Connectionist Language Processing

Lecture 5: Acquisition of the English Past Tense

Matthew W. Crocker <u>crocker@coli.uni-sb.de</u> Harm Brouwer <u>brouwer@coli.uni-sb.de</u>

Reading Aloud

- Task: produce correct pronunciation for a word, given its printed form
- Suited to connectionist modeling:
 - Need to learn mappings from one domain (orthography) to another (sound)
 - Multi-layer networks are good at this, even when mappings are arbitrary
 - Human learning is similar to network learning:
 - I.e. learning takes place gradually over time
 - Incorrect attempts are often corrected
- If a network can't model this linguistic task successfully, it would be a serious blow to connectionist modeling. But ...

Dual Route Model

- The standard model of reading posits two independent routes leading to pronunciation of a word, because ...
 - People can easily pronounce words they have never seen:
 - SLINT or MAVE
 - People can pronounce words which break the "rules":
 - PINT or HAVE
- One mechanism uses general rules for pronunciation
- The other mechanism stores pronunciation information with specific words

Connectionist Language Processing – Crocker & Brouwer

Evidence for Dual-Route Model

- Evidence from neuropsychology shows different patterns of behaviour for two types of brain damage that are acquired after learning
- Phonological dyslexia
 - Symptom: Read words without difficulty, but cannot produce pronunciations for non-words
 - Explanation: Damage to rule-based route; lexical route intact
- Surface dyslexia:
 - Symptom: Can pronounce words and non-words correctly, but tend to regularise irregulars
 - Explanation: Damage to the lexical route; rule-based route intact
- All Dual-Route models share:
 - A lexicon for known words, with specific pronunciation information
 - A rule mechanism for the pronunciation of unknown words

Seidenberg & McClelland (1989)

- Network behaviour is a function of experience
 - Reflects previous experience on a particular word
 - · Experience with words resembling that string
 - Experience with HAVE overcomes the fact that _AVE is usually a long vowel
- Can produce a pronunciation for MAVE, but error is introduced by words like HAVE
- Performance: 97% accuracy on pronouncing learned words
 - Models: frequency & interaction with regularity, neighborhood, consistency
- Reading non-words (model gets 60%, humans 90%)
- Lexical decision (FRAME is a word, but FRANE is not)

Connectionist Language Processing - Crocker & Brouwer

Representations are important

- Position specific for inputting words of maximum length N: N groups of 26 binary inputs = word
- But consider: LOG, GLAD, SPLIT, GRILL, CRAWL
 - The model needs to learn mapping between L and /l/, for L in different positions
 - · Learning pronunciations for different positions should be straightforward
 - Alignment: letters and phonemes are not in 1-to-1 correspondence
- Non-position-specific loses order important information: RAT = ART = TAR
- Solution: S&M decompose word and phoneme strings into "triples"
 - FISH = _FI SH_ ISH FIS
 - Each input unit is associated with 1000 random triples
 - · Active if that triple appears in the input word
- S&M still suffer some specific effects: Information learned about a letter in one context is not easily generalized

Wickelfeatures

Improving S&M Model:Plaut et al

- Plaut et al (1996) solution: non-position-specific + linguistic constraints
 - Monosyllabic word = onset + vowel + coda
 - Strong constraints on order within these clusters:
 - E.g, if 't' and 's' are together, 's' always precedes 't'
 - Only one set of grapheme-to-phoneme units is required for the letters in each group
 - Correspondences can be pooled across different words, even when letters appear in different positions

Connectionist Language Processing - Crocker & Brouwer

Improving the Model: Plaut et al (1996)

- Input representations:
 - Onset: first letter or consonant cluster (30)
 - y s p t k q c b d g f v j z l m n r w h ch gh gn ph ps rh sh th ts wh
 - Vowel (27)
 - e l o u a y ai au aw ay ea ee ei eu ew ey ie oa oe oi oo ou ow oy ue ui uy
 - Coda: final letter or consonant cluster (48)
 - h r l m n b d g cxf v j s z p t k q bb ch ck dd dg ff gg gh gn ks ll ng nn ph pp ps rr sh sl ss tch th ts tt zz u e es ed
- Monosyllabic words are spelled using one or more candidates from each of the 3 groups:
 - THROW: ('th' + 'r'), ('o'), ('w')

Output representations

- Output Representations
- Phonology: groups of mutually exclusive members
 - Onset (23)
 - sSC
 - zZjfvTDpbtdkgmnh
 - Irwy
 - Vowel (14)
 - aeiou@^AEIOUWY
 - Coda (24)
 - r sz
 - I fvpk
 - mnN t
 - bgd SZTDCj
 - ps ks ts
- "Scratch" = 's k r a _____C'

Connectionist Language Processing - Crocker & Brouwer

The network architecture

- The architecture of the Plaut et al network:
 - The are a total 105 possible orthographic onsets, vowels, and codas
 - The are 61 possible phonological onsets, vowels and codas
- Performance of the Plaut et al model:
 - Succeeds in learning both regular and exception words
 - Produces the frequency x regularity interaction
 - Demonstrates the influences of frequency and neighbourhood size
- What is the performance on non-words?
 - For consistent words (HEAN/DEAN): model (98%) versus human (94%)
 - For inconsistent words (HEAF/DEAF/LEAF): model (72%), human (78%)
 - This reflects production of regular forms: both human & model produced both
- Highlights the importance of encoding ... how much knowledge is implicit in the coding scheme

Summary

- Seidenberg & McClelland trained based on the log frequencies of words
 - People learn from absolute frequencies which: low frequency items too rare?
 - Plaut *et al* model, however, succeeds with absolute frequencies
- The right encoding scheme is essential for modeling the findings
 - How much linguistic knowledge is "given" to the network by Plaut's encoding?
 - They assume this knowledge could be partially acquired prior to reading
 - I.e. children learn to pronounce "talk" before they can read it
 - Doesn't scale to polysyllabic words
- Does not explain the double dissociation:
 - ✓ Surface dyslexics (can read exceptions, but not non-words)
 - X Phonological dyslexics (can pronounce non-words, but not irregulars)

Connectionist Language Processing – Crocker & Brouwer

Connectionist models of Acquisition

- Symbolic models emphasise the learning of rules and exceptions
- Connectionist models have no direct correlate to such mechanisms
 - Knowledge is stored in a distributed weight matrix, learned from experience
- Models of learning:
 - Start state of the cognitive system
 - Learning mechanism
 - Training environment
 - Acquired skill
- Connectionist models provide an opportunity to model the learning process itself, not just the resulting acquired skill
 - We can test models against developmental data, at various points during learning
 - Discontinuities in performance (sudden changes in behaviour) can be explained by "emergent properties" of a single, continuous mechanism

Learning the Past Tense

- The problem of past tense formation:
 - Regular formation: stem + 'ed'
 - Irregulars do show some patterns:
 - No-change: hit » hit (all end in a 't' or 'd')
 - Vowel-change: ring » rang, Sing » sang (rhymes often share vowel-change)
 - Arbitrary: go » went
- Young children often form the past tense of irregular verbs (like GO) by adding ED: <u>overregularisations</u>
 - "go"+"ed" » "goed"
 - Suggests incorrect application of a learned rule, not just rote learning or imitation
- Overregularisations often occur after the child has already succeeded in producing the correct irregular form: "went"
- Thus we need to explain this "U-shaped" learning curve

Connectionist Language Processing - Crocker & Brouwer

A Symbolic Account: Dual-Route Model

- General pattern of behaviour:
 - Early: children learn past tenses by rote (forms are stored in memory)
 - Later: recognise regularities, add general device to add 'ed' suffix
 - Now: no need to memorise forms, but this leads to incorrect generalisation of the regular rule to irregulars
 - Finally: distinguish which forms can be generated by the rule, and which must be stored (and accessed) as exceptions

The Dual-Route Model

- As with reading aloud, this proposal requires two qualitatively different types of mechanism
- Accounts for the observed dissociation:
 - Children make mistakes on irregulars only

- Evidence for double dissociation (Pinker 1994)
 - In some language disorders, children preserve performance on irregulars but not regulars
 - In other disorders, the opposite pattern is observed
- · Accounts for the U-shaped learning curve
 - And since irregulars differ in "representational strength" it explains why overregularisation of high frequency irregulars is uncommon
- No explicit account of how the "+ed" rule is learned

Connectionist Language Processing - Crocker & Brouwer

Language Acquisition

- Perhaps the notion of inflection is innately specified, and need not itself be learned:
 - The inflectional mechanism is triggered by the environment or maturation
 - Then the exact (language specific) manifestation must be learned
- Criticisms:
 - Early learning tends to be focussed on irregular verbs
 - Irregular sub-classes (hit, sing, ring) might lead to incorrect rule learning
 - Do occur, but typically late in learning
 - How are good/spurious rules distinguished and selected
 - English is unusual in possessing a large class of regular verbs
 - Only 180 irregulars
 - Only 20% of plurals in Arabic are regular
 - Norwegian has 2 regular forms for verbs: 3 route model ?

Towards a Connectionist Model

- No distinct mechanisms for regular and irregular forms
- No innately specified maturation stage, no rules to be triggered
- Parsimonious:
 - Simplifies the structural complexity of the starting state
 - Learning exploits the structure of the learning environment
- Rummelhart and McClelland (1986)
 - 1st attempt to model this problem (or any development system)
 - Modelled U-shaped learning, but heavily criticised (Pinker & Prince 1988)
- Plunkett & Marchman
 - Use a feed-forward network, one hidden layer

Connectionist Language Processing – Crocker & Brouwer

Rummelhart and McClelland (1986)

- A single-layer feed-forward network (perceptron)
 - Input: is a phonological representation of the stem (wickelfeatures)
 - Output: is a phonological representation of the past tense (wickelfeatures)
 - Trained using the perceptron learning rule
- Training:
 - First trained on 10 high frequency verbs (8 irregular, 2 regular), 10 epochs
 - Perfect performance
 - Then 420 (medium frequency) verbs (80% regular), 190 epochs
 - Early in training, shows tendency to overregularise, i.e. modelling stage 2
 - End of training, exhibits "adult" (near perfect) performance
 - Generalised reasonably well to 86 low frequency verbs in test set

Performance of R&M (1986)

- Criticisms:
 - Problems with representation using wickelphones/wickelfeatures
 - U-shape depends on sudden change from 10-420 in the training regime
 - Rote learning of 1st 10 verbs: no generalisation to novel stems after 10 epochs
 - Most of the 410 new verbs are regular:
 - overwhelming the network and leading to overregularisation
- Justification: children do exhibit vocabulary spurt at end of year 2
 - But overregularisation errors typically occur at end of year 3
 - Vocabulary spurt is mostly due to nouns
- Single layer Perceptron only works for linearly separable problems
 - Plunkett & Marchman (1991) show residual error remains after extensive training
 - Suggests a hidden-layer network

Connectionist Language Processing - Crocker & Brouwer

Plunkett and Marchman (1993)

- A standard feed forward network with one hidden layer
- Maps a phonological representation of the stem to a phonological representation of the past tense
- Initially, the model is trained to learn the past tense of 10 regular and 10 irregular verbs
 - Represents currents estimates of children's early vocabulary
- Training proceeds using the standard backprop algorithm, in response to error between actual and desired output
 - Is this developmentally plausible?
- Learning must configure the network for both regulars and irregulars
 - Consider: *hit » hit*, but *pit » pitted*
 - We know multi-layer networks can do this, but considerable training may be required

Plunkett and Marchman (continued)

- Training:
 - Initial period of 10 regular and 10 irregular verbs
 - Then vocabulary was gradually increased, to mimic the gradual uptake of words in children
 - Total: 500 word stems, 90% regular (similar to the relative frequency of regulars in English)
 - Higher frequency verbs were introduced earlier in training, and so were also presented to the network more often
 - Irregulars are more frequent, so appear more often in training
 - This is essential, otherwise the regulars swamp the network
 - Arguably more accurately reflects the childs learning environment
- The final model successfully learned the 500 verbs in the training set
 - But errors were made *during* the learning phase
 - Caused by interference between mappings for regulars and irregulars before mature connection weights have been discovered

Connectionist Language Processing - Crocker & Brouwer

Performance of P&M

- Early acquisition is characterised by a period of error free performance
- Low overall rate (5-10%) of overregularisation errors
- Overregularisation is not restricted to a particular period of development
- Common irregulars do not exhibit overregularisation (e.g. 'goed' is rare)
- Errors are phonologically conditioned: No change verbs (hit) are robust to overregularisation (e.g 'hitted' is rare)
- Only a very small number of irregularisation errors are observed (e.g. where the network produces 'bat' for 'bite')
- Generally compatible with the results of studies by Marcus *et al* (1992):
 - Early performance is error free, and then low error is more or less random

- Performance is closely tied to the training environment:
 - Onset of overregularisation is tied to a "critical mass" of regulars entering the child vocabulary
 - This subsides as the training learns the final solution for the task
- Highly sensitive to training environment:
 - Requires more training on arbitrary irregulars (go/went), which are highly frequent
 - Robust for no-change verbs (hit, put) which are more numerous (type) and less frequent (token)
- Models the frequency x regularity interaction:
 - Faster reaction time for high frequency irregulars than low frequency ones
 - No frequency advantage for regulars
- Differential behaviour for regulars and irregulars result from lesioning
- Suggests it is dangerous to infer dissociations in mechanisms due to observed dissociations in behaviour
 - Critical mass effects during learning can have the appearance of a distinct mechanism

Connectionist Language Processing - Crocker & Brouwer

Criticism

- We know multi-layered networks can learn such mappings in general; not proof that children use the same type of mechanism
- Pinker & Prasada argue that the (idiosyncratic) statistical properties of English help the model:
 - Regulars have low token frequency but high type frequency: facilitates the generalisation across this class of items
 - Irregulars have low type frequency but high token frequency: facilitates rote learning mechanism for these words
- They argue no connectionist model can accommodate default generalisation for a class which has both low type and token frequency
 - "Default" inflection of plural nouns in German appear to have this property
- No explanation of the double-dissociation observed by Pinker (1994)

Main conclusions

- Dissociations in performance, do not necessarily entail distinct mechanisms:
 - **Reading aloud:** a singe mechanism explains regular and irregular pronunciation of monosyllabic rules
 - Past tense: a single model of regular and irregular past tense formation
- But, explaining double dissociations is difficult
 - Has been shown to be possible in small networks, but unclear if/how larger (more plausible) networks can demonstrate double dissociations
- Connectionist models excel at finding structure and patterns in the environment: "statistical inference machines"
 - The start state for learning may be relatively simple, unspecified
 - Constraints to aid/determine learning come from the environment
- Can such models scale up? Are they successful for languages with different distributional properties?
- Reference: The English Past Tense, chapter 11 of Plunkett & Elman

Connectionist Language Processing - Crocker & Brouwer