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Basic Structure of Nodes

• A node can be characterised as follows: 

• Input connections representing the flow of activation from other nodes or some 
external source 

• Each input connection has its own weight, which determines how much influence 
that input has on the node 

• A node i has an output activation ai = f(neti) which is a function of the weighted sum 
of its input activations, net. 

• The net input is determined as follows: net i = wijaj
j
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Calculating the activation: neti is 1.25
• Linear activation: 

• Linear threshold: T=0.5 

• Binary threshold: T=0.5 

• Nonlinear activation: 

• Sigmoid or “logistic” function  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Summary of network architecture
• The activation of a unit i is represented by 

the symbol ai. 

• The extent to which unit j influences unit i 
is determined by the weight wij 

• The input from unit j to unit i is the 
product: ai * wij 

• For a node i in the network:  
 
 
 
The output activation of node i is 
determined by the activation function, e.g. 
the logistic: 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Learning in connectionist networks
• Supervised learning in connectionist networks involves successively 

adjusting connection weights to reduce the discrepancy between the 
actual output activation and the correct output activation 

• An input is presented to the network 

• Activations are propagated through the network to its output 

• Outputs are compared to “correct” outputs: difference is called error 

• Weights are adjusted
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The Delta Rule

• [ai(desired)-ai(obtained] is the difference between the desired output 
activation and the actual activation produced by the network 

• What is the “error”? 

• aj is the activity of the contributing unit j 

• How much activation is this unit responsible for? 

• ε is the learning rate parameter.  

• How rapidly do we want to make changes?
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Training the Network
Consider the AND function 

• Present stimulus, e.g.: 0  0 

• Compute output activation 

• Compared with desired output ( 0 ) 

• Use Delta rule to change weights 

• Repeat for all input-output pairings 

An Epoch, consists of a single presentation of all training instances 

• Here there are 4 such input-output pairings 

A Sweep, is a presentation of a single training instance 

• So, 250 epochs consists of 1000 sweeps

Input 1 
a0

Input 2 
a1

Output 
a2

0 0 0

0 1 0

1 0 0

1 1 1

a2

a0 a1

w20 w21
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“Perceptrons” [Rosenblatt 1958]

• Perceptron: a simple, one-layer, feed-forward network: 

• Binary threshold activation function: 

• Learning: the perceptron convergence rule 

• Two parameters can be adjusted: 

• The threshold 

• The weights

aout

ain

w
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Learning OR
• Consider the following simple perceptron: 

• Recall the convergence rule:  
 
 
 
 

• We want to train this to learn boolean OR: 
• Note: changes have opposite signs 

• E.g if activity is less than target, ∂ is positive: 
Threshold is decreased; Weight is increased 

• If ∂ is non-zero, threshold is always changed 
• But if ain is zero, the weight is not changed 

• The changes can be calculated straight-forwardly, but do they lead to convergence 
on a solution to a problem? 

a2

a0 a1

w20 w21

a0 a1 a2

0 0 0

0 1 1

1 0 1

1 1 1

Classification problem
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Learning OR continued …
a2

a0 a1

0.2 0.1

In w20 w21
θ a2 t2 δ ∆θ ∆w20 ∆w21

0 0 .2 .1 1.0 0 0 0 0 0 0

1 0 .2 .1 1.0 0 1 1.0 -0.5 0.5 0

0 1 .7 .1 0.5 0 1 1.0 -0.5 0 0.5

1 1 .7 .6 0.0 1 1 0 0 0 0

0 0 .7 .6 0.0 0 0 0 0 0 0

0  1 .7 .6 0.0 1 1 0 0 0 0

1 0 .7 .6 0.0 1 1 0 0 0 0

1 1 .7 .6 0.0 1 1 0 0 0 0



Connectionist Language Processing – Crocker & Brouwer

Gradient descent
• Let’s define the error on the outputs 

as: Ep=(tout-aout)2 

• Recall: aout = ∑w ain 

• This means Ep is always positive 

• For a single layer net, if we consider one 
weight, holding the others constant: 
• Plot Error versus varying the weight 

• The lowest point on the curve, represents  
the minimum error possible for: 
• For pattern p 
• By varying a given weight w 

• Learning: the network is always at some point on the error curve 
• Use the slope of the curve to change the weights in the right direction 
• If slope is positive, then decrease the weight 
• If slope is negative, increase the weight

Weight
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Visualising the error „surface“
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Gradient descent continued
• We need calculus to allow us to determine how the error varies when a 

particular weight is varied:
Slope: Rate of change of E, with w

Error = (tout - aout)2

Derivative of the activation 
function with respect to w, i.e. 

its slope
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Gradient descent and the delta rule 
• The perceptron convergence rule:  

• Our revised learning rule, based on gradient descent is: 

• where F* is the slope of the activation function 

• If the activation function is linear, it’s slope is constant: 

• where k is a constant representing the learning rate and slope 

• This corresponds to the original Delta rule: 

• It is straight-forward to calculate 

• Performs gradient descent to the bottom of an the error curve 

• ∆w is proportional to (tout-aout), so changes get smaller as error is reduced 

• In 2-layer networks, there is a single minimum: gradient descent learning is therefore guaranteed to 
find a solution, it one exists.
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Learning with the Sigmoid activation function

• Networks with linear activation functions: 

• have mathematically well-defined learning capacities 

• they are known to be limited in the kinds of problems they can solve 

• The logistic, or sigmoid, function is:  

• Non-linear, more powerful 

• More neurologically plausible 

• Less well-understood, more difficult to analyse mathematically

Connectionist Language Processing – Crocker & Brouwer

Behaviour of the logistic function
• Deriving the slope of the logistic 

function: 

• The Delta rule, assuming the  
logistic function:

aout

a o
ut
(1

-a
ou

t)



Connectionist Language Processing – Crocker & Brouwer

Training a network
• The training phase involves 

• Presenting an input pattern, and computing the output for the network using the 
current connection weights: aout=f(∑in wout,in x ain) 

• Calculating the error between the desired and the actual output (tout -aout) 
• Using the Delta rule (appropriate for the activation function): 

• One such cycle is called a sweep, and a  
sweep through each pattern is called an epoch 

• We can define the global error of the network, as the average error across 
all input patterns, k: 
• One common measure is the square root of mean error 
• Squaring avoids positive and negative error cancelling each other out
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Training: an example
• Assume an input pattern: 1  1 

• Assume a learning rate of 0.1 

• Assume a sigmoid activation 

• Desired output is: 1 

• Determine the weight changes for 1 sweep:

a2

a0 a1

0.75 0.5

a2

a0 a1

0.7537 0.5037
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The dynamics of weight changes
• Learning rate: predetermined constant (though can be changed during training) 

• The error: large error = large weight change 

• The slope of the activation function: 

• The derivative of the logistic is largest for netinputs around 0, and for activations around .5 

• Small netinputs co-occur with small weights 

• Small weights tend to occur early in training 

• The result: bigger changes during early stages of learning 

• More resilience in older network: harder to teach new tricks! 

• The momentum: This parameter determines how much of the previous weight change affects 
the current weight change
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Calculating Error
• Consider a simple network for learning the AND operation 

• After training (1000 sweeps, 250 epochs), we can calculate the global 
(RMS) error as follows: 

• Observe how error steadily falls during training

Input Target Output (t-o)^2
0 0 0 0,147 0,022
0 1 0 0,297 0,088
1 0 0 0,334 0,112
1 1 1 0,552 0,201

RMS: 0,325
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Calculating Global RMS Error
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Summary – Learning Rules
• Perceptron convergence rule 

• Delta rule 

• Depends on the (slope of the) activation function 

• For 2-layer networks using these rules: 

• A solution will be found, if it exists 

• How do we know if network has learned successfully?
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Summary – Error
• For learning, we use (tout - aout) for each output unit, to change weights 

• To characterise the performance of the network as a whole, we need a measure 
of global error: 

• Across all output units 

• Across all training patterns 

• One possible measure is RMS 

• Another is entropy: doesn’t matter too much, since we only need to know if 
performance is improving or deteriorating on a relative basis 

• But, low overall error doesn’t always mean the network has learned 
successfully! 


