Computational Psycholinguistics

Lecture 2: Parsing Mechanisms

Matthew W. Crocker crocker@coli.uni-sb.de

Human Language Parsing

- We understand language incrementally, word-by-word
 - How precisely do people construct interpretations?
- We must resolve local and global ambiguity
 - How do people decide upon a particular parse/interpretation?
- Why are some grammatical sentences so difficult to comprehend
 - Ambiguity: the human parser has been misled, takes time to recover
 - Resources: the human parse has exceeded available memory

Human Language Parsing

- We understand language incrementally, word-by-word
 - How precisely do people construct interpretations?
- We must resolve local and global **ambiguity**
 - How do people decide upon a particular parse/interpretation?
- Why are some grammatical sentences so difficult to comprehend?
 - Ambiguity: the human parser has been misled, takes **time** to recover
 - Resources: the human parse has exceeded available **memory**

The Problem

• How do people recover the meaning of an utterance in real-time?

"The man held at the station was innocent"

(Reduced) Relative Clauses

- One of the most famous (English) syntactic ambiguities!
 - The man delivered the junkmail ... threw it away.

Reading time studies

- We can use controlled experiments of reading times to investigate local ambiguity resolution
 - (a) The man held at the station was innocent (LA)
 - (b) The man who was held at the station was innocent (UA)
- Compare the reading times of (b) where there is no ambiguity, with (a) to see if and when the ambiguity causes reading difficulty.
 - Need a "linking hypothesis" from theory to measures
 - Can then manipulate other linguistic factors to determine their influence on on RTs in a controlled manner

Experimental Design

- Decide on the Factor: e.g. Ambiguity
- Decide on the Levels: e.g. ambiguous & non-ambiguous
- One experimental Item includes all conditions (each Level of each Factor)
 - carefully match conditions within an item, minimal differences
 - create multiple items
- Multiple participants, each sees only one condition of each item
- Then average across items and participants, and do inferential statistics!

Reading Methods

Whole sentence reading times:

The man held at the station was innocent

Self-paced reading, central presentation:

isntheblebot

Self-paced reading, moving window:

The man held at the station was innocent

But what do RTs tell us, really?

- Suppose you find an increased reading time for one condition, versus another. What does that mean?
- Various things can result in longer reading times:
 - lexical: longer words, infrequent words, implausible words
 - syntactic: memory load, ungrammaticality, disambiguation, revision
- We need our models to make clear the linking to empirical measures:
 - e.g. high RT when dispreferred structure must be recovered
- And, we need to make sure this is what is causing the RT in our experiment

<u>Summary</u>

- People construct an interpretations, word-by-word
 - People must resolve ambiguity
 - Sometimes we must revise our interpretation of the sentence so far
- Reading time measures can tell us about how/when this occurs
 - Different phenomena are found in different measure
- We can design experiments which exploit these methods (and others!) to investigate the underlying processing architectures and mechanisms

Parsing Mechanisms

- Syntactic processing requires a solution to the problem of:
 - How structures are **incrementally** constructed
 - How local and global **ambiguity** is resolved
- Incremental Parsing
 - Top-down; Bottom-up; Mixed strategies
- Ambiguity and parsing:
 - Serial (deterministic/non-deterministic)
 - Parallel (bounded/unbounded)

Parsing Algorithms for PSGs

- Algorithms to recover the parse tree for an utterance vary ...
 - left-to-right, head-driven, right to left
 - top-down, bottom-up, mixed
 - deterministic, serial, parallel
- Processing complexity:
 - Time: what time is required to parse a sentence as a function of sentence length, grammar size?
 - Space: how much memory does the parser require?

• "The woman reads"

Shift-reduce Algorithm

- 1. Initialise Stack = []
- 2. loop: Either *shift*:
 - 2.1.Determine category, C, for next word in sentence;
 - 2.2.Push C onto the stack;
- 3. Or *reduce*:
 - 3.1.If categories on the *Stack* match the RHS of a rule: LHS \rightarrow *Stack*
 - 3.1.1.Remove those categories from the Stack;

3.1.2.Push the LHS category onto the *Stack*;

- 4. No more words to process?
 - 4.1.If *Stack* = [S], then done;
- 5. Goto loop

Simple example:Bottom-up

Top-down Parsing

"The woman reads"

Top-down Algorithm

- 1. Initialise *Stack* = [S]
- 2. If top(Stack) is a non-terminal, N:
 - 2.1.Select rule $N \rightarrow RHS$;

2.2.pop(*N*) off the stack and push(*RHS*) on the stack;

3. If top(Stack) is a pre-terminal, P:

3.1.Get next word, W, from the input;

3.2.If *P W*, then pop(*P*) from the stack;

3.3.Else fail;

4. No more words to process?

4.1.If *Stack* = [], then done;

5. Goto 🗪

Simple example: Top-down

Evaluating top-down & bottom-up

- Are these parsers psychologically plausible?
- Incrementality:
 - Bottom-up: no
 - Top-down: yes
- Input-driven:
 - Bottom-up: yes
 - Top-down: no + problems with left-recursion

A Psychologically Plausible Parser

- Left-Corner Parsing
- Rules are 'activated' by their 'left-corner'

- Combines input-driven with top-down
- There is a 'class' of LC parsers

An example LC parse

"The woman read the book"

Is this incremental?

Evaluating the LC Parser

- Affect on ambiguity resolution for arc-eager:
 - Commitment to attachments is early, before daughters are completely built