
Connectionist 
Language Processing

Lecture 3: Learning in Single-layer Networks

Matthew W. Crocker
crocker@coli.uni-sb.de

Harm Brouwer
brouwer@coli.uni-sb.de

Connectionist Language Processing – Crocker & Brouwer

Basic Structure of Nodes

• A node can be characterised as follows:

• Input connections representing the flow of activation from other nodes or some
external source

• Each input connection has its own weight, which determines how much influence
that input has on the node

• A node i has an output activation ai = f(neti) which is a function of the weighted sum
of its input activations, net.

• The net input is determined as follows: net i = wijaj
j
∑

∑ ƒ(neti)Node  
inputs

Node  
outputs

wi1

wi2

wi3

a1

a2

a3

ai

Connectionist Language Processing – Crocker & Brouwer

Calculating the activation: neti is 1.25
• Linear activation:

• Linear threshold: T=0.5

• Binary threshold: T=0.5

• Nonlinear activation:

• Sigmoid or “logistic” function  
 
 

€

f (neti) = net i
f (1.25) =1.25

€

IF neti > T then f (net i) = neti − T
ELSE f (neti) = 0
f (1.25) =1.25 −0.5 = 0.75

€

IF neti > T then f (net i) =1
ELSE f (neti) = 0
f (1.25) =1

€

f (neti) =
1

1+ e−neti
f (1.25) = 0.777

netinput

ac
tiv

ity

netinput

ac
tiv

ity

netinput

ac
tiv

ity

€

f :ℜ→ℜ

€

f :ℜ→ [0,1]

€

f :ℜ→ [0,1]

€

f :ℜ→ℜ

Connectionist Language Processing – Crocker & Brouwer

Summary of network architecture
• The activation of a unit i is represented by

the symbol ai.

• The extent to which unit j influences unit i
is determined by the weight wij

• The input from unit j to unit i is the
product: ai * wij

• For a node i in the network:  
 
 
 
The output activation of node i is
determined by the activation function, e.g.
the logistic: 
 

€

neti = wija j
j
∑

€

ai = f (neti) =
1

1+ e−neti

Connectionist Language Processing – Crocker & Brouwer

Learning in connectionist networks
• Supervised learning in connectionist networks involves successively

adjusting connection weights to reduce the discrepancy between the
actual output activation and the correct output activation

• An input is presented to the network

• Activations are propagated through the network to its output

• Outputs are compared to “correct” outputs: difference is called error

• Weights are adjusted

Connectionist Language Processing – Crocker & Brouwer

The Delta Rule

• [ai(desired)-ai(obtained] is the difference between the desired output
activation and the actual activation produced by the network

• What is the “error”?

• aj is the activity of the contributing unit j

• How much activation is this unit responsible for?

• ε is the learning rate parameter.

• How rapidly do we want to make changes?

Connectionist Language Processing – Crocker & Brouwer

Training the Network
Consider the AND function

• Present stimulus, e.g.: 0 0

• Compute output activation

• Compared with desired output (0)

• Use Delta rule to change weights

• Repeat for all input-output pairings

An Epoch, consists of a single presentation of all training instances

• Here there are 4 such input-output pairings

A Sweep, is a presentation of a single training instance

• So, 250 epochs consists of 1000 sweeps

Input 1
a0

Input 2
a1

Output
a2

0 0 0

0 1 0

1 0 0

1 1 1

a2

a0 a1

w20 w21

Connectionist Language Processing – Crocker & Brouwer

“Perceptrons” [Rosenblatt 1958]

• Perceptron: a simple, one-layer, feed-forward network:

• Binary threshold activation function:

• Learning: the perceptron convergence rule

• Two parameters can be adjusted:

• The threshold

• The weights

aout

ain

w

Connectionist Language Processing – Crocker & Brouwer

Learning OR
• Consider the following simple perceptron:

• Recall the convergence rule:  
 
 
 
 

• We want to train this to learn boolean OR:
• Note: changes have opposite signs

• E.g if activity is less than target, ∂ is positive: 
Threshold is decreased; Weight is increased

• If ∂ is non-zero, threshold is always changed
• But if ain is zero, the weight is not changed

• The changes can be calculated straight-forwardly, but do they lead to convergence
on a solution to a problem?

a2

a0 a1

w20 w21

a0 a1 a2

0 0 0

0 1 1

1 0 1

1 1 1

Classification problem

Connectionist Language Processing – Crocker & Brouwer

Learning OR continued …
a2

a0 a1

0.2 0.1

In w20 w21
θ a2 t2 δ ∆θ ∆w20 ∆w21

0 0 .2 .1 1.0 0 0 0 0 0 0

1 0 .2 .1 1.0 0 1 1.0 -0.5 0.5 0

0 1 .7 .1 0.5 0 1 1.0 -0.5 0 0.5

1 1 .7 .6 0.0 1 1 0 0 0 0

0 0 .7 .6 0.0 0 0 0 0 0 0

0 1 .7 .6 0.0 1 1 0 0 0 0

1 0 .7 .6 0.0 1 1 0 0 0 0

1 1 .7 .6 0.0 1 1 0 0 0 0

Connectionist Language Processing – Crocker & Brouwer

Gradient descent
• Let’s define the error on the outputs 

as: Ep=(tout-aout)2

• Recall: aout = ∑w ain

• This means Ep is always positive

• For a single layer net, if we consider one 
weight, holding the others constant:
• Plot Error versus varying the weight

• The lowest point on the curve, represents  
the minimum error possible for:
• For pattern p
• By varying a given weight w

• Learning: the network is always at some point on the error curve
• Use the slope of the curve to change the weights in the right direction
• If slope is positive, then decrease the weight
• If slope is negative, increase the weight

Weight

E
rro

r (
E

p)

Optimum weight

Connectionist Language Processing – Crocker & Brouwer

Visualising the error „surface“

Connectionist Language Processing – Crocker & Brouwer

Gradient descent continued
• We need calculus to allow us to determine how the error varies when a

particular weight is varied:
Slope: Rate of change of E, with w

Error = (tout - aout)2

Derivative of the activation
function with respect to w, i.e.

its slope

Connectionist Language Processing – Crocker & Brouwer

Gradient descent and the delta rule
• The perceptron convergence rule:

• Our revised learning rule, based on gradient descent is:

• where F* is the slope of the activation function

• If the activation function is linear, it’s slope is constant:

• where k is a constant representing the learning rate and slope

• This corresponds to the original Delta rule:

• It is straight-forward to calculate

• Performs gradient descent to the bottom of an the error curve

• ∆w is proportional to (tout-aout), so changes get smaller as error is reduced

• In 2-layer networks, there is a single minimum: gradient descent learning is therefore guaranteed to
find a solution, it one exists.

Connectionist Language Processing – Crocker & Brouwer

Learning with the Sigmoid activation function

• Networks with linear activation functions:

• have mathematically well-defined learning capacities

• they are known to be limited in the kinds of problems they can solve

• The logistic, or sigmoid, function is:  

• Non-linear, more powerful

• More neurologically plausible

• Less well-understood, more difficult to analyse mathematically

Connectionist Language Processing – Crocker & Brouwer

Behaviour of the logistic function
• Deriving the slope of the logistic 

function:

• The Delta rule, assuming the  
logistic function:

aout

a o
ut
(1

-a
ou

t)

Connectionist Language Processing – Crocker & Brouwer

Training a network
• The training phase involves

• Presenting an input pattern, and computing the output for the network using the
current connection weights: aout=f(∑in wout,in x ain)

• Calculating the error between the desired and the actual output (tout -aout)
• Using the Delta rule (appropriate for the activation function):

• One such cycle is called a sweep, and a  
sweep through each pattern is called an epoch

• We can define the global error of the network, as the average error across
all input patterns, k:
• One common measure is the square root of mean error
• Squaring avoids positive and negative error cancelling each other out

Connectionist Language Processing – Crocker & Brouwer

Training: an example
• Assume an input pattern: 1 1

• Assume a learning rate of 0.1

• Assume a sigmoid activation

• Desired output is: 1

• Determine the weight changes for 1 sweep:

a2

a0 a1

0.75 0.5

a2

a0 a1

0.7537 0.5037

Connectionist Language Processing – Crocker & Brouwer

The dynamics of weight changes
• Learning rate: predetermined constant (though can be changed during training)

• The error: large error = large weight change

• The slope of the activation function:

• The derivative of the logistic is largest for netinputs around 0, and for activations around .5

• Small netinputs co-occur with small weights

• Small weights tend to occur early in training

• The result: bigger changes during early stages of learning

• More resilience in older network: harder to teach new tricks!

• The momentum: This parameter determines how much of the previous weight change affects
the current weight change

Connectionist Language Processing – Crocker & BrouwerConnectionist and Statistical Language Processing© Matthew W. Crocker

Calculating Error
• Consider a simple network for learning the AND operation

• After training (1000 sweeps, 250 epochs), we can calculate the global
(RMS) error as follows:

• Observe how error steadily falls during training

Input Target Output (t-o)^2
0 0 0 0,147 0,022
0 1 0 0,297 0,088
1 0 0 0,334 0,112
1 1 1 0,552 0,201

RMS: 0,325

Connectionist Language Processing – Crocker & Brouwer

Calculating Global RMS Error

Connectionist Language Processing – Crocker & Brouwer

Summary – Learning Rules
• Perceptron convergence rule

• Delta rule

• Depends on the (slope of the) activation function

• For 2-layer networks using these rules:

• A solution will be found, if it exists

• How do we know if network has learned successfully?

Connectionist Language Processing – Crocker & Brouwer

Summary – Error
• For learning, we use (tout - aout) for each output unit, to change weights

• To characterise the performance of the network as a whole, we need a measure
of global error:

• Across all output units

• Across all training patterns

• One possible measure is RMS

• Another is entropy: doesn’t matter too much, since we only need to know if
performance is improving or deteriorating on a relative basis

• But, low overall error doesn’t always mean the network has learned
successfully!

