

Connectionist Semantic Systematicity in Language Production

Jesús Calvillo, Harm Brouwer, Matthew W. Crocker Saarland University, Germany

Systematicity

"The ability to produce/understand some sentences is intrinsically connected to the ability to produce/understand certain others"

Fodor & Pylyshyn (1988, p. 37)

If you understand...

Brad kisses Angelina.

Perhaps because you had heard/read the sentence before.

...then you should also understand:

Angelina kisses Brad.

Even though you might have never heard/read it before.

 \rightarrow NOT just memorization.

According to Fodor and Pylyshyn (1988):

 Connectionist models are not able to display systematicity without implementing a classical symbol system.

But...

- Frank et al.(2009) present a connectionist model of comprehension that achieves relevant levels of systematicity.
 - Unseen sentences
 - Unseen situations

This talk...

Is Frank et al.(2009)'s approach suitable to model **language production**??

Can we also achieve **systematicity**??

Frank et al. (2009)'s model

Sentence Comprehension

"charlie plays soccer"

play(charlie,soccer)

A richer representational scheme

We can *represent* that Charlie is outside, on a field, playing with a ball, and with others, etc.

With knowledge about the world

We *know* that Charlie is probably outside on a field, because soccer is typically played on a field, with a ball, with others, etc.

DSS—The main idea

Take a snapshot of the world ("a sample") at many different times, and for each snapshot write down the *full state-of-affairs* in the world.

Next: extract regularities—*world knowledge*—from the full set of observations, and construct meaning representations (vectors) that encode this world knowledge.

Problem: How to record full state-of-affairs in the world for each snapshot? > use a confined *microworld* (which limits the scope of the world)

Defining a Microworld

A *state-of-affairs* (situation) in a microworld is defined in terms of *basic events* that can be assigned a state (i.e., they can be *the case* or not *the case*)

Class	Variable	Class members (concepts)	#	Event name		#
People	p	charlie, heidi, sophia	3	play(p,g)	$3 \times 3 =$	9
Games	g	chess, hide&seek, soccer	3	play(p,t)	$3 \times 3 =$	9
Toys	t	puzzle, ball, doll	3	win(p)		3
Places	x	bathroom, bedroom, playground, street	4	lose(p)		3
Manners of playing	$m_{ m play}$	well, badly	2	place(p,x)	$3 \times 4 =$	12
Manners of winning	$m_{ m win}$	easily, difficultly	2	$manner(play(p), m_{\mathrm{play}})$	$3 \times 2 =$	6
Predicates		play, win, lose, place, manner	5	$manner(win,\!m_{win})$		2
					Total	44

More specifically, states-of-affairs are combinations of these 44 basic events

Example—"heidi loses at chess": $play(heidi, chess) \land lose(heidi)$

> 2^44 (~10^13) possible situations, but world knowledge precludes many Note: there are hard (being there) and probabilistic (preferences) constraints Frank et al. (2009). Cognition

Situation-State Space

Many samples of microworld situations constitute a "situation-state space"

Rows represent observations (states-of-affairs) *Columns* represent situation vectors for basic events:

Using (fuzzy) logic, *complex event* vectors can be derived:

$$\vec{v}(\neg a) = 1 - \vec{v}(a)$$

 $\vec{v}(a \wedge b) = \vec{v}(a)\vec{v}(b)$ where $\vec{v}(a \wedge a) = \vec{v}(a)$

Finally, a dimensionality reduction is applied in order to go from **25k** dimensions to **150**.

So now we have a way to represent events (basic and complex) in terms of the **situations** in which they are true.

Our model: Belief Vectors

- No dimensionality reduction.
- Instead of defining the meaning of an event in terms of the situations in which it is true, define it in terms of the **basic events** with which it appears.
 - belief vectors
- Dimensionality := # basic events
- Each dimension:
 - P(basic event | complex event)

Defining a Microlanguage - Lexicon

Class	Words	#
proper nouns	charlie, heidi, sophia	3
(pro)nouns	boy, girl, someone, chess, hide-and-seek, soccer, football,	
	game, puzzle, ball, doll, jigsaw, toy, ease, difficulty,	
	$bathroom,\ bedroom,\ playground,\ shower,\ street$	20
verbs	wins, loses, beats, plays, is, won, lost, played	8
adverbs	well, badly, inside, outside	4
prepositions	with, to, at, in, by	5
	Total	40

Frank et al. (2009), Cognition

Defining a Microlanguage - Semantics

charlie plays chess	play(c, chess)
chess is played by charlie	play(c, chess)
girl plays chess	$play(h, chess) \lor play(s, chess)$
heidi plays game	$play(h,chess)\veeplay(h,hide\&seek)\veeplay(h,soccer)$
heidi plays with toy	$play(h,puzzle)\veeplay(h,ball)\veeplay(h,doll)$
sophia plays soccer well	$play(s,soccer)\wedgemanner(play(s),well)$
sophia plays with ball in street	$play(s, ball) \land place(s, street)$
someone plays with doll	$play(c,doll)\veeplay(h,doll)\veeplay(s,doll)$
doll is played with	$play(c,doll)\veeplay(h,doll)\veeplay(s,doll)$
charlie plays	$play(c,chess)\veeplay(c,hide\&seek)\veeplay(c,soccer)$
	\lor play(c, puzzle) \lor play(c, ball) \lor play(c, doll)

> Propositional logic semantics are then translated into situation vectors

Microlanguage

- 40 original words
 - + 2 determiners and end-of-sentence marker \rightarrow 43 words in our model.
- Grammar generates 13556 sentences, but only 8201 are lawful according to the microworld.
- Out of the 8201 sentences:
 - 6782 in active voice
 - 1419 in passive voice
- 782 unique DSS representations:
 - 424 related to active and passive sentences
 - 358 related only to active sentences

The grammar defined by Frank et al. (2009) does not define passive sentences for situations where the object of the action is either a person ("Heidi beats Charlie.") or undefined ("Charlie plays.").

Model Architecture

Examples Set

Testing Conditions

Training/Testing

- Io-fold cross validation
 - 90% for training (714 situations), 10 % for testing (70 situations).
 - Each fold's testing set was further divided into the conditions.
 - 14 situations per condition/per fold.

Training Procedure

- Cross-Entropy Backpropagation (Rumelhart, Hinton & Williams, 1986).
- Weight updates after each word.
- Weight initialization with random values drawn from N(0,0.1).
- Bias units weights initialized to zeros.
- At time t, monitoring units were set to what the model was supposed to produce at t-1 given the training item.
- Initial learning rate of 0.124 which has halved each time there was no improvement of performance on the training set during 15 epochs.
- Training halted after 200 epochs or if there was no performance improvement on the training set over a 40-epoch interval.

Sentence Level Evaluation

$$sim(s_1, s_2) = 1 - \frac{distance(s_1, s_2)}{max(length(s_1), length(s_2))}$$

$$sim(\hat{s}_i) = \max_{s \in \Phi_i} sim(\hat{s}_i, s)$$

Results

Condition	Query	Similarity (%)	Perfect Match (%)
train	-	99.43	98.23
1	pas	97.66	92.86
2	act	97.58	93.57
3	act	98.35	93.57
3	pas	96.79	83.57
5	act	95.08	85.0
Average Test	-	97.1	88.57

*10-fold cross validation averages

Qualitative Analysis

- With a couple of exceptions, all sentences are syntactically correct and semantically felicitous.
- Mistakes occur when the model produces a sentence that is <u>semantically highly similar</u> to the one expected.

The errors of 5 folds were manually inspected (38 errors).

39.9%	underspecification
23.5%	overspecification
31.6%	very highly similar situations (pp-attach)

	Output	Expected	
1	Sophia beats Heidi with ease at hide_and_seek.	Sophia beats Heidi with ease at hide_and_seek in the be	droom.
2	a girl plays with a doll inside.	Heidi plays with a doll inside.	undersp.
			•
3	Charlie plays a game in the street.	Charlie plays in the street.	
4	Sophia wins with ease at a game in the street .	Sophia wins with ease at a game outside .	oversp
			oversp.
5	Sophia beats someone at hide_and_seek in the bedroom.	someone loses to Sophia at hide_and_seek in the bedro	om.
6	someone wins in the bedroom at hide_and_seek.	someone loses in the bedroom at hide_and_seek.	PP-attach

Conditions 4-5 (passives?)

Output of 3 folds was manually inspected (84 situations).

- Mostly correct and coherent with the given semantics.
- Model learns that:
 - o passive sentences begin by the object of the action.
 - the object is never a person.

Active Sentence Passive Output 1 hide_and_seek is won with ease by Heidi in the playground. Heidi beats Sophia with ease in the playground at hide_and_seek. Sophia beats Charlie with ease. 2 a game is won with ease by Sophia. win/lose 92.9% a toy is played with. someone plays. 3 u. object a toy is played with in the playground by Sophia. Sophia plays in the playground. 7.1% a game is lost with difficulty by Charlie. a girl beats Charlie with difficulty in the street. 5 chess is lost by Heidi in the bedroom. the boy loses to Heidi at chess in the bedroom. 6

From the results...

- Model is able to describe situations for which it has no experience, while being as informative as possible.
- Not just memorization. In all test conditions the model is prompted to generate novel sentences.
- Only difficulty: **highly similar situations**.
- Even for those, the output is largely **correct**.

Discussion

Discussion

- Cond. 1 & 2:
 - the model is able to generate novel sentences for semantically known situations but with a different voice, showing syntactic systematicity.
- Cond. 3 & 5:
 - the model is able to generate sentences for unseen areas in the semantic space, showing semantic systematicity.
- Cond. 4 & 5:
 - the model is able to produce coherent sentences even if the grammar that was used to generate the train/test sets does not associate passive constructions with these situations.

Conclusion

- The overall high performance of the production model shows that the representations described by Frank et al. (2009) are suitable to model language production.
- The model can generate alternative unseen encodings (active/passive) for a particular semantics, showing
 - syntactic systematicity.
- Furthermore, the model can generate novel sentences for previously unseen situations, showing
 - semantic systematicity.