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Abstract

A new framework is offered that uses multilevel logistic regression (MLR) to analyze data from ‘visual world’ eye-
tracking experiments used in psycholinguistic research. The MLR framework overcomes some of the problems with
conventional analyses, making it possible to incorporate time as a continuous variable and gaze location as a categor-
ical dependent variable. The multilevel approach minimizes the need for data aggregation and thus provides a more
statistically powerful approach. With MLR, the researcher builds a mathematical model of the overall response curve
that separates the response into different temporal components. The researcher can test hypotheses by examining the
impact of independent variables and their interactions on these components. A worked example using MLR is
provided.
� 2007 Elsevier Inc. All rights reserved.
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The current article provides solutions for the analysis
of data sets from eyetracking experiments that use the
‘visual world’ paradigm (e.g., Cooper, 1974; Tanenhaus,
Spivey, Eberhard, & Sedivy, 1995). In a typical ‘visual
world’ experiment, participants view a scene and listen
to speech containing references to objects in the scene.
Such research is typically aimed at testing hypotheses of
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the form: ‘‘Does constraint X influence the processing of
Y?’’ For instance, a researcher may wish to know whether
verb-thematic information (Altmann & Kamide, 1999;
Dahan & Tanenhaus, 2004) constrains referential search
or whether the set of options available in a display con-
strains syntactic processing (Tanenhaus et al., 1995).
Changes over time in the distribution of looks to elements
in the scene are taken as an index of underlying linguistic
processing. For example, consider the finding that listen-
ers look more toward edible objects upon hearing the verb
eat as in ‘‘the boy will eat. . .’’ than they do when the verb
eat is replaced with the verb move (Altmann & Kamide,
1999). Such a finding suggests that verb information
becomes quickly available and is used to derive expecta-
tions about upcoming referents.

The variable of time, inherently continuous, is an
important variable in nearly every eyetracking experi-
ed.
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ment. Spoken language is fundamentally a temporal
phenomenon, and researchers are generally interested
in examining how looking patterns change as evidence
for various alternatives unfolds. The dependent variable
(DV) in a visual world experiment is typically the region
to which a participant directs his or her gaze at a given
moment in time, a variable that is inherently categorical.
Thus, the optimal analysis of such data sets calls for a
framework that at the very least allows for the assess-
ment of the effects of a continuous variable (time) on a
categorical variable (gaze location).

The canonical statistical techniques used in experi-
mental psychology—analysis of variance (ANOVA),
the t-test, and related techniques—were developed for
precisely the opposite situation: to assess effects of cate-
gorical variables (e.g., design factors) on continuous
DVs (e.g., reaction time). Of course, analysts can trans-
form their data sets to make them compatible with
ANOVA. Time can be made categorical by breaking it
up into a series of consecutive analysis windows and
then performing separate analyses on each window
(e.g., Hanna, Tanenhaus, & Trueswell, 2003; Kronmül-
ler & Barr, 2007; Nadig & Sedivy, 2002). The categorical
variable of fixation region can be made continuous by
calculating a proportion that aggregates over time and
over multiple trials (as is done in the vast majority of
published studies).

However, there are costs to such an approach, some
of which are often overlooked. Fortunately, a better
solution is within reach. This article outlines these costs
and offers a solution that uses multilevel logistic regres-
sion (MLR) with parametric curves. Although experi-
mental psychologists often associate regression with
observational rather than experimental data, all of the
standard analyses performed using ANOVA—main
effects, simple effects, and interactions—can performed
in the MLR framework. Furthermore, the framework
provides more flexibility for accommodating different
kinds of predictor and dependent variables, be they con-
tinuous or categorical. It can straightforwardly handle
continuous predictor variables in addition to time
(e.g., participant covariates such as working memory
span, or item covariates such as word frequency). The
use of parametric curves gives the analyst more sophisti-
cated ways of assessing change over time.

The components on which the MLR framework is
built—multilevel modeling, logistic regression, and para-
metric curves—have all been addressed extensively in the
statistical literature. Goldstein (2003), Raudenbush and
Bryk (2002) and Snijders and Bosker (1999) among oth-
ers give in-depth treatment to the topic of multilevel
modeling. Readers who are unfamiliar with multilevel
(also known as hierarchical or ‘mixed effect’) approaches
may find it useful to consult any of various tutorial arti-
cles on the topic that have been written for an experi-
mental psychology audience (Hoffman & Rovine, 2007;
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Quené & van den Bergh, 2004; Richter, 2006). Logistic
regression is addressed in-depth in Agresti (2002),
Cohen, Cohen, West, and Aiken (2003), and Hosmer
and Lemeshow (2000), as well as in most textbooks on
multilevel modeling. Finally, an accessible discussion
of the use of parametric curves to model change over
time can be found in Fitzmaurice, Laird, and Ware
(2004).

Although information about the components of
MLR is widely available, there is no one source that syn-
thesizes information about these components in a for-
mat that is accessible to researchers working within an
experimental framework. Many of the existing text-
books and technical articles are geared toward observa-
tional rather than experimental studies. Although the
existing tutorial articles cited above on multilevel model-
ing present the topic in a manner that is accessible to
experimental psychologists, they focus mainly on data
sets where the response variable is continuous and for
which modeling changes in the response over time is
not of central interest. Furthermore, the two-level struc-
ture that is assumed in these articles is simpler than that
required to deal with eyetracking data, where a mini-
mum of three-levels will typically be required.

To give an overview, the article begins by discussing
three problems arising from the application of conven-
tional ANOVA techniques to visual world eyetracking
data and shows how the various components of the
MLR framework can overcome these problems. After
laying out the MLR solution, it is then compared with
other solutions on offer. Next, the framework is then
demonstrated by means of a worked example, wherein
the data from a published study are reanalyzed using
MLR. Finally, the last ‘Implementation’ section of the
article provides more in-depth technical details on the
framework for researchers interested in applying it to
their own data sets.

Note that although the article is geared toward the
analysis of eyetracking data, the approach presented
here could potentially be generalized to other applica-
tions involving repeated sampling of a response measure
over brief intervals (e.g., motion tracking, monitoring
movements of a computer mouse, etc.).
Accommodating time as a continuous variable using

parametric curve regression

The main advantage of the visual world paradigm
over more conventional psycholinguistic techniques,
such as reaction time studies, is its potential to assess
processing as speech unfolds over time. Unlike reaction
time studies, in which the total information from a given
experimental trial is concentrated into a single data
point, eyetrackers sample participants’ behavior repeat-
edly over very brief intervals, thus capturing the tempo-
al world’ eyetracking data using ..., Journal of Memory
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ral dynamics of the underlying processing. Yet the
potential to reveal underlying processing dynamics can-
not be fully exploited within the conventional analytical
approach, which requires time to be carved into discrete
categories. In cases in which the researcher is only inter-
ested in gross patterns of change over time, such an
approach may suffice. However, in many applications,
discretizing time can lead the analyst to overlook impor-
tant patterns in the data.

To illustrate, consider a hypothetical experiment
examining pragmatic plausibility effects derived from
verb semantics. In the experiment, listeners hear a sen-
tence such as ‘‘the boy will swing the bat’’ while viewing
a display containing several pictures. In one condition,
one of the pictures in the display represents a pragmat-
ically plausible object of the verb (e.g., a baseball bat).
In another condition, this critical picture is replaced with
a picture representing an object with a homophonous
name, but that is pragmatically implausible as an object
of the verb (e.g., a flying mammal bat). The hypothesis
that we wish to test is whether pragmatic plausibility
derived from verb semantics will constrain processing
of the referential noun phrase ‘‘the bat’’. This hypothesis
predicts a ‘plausibility effect’ on noun processing: during
processing of the word ‘‘bat’’, looks should increase fas-
ter to a picture representing a pragmatically plausible
object of the verb (e.g., the baseball bat) than to a pic-
plausible implausible
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Fig. 1. Time-window analysis (a) showing a pragmatic plausibility effe
(d). Panel (e) shows a null effect, and (f)–(h) show hypothetical patter
onset, and the vertical axis represents the proportion of fixations.
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ture representing an implausible object (e.g., the mam-
mal bat).

Assume that the data from this experiment are sub-
jected to a canonical analysis using ANOVA over pro-
portions. The analyst time-locks the eye data to the
onset of the noun ‘‘bat’’ and creates an analysis window
spanning the entire word, which lasts 300 ms. Assume
further that the window is shifted forward 200 ms to
account for the approximately 200 ms that program-
ming an eye movement requires (Matin, Shao, & Boff,
1993). So defined, the analysis window will maximally
capture looking behavior driven by the on-line process-
ing of the word ‘‘bat.’’ The resulting proportions from
various participants and items are then averaged
together to yield the results presented in Fig. 1, panel
(a). The ANOVA (or equivalently, t-test) finds a signif-
icant plausibility effect—that listeners were significantly
more likely to look at the referent when it was a plausi-
ble object of the verb than when it was implausible (pro-
portions of .6 versus .4). The researcher then concludes
that listeners quickly derive information about prag-
matic plausibility from verb semantics and use that
information to constrain how they process the unfolding
noun.

Such an analysis ignores the fact that the effect in (a)
could have arisen from many possible underlying func-
tions relating time to looking behavior. By collapsing
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ct and three hypothetical data patterns underlying the effect, (b)–
ns underlying it. The horizontal axis represents time from word
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time, the additional evidence that these patterns might
provide in favor or against the researcher’s hypothesis
would be lost. Note that the logic of visual world exper-
iments requires that the information instantiating con-
straint X be presented prior to the onset of the
targeted linguistic fragment Y. Consequently, there are
two different ways in which the constraint X can influ-
ence looking patterns. One way is by changing the distri-
bution of looks prior to the onset of the targeted linguistic

fragment Y, before perception of Y has even begun. Let
us refer to such effects as an anticipatory effects. A sec-
ond way that a constraint can have an effect is by mod-
ulating the way that fragment Y is processed. Such an
effect would be evident in changes in the distribution
of looks as a function of time during the period in which
the fragment is being perceived and processed. Let us
refer to these latter effects as rate effects.

Panels (b)–(d), for which the time variable has been
uncollapsed, show three hypothetical ways in which
anticipatory and rate effects can combine to yield the
pattern in (a). Anticipatory effects are those which are
present at the onset of the window; that is, any difference
in height between the data points for each of the two
lines at 200 ms. Note that it is logically impossible that
any effect at the onset of the window would be the result
of the processing of the noun, since processing of the
noun has not started yet (again, assuming a latency of
200 ms for eye movement programming). Thus, the pres-
ence of an anticipatory effect can tell us that, indeed, the
constraint had an effect on looking behavior, but it can-
not tell us whether it has influenced how the noun was
processed. Rate effects, in contrast, arise directly out
of the processing of the targeted linguistic fragment to
which the analysis window is time-locked. Such effects
are given by the slopes of the lines over the window
(keeping in mind that more complex, nonlinear func-
tions of time are of course possible).

Claims about effects of some constraint X on the pro-
cessing of Y can be made clearer and more compelling
by distinguishing rate from anticipatory effects. The data
in panel (b) shows a rate effect with no anticipatory
effect: during processing of the noun, listeners became
increasingly likely to fixate the plausible referent and
decreasingly likely to fixate the implausible referent.
Such a pattern would strongly support the interpretation
that the processing of the noun was influenced by the
semantic constraints of the verb. However, other pat-
terns underlying (a) are possible that could weaken such
an interpretation. For instance, panel (c) suggests an
anticipatory effect of pragmatic plausibility, but no effect
of plausibility on rate. To be sure, there is a main effect
of time—as the word unfolds, listeners look increasingly
toward referents that match the unfolding noun—but
this increase is no greater for a picture representing a
plausible object (baseball bat) than for one representing
an implausible object (mammal bat). One might con-
Please cite this article in press as: Barr, D. J., Analyzing ‘visu
and Language (2008), doi:10.1016/j.jml.2007.09.002
clude from this that verb semantics caused listeners to
anticipate pragmatically plausible referents, but did
not modulate how the unfolding speech was mapped
onto referents in the visual world. The pattern in (d)
shows an anticipatory effect and a rate effect, but the
rate effect is much smaller than that given in (b). Unlike
in (b), where the likelihood of looking at the implausible
object decreased over time, in (d) it increased, but at a
slower rate than for the plausible object.

Now consider a different possible outcome of the
experiment in (e), which suggests no difference between
plausible and implausible objects. Such an outcome
might suggest that the pragmatic plausibility constraint
had no effect on noun processing. Such an interpreta-
tion, however, would be valid only if the underlying pat-
tern was (f), where there is no anticipatory effect, nor
any effect on rate—only a main effect of time. In (g),
we see a rate effect, with a smaller slope for implausible
than for plausible objects, that is altogether masked by
an anticipatory effect in the opposite direction. Finally
in (h) we see a similar masking of very strong rate effects
by equally strong anticipatory effects in the opposite
direction. The inverted anticipatory effect such as in
(h) could have arisen out of a confound in the experi-
mental materials; for example, because the pictures used
for the implausible referents were more visually attrac-
tive than those representing the plausible referents.

In sum, the practice of collapsing time into discrete
categories can obscure theoretically relevant data pat-
terns by confounding anticipatory effects with rate
effects. Without a clear separation of such effects, the
analyst can be led to conclusions that are misleading
or overlook rate information that is masked by an antic-
ipatory effect. Certainly, researchers from different theo-
retical backgrounds may disagree over the theoretical
significance of anticipatory versus rate effects. Nonethe-
less, whatever one’s theoretical commitments, it is clear
that effects that are present prior to the presentation of
some targeted linguistic fragment should be given a dif-
ferent interpretation from those that arise during the
processing of that fragment.

Deconfounding anticipatory and rate effects requires
a framework that can more appropriately handle contin-
uous variables such as time. To this end, we can appro-
priate sophisticated regression techniques for assessing
change that have been developed for longitudinal stud-
ies. Even though the time span of an eyetracking study
is many magnitudes smaller than in a typical longitudi-
nal study, the interest in assessing change over time is
identical.

One way of assessing change over time in longitudi-
nal research is through the use of parametric curves
(or ‘growth curves’) (Fitzmaurice et al., 2004). In the
parametric curve approach, the analyst chooses an equa-
tion to represent changes in a dependent variable as a
function of time. The general idea is to capture the over-
al world’ eyetracking data using ..., Journal of Memory
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all pattern of change in a single function specified by sev-
eral parameters. It is helpful to think of the function as
modeling the grand mean response curve; that is, the
mean response curve collapsed over all experimental
conditions. One can then investigate how various exper-
imental variables modulate the trajectory of the response
via the parameters in the equation.

For example, the patterns observed in Fig. 1 can be
captured using the equation for a line.

g ¼ p0 þ p1t ð1Þ

The choice of the symbols g and p over the customary
regression symbols y and b for the response variable
and regression parameters (respectively) will be clarified
in the Implementation section. The variable g represents
the likelihood of gazing at a particular location (e.g.,
picture), and t represents time, as measured from the on-
set of the analysis window to which the eye data are
time-locked. Typically, the data will be time-locked to
the onset of a word or phrase, possibly adding a con-
stant of 180–200 ms to account for eye-movement pro-
gramming latency Matin et al., 1993. Note that the
variables symbolized by p are the regression parameters
(the fixed effects) that will be estimated in the analysis.
Variable p0 represents the intercept of the line, while
p1 represents the slope of the line.1

Note that when t = 0 (in other words, at the onset of
the analysis window) g evaluates to p0. Thus, the magni-
tude of p0 tells us the likelihood of fixating the target
region at the onset of the analysis window, thereby cap-
turing anticipatory effects. In contrast, p1 defines the
rate effect, the rate of change in the likelihood of fixating
the target region per unit time (e.g., per second). If p1 is
positive, that means that participants are becoming
increasingly likely to fixate the target region; if p1 is neg-
ative, that means that they were decreasingly likely to
fixate the target region.

By using a multilevel analysis, discussed below, we
can test for main effects or interaction effects of experi-
mental variables on each of the regression parameters
(the ps). In this way, we can distinguish between the
effects of these variables on anticipatory versus rate
components of the overall response. This is like perform-
ing two simultaneous ANOVAs, each providing a differ-
ent picture of how the variables influence the underlying
temporal dynamics of processing.

In some applications, the assumption of a strictly lin-
ear rate effect will be too simplistic, and a more complex
function will be required. For instance, a linguistic signal
may be temporarily ambiguous between a target (e.g., a
bucket) and competitor object (e.g., a buckle), such that
1 Standard regression equations also contain a term repre-
senting residual error, but to simplify the exposition this term
has been omitted.
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fixations to the competitor initially rise and then taper
off once the point of disambiguation (e.g., the second
syllable of ‘‘bucket’’) is reached, resulting in an inverted
‘‘U’’ shape. The researcher can model the curvature by
introducing a quadratic term into the equation, yielding

y ¼ p0 þ p1tþ p2t2 ð2Þ

Ideally, the choice of the form of the function should
be theoretically driven. When speech relatively unambig-
uously designates a target object, a simple linear func-
tion may suffice. When there is competition, inclusion
of a curvature term may be necessary. Model selection
techniques can additionally be employed to discover
the simplest theoretically-motivated model that can fit
the data. In the end, selection of an appropriate function
will depend upon the goals of the analysis.
Accommodating gaze location as a categorical variable

using logistic regression

Although linear regression is part of the general solu-
tion proposed here, there are problems directly applying
such a framework when the dependent variable is cate-
gorical. In a visual world experiment, the dependent var-
iable has as many categories as there are regions (or
types of regions) in the presented scene. Such a variable
will follow a multinomial distribution rather than a nor-
mal distribution (Agresti, 2002). The analyst is ulti-
mately interested in understanding how the likelihoods
of the participant’s gaze being in one of several states
changes as a function of time and of the independent
variables.

ANOVA, like linear regression, assumes that the
dependent variable is continuous. It is customary to
transform the categorical dependent variable into a con-
tinuous variable by calculating proportions. Proportions
are computed by collapsing over time and over trials in
the experiment. Although such a transformation makes
the analysis tractable within ANOVA or linear regres-
sion, such an analysis violates the assumptions that the
dependent variable has an unbounded range and that
errors are distributed normally and independently of
the mean. Proportions are bounded by the values 0
and 1, and error variance is proportional to the mean.
Although the well-known arcsine transform of
2 arcsin

ffiffiffi
y
p

(Howell, 1997) can stabilize the variance,
the problem with analyses on proportional data sets
goes beyond error variance or even potential floor or
ceiling effects.

The crux of the problem is that effects on event like-
lihood are inherently multiplicative, while use of the pro-
portional scale with ANOVA or linear regression
assumes effects that are strictly additive. One way of see-
ing this is to note that ANOVA and linear regression
assume constant effect sizes over the entire scale. How-
al world’ eyetracking data using ..., Journal of Memory
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ever, what is the meaning of an effect of .2 when the
prior probability of the event is .8 or greater? Clearly,
a probability greater than one is meaningless; thus,
effects cannot be strictly additive, but must in some
way depend on the prior likelihood of the event.

Statisticians often discuss event likelihoods in terms
of odds. The odds of an event is defined as the ratio of
positive occurrences (i.e., the event took place) to nega-
tive occurrences (i.e., the event did not take place). This
contrasts with a probability, which is a ratio of positive
cases to all cases, positive or negative.2 The effect of
some variable on the odds of an event are multiplicative;
for example, a given variable might double or half the
odds of the event. This assumption is evident, for
instance, in epidemiological studies, where one typically
finds statements of the form ‘‘exposure to substance S
increased/decreased the odds of outcome Y by a factor
of X.’’ The critical phrase by a factor of X underscores
the assumption of multiplicative effects.

To be able to apply conventional statistical techniques
to likelihood data, one can take the log of the odds, which
transforms multiplicative into additive effects. The log odds
scale is the appropriate scale for assessing effects on a cate-
gorical dependent variable (see Agresti, 2002; Cohen et al.,
2003; Jaeger, this issue, for further discussion). A propor-
tion / can be converted to log odds using Eq. (3).

g ¼ ln
/

1� /

� �
ð3Þ

Analyzing data on a proportional scale instead of on
a log odds scale can lead to improper estimation of
effects. For example, Jaeger (this issue) shows how an
analysis on a proportional scale can yield a spurious
interaction effect when there are only main effects. With
regard to eyetracking data, analysis on a proportional
scale can also lead to misestimation of anticipatory
and rate effects.

Consider the hypothetical data presented on the pro-
portional scale in Fig. 2(a). Note that there is an antici-
patory effect favoring one condition (triangles) over
another (circles), and that the rate for the former condi-
tion also seems to be much higher. At 200 ms, the differ-
ence between the two lines on the graph is about .10; by
600 ms, the difference has increased to about .38.

However, this apparent rate effect turns out to be an
illusion produced by the proportional scale. Consider-
ation of the same data on the log odds scale in (b) shows
that the two lines have parallel slopes, and differ only in
anticipatory effect. The anticipatory effect amounts to 2
‘logits’ (units on the log odds scale). The slope for each
line is .5 logits per 100 ms, which means that the odds of
looking at the region increase by a factor of about 1.65
2 Given a probability p, one can compute the odds as p
1�p;

given an odds q, one can compute the probability as q
1þq.
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(exp(.5) = 1.65) per 100 ms. The apparent rate effect dis-
appears when the data are viewed on the log odds scale.

Assessment of the curves in Fig. 2(c) on the propor-
tional scale suggests an anticipatory effect with no rate
effect. However, plotting the same curves on the log
odds scale indicates a steeper initial increase in one con-
dition (triangles) than in the other (circles).

The appropriate technique for analyzing these data is
either logistic regression, or linear regression with an
appropriate logistic transformation of the response (Agres-
ti, 2002; Jaeger, this issue; McCullagh & Nelder, 1989). As
it happens, whenever the proportions lie between .3 and .7,
logistic regression will tend to yield the same results as will
linear regression on a proportional scale. Yet for many eye-
tracking data sets, proportions will fall below this range
(e.g., due to fixation on a central fixation cross or the fact
that gazes are distributed over a large number of regions
in a display). In the long run, an approach based on log
odds will be more widely applicable.

Note that parameter estimates that are obtained in
logistic regression are on the log odds or logit scale,
and thus represent the log odds of the target event
(e.g., looking at a particular object). The logit scale is
unbounded and symmetric around zero. A logit of zero
means that the target event was equally likely to occur as
not to occur (e.g., a probability p of .5). When the logit
is positive, the target event is more likely to occur than
not (p > .5); when it is negative, the target event is less
likely to occur than not (p < .5). For instance, with a
logit of 1, the odds of the target event occurring are
2.71 times (exp(1) = 2.71) the odds of not occurring. A
logit of �1 indicates that the target event is 2.71 times
more likely not to occur than to occur.

In the rest of this article, it is assumed for the sake of
simplicity that the response variable has only two cate-
gories (i.e., that it is ‘‘dichotomous’’). In reality, the
response variable for most eyetracking experiments will
have three or more categories (i.e., will be ‘‘polytom-
ous’’). For instance, a given experiment might contain
displays with three objects: a target, a competitor object
that is related to the target in some way, and an object
that is unrelated to the target. A generalization of logit
models, known as multinomial logit models, can be used
to analyze all categories of a polytomous variable. With
existing software, however, it is difficult to fit such mod-
els. Standard logistic regression can be used if the polyt-
omous variable is first converted into a dichotomous
variable, by collapsing all but one of the categories into
a single group (e.g., target versus ‘‘other’’).
Accommodating nonindependence of observations using a

multilevel approach

Up to this point, I have indicated the need for a logis-
tic regression framework; the ‘logistic’ part is required to
al world’ eyetracking data using ..., Journal of Memory
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Fig. 2. Hypothetical response curves on the probability scale (left panels) and on the log odds scale (right panels).
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accommodate a categorical dependent variable, and the
‘regression’ part is needed to accommodate the continu-
ous predictor variable of time. But there is an additional
requirement that the framework must also meet: namely,
it must be able to handle the fact that not all of the
observations that comprise an eyetracking data set are
independent. The nonindependence of observations in
visual world experiments derives from two sources: (1)
the fact that such experiments have a multilevel sam-
pling scheme; and (2) mechanics of how the eye moves.
It is important to take these sources of clustering into
account when statistically analyzing eyetracking data
sets. Treating observations as independent when they
are not can lead to underestimation of standard errors,
which in turn can inflate the Type I error rate.

Eyetracking experiments have a multilevel sampling
scheme in that a single trial of an experiment yields
not one, but many observations. Eyetrackers sample
the position of the participant’s eye gaze repeatedly
at fixed time intervals (in most cases, about once every
17 ms). The observations collected during a given trial
will be more correlated with one another than obser-
vations collected during different trials. Unlike a typi-
cal reaction time experiment, one can have tens,
hundreds, or even thousands of observations for a
given presentation of a particular experimental item
to a given participant. Modeling time using parametric
curves can make the observations within trials condi-
tionally independent from one another given the
model (Cohen et al., 2003; Fitzmaurice et al., 2004),
but there are other sources of nonindependence that
must also be addressed.

Except in the very unlikely case of an experiment that
includes repeated observations on only one participant,
Please cite this article in press as: Barr, D. J., Analyzing ‘visu
and Language (2008), doi:10.1016/j.jml.2007.09.002
most designs will include higher order sources of cluster-
ing (non-independence); namely, the nesting of trials
within participants and/or experimental items. The sam-
pling hierarchy for a standard experiment can be cap-
tured in a three-level model (Fig. 3): level-1 is the level
of individual observations (individual data frames),
level-2 is the trial level (trials in the experiment), and
the level-3 units are both participants and items (each
level-2 unit is ‘‘cross-classified’’ at level-3 by participant
and item; see Raudenbush & Bryk, 2002). Each partici-
pant forms a unique ‘cluster’ in which observations are
correlated, and each item also forms such a unique ‘clus-
ter.’ If we assume that each item is presented to each
participant only once—as is the case in most psycholin-
guistics experiments—then each trial in an experiment is
a unique combination of the two clusters.

The standard solution to this problem in experimen-
tal psychology is to aggregate data up to the highest
level in the sampling hierarchy. For example, mean pro-
portions are computed for each participant (or item) in
an experiment, and these independent means, instead
of the original observations, are submitted to the analy-
sis. Such a solution can achieve independence of obser-
vations, but at the cost of losing information and thus,
statistical power.

In contrast, multilevel (or ‘mixed-effect’) regression
can solve the problem of nonindependence while incur-
ring no such cost. Multilevel models solve the problem
by directly modeling nonindependence through the
inclusion of ‘random effects’ corresponding to the vari-
ous clusters in the sampling design (Raudenbush &
Bryk, 2002). This largely avoids the loss of information
due to data aggregation, and thus will generally improve
statistical power.
al world’ eyetracking data using ..., Journal of Memory



 
 

Fig. 3. The sampling hierarchy in a typical eyetracking experiment.
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The second source of nonindependence in eyetrack-
ing data comes from the way that the eyes move. Con-
secutive frames in an eyetracking data set may be
more or less dependent, depending on what they eyes
are doing at that time. It is not physically possible for
a participant’s eye gaze to instantaneously travel from
one region to another; the gaze must travel through time
and space to reach its destination. Yet true independence
presupposes that such instantaneous shifts are possible.
Furthermore, it might be the case that the gaze is unli-
kely to shift while the planning of an eye movement is
underway, such that observations that take place during
eye movement planning will be correlated. Ideally, one
would want to somehow incorporate these potential
sources of nonindependence into the model, but it is
not immediately clear how this could be accomplished.

Failure to take into account eye-movement based
dependencies can lead to underestimation of the standard
errors that are used in hypothesis testing. Two solutions
are recommended for overcoming these dependencies.
The first is to compute ‘robust’ or ‘Huber-corrected’ stan-
dard errors instead of the regular standard errors. These
robust standard errors provide protection against Type I
error inflation due to model misspecification (Raudenbush
& Bryk, 2002). However, they are generally only appropri-
ate for experiments involving many participants and items.

Alternatively, one can filter out these dependencies
by aggregating together all trials within a given condi-
tion, and grouping observations into a series of temporal
bins (e.g., 50 ms bins). One can then compute the ‘empir-
ical logit’ for each bin, which is a quasi-logit transforma-
tion that is designed to handle cases for which the
standard logit is exceedingly large or small (e.g., when
the probability is near zero or near one).3 Through such
3 See the Implementation section for details on computing the
empirical logit.

Please cite this article in press as: Barr, D. J., Analyzing ‘visu
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aggregation, one can filter out the eye-movement based
dependencies, but at the cost of a loss of statistical
power. Nonetheless, such an approach will be appealing
when one is dealing with data sets including a relatively
small number of participants or items.
Comparison to existing approaches

The MLR solution advocated here is intended as a
general solution for analyzing data from eyetracking
experiments. The regression framework enables treat-
ment of time as a continuous variable, while the logistic
transformation accommodates the categorical DV of
gaze location. Furthermore, the problem of nonindepen-
dence due to repeated sampling is handled through mul-
tilevel modeling, and eye-movement based
nonindependence is resolved through either robust stan-
dard errors or aggregation using the empirical logit.

Other solutions that have been proposed bear some
similarities to the MLR framework, although only the
MLR framework simultaneously handles the continuous
variable of time, the categorical variable of gaze loca-
tion, and eye-movement based dependencies in the data.
A similar solution was proposed by Magnuson, Dixon,
Tanenhaus, and Aslin (2007), who also used a growth
curve (i.e., parametric curve) approach. But in contrast
to MLR, they analyzed their data on a proportional
scale. Furthermore, they fit curves using orthogonal
polynomials, rather than the natural polynomials used
here. With orthogonal polynomials, the interpretation
of each term in the equation is independent of all other
terms (i.e., inclusion of a higher-order term does not
change its interpretation). Thus, the intercept term gives
the mean height of the curve over the entire analysis win-
dow, unlike in the MLR approach, in which it corre-
sponds to the mean difference at the intercept. The
orthogonal polynomial approach can in fact be used
al world’ eyetracking data using ..., Journal of Memory
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within MLR, and would be most appropriate in situa-
tions in which there is little need to control for anticipa-
tory effects. However, when such effects are present, then
the orthogonal polynomial approach will tend to con-
found them with rate effects.

Knoeferle, Crocker, Scheepers, and Pickering (2005)
handled the categorical nature of eye movement data
using a hierarchical loglinear regression model. How-
ever, loglinear models, unlike logistic regression models,
can accommodate only categorical predictor variables,
and thus cannot incorporate time as a continuous vari-
able. Similarly, Arai, van Gompel, and Scheepers
(2007) used a log-ratio technique in order to compare
fixations between two regions of interest. The DV was
the log of the ratio of proportions between the target
region and a competing region. But as in this former
study, the time variable was collapsed into a series of
discrete time windows, each represented by a mean log
ratio. The log ratio and log linear approaches may be
most useful when the goal of the analysis is to compare
across regions, and when the need to separate anticipa-
tory and rate effects is not critical.

Scheepers, Keller, and Lapata (in press) fit an 11-
parameter Logistic Power Peak function to their data.
Although the function had a logistic form, the data
that were fit consisted of differences calculated on
the proportional scale. Furthermore, due to the com-
plexity of the fitting process, the function was fit indi-
vidually to each of eight groups (rather than being fit
to individual participants or items), and thus the stan-
dard errors of the estimates did not correspond to any
traditional sampling unit. In contrast, MLR provides
the customary standard errors computed over partici-
pants and items. Furthermore, unlike in a sequential
curve-fitting approach, the MLR approach estimates
fixed and random effects simultaneously, thus minimiz-
ing biases in the estimation procedure (Raudenbush &
Bryk, 2002).
Worked example: re-analysis of Kronmüller and Barr

(2007)

In this section, the MLR approach is illustrated by
way of an example. A subset of the data from Experi-
ment 2 of Kronmüller and Barr (2007) will be reanalyzed
using the MLR approach. More in-depth details regard-
ing the implementation of the approach can be found in
the final Implementation section of the article.

In the experiment, participants viewed a screen dis-
playing pictures of three unusual objects. In each trial,
participants listened to a person (the ‘speaker’) describe
one of the three objects (the target object) and attempted
to identify the target based on the description. For
example, the listener would hear a description such as
the flying saucer and then would select the best-matching
Please cite this article in press as: Barr, D. J., Analyzing ‘visu
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object by pressing a button. Listeners’ eyes were tracked
as they searched for the target object.

The data considered here were drawn from a subset
of the design in which the expression used to refer to
the target had been used previously to refer to the same
object (i.e., the Maintain Precedent condition in the ori-
ginal article). The previous mention of the object was
either by the same speaker as was currently speaking
(Same Speaker condition) or by a different speaker (Dif-

ferent Speaker condition). Additionally, listeners were
either under cognitive load or not under load when they
interpreted the expression.

Kronmüller and Barr (2007) found that comprehen-
sion was facilitated when an expression was re-used,
but found no evidence that this facilitation was any
greater in the Same Speaker condition than in the Differ-
ent Speaker condition. This is consistent with earlier
studies eyetracking studies that also report speaker-inde-
pendent facilitation for repeated descriptions (Barr &
Keysar, 2002; Metzing & Brennan, 2003). However, it
is inconsistent with another literature concerning memo-
ries for spoken words which finds speaker-specific facil-
itation due to perceptual priming (e.g., Church &
Schacter, 1994; Goldinger, 1996; Nygaard & Pisoni,
1998). This literature finds that people are faster to iden-
tify or recognize a word when it is spoken by the same
speaker than when it is spoken by a different speaker.
It is surprising not to find this priming effect in the con-
text of a referential communication experiment.

One reason why such a perceptual priming effect may
not have been detected is because the analysis that was
used was insufficiently sensitive. Kronmüller and Barr
(2007) used a sequential time-window analysis, dividing
the data into a series of 300 ms bins, and performing an
ANOVA on each bin. It is possible that the priming
effect may have been too short-lived, or may have been
broken up across subsequent windows. Therefore, we
return to these data in order to determine whether the
enhanced sensitivity of MLR leads to the detection of
a speaker-specific priming effect.

The data set for Experiment 2 of Kronmüller and
Barr (2007) consisted of data from 56 participants over
32 experimental items. Half of these items were not in
the Maintain condition, and were therefore excluded
from the following analysis. Two trials were excluded
due to problems with the experimental procedure. Eye
data was recorded at a rate of 60 frames per second
(one sample approximately every 17 ms). For simplicity,
we consider data for a time-window of approximately
300 ms (the data shown in Fig. 5).

We begin with a conventional analysis of the data
such as was conducted by Kronmüller and Barr
(2007). The data in Fig. 4 shows the proportions of fix-
ations to the target during an analysis window spanning
from 180 ms after the onset of the referring expression to
450 ms. A conventional 2 · 2 repeated-measures
al world’ eyetracking data using ..., Journal of Memory
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Fig. 4. Results from Kronmüller and Barr (2007), collapsed
over a 180–450 ms time window. DN = Different Speaker, No
Load, DL = Different Speaker, Load, SN = Same Speaker, No
Load, SL = Same Speaker, Load.
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ANOVA was conducted on the arcsine-transformed
proportional data. This analysis revealed a main effect
of Speaker, in which there was a higher likelihood of fix-
ating the previously-mentioned target when the speaker
was different (.28) compared to when the speaker was
the same (.23), F1(1,55) = 3.94, MSE = .004, p = .05;
F2(1,31) = 6.13, MSE = .090, p < .05. Note that this
effect is in the opposite direction of what one would
expect under the hypothesis of speaker-specific priming:
listeners were slightly more rather than less likely to look
at the target when it had been previously mentioned by a
different speaker than the one currently speaking.

Instead of attempting to interpret what such an effect
might mean, let us consider the uncollapsed data
(Fig. 5).4 It is clear from this figure that the difference
detected by the previous analysis is entirely driven by a
strong anticipatory effect at the onset of the window
(180 ms), since the rate effect appears to go in the oppo-
site direction.

How could this anticipatory effect be explained? Note
that in the experiment, speakers’ utterances were
blocked, so that participants knew who the speaker
would be before any given trial began. Thus, it was pos-
sible for them to think about what objects the speaker
had mentioned before and to try to anticipate what
the speaker would refer to next. In the Same Speaker
condition, the speaker had previously mentioned two
of the three objects in the display; in the Different
Speaker condition, two of the objects had been men-
tioned as well, but by the old speaker; the current
speaker had mentioned none of them. The proportion
of looks to regions in the display other than the target
provides evidence that the lower rate of looks to the tar-
get in the Same Speaker condition was driven largely by
4 The fact that the curves look similar on the log odds and
proportional scale is because they occupy the range of the scale
that is roughly linear, namely, between about .3 and .7 (Agresti,
2002; Jaeger, this issue).

Please cite this article in press as: Barr, D. J., Analyzing ‘visu
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more looks to the one (non-target) object that the
speaker had not yet mentioned (.37). This suggests that
they (wrongly) anticipated that this previously unmen-
tioned object would be the next target, hence the lower
rate of looks to the actual target. In contrast, listeners
in the Different Speaker condition gazed at that object
no more than at the other two objects (.31), thus distrib-
uting their gaze roughly equally over the objects in the
display.

It is critical to note that Fig. 5 not only shows this
strong anticipatory effect favoring the target in the Dif-
ferent Speaker condition, but also suggests a rate effect
that is in the predicted direction of the speaker-specific-
ity hypothesis, with a steeper increase in the Same
Speaker condition than in the Different Speaker condi-
tion. Although the curves in the Same Speaker condition
start off lower than those in the Different Speaker condi-
tion, by the end of the window, they are at par. Further-
more, the rate effect does not appear to be modulated by
cognitive load, thus corroborating the hypothesis of an
underlying priming mechanism. This rate information
was completely lost in the conventional analysis because
of the need to collapse over time.

Re-analysis using MLR

The model that was chosen for the analysis was a
simple linear function, with the onset of the analysis
window time-locked at 300 ms after the onset of the
critical word. The 300 ms point was determined by
plotting the grand mean and visually assessing the ear-
liest rise in fixations to the target (Fig. 6). Using the
grand mean is a conservative approach to determining
time-locking in that it is blind to condition. Note that
the earliest point at which one could have possibly
observed gaze behavior driven by processing of the
linguistic signal would be at 180–200 ms after word
onset, due to the latency for eye movement planning
(Matin et al., 1993). The fact that signal-driven gaze
behavior does not appear until about 100 ms later
conforms to the fact that the descriptions of the
objects in the experiment were unfamiliar and referred
to using unconventional descriptions. Such expressions
are intrinsically more difficult to interpret than refer-
ences to familiar, everyday objects using conventional
names.

The model that was chosen was a simple linear
model, given by the following equation:

g ¼ p0 þ p1t: ð4Þ

In this equation, g represents the estimated log odds of
fixating the target for a given frame and t represents
the time elapsed from the onset of the analysis window.
The variables p0 and p1 will be estimated by the regres-
sion analysis, and will capture any anticipatory and rate
effects, respectively.
al world’ eyetracking data using ..., Journal of Memory
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conditions, log odds scale.

5 See the General Discussion and Implementation sections for
discussion of why separate participant and item analyses were
required.
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Using the multilevel framework, it is possible to
examine how the experimental variables of Speaker
(Same versus Different) and Cognitive Load (Load
versus No Load) and their interaction may have gen-
erated an anticipatory effect or modulated a rate
effect. The essence of the analysis is that each of the
two level-1 p parameters are modeled, in turn, at lev-
els 2 and 3 in terms of the fixed effects of the exper-
imental variables and the random effects of trial and
participant/item.

Estimation of regression coefficients

Two separate multilevel analyses were performed,
each demonstrating a different way of controlling for
eye-movement based dependencies in the data. The first
analysis was multilevel logistic regression (MLR) with
robust standard errors. This analysis was performed
on the full data matrix, with no aggregation. The second
analysis was weighted empirical logit regression (quasi-
MLR), which controls for such dependencies through
Please cite this article in press as: Barr, D. J., Analyzing ‘visu
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aggregation. The data were aggregated into a sequence
of four 50 ms bins for each cell of the design for each
participant. For both the logistic regression and empiri-
cal logit analyses, separate participant and item analyses
were performed.5

The two analyses yielded estimates of the intercept
(p0) and slope (p1) terms for each condition (Table 1).
Observed values are plotted against model fits in
Fig. 7. It is evident that the models capture the overall
trends in the data quite well.

For the logistic regression analysis, t values output by
the HLM software are reported for both the participant
(t1) and item (t2) analyses. The analysis detected a signif-
icant main effect of Speaker on the intercept (p0)
[t1(890) = 2.73, p < .01; t2(890) = 2.68, p < .01]. Specifi-
cally, the log odds of fixating the target were .32 higher
in the Different Speaker than in the Same Speaker con-
dition, with condition means of �.93 and �1.25 respec-
tively. In other words, the odds were higher in the
Different Speaker condition by a factor of about 1.37
(exp(.32) = 1.37), indicating an anticipatory effect of
the Speaker manipulation. There was no main effect of
Load [t1(890) = .43, p > .5; t2(890) = .42, p > .5] nor
Speaker by Load interaction [t1(890) = .13, p > .5;
t2(890) = .09, p > .5].

For the slope term, there was a clear main effect of
time, with looks to the target increasing at a rate of
1.93 logits per second [t1(55) = 5.12, p < .01;
t2(31) = 5.56, p < .01]. In other words, for every
100 ms, the odds of fixating the target increased by a fac-
tor of 1.21 (exp(.193) = 1.21). The critical question is
whether this rate effect was modulated by the Speaker
variable, with a higher rate in the Same Speaker condi-
al world’ eyetracking data using ..., Journal of Memory



Table 1
Parameter estimates (based on the analysis by participants)

Parameter Speaker No Load Load Collapsed

Est. SE Est. SE Est. SE

Logistic regression

Intercept (p0) Different �.90 .12 �.97 .14 �.93A .10
Same �1.23 .13 �1.27 .09 �1.25A .07
Collapsed �1.06 .09 �1.12 .09 �1.09 .06

Slope (p1) Different .90 .93 .85 .78 .87B .53
Same 2.89 .88 3.09 .66 2.99B .50
Collapsed 1.86 .66 1.95 .58 1.91 .38

Empirical logit

Intercept (p0) Different �1.16 .18 �1.28 .18 �1.22c .12
Same �1.58 .18 �1.50 .18 �1.54c .12
Collapsed �1.37 .13 �1.39 .13 �1.38 .09

Slope (p1) Different 1.34 1.11 1.70 1.11 1.52D .78
Same 4.22 1.11 3.26 1.11 3.74D .78
Collapsed 2.78 .79 2.48 .30 2.63 .56

Note: Bold capital letters indicate significance (p < .05).
Lowercase letters indicate marginal significance (p < .10).
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Fig. 7. Observed values (symbols) and model fits (dotted lines). The data are presented on the log odds scale.
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tion than in the Different Speaker condition. This
hypothesis was supported: the estimated slope in the
Same Speaker condition was 2.99 logits per second,
2.12 logits higher the estimate of .87 logits per second
for the Different Speaker condition [t1(890) = 2.97,
p < .01; t2(890) = 2.43, p < .05]. This implies that for
every 100 ms, the odds of fixating the target increased
by a factor of 1.34 in the Same Speaker condition, com-
pared to a factor of 1.09 in the Different Speaker condi-
tion. There was no main effect of Load on the slope
[t1(890) = .08, p > .5; t2(890) = .11, p > .5]. More impor-
tantly, the Speaker effect was not modulated by the
Load manipulation [t1(890) = .16 p > .5; t2(890) = .16;
p > .5], supporting the hypothesis that the Speaker effect
was due to perceptual priming.
Please cite this article in press as: Barr, D. J., Analyzing ‘visu
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The multilevel empirical logit regression was con-
ducted using the software package R (R Development
Core Team, 2007), with package lme4 (Bates, 2007) to
obtain parameter estimates and package languageR
(Baayen, 2007) to obtain p-values. The ‘lmer’ function
yields t statistics but the degrees of freedom are not esti-
mated. To obtain p-values, a Markov Chain Monte Car-
lo (MCMC) method was used (Baayen, Davidson, &
Bates, this issue).

The empirical logit analysis revealed basically the
same pattern of results, although the analysis was less
powerful. For the intercept, the main effect of Speaker
was marginally significant [t1 = 1.82, p = .067;
t2 = 1.83, p = .067]. There was no main effect of Load
[t1 = .13, p > .5, t2 = .19] nor any interaction effect
al world’ eyetracking data using ..., Journal of Memory
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[t1 = .59, p > .5, t2 = .40]. For the slope, the main effect
of Speaker was significant [t1 = 2.00, p < .05; t2 = 2.13,
p < .05] and in the predicted direction, while the main
effect of Load was not significant [t1 = .27, p > .5;
t2 = .20, p > .5]. The interaction was also not significant
[t1 = .59, p > .5; t2 = .26, p > .5].

In conclusion, the MLR framework can discover the-
oretically important patterns in eyetracking data that
can go undetected using conventional analyses that col-
lapse over time. A conventional analysis of the data using
ANOVA found a main effect of Speaker, with listeners
more likely to look at the target in the Different Speaker
condition than in the Same Speaker condition. However,
an analysis using MLR revealed this difference to be
entirely driven by an anticipatory effect; that is, listeners
were less likely to look at the target prior to the onset of
the referring expression in the Same Speaker condition,
apparently due to a slight anticipation that the speaker
would refer to a new referent and not the target. As the
speech unfolded, listeners in both conditions looked
toward the target, but the rate of increase was stronger
in the Same Speaker condition. Furthermore, this
Speaker effect on the rate was not modulated by load, sup-
porting the hypothesis that it was due to automatic prim-
ing processes.
General discussion

The current article has presented a new solution for
analyzing results from eyetracking experiments using a
multilevel logistic regression framework. Relative to con-
ventional ANOVA, the logistic regression framework can
better accommodate the continuous variable of time, a
variable of critical importance in psycholinguistic
research. It furthermore can separately estimate anticipa-
tory and rate effects of experimental variables, effects that
are confounded when time is collapsed. Additionally, a
logistic scale is preferred when the DV is categorical, given
that analysis on a proportional scale can yield improper
estimation of effects. Finally, the multilevel modeling
approach makes it possible to account for nonindepen-
dence among observations while minimizing the informa-
tion loss that can take place due to aggregation.

One aspect of the MLR framework that is in need of
further refinement is its handling of eye-movement based
dependencies. Currently these are handled either
through multilevel logistic regression with robust stan-
dard errors (for experiments with many participants
and items), or through a less powerful analysis that uses
aggregation via the empirical logit (for experiments with
a small number of participants or items). These two
solutions are effective, but they make it impossible to
exploit the full potential of the multilevel approach.
First of all, with multilevel approaches it is possible to
perform analyses involving ‘crossed’ rather than ‘nested’
Please cite this article in press as: Barr, D. J., Analyzing ‘visu
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random effects (Bates, 2005; Raudenbush & Bryk, 2002),
obviating the need for separate participant and item
analyses (Baayen et al., this issue). However, robust
standard errors are not available for such analyses. Fur-
thermore, the need to aggregate over many trials for
empirical logit regression will make use of crossed effects
impossible, given that most experiments involve a single
presentation of each item to each participant. Ulti-
mately, a better way of handling eye-movement based
dependencies would be to develop an algorithm that fil-
ters out observations from the data set that are likely to
be dependent (e.g., observations recorded during, or
proximal to, an eye movement).

Another limitation of the current instantiation of
MLR presented here is its ability to handle only a
dichotomized dependent variable (i.e., a variable that
had only two categories). It cannot handle DVs with
more than two categories without first collapsing some
of the categories to make the variable binary. However,
this is not a limitation of the framework per se, but of
the available software. A generalization of logistic
regression, known as multinomial logistic regression
can be used to handle polytomous variables, and could
be readily incorporated into the framework. However,
it is presently difficult to fit multinomial logistic regres-
sion models using existing software, and robust standard
errors may not be provided. Furthermore, it is not clear
how to implement an empirical logit transformation
with multinomial data. Although an alternative
approach using loglinear regression (Knoeferle et al.,
2005) can handle a polytomous response variable, this
approach, as noted above, has the problem that it can-
not accommodate continuous predictor variables; fur-
thermore, it is not clear that it appropriately handles
eye-movement based dependencies.

Lastly, it is worth highlighting the generality and flex-
ibility of the MLR approach, which lends itself to
research questions beyond those addressed here. Many
studies in experimental psychology involve dependent
variables that are categorical (e.g., research on language
production, where the dependent variable is often the
rate that a given linguistic structure is used; studies on
recognition memory where the outcome variable is a
dichotomous old/new judgment) or an interest in assess-
ing change over time (e.g., experiments on learning
where accuracy is measured over a series of blocks).
Adoption of the MLR framework will help avoid the
pitfalls associated with the analysis of proportional data,
as well as provide a more natural framework for analyz-
ing data sets in which time is a critical factor.
Implementation of the MLR framework

This final section provides a more in-depth view of
the MLR framework, and is designed for researchers
al world’ eyetracking data using ..., Journal of Memory
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interested in applying it to their own data sets. The
reanalysis of Kronmüller and Barr (2007) will be walked
through in greater depth. Data files and source code as
well as updated information and further examples can
be found at the author’s website at talklab.org/tvw.

More on logistic regression and the empirical logit

Generalized linear models (GLMs) make it possible
to apply the regression framework to data sets with a
categorical dependent variable (McCullagh & Nelder,
1989). In a generalized linear model, the relationship
between the response variable and the predictor vari-
ables is specified via a link function that transforms
the response variable onto a linear scale. In a GLM,
the error variance can also modeled in terms of distribu-
tions other than the normal distribution. For logistic
regression, the link function is given by Eq. (3), and
residual error is distributed according to a Bernoulli dis-
tribution, with variance proportional to the mean p, as
given by the formula p(1 � p). The logit can be con-
verted back to a probability using the inverse link
formula

/ ¼ 1

1þ e�g
ð5Þ

For multilevel logistic regression, there are two types
of estimation procedures that fit two different kinds of
models: unit-specific (or conditional) models and popula-

tion-average (or marginal) models. The parameter esti-
mates in a unit-specific model are conditioned on the
random effects, while the parameters in a population-
average model are not (the random effects are integrated
out). The distinction between population-average and
unit-specific models is quite confusing because it only
arises for multilevel models with a nonlinear link func-
tion. One way to grasp the difference is by noting that
when aggregating data from a study, one can apply a
nonlinear link function at different points. Imagine a
two-level model where there is a single random effect
for each participant. One can compute a proportion
for each participant and then apply the link function
on that proportion. The resulting log odds values can
then be averaged together. This would be equivalent to
a unit-specific model. In contrast, one could average
together the proportions from different subjects and
then apply the link function on the aggregated propor-
tions; this would be equivalent to a population-average
model. These two approaches would yield different out-
comes. (For further discussion of these differences, see
Fitzmaurice et al., 2004). What is important for the
researcher to know is that population-average estimates
are based on fewer assumptions, and therefore, are less
sensitive to misspecification of the random effects in
the model. Therefore, it is recommended that the popu-
lation-average estimates be used.
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When transforming data onto the log odds scale,
either for visualization purposes or to filter out eye-
movement based dependencies in the data, problems
arise applying the link function (3) whenever the proba-
bility / approaches zero or one. This is because the
resulting g will approach negative or positive infinity.
Agresti (2002), and McCullagh and Nelder (1989) rec-
ommend instead the empirical logit transformation. To
compute the empirical logit, it is necessary to aggregate
over multiple observations. Instead of computing pro-
portions and applying the link function, one computes:

g0 ¼ ln
yþ :5

n� yþ :5

� �
: ð6Þ

In the equation, y is the number of times that the target
event was observed, and n is the total number of cases
over which y was observed.

When performing empirical logit regression, McCul-
lagh and Nelder (1989) suggest performing a weighted
linear regression with weights 1/v where

v ¼ 1

yþ :5þ
1

n� yþ :5 : ð7Þ
Preparing the data

For the analysis using multilevel logistic regression,
all individual data points were included in the analysis
without aggregation. The time covariates were repre-
sented on a scale of seconds rather than milliseconds,
otherwise the parameter estimates would have turned
out too small (since very little happens in the course of
a single millisecond). The time variable was centered at
300 ms, the start of the analysis window, by subtracting
.3 s from the timestamp for each frame; for instance, a
frame observed 400 ms after the onset of the word would
be assigned a value of .400 � .300 = .100. The response
variable was coded as ‘1’ if the participant’s point of
gaze was within the target region during this frame,
and as ‘0’ otherwise.

For the empirical logit regression, the data were
aggregated into a series of four 50 ms bins (three frames
of eye data each), starting 300 ms after word onset. Each
bin contained the data from the trials in each condition
for each participant (or item). For instance, in the par-
ticipant analysis, each empirical logit was based on 12
frames of eye data (three data frames per trial times four
trials per condition). The time codes for each of the four
bins were .000, .050, .100, and .150 respectively.

In all eyetracking data sets, frames for which the par-
ticipant is not gazing at the target region will consist of
various cases: the participant is fixating another region;
the participant is fixating an empty portion of the screen;
the participant is in the midst of an eye blink; or, the
eyes are in transit from one location to another. One
question is whether to throw out from the data set all
al world’ eyetracking data using ..., Journal of Memory
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frames that do not include a fixation to any viewing
region. Using such a procedure, only cases where the
participant is fixating a region other than the target
would be coded as ‘0’. As a result, the response variable
would represent the log odds of fixating the region of
interest, given that the participant is fixating some view-
ing region.

However, this scheme assumes that the ‘noise’ events
are equally distributed across conditions, which may not
be the case if, for instance, participants are slower to
move off of a central fixation cross in one condition than
in another, or if their blink rate varies across conditions
(perhaps due to differing attentional demands). There-
fore, it is safer to code all frames including these ‘noise’
frames as ‘0’ instead of throwing them out of the data
set.

Time-locking and determining the form of the model

The first decisions that must be made concern the
time-locking the analysis window, as well as the form
of the model that will be fit to the data. Ideally, one
should time-lock the analysis window at the earliest
point at which gaze behavior driven by the linguistic sig-
nal emerges. As noted previously, gaze behavior that is
driven by language processing will typically be delayed
by a latency of 180–200 ms, because of the time needed
to program an eye movement (Matin et al., 1993). Fur-
thermore, in the current experiment, the signal-driven
eye movements are likely to have emerged even later
than in a other eyetracking experiments, since unconven-
tional descriptions were used to designate unfamiliar
pictures. Thus, the ability to differentiate a target object
would require more linguistic evidence than in other
experiments when objects with conventional names are
used.

The point at which signal-driven eye movements
appear in the eye data will generally appear as a sudden
rise in fixations toward a target object. The data prior to
this point will generally not be of interest to the
researcher. Furthermore, attempting to include the data
prior to this point can either lead to a poor fit or require
a more complex model than the data demand, thus need-
lessly complicating the interpretation of the parameters
of the model.

One way of determining the appropriate time-locking
is to plot the grand mean data and time-lock the data to
the first frame that begins a rising trend. This is a conser-
vative procedure: by time-locking based on the grand
mean, one can avoid biasing one’s choice toward any
given hypothesis.

The next important choice is the form of the model
that will be fit to the data. Of course, the form of the
model will ultimately depend on the researcher’s goals
as well as precedents from previous research, of which
there are currently very few (see for instance, Scheepers
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et al., in press; Magnuson et al., 2007). In the end, it is
best to ground such choices in underlying theory to
the extent possible. Sometimes, however, choices must
be made by examining the observed response curves.
Under such circumstances, there are several consider-
ations to keep in mind. First, the curves that are being
modeled in logistic regression are on a log odds scale,
not on the proportional scale. Thus, it is better to make
judgments about the appropriate form of the model
while viewing data on the log odds scale. As shown in
Fig. 2, curvature that appears on a proportional scale
may disappear when plotted on a log odds scale, and
vice versa. In visual world experiments, response func-
tions often have a ‘S’ or sigmoidal shape when plotted
on a proportional scale. However, when the same data
are plotted on a log odds scale, the bends in the function
will tend to straighten out, such that the data could be
parsimoniously fit by a strictly linear function.

By counting the number of bends in a response curve,
one can get a sense of the order of the equation that is
necessary to fit the data. It is useful to start with an
equation of sufficiently high order to capture the trends
for the condition with the greatest number of bends. For
example, with two bends, a cubic equation might be
required; with only a single bend, a quadratic will be suf-
ficient. Model selection techniques can be used to assess
whether higher-order terms can safely be excluded from
the model. It is important to note, as mentioned above,
that inclusion of higher-order terms can change the
interpretation of lower order terms in the model (Cohen
et al., 2003). For instance, if a quadratic term is
included, then the term corresponding to the slope will
index the slope of the line tangent to the curve at t = 0
(i.e., the instantaneous slope at the intercept) rather than
the slope throughout the window.

A further cautionary note is that for fourth order or
higher equations, the parameters can be extremely diffi-
cult to interpret. Under such circumstances, an alterna-
tive method is to individually model smaller segments of
the line, either by conducting separate analyses or by
dividing up the curve into polynomial ‘‘splines’’. For
further information on splines, see Fitzmaurice et al.
(2004) and Snijders and Bosker (1999).

The multilevel model

Level-1 of the multilevel model expressed the log
odds g of a ‘1’ response for frame f, trial i and partici-
pant p as a function of time using the following
equation.

gfip ¼ p0 þ p1tfip ð8Þ

At level-2 (the trial level), the level-1 coefficients were
modeled in turn as a function of fixed and random ef-
fects associated with the given trial i for participant p.
In the empirical logit analysis, observations from trials
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in a given condition were collapsed; thus, level-2 was de-
fined by condition in the experiment, rather than by
trial.

At level-2 the variable codes for the main effect of
Speaker and Load were entered, as well as for an inter-
action effect. Because Speaker and Load are categorical
variables, an effects coding scheme (Cohen et al., 2003)
was used so that the parameter estimates would corre-
spond to the tests for main effects in a standard
ANOVA; i.e., tests on marginal means. Note that given
the factorial design, a dummy coding scheme for the
same variables (that is, using 0 and 1) would result in
each variable representing the simple effect of the vari-
able in the condition of the other variable coded as ‘0’;
i.e., a test on cell means rather than on marginal means.

In the effect coding scheme, the values of �.5 and .5
were chosen so that the parameter estimates would be
equivalent to the mean difference in log odds between
the two conditions. The interaction term was calculated
by multiplying the signs (i.e., positive or negative) of the
two Speaker and Load effect codes together and then
multiplying that result by .5. The interaction therefore
reflects a contrast between the two sets of cells lying
across opposite diagonals in the design matrix. The test
of the significance of this parameter estimate is directly
equivalent to the standard ANOVA test for an
interaction.

Equations for the model at level-2 are given below.

p0 ¼ b00 þ b01Sip þ b02Lip þ b03SLip þ r0

p1 ¼ b10 þ b11Sip þ b12Lip þ b13SLip þ r1

ð9Þ

The first subscript of each of the level-2 bs corresponds
to the subscript of the level-1 term p on the left side of
the equation (0 for intercept and 1 for slope), while the
second subscript indexes the role of the coefficient in
the level-2 equation. The random effects r0 and r1 allow
the intercepts and slopes (respectively) to vary randomly
across trials (or across conditions, for the empirical logit
analysis). Note that the subscript used for the random
effects is the same as that of the level-1 coefficient that
is being predicted.

Given the effect coding scheme, b00 and b10 will cor-
respond to the estimated grand mean for the intercept
and the estimated grand mean for the slope, respectively.
In regression, significance tests of parameter estimates
test the null hypothesis that b = 0. The effect coding
scheme is useful because the significance tests for the
coefficients of the predictor variables corresponds to
the significance tests for main effects in an ANOVA.
Thus, the test for b01 and b11 corresponds to the test
for the main effect of Speaker on the intercept and slope,
respectively. Similarly, the test for b02 and b12 corre-
spond to the test for the main effect of Load on the inter-
cept and slope; and the test for b03 and b13 correspond to
the test for an interaction effect.
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At level-3 of the MLR framework the level-2 b coef-
ficients are modeled in terms of level-3 fixed and random
effects. If there are any measured characteristics of the
relevant level-3 units, they can be included at this level.
It is also possible to test for cross-level interactions
between these measured covariates and the level-2 IVs.
Mostly, however, level-3 will include only random
effects, in order to account for the clustering of observa-
tions within participants (or items).

One decision that must be made is where to
include random effects at level-3. Note that there will
be a separate equation at level-3 for each of the bs in
the level-2 equations. For the current data set, then,
one could in principle include up to eight random
effects at level 3, one for each b in Equation Set
(9). In practice, however, this would be impractical
because the estimation algorithms used for fitting
multilevel models are iterative and become less likely
to reach a solution as the number of random effects
increases.

Including a random intercept for b00 assumes that the
intercept term in Eq. (8) varies over participants. Recall
that the intercept corresponds to the likelihood of look-
ing at the region coded as ‘1’ at the very start of the stim-
ulus presentation. It is likely that this would vary over
subjects, with some following different anticipatory
strategies than others. Likewise, including a random
intercept for b10 assumes that the slope term in Eq. (8)
varies over participants. This also would seem to be a
valid assumption.

In contrast, including a random intercept for b01

would assume that the effect of Xip on the intercept var-
ies across participants. Now, the idea that the magnitude
of the effect of an IV can vary across participants is not
one that most researchers typically consider; but this is
largely because it is not possible to model such effects
within the ANOVA framework. In some cases, it may
be reasonable to assume that certain participants will
differ in their susceptibility to a manipulation than oth-
ers. For example, participants with a large working
memory span may show smaller effects of a memory
load manipulation than participants with a smaller span.
But unless the goal of the research is to examine such
effects, parsimony would suggest leaving these terms out.

Therefore, for the current example we include ran-
dom effects only for b01 and b10. Given this, we can sim-
plify our equations by inserting the level-3 random
effects into our level-2 equations, rather than stating
another series of equations. Thus, the level-2 equations
become

p0 ¼ b00 þ b01Sip þ b02Lip þ b03SLip þ r0 þ u0;

p1 ¼ b10 þ b11Sip þ b12Lip þ b13SLip þ r1 þ u1;
ð10Þ

where the u variables represent random participant (or
item) effects.
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It is worth noting that the specification of equations
at multiple levels is simply a notational convenience that
is meant to capture the different levels of sampling in the
model. The entire model can ultimately be collapsed and
expressed a single equation, called the ‘‘mixed model’’,
by inserting the level-3 equations into level-2, and then
the resulting equations into level-1. Indeed, the algo-
rithms for parameter estimation ultimately estimate the
level-3 coefficients from the mixed model. The output
of these algorithms provides significance tests only for
these c coefficients.

Once parameter estimates are obtained, one can plot
the model for the response curves by substituting the
parameter estimates for the fixed effects into the equa-
tions in set (10), generating values for p0 and p1 for each
of the four conditions, and then substituting these values
in at level-1 to create one equation for each condition.
The resulting equations can also be used to generate a
model on the probability scale using the inverse link
function (5).
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