Computational Psycholinguistics

Lecture 7: Probabilistic Parsing

Matthew W. Crocker crocker@coli.uni-sb.de

1

$\operatorname{arg\,max} P(s_i)$ for all $s_i \in S$

- Empirical: lexical access, word category/sense, subcategorization
- Rational: accurate, robust, broad coverage
- Rational Models:
 - explain accurate performance in general: i.e. rational behaviour
 - explain specific observed human behavior: e.g. for specific phenomena

Lexical Category Disambiguation

Semantics

Syntactic Parsing

Category Disambig

Lexical Access

- Sentence processing involves the resolution of lexical, syntactic, and semantic ambiguity.
 - Solution 1: These are not distinct problems
 - Solution 2: Modularity, divide and conquer
- Category ambiguity:
 - Time flies like an arrow.
- Extent of ambiguity:
 - 10.9% (types) 65.8% (tokens) (Brown Corpus)
 - 3

The Model: A Simple POS Tagger

- Find the best category path (t₁ ... t_n) for an input sequence of words (w₁ ... w_n):
 P(t₀,...t_n, w₀,...w_n)
- Initially preferred category depends on two parameters:
 - Lexical bias: P(wilti)
 - Category context: P(t_iI_{ti-1})
- Categories are assigned incrementally: Best path may require revision

SLCM Summary

- High accuracy in general & psychologically plausible
- Explains where people have difficulty
 - Statistical: category frequency drives initial category decisions
 - Modular: syntax structure **doesn't determine** initial category decisions
 - Bigram evidence: "that" ambiguity [Juliano and Tanenhaus]
 - Reanalysis of verb transitivity for 'reduced relatives' [MacDonald]
 - Explains "local coherence" effects:
 "The coach smiled at the player *tossed* the frisbee ..."

Estimating P: The Grain Problem

• Suppose you have been exposed to N sentences in your lifetime

$\operatorname{arg\,max} P(s_i)$ for all $s_i \in S$

- "Our company is training workers" P(S=s1)=C(s1)/N
- Problem: P=0, often
- Solution:Estimate P, by combining probabilities of smaller chunks

2. S NP VP Our company Aux NP is VP V NP training workers

P(S=s2)=C(s2)/N

P(S=s3)=C(s3)/N

PCFGs: a quick reminder

- Context-free rules annotated with probabilities
 - Probabilities of all rules with the same LHS sum to one;
 - Probability of a parse is the product of the probabilities of all rules applied.
- Example (Manning and Schütze 1999)

S→NP VP	1.0
PP → P NP	1.0
VP → VP NP	0.7
$VP \rightarrow VP PP$	0.3
P → with	1.0
V → saw	1.0

NP →	NP PP	0.4
NP →	astronomers	0.1
NP →	ears	0.18
NP →	saw	0.04
NP →	stars	0.18
NP →	telescopes	0.1

Parse Ranking

 $P(t_1) = 1.0 \times 0.1 \times 0.7 \times 1.0 \times 0.4 \times 0.18 \times 1.0 \times 1.0 \times 0.18 = 0.0009072$

 $P(t_1) = 1.0 \times 0.1 \times 0.3 \times 0.7 \times 1.0 \times 0.18 \times 1.0 \times 1.0 \times 0.18 = 0.0006804$

Recall the Grain Problem

Methodological advantages

- Transparently combine symbolic and stochastic mechanisms
 - Associate probabilities with rules and representation
- Scaleable, predictive models
 - Supervised training is well understood
 - Independent empirical basis for establishing the parameters
- Blurring the boundary between rational and empirical
 - Combines existing theories with mechanisms that learn from experience
 - Do probabilities encode "hidden" knowledge/representations?

11

<u> Jurafsky (1996)</u>

- Psycholinguistic model of lexical and syntactic access and disambiguation
- Exploits concepts from statistical parsing
 - Probabilistic CFGs
 - Bayesian modeling frame probabilities
- Architecture: Probabilistic, bounded, parallel parser
 - Parses are "pruned" (removed from memory) if they fall outside the "beam"
 - E.g. if they are too improbable with respect to the best parse
 - Pruned parses are predicted to reflect garden-path sentences

Frame Preferences

- "The women discussed the dogs on the beach."
 - t1. The women discussed them (the dogs) while on the beach. (10%)
 - t2. The women discussed the dogs which were on the beach. (90%)

13

Frame Preferences

- The women kept the dogs on the beach.
 - t2. The women kept the dogs which were on the beach. (10%)
 - t1. The women kept them (the dogs) on the beach. (90%)

 $p(t_2) = 0.19 \times 0.39 \times 0.14 = 0.01$ (dispreferred)

Construction Preferences

 $S \rightarrow NP \dots$ 0.92 $NP \rightarrow Det N$ $NP \rightarrow Det Adj N$ $\mathsf{S} \ \rightarrow \ [\mathsf{NP} \ _{\mathsf{VP}}[\mathsf{V} \ \ldots \]$ 0.28 $N \rightarrow ROOT s$ 0.23 $N \rightarrow complex$ $N\,\rightarrow\,house$ 0.0024 $V \rightarrow house$ $\mathsf{Adj} \to \mathsf{complex}$ 0.00086 $V \rightarrow ROOT s$ t_1 : t_1 : S S ΝP ΝP Det Ν Det Adj Ň complex the complex houses the $p(t_1) = 4.5 \times 10^{-10}$ (dispreferred) $p(t_1) = 1.2 \times 10^{-7}$ (preferred)

15

Construction Preferences

 $NP \rightarrow Det N$ 0.63 $S \rightarrow [NP_{VP}[V \dots$ 0.48 $V \rightarrow fire$ 0.00042 $V \rightarrow ROOT s$ 0.086 t_1 : S NΡ VP Det Ň warehouse fires the

0.63

0.48

0.000029

0.0006

0.086

VΡ

houses

 $p(t_1) = 1.1 \times 10^{-5}$ (dispreferred)

Frames and Constructions

"The horse raced past the barn fell."

p(race, (NP NP)) = 0.08 $NP \rightarrow NP XP \quad 0.14$ $t_2:$ S $NP \qquad \dots$ $NP \qquad VP$ $| \qquad |$ $the horse \ raced$

 $p(t_1) = 0.0112$ (dispreferred)

17

Frame and Construction Probs

"The bird found died"

 $p(\text{find}, \langle \mathsf{NP} \rangle) = 0.38$ t_1 :

 $p(t_1) = 0.38$ (preferred)

 $p(\mathsf{find}, \langle \mathsf{NP} | \mathsf{NP} \rangle) = 0.62$

 $NP \rightarrow NP XP 0.14$

t₂:

 $p(t_1) = 0.0868$ (dispreferred)

Setting Beam Width

• **Assumption**: if the relative probability of a parse with respect to the best parse drops below a certain threshold, it will be pruned

sentence	probability ratio
the complex houses	267:1
the horse raced	82:1
the warehouse fires	3.8:1
the bird found	3.7:1

• **Claim:** a tree is pruned, and therefore a garden-path, if the probability ration is greater than 5:1

19

Open Issues

- Incrementality: Can we make more fine grained predictions about the time course of ambiguity resolution:
 - What about when category preferences go against syntactic possibilities
- Relative difficulty: Jurafsky doesn't distinguish the relative difficulty of parses/interpretations that remain in the beam
- Memory: No account for memory load within a sentence (e.g. centre embeddings), as there is no ambiguity
 - Gibson (1992) used a similar "beam" approach with a memory load heuristic
- Does the model make the right predictions when scaled up?

Psychological Plausibility

- Are wide-coverage, probabilistic models cognitively plausible?
- Broad coverage probabilistic parsers:
 - High accuracy: 86% precision/recall
 - Robust: Analyse all and ill-formed input
 - But: Non-incremental & massively parallel
- What is the general performance of probabilistic parser that:
 - Has restricted memory resources
 - Strictly incremental parsing (and pruning)

21

Design of the Experiment

- Adapted a standard Stochastic Context Free Grammar:
 - Incremental Processing: full processing on each word, no lookahead
 - Immediate pruning: reduces memory requirements
 - Pruning: active/inactive/both
 - Variable Beam: edges close to best are kept (like Jurafsky)
 - Fixed Beam: fixed number of best edges are kept
- Training: Wall street journal sections 2-21
- Testing: From section 22 (1578 sentences of length 40 or less)

Results for Incremental SCFG

F-Score: 71.21

- Baseline performance:
 - Recall: 68.82%
 - Precision: 73.77%
 - Chart size: 141,650
 - Avg # of analysis per span: 18.7
 - Speed: 1.8 Tokens/Sec
- Restricted model:
 - Recall: 68.82% F-Score: 71.16
 - Precision: 73.66%
 - Chart size: 1.15%
 - Avg # of analysis per span: 2
 - Speed: 301 Tokens/Sec
 - Fixed beam (inactive: 2 active: 4)

23

Interim Summary

- Wide coverage grammar, good overall performance
 - Accounts for specific lexical/syntactic local ambiguities
 - Sacrifices linguistic fidelity/richness
- Cognitive plausibility? Brants & Crocker (2000)
 - Psychological Plausibility: Incrementality & Restricted Memory
 - No degradation in accuracy
 - Memory: 100 x less
 - Speed: 100 x faster

Summary of Jurafsky

- Probabilistic grammars offer rational account of lexical and syntactic disambiguation in parsing
- Can be easily scaled, and also restricted to meet considerations of cognitive plausibility
- Jurafsky's model, however, does not explain behaviour (i.e. reading times) beyond POS tag models (but does yield a syntactic analysis).
- Also, coarse-grained linking hypothesis to processing difficulty.

25