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Overview
Pattern Associators: 

• 2-layer networks 

• Networks as matrices 

• Associating distributed representations 

• Hebbian learning 

• Generalisation in learning 

• Biological plausibility 

Competitive networks and unsupervised learning
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Pattern Associators
Learn to associate one stimulus with another, e.g.: 

• Sight of chocolate associates with taste of chocolate 
• The string “yacht” associates with the pronunciation /y/ /o/ /t/ 
• …
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Hebb’s rule

• The idea behind Hebbian learning 
is simple: reinforcement 

• The two patterns to be associated  
are presented simultaneously 

• If there is activity on input axon j, when neuron i is active, then the 
connection weight wij (between axon j and dendrite i)is increased 

• The Hebb rule: 
• ai is the activity of element i in P1 
• aj is the activity of element j in P2 
• ε is the learning rate parameter
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An example
• Assume binary neuron activations (0 or 1) 

• Suppose the sight of chocolate is represented as: (1 0 1 0 1 0) 

• The taste of chocolate is represented as (1 1 0 0) 

• We can represent the weights as a 6x4 matrix of “synapses” 

                     Weights before learning:                            Weights after learning:

• Assume that ε=1

1 0 1 0 1 0
↓ ↓ ↓ ↓ ↓ ↓

1 → 0 0 0 0 0 0

1 → 0 0 0 0 0 0

0 → 0 0 0 0 0 0

0 → 0 0 0 0 0 0

1 0 1 0 1 0
↓ ↓ ↓ ↓ ↓ ↓

1 → 1 0 1 0 1 0

1 → 1 0 1 0 1 0

0 → 0 0 0 0 0 0

0 → 0 0 0 0 0 0
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Recall from a Trained Matrix
• Netinputi = ∑jajwij       …. but this is just the dot product of 2 vectors, i.e.: 

• Thus for the recall cue (1 0 1 0 1 0), the output pattern is: 

• If we assume a threshold of 2, where values <2 are 0 and others are 1: 
• Then the output pattern of activity is (1 1 0 0)

1 0 1 0 1 0
↓ ↓ ↓ ↓ ↓ ↓

1 0 1 0 1 0 → 3

1 0 1 0 1 0 → 3

0 0 0 0 0 0 → 0

0 0 0 0 0 0 → 0
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Learning Multiple Associations
• Not “computationally” surprising that an array of 24 can store the relationship 

between two vectors of size 6 and 4 respectively 

• What happens if we try to store different associations with the same weight matrix? 
• Appearance of apricots: (1 1 0 0 0 1) 
• Taste of apricots: (0 1 0 1) 

            Change in weights for apricots:        The combined weight matrix:

1 1 0 0 0 1
↓ ↓ ↓ ↓ ↓ ↓

0 → 0 0 0 0 0 0

1 → 1 1 0 0 0 1

0 → 0 0 0 0 0 0

1 → 1 1 0 0 0 1

1 0 1 0 1 0

2 1 1 0 1 1

0 0 0 0 0 0

1 1 0 0 0 1
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Recall of multiple associations
• We can now see how well the 

pattern associator can perform 
recall for the 2 patterns 

• Assume a threshold of 2 

• Apricots: 
• Netinput: (1 4 0 3) 
• Output: (0 1 0 1) 

• Chocolate: 
• Netinput: (3 4 0 1) 
• Output: (1 1 0 0) 

• Both are correctly recalled

1 0 1 0 1 0
↓ ↓ ↓ ↓ ↓ ↓

1 0 1 0 1 0 → 3

2 1 1 0 1 1 → 4

0 0 0 0 0 0 → 0

1 1 0 0 0 1 → 1

1 1 0 0 0 1
↓ ↓ ↓ ↓ ↓ ↓

1 0 1 0 1 0 → 1

2 1 1 0 1 1 → 4

0 0 0 0 0 0 → 0

1 1 0 0 0 1 → 3
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Recall, Similarity and Linear Algebra
Network behaviour can be understood in terms of vectors, matrices, and 
operations thereon. 

• If an input pattern a, and the weights w leading from the inputs to some node are 
represented as vectors. Netinput to that node is the dot product. 
• netinputi = ∑jajwij  =  a• w  

• If the current weights are represented by a matrix m1, and the change in weights 
by a matrix m2, then the new weight matrix is simply: m1 + m2  

Observe: the dot product is highest when two vectors are similar: 
• Numbers in vector 1 are similar to those in the corresponding positions in vector 2 
• Thus netinput is highest for similar input/weights 
• Each dissimilarity reduces the netinput 
• Vectors with a dot product of 0 are said to be orthogonal
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Properties of Pattern Associators
Similarity in vectors: 

• p:   1 0 0 0 0 1 1 1 
• w1: 1 0 0 0 0 1 1 1 = 4 
• w2: 1 0 0 0 1 0 1 1 = 3 
• w3: 0 0 1 1 1 0 1 1 = 2 
• w4: 0 1 1 1 1 0 0 0 = 0 

Operation of pattern associators using the Hebb rule: 

• Learning: if a neuron i  is activated by P1, an increment ∆wi that has the same 
pattern as P2, is added to the weight vector of neuron i . 

• Recall:since patterns presented during learning are directly reflected in the 
weight vector for neuron i, the output at neuron i reflects the similarity of the 
recall cue to patterns presented during learning 

Properties: Generalisation, Fault tolerance, Prototype extraction, Speed
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Generalisation
If a presented cue is similar to one that is learned, a pattern associator will 
often produce a similar response for the new as for the old pattern 

• This means networks can associate “imperfect/noisy” stimuli 

I.e. Insensitive to relatively small differences in input stimuli: 
• E.g. (1 1 0 1 0 0) is slightly different from (1 1 0 0 0 1) 
• Or, (1 0 1 0 0 0) is slightly different from (1 0 1 0 1 0)
1 1 0 1 0 0
↓ ↓ ↓ ↓ ↓ ↓

1 0 1 0 1 0 → 1

2 1 1 0 1 1 → 3

0 0 0 0 0 0 → 0

1 1 0 0 0 1 → 2

1 0 1 0 0 0
↓ ↓ ↓ ↓ ↓ ↓

1 0 1 0 1 0 → 2

2 1 1 0 1 1 → 3

0 0 0 0 0 0 → 0

1 1 0 0 0 1 → 1
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Fault tolerance
Just as pattern associators can often deal with imperfect stimuli, they are often 
robust to damaged connections (synapses) 

This is because PAs compute a correlation of the pattern with the weights via a 
relatively large number of axons 

This can help explain continued (sometime partial) function in the event of normal 
cell loss, or certain kind of (distributed) brain damage.

1 1 0 0 0 1
↓ ↓ ↓ ↓ ↓ ↓

1 0 1 0 1 0 → 1

2 1 1 0 X 1 → 4

0 0 0 X 0 0 → 0

1 X 0 0 0 1 → 2
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More Properties
Prototype Extraction & Noise Reduction 

• If the network is exposed to similar (but slightly different) P2s for a given P1 during 
training, the (scaled) weight vectors becomes the average P2. 

• When tested, the best response is to the average pattern vector, or prototype, 
which was never explicitly seen. 

Distributed Representations and Speed of Computation 

• Information about the stimulus is distributed over the population of elements, rather 
than encoded by a single element  

• Generalisation and graceful degradation rely on a continuous range of dot products 

• Computation is distributed, across multiple neurons and synapses: the response to 
a stimulus can be determined in 1-2 steps
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Summary of Pattern Associators
Associate multiple stimulus-response patterns in a single network, via a weight matrix 

Weights are sensitive to similarity: The more similar, the higher the netinput; p• w 

• Generalisation: robust to noisy input 

• Fault tolerance: robust to loss/damage 

• Prototype extraction & noise reduction 

Biologically Plausible: Learning is strictly local, reinforcement based 

Auto Association 

• We can also train a network to associate a given pattern with itself 

• Why? Noise reduction, prototype extraction, category formation (unsupervised)
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Competitive Networks: Overview
Operation: 

• Given a particular input, output units compete with each other for activation 

• The winning output unit is the one with the greatest response 

During training: 

• Connections to the winning unit from the active input units are strengthened 

• Connections from inactive units are weakened 

Training is unsupervised: There is no external teacher 

• The network will categorise inputs, based on similarity
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Architecture of Competitive Networks
A simple network: 

• Inputs are fully connected to outputs  
by feed-forword connections 

• Outputs may be connected to each other  
by inhibitory connections 

Outputs compete until only one remains active 
• Or, simply the unit with highest activation wins 

Excitation of outputs: 
• Dot product of input activations and the weight vector the the output 

Competition: 
• Output activations are compared, unit with highest activation wins 
• Or, direct competition among outputs, via inhibitory connections: 

• Active units force other units to become inactive
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Adjusting Weights
Weights are only adjusted on connections feeding into the winning output 
node: 

   ∆wij  = 0 if unit i loses 
           = ε (aj-wij) if unit i wins 

Where, 
ε is the learning rate parameter
aj  is the activity of input unit j for pattern p 

wij is the weight of the connection from j to i before the trial 

The strengths of connections to the winning unit are adjusted until each 
weight is the same as the activity of its input 

The winning unit’s weight vector is changed to make is more similar to the 
input vector for which it is the winner 
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An example
Consider the following network: 

• Input pattern: (0 1 1) 
netinput3  =  (0x0.3+1x0.2+1x0.5) 
   = 0.7 
netinput4  =  (0x0.2+1x0.3+1x0.5) 
   = 0.8 

• Since, unit4 wins: 
• No changes in connections to unit3  

• For connections to unit4: 
• ∆wij  = ε (aj-wij) 
• ∆wij  = 0.5 (0−0.2  1−0.3  1−0.5) 
• ∆wij  = 0.5 (−0.2  0.7  0.5) 
• ∆wij  = (−0.1  0.35  0.25)

0 1 2

3 4

0.5
0.50.30.20.2

0.3

0 1 2

3 4

0.75
0.50.650.20.1

0.3
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Overall behaviour
Netinput to an output unit is greatest when it’s weight vector is most similar to the input 
vector 

Training makes the weight vector for a particular winning unit more similar to the input 
pattern 

The weight vector for a particular “winning” output unit learns to respond to similar input 
patterns 

• Because these patterns are all slightly different, the learned weights cannot 
exactly mimic the associated inputs 

• Rather, the learned weights will be an average of the patterns, based on the 
frequency of presentation during training 

The competitive network can therefore learn to categorise similar inputs without any 
“teacher”: unsupervised learning
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Visualising competitive learning
Represent input patterns & weight vectors in multi-dimensional space 

• weight vectors for the output units have a random relation to the input patterns 
• Competitive learning changes the weight vector for a particular output so that it 

becomes the average for a subset of inputs 
• More outputs enable the network to more finely categorise the inputs

X

X

X

X X

X

X

X

X
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More on competitive networks
Weight growth: 

• If many similar patterns are associated with one output, it may be impossible to 
other outputs to ever gain more activation, even for quite different input patterns 

• Can insist that the sum of a weight vector equal some constant, thus learning 
could only redistribute weight among connections to the winning unit 

As with Hebbian networks, learning is local: 
• Competition of output: inhibitory connections let only one neuron fire 
• Hebbian learning means that only connection weights to this node are changed 
• Information is available at the axon and dendrite of a connection 
• Also: no explicit teacher is required 

Remove redundancy: set of inputs is associated with a single output 
• Sparsification: convert pattern stimuli to a localist representation 

Outputs are less correlated (possibly orthogonal) than inputs: 
• Useful as input to pattern associators (easier to learn less correlated patterns)
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An example: Pattern classification
We can use an unsupervised network to classify patterns of letters 

Input is a 7x14 “retina”, connected to 2 outputs via a 98 element weight vector, trained on letter pairs. 

Network is first trained on: AA, AB, BA, BB. The resulting weights to the outputs are as follows: 

• Unit 1: AA, AB 

• Unit 2: BA, BB 

Why? What else could it learn? 

What would happen if the 
network had 4 output units?
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Pattern classification continued

Consider the case where we train the network on individual letters, instead of 
pairs: A, B, E, S  … cluster using 2 output units 

The result will be to cluster A & E and B & S, since they are the most similar: 
thus the classifier acts as a feature detector within letters 

What if the network is trained to classify AA, BA, SB, EB 
• As we would expect, the network learns a letter specific classification 
• But, we have forced A & B and S & E to be grouped together 
• In this way, we force the network to find  

whatever features do correlate for the  
letters in the 1 position 

• The 2nd letter acts as a teacher, since it  
forces the network into a specific solution


