Connectionist Language Processing

Lecture 3: Learning in Single-layer Networks

Matthew W. Crocker crocker@coli.uni-sb.de Harm Brouwer brouwer@coli.uni-sb.de

Basic Structure of Nodes

Node inputs $\begin{cases} a_1 & w_{i1} \\ a_2 & w_{i2} \\ a_3 & w_{i3} \\ a_3 & a_i \end{cases}$ $\sum f(net_i) = a_i$ Node outputs

- A node can be characterised as follows:
 - Input connections representing the flow of activation from other nodes or some external source
 - Each input connection has its own weight, which determines how much influence that input has on the node
 - A node i has an output activation ai = f(neti) which is a function of the weighted sum of its input activations, net.
- The net input is determined as follows: $net_i = \sum_i w_{ij}a_j$

Calculating the activation: *net_i* is 1.25

• Linear activation:

 $f:\mathfrak{R}\to\mathfrak{R}$

• Linear threshold: T=0.5

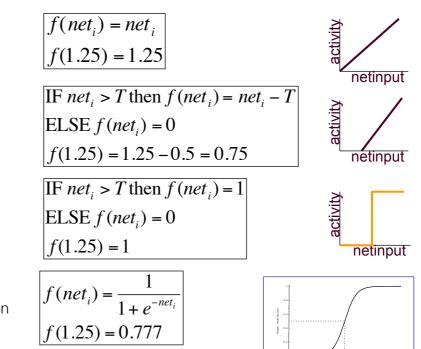
 $f:\mathfrak{R}\to\mathfrak{R}$

• Binary threshold: T=0.5

 $f: \Re \rightarrow [0,1]$

- Nonlinear activation:
 - Sigmoid or "logistic" function

 $f: \Re \rightarrow [0,1]$



Connectionist Language Processing – Crocker & Brouwer

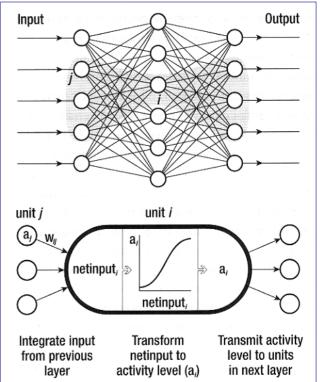
Summary of network architecture

- The activation of a unit *i* is represented by the symbol *a_i*.
- The extent to which unit *j* influences unit *i* is determined by the weight *w*_{ij}
- The input from unit j to unit i is the product: $a_i * w_{ij}$
- For a node i in the network:

$$net_i = \sum_i w_{ij} a_j$$

The output activation of node i is determined by the activation function, e.g. the logistic:

$$a_i = f(net_i) = \frac{1}{1 + e^{-net_i}}$$



Learning in connectionist networks

- Supervised learning in connectionist networks involves successively adjusting connection weights to <u>reduce the discrepancy</u> between the actual output activation and the correct output activation
 - An input is presented to the network
 - Activations are propagated through the network to its output
 - Outputs are compared to "correct" outputs: difference is called error
 - Weights are adjusted

Connectionist Language Processing – Crocker & Brouwer

The Delta Rule

$\Delta w_{ij} = [a_i (\text{desired}) - a_i (\text{obtained})]a_j\varepsilon$

- [*ai*(desired)-*ai*(obtained] is the difference between the desired output activation and the actual activation produced by the network
- What is the "error"?
- a_j is the activity of the contributing unit j
- How much activation is this unit responsible for?
- ϵ is the learning rate parameter.
- How rapidly do we want to make changes?

Training the Network

 $\Delta w_{ij} = [a_i(\text{desired}) - a_i(\text{obtained})]a_j\varepsilon$

Consider the **AND** function

- Present stimulus, e.g.: 0 0
- Compute output activation
- Compared with desired output (0)
- Use Delta rule to change weights
- Repeat for all input-output pairings

An **Epoch**, consists of a single presentation of all training instances

• Here there are 4 such input-output pairings

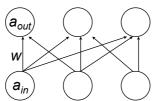
A Sweep, is a presentation of a single training instance

• So, 250 epochs consists of 1000 sweeps

Connectionist Language Processing – Crocker & Brouwer

"Perceptrons" [Rosenblatt 1958]

• Perceptron: a simple, one-layer, feed-forward network:

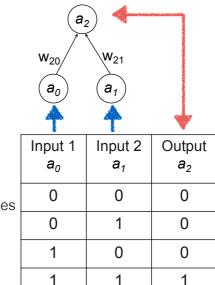


- Binary threshold activation function:
- Learning: the perceptron convergence rule
 - Two parameters can be adjusted:
 - The threshold
 - The weights

netinput
$$_{out} = \sum_{in} w \cdot a_{in}$$

 $a_{out} = 1$ if netinput $_{out} > \theta$ = 0 otherwise

The error, $\delta = (t_{out} - a_{out})$ $\Delta \theta = -\varepsilon \delta$ $\Delta w = \varepsilon \delta a_{in}$



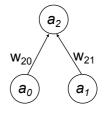
Learning OR

- Consider the following simple perceptron:
 - Recall the convergence rule:

The error, $\delta = (t_{out} - a_{out})$ $\Delta \theta = -\varepsilon \delta$ $\Delta w = \varepsilon \delta a_{in}$

- We want to train this to learn boolean OR:
 - Note: changes have opposite signs
 - E.g if activity is less than target, ∂ is positive: *Threshold is decreased*; *Weight is increased*
 - If ∂ is non-zero, threshold is always changed
 - But if **a**_{in} is zero, the weight is not changed
 - The changes can be calculated straight-forwardly, but do they lead to convergence on a solution to a problem?

Connectionist Language Processing - Crocker & Brouwer



Classification problem					
a ₀	a ₁	a ₂			
0	0	0			
0	1	1			
1	0	1			
1	1	1			

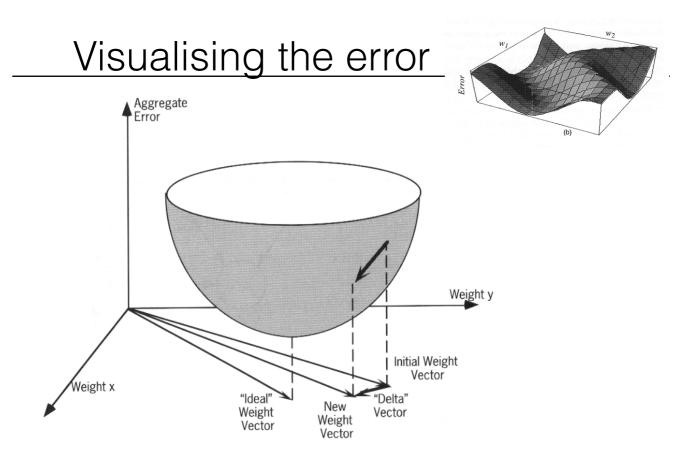
ı.

	Learning OR continued									
	The error, $\delta = (t_{out} - a_{out})$ $\Delta \theta = -\varepsilon \delta$ $\Delta w = \varepsilon \delta a_{in}$				$\theta = 1$ $\varepsilon = 0.5$			$\begin{array}{c} a_2 \\ 0.2 \\ a_0 \\ a_1 \end{array}$		
In	W ₂₀	W ₂₁	θ	a ₂	<i>t</i> ₂	δ	$\Delta \theta$	ΔW_{20}	ΔW_{21}	
00	.2	.1	1.0	0	0	0	0	0	0	

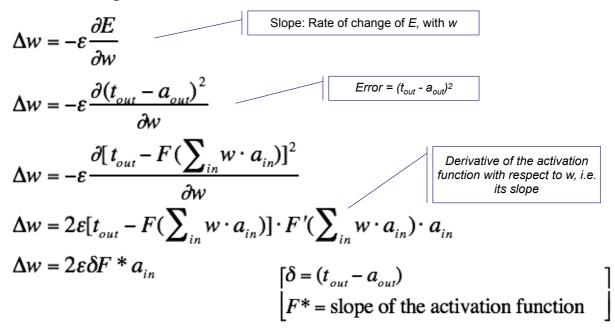
Gradient descent

- · Let's define the error on the outputs as: $E_p = (t_{out} - a_{out})^2$ • Recall: $a_{out} = \sum w a_{in}$ Error (E_p) • This means *E_p* is always positive · For a single layer net, if we consider one weight, holding the others constant: · Plot Error versus varying the weight Weight The lowest point on the curve, represents • Optimum weight the minimum error possible for: • For pattern p • By varying a given weight w Learning: the network is always at some point on the error curve • Use the slope of the curve to change the weights in the right direction
 - If slope is positive, then decrease the weight
 - If slope is negative, increase the weight

Connectionist Language Processing - Crocker & Brouwer



• We need calculus to allow us to determine how the error varies when a particular weight is varied:



Connectionist Language Processing - Crocker & Brouwer

Gradient descent and the delta rule

- The perceptron convergence rule: $\Delta w = \varepsilon \delta a_i$.
- Our revised learning rule, based on gradient descent is:
 - where F* is the slope of the activation function
- If the activation function is linear, it's slope is constant:
 - where k is a constant representing the learning rate and slope
- This corresponds to the original Delta rule:
 - It is straight-forward to calculate
 - · Performs gradient descent to the bottom of an the error curve
 - Δw is proportional to (t_{out} - a_{out}), so changes get smaller as error is reduced
 - In 2-layer networks, there is a single minimum: gradient descent learning is therefore guaranteed to find a solution, it one exists.

 $\Delta w = k \delta a_{i}$

$$\Delta w = 2\varepsilon \delta F * a_{in}$$

Learning with the Sigmoid activation function

- Networks with linear activation functions:
 - have mathematically well-defined learning capacities
 - they are known to be limited in the kinds of problems they can solve
- The logistic, or sigmoid, function is:

$$a_i = f(net_i) = \frac{1}{1 + e^{net}}$$

• Non-linear, more powerful

•

• More neurologically plausible

Connectionist Language Processing – Crocker & Brouwer

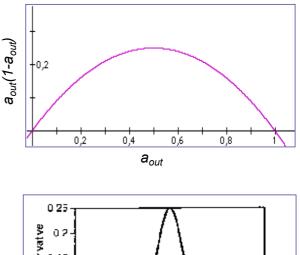
Behaviour of the logistic function

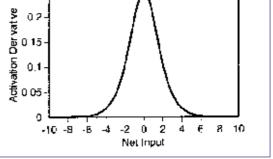
• Deriving the slope of the logistic function:

$$a_i = f(net_i) = \frac{1}{1 + e^{-net_i}}$$
$$F^* = f'(net_i) = a_{out}(1 - a_{out})$$

• The Delta rule, assuming the logistic function:

$$\Delta w = 2\varepsilon \delta F * a_{in}$$
or
$$\Delta w = 2\varepsilon (t_{out} - a_{out}) a_{out} (1 - a_{out}) a_{in}$$





Training a network

- The training phase involves
 - Presenting an input pattern, and computing the output for the network using the current connection weights: *a_{out}=f(∑_{in} w_{out,in} x a_{in})*
 - Calculating the error between the desired and the actual output (tout -aout)
 - Using the Delta rule (appropriate for the activation function):

$$\Delta w = \eta (t_{out} - a_{out}) a_{out} (1 - a_{out}) a_{int}$$

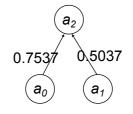
- One such cycle is called a <u>sweep</u>, and a sweep through each pattern is called an <u>epoch</u>
- We can define the <u>global error</u> of the network, as the average error across all input patterns, k:
 - One common measure is the square root of mean error
 - Squaring avoids positive and negative error cancelling each other out

Connectionist Language Processing - Crocker & Brouwer

Training: an example

- Assume an input pattern: 1 1
- Assume a learning rate of 0.1
- Assume a sigmoid activation
- Desired output is: 1
- Determine the weight changes for 1 sweep:

 $a_{2} = f(1 \times 0.75 + 1 \times 0.5) = 0.77$ $\delta_{2} = (t - a_{2})f'(0.77) = 0.23 \times 0.16 = 0.037$ $\Delta w_{20} = \eta \delta_{2} o_{0} = 0.1 \times 0.037 \times 1 = 0.0037$ $\Delta w_{21} = \eta \delta_{2} o_{1} = 0.1 \times 0.037 \times 1 = 0.0037$



0.5

rms error = $\sqrt{\frac{\sum_{k} (t_k - o_k)^2}{k}}$

The dynamics of weight changes

- Learning rate: predetermined constant (though can be changed during training)
- The error: large error = large weight change
- The slope of the activation function:
 - The derivative of the logistic is largest for netinputs around 0, and for activations around .5
 - Small netinputs co-occur with small weights
 - Small weights tend to occur early in training
 - The result: bigger changes during early stages of learning
 - More resilience in older network: harder to teach new tricks!
- The momentum: This parameter determines how much of the previous weight change affects the current weight change

Connectionist Language Processing – Crocker & Brouwer

Calculating Error

- Consider a simple network for learning the AND operation
- After training (1000 sweeps, 250 epochs), we can calculate the global (RMS) error as follows:

Input	Target	Output	(t-o)^2
0 0	0	0,147	0,022
0 1	0	0,297	0,088
10	0	0,334	0,112
11	1	0,552	0,201
		RMS:	0,325

rms error =
$$\sqrt{\frac{\sum_{k} (t_k - o_k)^2}{k}}$$

• Observe how error steadily falls during training

Calculating Global RMS Error

	Calculation	of Global R	MS error: fo	r (auto1), c	h. 5, Plunket	t & Elman		
	Observed Output				Target			
pattern 1	0,321	0,196	0,255	0,264	1,000	0,000	0,000	0,000
pattern 2	0,227	0,612	0,169	0,211	0,000	1,000	0,000	0,000
pattern 3	0,287	0,188	0,342	0,276	0,000	0,000	1,000	0,000
pattern 4	0,296	0,207	0,300	0,268	0,000	0,000	0,000	1,000
	Error (t-o)							
	0,679	-0,196	-0,255	-0,264				
	-0,227	0,388	-0,169	-0,211				
	-0,287	-0,188	0,658	-0,276				
	-0,296	-0,207	-0,3	0,732				
	Error^2							
	0,461041	0,038416	0,065025	0,069696	0,634178			
	0,051529	0,150544	0,028561	0,044521	0,275155			
	0,082369	0,035344	0,432964	0,076176	0,626853			
	0,087616	0,042849	0,09	0,535824	0,756289			
				RMS Error	0,757046			$\sum_{i=1}^{I}$
								$\Delta^{(n_k = 0)}$
						rms e	rror = 1	k
							V	k

Connectionist Language Processing – Crocker & Brouwer

Summary – Learning Rules

- Perceptron convergence rule
- Delta rule
 - Depends on the (slope of the) activation function
- For 2-layer networks using these rules:
 - A solution will be found, if it exists
- How do we know if network has learned successfully?

Summary – Error

- For learning, we use $(t_{out} a_{out})$ for each output unit, to change weights
- To characterise the performance of the network as a whole, we need a measure of global error:
 - Across all output units
 - Across all training patterns
- One possible measure is RMS
 - Another is entropy: doesn't matter too much, since we only need to know if performance is improving or deteriorating on a relative basis
 - But, low overall error doesn't always mean the network has learned successfully!

Connectionist Language Processing – Crocker & Brouwer