Connectionist
Language Processing

Lecture 3: Learning in Single-layer Networks

Matthew W. Crocker
crocker@coli.uni-sb.de
Harm Brouwer
brouwer@coli.uni-sb.de

Basic Structure of Nodes

Node Wi f(net,-) a Node

inputs Z outputs

* A node can be characterised as follows:

* Input connections representing the flow of activation from other nodes or some
external source

e Each input connection has its own weight, which determines how much influence
that input has on the node

* A node i has an output activation ai = f(neti) which is a function of the weighted sum
of its input activations, net.

« The netinput is determined as follows: ner, = Ewljaj
J

Calculating the activation: net;is 1.25

« Linear activation: f(net,) = net,
f:R—-NR f(1.25)=1.25
nefinpu
« Linear threshold: T=0.5 IF net; > T'then f(net;) = net, = T
ELSE f (net;) =0
fiR—=N £(125)=125-05=0.75 wémpu
e Binary threshold: T=0.5 IF net, > T then f(”eti) =1
f: N —[0,1] ELSE f(net,) =0
fa.25)=1 netinput’

Nonlinear activation:

flnet) = ——
I+ ™
£(125)=0.777

» Sigmoid or “logistic” function

R\ —=[0,1]

Summary of network architecture

Output

The activation of a unit / is represented by
the symbol a..

The extent to which unit jinfluences unit /
is determined by the weight wj

The input from unit j to unit i is the
product: ai * wj

For a node i in the network:

net, = Sw,a, .
J :
The output activation of node i is netinput, (
determined by the activation function, e.g.
the logistic: Integrate input Transform Transmit activity

from previous netinput to level to units
a, = f (net ,-) = l+e net. layer activity level (a) in next layer
e 1

Learning in connectionist networks

Supervised learning in connectionist networks involves successively
adjusting connection weights to reduce the discrepancy between the
actual output activation and the correct output activation

* Aninputis presented to the network
* Activations are propagated through the network to its output
» Outputs are compared to “correct” outputs: difference is called error

* Weights are adjusted

The Delta Rule

Aw,, = |a.(desired) - a.(obtained)]a €

[a(desired)-a(obtained] is the difference between the desired output
activation and the actual activation produced by the network

What is the “error”?

ajis the activity of the contributing unit j

How much activation is this unit responsible for?
¢ is the learning rate parameter.

How rapidly do we want to make changes?

Training the Network

Aw, =[a,(desired) - a,(obtained)]a ¢
Consider the AND function

Present stimulus, e.g.: 0 0 @ N
» Compute output activation Wag Wy,
* Compared with desired output (0) @ @
* Use Delta rule to change weights * * Vv
Input1 | Input2 | Output
* Repeat for all input-output pairings aop ay a
. , . L 0 0 0
An Epoch, consists of a single presentation of all training instances
0 1 0
* Here there are 4 such input-output pairings 1 0 0
A Sweep, is a presentation of a single training instance 1 1 1
* S0, 250 epochs consists of 1000 sweeps
1 P))
erceptronsS’ [Rosenbiatt 1958]
» Perceptron: a simple, one-layer, feed-forward network:
netinput = z w-a,
* Binary threshold activation function: a,,, =1ifnetinput_ >0

= (0 otherwise

* Learning: the perceptron convergence rule
The error, 6=(¢,,-a,,)
» Two parameters can be adjusted: AB = —-¢gd

« The threshold Aw = gda,,

* The weights

Learning OR

* Consider the following simple perceptron: @
* Recall the convergence rule: Wao W21
The error, 6=(¢,,,-a,,,) @ e
AQ = -¢b
Aw = g &lm Classification problem
do ay az

* \We want to train this to learn boolean OR:

* Note: changes have opposite signs

e E.gif activity is less than target, 0 is positive:
Threshold is decreased; Weight is increased

* If dis non-zero, threshold is always changed
* Butif a;, is zero, the weight is not changed

* The changes can be calculated straight-forwardly, but do they lead to convergence
on a solution to a problem?

Al Al O O
- Ol =| O
Al Al Al O

Learning OR continued ...

The error, 6=(¢,,,-a,,,) @
=1
AQ = -¢b 0.2 0.1
Aw = gda,, e=05 (@ ()
In Wag Wayy 0 a, t, d AD AW, AW,

00 2 A 1.0 0 0 0 0 0 0

Gradient descent

Let’s define the error on the outputs
as: Epz(tout'aout)z

« Recall: a,,;=>wa,,

 This means E, is always positive

For a single layer net, if we consider one
weight, holding the others constant:

* Plot Error versus varying the weight /

The lowest point on the curve, represents
the minimum error possible for:
» For pattern p

» By varying a given weight w

Learning: the network is always at some point on the error curve

» Use the slope of the curve to change the weights in the right direction
If slope is positive, then decrease the weight

If slope is negative, increase the weight

Visualising the error

Aggregate
k Error

g

Initial Weight
Vector
eight x
“|deal” N “Delta”
Weight EW " Vector
Vector Weight

Vector

Gradient descent continued

* We need calculus to allow us to determine how the error varies when a
particular weight is varied:

aE % Slope: Rate of change of E, with w
Aw

= —f£—

ow

Aw _ £ (?(taut - aout) 2 /’/‘ Error = (tout - aout)2

- W

. 2
(?[tour - F (E w ain)] Derivative of the activation
AW = —£ 2 function with respect to w, i.e.
(?W its slope

Aw =2¢[t, - F(E_ w-a)] F'(Z_ w-a) a,
AW = 286F * a,.n |'6 - (t —a '|
I_F * = slope of the activation function J

Gradient descent and the delta rule

* The perceptron convergence rule: AW = géain
* Qur revised learning rule, based on gradient descent is: Aw = 285F * ain
» where F* is the slope of the activation function
* |f the activation function is linear, it's slope is constant:
* where k is a constant representing the learning rate and slope
* This corresponds to the original Delta rule: Aw = kaam
* ltis straight-forward to calculate
* Performs gradient descent to the bottom of an the error curve
* Aw is proportional to (fout-aout), SO changes get smaller as error is reduced

» In 2-layer networks, there is a single minimum: gradient descent learning is therefore guaranteed to
find a solution, it one exists.

Learning with the Sigmoid activation function

* The logistic, or sigmoid, function is:

Networks with linear activation functions:

* have mathematically well-defined learning capacities

» they are known to be limited in the kinds of problems they can solve

ai = f(netl)= net;
l+e™

* Non-linear, more powerful

* More neurologically plausible

» Less well-understood, more difficult to analyse mathematically

Behaviour of the logistic function

Deriving the slope of the logistic
function:
1

a = f(net) =———
1+ e "
F*= f'(netz) = aout(l - aour)

The Delta rule, assuming the
logistic function:

Aw =2¢ed0F *a,,
or
AW = 25(tout - aou!)aou!(l - aout)ain

aout(1'aout)

T0,2

L0204 0p 08 1\

aout

Activation Der vatve
<

(=]

4 1 T T T .
A0 -8 B 4 -2 0 2 4 € & 10
MNel [nput

Training a network

The training phase involves

* Presenting an input pattern, and computing the output for the network using the
current connection weights: aq,=f(2 j» Woutin X @in)

» Calculating the error between the desired and the actual output (., -aou)
* Using the Delta rule (appropriate for the activation function):

= - -) rro
Aw n(tom aom)aour(l aout)am E(tk _ok)
One such cycle is called a sweep, and a rms error = |2
sweep through each pattern is called an gpoch k

We can define the global error of the network, as the average error across
all input patterns, k:

« One common measure is the square root of mean error

* Squaring avoids positive and negative error cancelling each other out

Training: an example

Assume an input pattern: 1 1 @
0.7 0.5

Assume a learning rate of 0.1 @ @
Assume a sigmoid activation
Desired output is: 1

Determine the weight changes for 1 sweep: @

03
a, = f(1x0.75+1x0.5)=0.77 0.7537 0\5037

8,=(-a,)f'(0.77)=0.23x0.16 =0.037 @ @
Aw,,=nd,0, =0.1x0.037 x 1=0.0037
Aw,,=1nd,0, =0.1x0.037 x 1= 0.0037

The dynamics of weight changes

* Learning rate: predetermined constant (though can be changed during training)

The error: large error = large weight change

The slope of the activation function:

» The derivative of the logistic is largest for netinputs around 0, and for activations around .5
» Small netinputs co-occur with small weights

* Small weights tend to occur early in training

* The result: bigger changes during early stages of learning

* More resilience in older network: harder to teach new tricks!

The momentum: This parameter determines how much of the previous weight change affects
the current weight change

Calculating Error

Consider a simple network for learning the AND operation

After training (1000 sweeps, 250 epochs), we can calculate the global
(RMS) error as follows:
r T2
E(Ik —Ok)
K

Input Target Output (t-0)A2 fmS error =
00 0 0,147 0,022 k
01 0 0,297 0,088 T T
10 0 0,334 0,112
11 1 0,552 0,201

RMS: 0,325

Observe how error steadily falls during training

© Matthew W. Crocker Connectionist and Statistical Language Processing

Calculating Global RMS Error

Calculation of Global RMS error: for (auto1), ch. 5, Plunkett & Elman
Observed Output

Target

pattern 1 0,321 0,196 0,255 0,264 1,000 0,000 0,000 0,000
pattern 2 0,227 0,612 0,169 0,211 0,000 1,000 0,000 0,000
pattern 3 0,287 0,188 0,342 0,276 0,000 0,000 1,000 0,000
pattern 4 0,296 0,207 0,300 0,268 0,000 0,000 0,000 1,000
Error (t-o)
0,679 -0,196 -0,255 -0,264
-0,227 0,388 -0,169 -0,211
-0,287 -0,188 0,658 -0,276
-0,296 -0,207 -0,3 0,732
ErrorA2
0,461041 0,038416 0,065025 0,069696(0,634178
0,051529 0,150544 0,028561 0,044521|0,275155
0,082369 0,035344 0,432964 0,076176| 0,626853
0,087616 0,042849 0,09 0,535824]0,756289
RMS Error] 0,757046

Summary — Learning Rules

ms €rror =

Perceptron convergence rule

Delta rule

» Depends on the (slope of the) activation function

For 2-layer networks using these rules:

* A solution will be found, if it exists

How do we know if network has learned successfully?

Summary — Error

For learning, we use (fout - @out) for each output unit, to change weights

To characterise the performance of the network as a whole, we need a measure
of global error:

* Across all output units
e Across all training patterns
One possible measure is RMS

e Another is entropy: doesn’t matter too much, since we only need to know if
performance is improving or deteriorating on a relative basis

* But, low overall error doesn'’t always mean the network has learned
successfully!

