sentences, averaged over all lexicon sizes (W). Again, GPE
on training data was close to 0. Results for test data are shown in Figure 4.
The corresponding performance in terms of FGP in Figure 5 stays above 0.6.
Compared to ESN ([11], Fig. 7), this performance falls between the best ESN
model (for best W and N) whose FGP ≥ 0.8 and the mean FGP performance
(averaged over W and N) which drops to 0.5 for the most difficult cases
in complex sentences. In our model, the most difficult predictions in terms
of both measures were similar for all word positions, and can be seen from
Figures 4 and 5. Unlike ESN, our model predicted the end-of-sentence markers
in case of complex sentences very well. To do so, the network has to have
sufficient memory in order to learn the preceeding contexts (w-V-N and V-V-
N, leading to ‘.‘). In case of N-V-N context (that occurs both in simple and
right branching sentences), the network correctly predicted both potential
grammatical continutions ‘.’ and ’w’). Both Figures 4 and 5 suggest that the
RecSOMsard-P2 network is also capable of generalization. The two measures
appear to be inversely related, but differ in the fact that only FGP depends
on bigram performance (which could explain different peak positions in the

9

N V N .

N V N w V N .

N w N V V N .

Fig. 6. Mean RecSOMsard activation (map 12× 12) for three sentence types evalu-
ated with a single representative model using the testing set. Symbols in the center
show current input. For commentary see the text.

two graphs for complex sentences with centre-embedding).

To illustrate the behaviour of our model, we chose one representative trained
network (W = 42, N = 144, α = 0.8, β = 0.4) and swept the testing set
through it. In each iteration during the single epoch, we recorded RecSOMsard
activations as well as P2 predictions of the trained model. Both data sets were
averaged with respect to corresponding word positions in the sentences (as
also used in Fig. 4 and 5). Figure 6 shows the mean RecSOMsard activity
(of 144 neurons) for all three sentence types, with the symbol in the centre
showing the current input. These plots illustrate how RecSOMsard organizes
its state space while parsing the input sentences. Upon starting a new sentence,
the map activations are zero, and with each incoming word, a new cluster of
activations is added into the representation, while decaying the previous ones
(SardNet-like mechanism). Due to frequent occurrence of symbols ‘w’ and ‘.’,
the activations associated with these inputs are most discernible in the map.
Note that clusters of activation resulting from input ‘w’ spatially differ for right
branching and centre-embedded sentences, hence allowing correct prediction
of verbs and nouns, respectively. This is not the case of input ‘.’, however,
because all sentences start with a noun (as predicted by the model).

How these state-space representations lend themselves to generating next-
word predictions is shown in the associated Figure 7. Each plot shows the
mean prediction probabilities for four categories: ‘.’, nouns (Ns), verbs (Vs)
and ’w’ at particular position within a sentence. The reason for grouping nouns
and verbs is that since we focus on syntactic systematicity, there are no se-
mantic constraints (allowed N-V combinations) and hence the network only
needs to predict the correct syntactic category. As can be seen in Figure 7,

10

. Ns Vs w
0

0.2

0.4

0.6

0.8

1

Pr
ob

N

* *
. Ns Vs w

V

* * *
. Ns Vs w

N

* *
. Ns Vs w

.

* * *

. Ns Vs w
0

0.2

0.4

0.6

0.8

1

Pr
ob

N

* *
. Ns Vs w

V

* * *
. Ns Vs w

N

* *
. Ns Vs w

w

* *
. Ns Vs w

V

*
* *

. Ns Vs w

N

* * *
. Ns Vs w

.

* * *

. Ns Vs w
0

0.2

0.4

0.6

0.8

1

Pr
ob

N

* *
. Ns Vs w

w

* * *
. Ns Vs w

N

* * *

. Ns Vs w

V

*

*

*
. Ns Vs w

V

* * *
. Ns Vs w

N

* * *
. Ns Vs w

.

* * *

Fig. 7. Mean predictions for syntactic categories in case of three sentence types,
evaluated with a single representative model on a testing set. Input symbols are
shown above the figures. Non-grammatical predictions are labelled with ⋆.

in most cases the model correctly predicts the next four syntactic categories:
In simple sentences, upon seeing the initial subject-noun, the network can-
not know whether a simple or a centre-embedded sentence will follow, hence
predicting both possibilities. Similar ambiguity in the grammar occurs at the
end of the simple sentence with object-noun as the input. With right branch-
ing sentences, the most discernible inaccuracy in prediction is observed for
input ‘w’ (when most ungrammatical prediction, 5.3% goes for ‘.’) and for
subsequent V (8.2% for ‘.’). This behaviour is consistent with right branching
sentence plots in Fig. 4 and 5. Similarly in centre-embedded sentences, most
inaccuracy can be seen for inputs V (8.2% for ‘.’ and 24.6% for N) and for the
next V (9.2% for ‘.’ and 5.5% for V). Overall, the prediction accuracy can be
considered very good, as the grammatical activation never drops below 67%
for any word position.

5 Discussion

With regards to the criteria of weak systematicity, we have shown that RecSOMsard-
P2, like ESN, largely avoids making non-grammatical predictions (quantified
by GPE measure) which in turn indicates that the architecture displays some
generalization (quantified by positive FGP). Since we achieved results compa-
rable with ESN, it is a question whether in this task self-organization has its
merits in learning context representations, as opposed to untrained weights

11

used in ESN. On the other hand, although the performance of ESN comes at
cheaper price, it is not clear whether using random (untrained) connections
is biologically plausible, because the function of cortical circuits is typically
linked with self-organization [27]. 6

The internal representations created by RecSOMsard output layer have the
property of sparse codes, as a result of the SardNet property that distributes
the representation of a sequence over the map [17]. This sparse code appears
to be superior to the fully distributed codes formed in the hidden layer of
SRN, as suggested by our node lesioning experiments: SRN exhibited a steeper
performance degradation, compared to RecSOMsard, in the case of a similar
next-word prediction task [9].

The next word prediction task is typically used in the context of connection-
ist language modeling [21]. It can be thought of as an inherent part of the
language processor, although it does not (unlike some more complex sentence
processing tasks, such as parsing) lead to formation of semantic representa-
tions of sentences that are assumed to be formed in human minds. However, it
has been argued that language comprehension involves making simultaneous
predictions at different linguistic levels and that these predictions are gener-
ated by the language production system [19]. This framework is in line with a
general trend in cognitive sciences to incorporate action systems into percep-
tual systems and has broad implications for understanding the links between
language production and comprehension. Hence, next word prediction appears
to be an interesting approach since it permits a link between comprehension
with production, albeit at higher level of abstraction. Comprehension in our
model can be manifested by the model’s current state space representation
(RecSOMsard output) whose degree of accuracy predicts the accuracy of the
next word token(s).

The presented architecture is not intended as a model of infant learning, but
rather an investigation of how purely unbiased, distributional information can
inform the learning the systematic syntactic knowledge in a variety of neural
net architectures and training scenarios (SRN, ESN, RecSOMsard-P2). The
use of symbolic (localist) rather than distributed word representations (that
would contain syntactic and/or semantic features) is justified by the claim [18]
that connectionist models, as a qualitatively different cognitive architecture,
want to avoid the distinction between word tokens (lexicon) and syntactic
word categories (expressed in terms of abstract rules of grammar). Therefore,
connectionist models should operate directly on word tokens and try to learn
grammar from these. Learning the grammar purely from co-occurrences be-

6 We admit that this argument is weakened in our model because it uses backprop-
agation learning. Even in the case of a single-layer prediction (P) module without
backpropagation (as in [9]), however, we obtained some degree of generalization.

12

tween arbitrarily coded words (such as localist) is a more difficult task than
using additional syntactic and/or semantic features in word representations,
which would lead to the simplification of learning, because the network could
take advantage of this information.

In conclusion, our results indicate that systematic behavior can be observed
in a variety of connectionist architectures, including that presented here. Our
findings thus further weaken the claim made by Fodor and Pylyshyn (or some
of their supporters) that even if you find one example of connectionist system-
aticity, it does not really count because connectionism should be systematic
“in general” to be taken seriously as a cognitive model. Investigating the learn-
ing ability from distributional information is a prerequisite to developing more
cognitively faithful connectionist models, such as of child language acquisition.

Acknowledgment

We are thankful to three anonymous reviewers for their useful comments.

References

[1] K. Aizawa, The Systematicity Arguments, Kluwer Academic, Dordrecht, 2003.

[2] M. Bodén, Generalization by symbolic abstraction in cascaded recurrent
networks, Neurocomputing 57 (2004) 87–104.

[3] M. Bodén, T. van Gelder, On being systematically connectionist, Mind and
Language 9 (3) (1994) 288–302.

[4] D. Chalmers, Connectionism and compositionality: Why Fodor and Pylyshyn
were wrong, Philosophical Psychology 6 (1993) 305–319.

[5] M. Christiansen, N. Chater, Generalization and connectionist language learning,
Mind and Language 9 (1994) 273–287.

[6] J. Elman, Finding structure in time, Cognitive Science 14 (1990) 179–211.

[7] J. Elman, Learning and development in neural networks: The importance of
starting small, Cognition 48 (1) (1993) 71–79.

[8] I. Farkaš, M. Crocker, Systematicity in sentence processing with a recursive self-
organizing neural network, in: Proceedings of the 15th European Symposium
on Artificial Neural Networks, 2007.

13

[9] I. Farkaš, M. Crocker, Recurrent networks and natural language: exploiting self-
organization, in: Proceedings of the 28th Annual Conference of the Cognitive
Science Society, Lawrence Erlbaum, Hillsdale, NJ, 2006.

[10] J. Fodor, Z. Pylyshyn, Connectionism and cognitive architecture: A critical
analysis, Cognition 28 (1988) 3–71.

[11] S. Frank, Learn more by training less: systematicity in sentence processing by
recurrent networks, Connection science 18 (3) (2006) 287–302.

[12] S. Frank, Strong systematicity in sentence processing by an echo-state network,
in: Proceedings of ICANN, Part I, Lecture Notes in Computer Science, vol.
4131, Springer, 2006.

[13] R. Hadley, Systematicity in connectionist language learning, Mind and
Language 9 (3) (1994) 247–272.

[14] R. Hadley, A. Rotaru-Varga, D. Arnold, V. Cardei, Syntactic systematicity
arising from semantic predictions in a hebbian-competitive network, Connection
Science 13 (2001) 73–94.

[15] B. Hammer, A. Micheli, A. Sperduti, M. Strickert, Recursive self-organizing
network models, Neural Networks 17 (8-9) (2004) 1061–1085.

[16] H. Jaeger, Adaptive nonlinear system identification with echo state networks, in:
Advances in Neural Information Processing Systems 15, MIT Press, Cambridge,
MA, 2003.

[17] D. James, R. Miikkulainen, Sardnet: a self-organizing feature map for sequences,
in: Advances in Neural Information Processing Systems 7, MIT Press, 1995.

[18] R. Miikkulainen, Subsymbolic case-role analysis of sentences with embedded
clauses, Cognitive Science 20 (1996) 47–73.

[19] M. Pickering, S. Garrod, Do people use language production to make predictions
during comprehension?, Trends in Cognitive Sciences 11 (2007) 105–110.

[20] D. Rohde, D. Plaut, Language acquisition in the absence of explicit negative
evidence: How important is starting small?, Cognition 72 (1999) 67–109.

[21] D. Rohde, D. Plaut, Connectionist models of language processing, Cognitive
Studies 10 (1) (2003) 10–28.

[22] P. Tiňo, I. Farkaš, On non-markovian topographic organization of receptive
fields in recursive self-organizing map, in: L. Wang, K. Chen, Y. Ong. (eds.),
Advances in Natural Computation – ICNC 2005, Lecture Notes in Computer
Science, Springer, 2005.

[23] P. Tiňo, I. Farkaš, J. van Mourik, Recursive self-organizing map as a contractive
iterative function system, in: M. Gallagher, J. Hogan, F. Maire (eds.), Intelligent
Data Engineering and Automated Learning – IDEAL 2005, Lecture Notes in
Computer Science, Springer, 2005.

14

[24] P. Tiňo, I. Farkaš, J. van Mourik, Dynamics and topographic organization in
recursive self-organizing map, Neural Computation 18 (2006) 2529–2567.

[25] F. van der Velde, G. van der Voort van der Kleij, M. de Kamps, Lack
of combinatorial productivity in language processing with simple recurrent
networks, Connection Science 16 (1) (2004) 21–46.

[26] T. Voegtlin, Recursive self-organizing maps, Neural Networks 15 (8-9) (2002)
979–992.

[27] C. von der Malsburg, Self-organization and the brain, in: M. Arbib (ed.), The
Handbook of Brain Theory and Neural Networks, MIT Press, 2003, pp. 1002–
1005.

15

